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Abstract

Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in
GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves
a distributed network of brain regions including limbic regions like amygdala and visual
processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using
benzodiazepines like alprazolam can be useful for studying this facial affect processing network
and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological
modulation and computational modeling to study the contribution of GABAergic abnormalities
toward emotion processing deficits in schizophrenia. Specifically, we apply principles from
network control theory to model persistence energy — the control energy required to maintain brain
activation states — during emotion identification and recall tasks, with and without administration
of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy
quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam
increases persistence energy in relatives but not in controls during threatening face processing,
suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in
this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and
occipital cortices are important for facilitating state transitions during facial affect processing.
Finally, we uncover spatial relationships (i) between regional variation in differential control
energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter
systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems.
Together, these findings reveal differences in emotion-processing circuitry associated with genetic
vulnerability to schizophrenia.
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Introduction

Schizophrenia is associated with deficits in emotion processing. Individuals with schizophrenia
demonstrate marked deficits in facial affect perception, as measured through tasks that require the
identification of emotions such as happiness, sadness, anger or fear'>. Emotion processing deficits
in schizophrenia contribute substantially to impairments in social cognition and poor functional
outcomes®?*. First-degree family members of individuals with schizophrenia also display
abnormalities in facial affect perception, albeit to a lesser extent than probands®-®. Abnormalities
in first-degree relatives are particularly remarkable as the study of family members allows for the
investigation of schizophrenia associated endophenotypes without the confounding effects of
antipsychotic medication and secondary effects related to disease chronicity’. More broadly,
investigations of facial affect processing in family members may offer insight into a key cognitive
domain adversely affected by schizophrenia and can serve to inform effective treatment strategies.

Prior studies have used neuroimaging to characterize the neural circuitry associated with altered
facial affect processing in individuals with schizophrenia and their relatives. These studies have
primarily focused on linking differences in activation of limbic regions like the amygdala with
altered identification and recall of threat-related faces®'2. However, facial affect perception is a
complex process involving multiple brain regions, and evidence exists for impairment in both
emotion-processing limbic regions as well as early-stage visual processing in schizophrenia®!3.
Facial affect processing involves a distributed network comprising limbic regions, fusiform and
occipital cortex, medial and lateral prefrontal areas, and insula'*'®. Indeed, components of this
distributed network have been implicated in facial emotion processing abnormalities in individuals
with schizophrenia!” and individuals with high genetic risk for schizophrenia'®, suggesting
heritability. Thus, an integrative understanding of facial affect processing abnormalities in
schizophrenia requires analysis of the distributed network regulating a complex domain.

Facial affect processing abnormalities in schizophrenia, and other cognitive deficits, may be driven
by abnormal GABAergic neurotransmission'”. Notably, GABAergic abnormalities in
schizophrenia have been documented quite broadly, across the prefrontal cortex?°, visual
cortex??2, amygdala?}, and temporal lobe?*, regions that overlap with the distributed network
involved in facial affect processing. The role of GABAergic circuitry in facial affect processing
and its impairment in schizophrenia can be effectively studied through pharmacological
modulation using GABA modulators like benzodiazepines®. Alprazolam (Xanax®) is among the
most widely used benzodiazepines, with well-known anxiolytic effects through enhanced
GABAergic inhibition of the amygdala and limbic structures, and sedative effects from more broad
GABAergic inhibition?¢-2%, Thus, benzodiazepine challenge provides an opportunity to study the
role of GABAergic circuitry in the etiology of facial affect processing abnormalities in
schizophrenia.
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Benzodiazepines impair emotion identification and emotion memory in healthy individuals,
mainly in processing threatening faces?®3!. The neural basis for the observed impairments in threat
processing have been investigated in neuroimaging studies of emotion processing with
benzodiazepine challenge in healthy subjects. These studies have shown that benzodiazepines alter
activation of brain regions in the distributed facial affect processing network including amygdala,
fusiform gyrus, orbitofrontal cortex, and insula during facial affect processing tasks®>33. We
showed that alprazolam unmasks amygdalar and/or GABAergic abnormalities in first-degree
relatives of individuals with schizophrenia during emotion identification and recall tasks.
However, there remains a lack of mechanistic understanding of benzodiazepine action during
facial affect processing that goes beyond traditional activation studies. More recent tools for
modeling the dynamics of brain activation states can help to synthesize results from activation
studies and provide mechanistic insight into benzodiazepine action as well as GABAergic
abnormalities in schizophrenia.

The mechanistic basis of benzodiazepine action on the brain during emotion processing can be
effectively modeled using network control theory (NCT). NCT is a tool originating in theoretical
physics and systems engineering that has successfully been used to understand how to control real-
world systems comprised of interacting components, such as power grids and electronic
circuits*>*¢, In the context of NCT, control refers to the ability to drive the system, through a
suitable choice of inputs, from an initial state to a final state. Given that the brain is a complex
system comprised of interconnected networks of neurons®’, NCT provides an intuitive and
compelling tool to model the dynamic trajectory of brain activation states that support its rich
cognitive functions. Indeed, NCT has already been used to provide insight into the structure and
function of model nervous systems like C. elegans®®, Drosophila®®, mouse®**’, and macaque*!, as
well as human brain networks3%42-46,

The application of NCT to model the brain typically involves the definition of a structural network
through diffusion weighted imaging, and the definition of brain states as activation patterns across
brain regions*’. Brain states can be defined by arbitrarily switching ‘on’ canonical brain sub-
networks like the visual and default mode networks, or directly as task activation obtained through
functional magnetic resonance imaging data***->!, The NCT framework is then used to model the
temporal progression of brain states as a function of the underlying structural network and
theoretical control energy applied to different brain regions. The calculated control energy may
represent external electrical stimulation or internal cognitive control needed to steer the brain
between defined initial and final states*’. Additionally, the brain regions important for driving
specific brain state transitions can be identified through control impact analysis. This framework
naturally lends itself to modeling the effect of drugs like alprazolam in driving brain state
trajectories relevant to facial affect processing and can provide mechanistic insight into the mode
of action of the drug beyond simple measures of activation.
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Here we applied principles from network control theory to investigate the effect of alprazolam and
schizophrenia risk status in driving brain state transitions during facial affect processing. We
leveraged a previously reported dataset®* where fMRI BOLD data was collected during emotion
identification and emotion memory tasks, with and without administration of alprazolam, in a
cohort consisting of healthy controls and unaffected first-degree relatives of individuals with
schizophrenia. We considered task-evoked brain activation patterns during emotion processing
tasks to be brain states and quantified the theoretical control energy needed to maintain those states
— the persistence energy. In our previous study, we showed that alprazolam unmasked GABAergic
abnormalities in the amygdala in relatives**. Accordingly, our primary hypothesis was that when
administered alprazolam, family members would have altered persistence energy during
identification and recall of threatening faces which requires amygdalar processing, but not during
non-threatening or neutral stimuli. We predicted that brain regions of high control impact in the
NCT model would align with known regions involved in facial affect processing including
fusiform cortex, occipital cortex, and sub-cortical regions like the amygdala and insula. Finally,
we predicted that regions of high control impact would also spatially align with regions of high
GABA receptor expression, but not with other neurotransmitters like dopamine and serotonin,
reflecting the biological mode of benzodiazepene action. By testing and validating our hypotheses,
we uncover novel insights regarding the contribution of GABAergic abnormalities toward emotion
processing deficits in schizophrenia.

Methods
Participants

The sample included 27 healthy participants with a first-degree relative affected by schizophrenia
and 20 healthy controls without a family history of schizophrenia, for a total of n=47 participants.
Controls and relatives were matched based on demographic and clinical variables (Table 1). After
excluding scans based on motion estimates (mean framewise displacement > 0.5mm), the final
sample for data analysis included n=44 participants (19 relatives; 25 controls) for emotion
identification, and n=40 participants (17 relatives; 23 controls) for emotion memory (see
Supplementary Methods for details on assessment). Study procedures were approved by the
University of Pennsylvania Institutional Review Board, and written informed consent was
obtained from participants. Participants underwent standard medical, neurological, psychiatric,
and neurocognitive evaluations (see Supplementary Methods).
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Table 1. Demographic and clinical information at time of scan

Variable Controls (n=27) Relatives (n=20) p-value
Percentage  Proportion Percentage  Proportion Odds ratio
Sex (% F) 51.9 14F/13M 55.0 11F/9M 1.0 0.88
Handedness (% R) 92.6 25R/2L 80.0 16R/4L 0.38 0.32
Smoke (% N) 77.8 21N/6Y 80.0 16N/4Y 1.0 0.88
Test
statistic*
Mean (SD) Range Mean (SD) Range (DOF)
Age (years) 39.0(11.4) 21.1-56.5 42.3(14.8) 20.9-59.4 0.31 -1.02
Education (years) 15.0(2.0) 11.0-19.0 14.8(2.3)  12.0-20.0 0.79 0.26 (45)
Parental education 13.6 (3.1) 7.5-20.0 13.9 (2.7) 9.5-18.0 0.76 -0.31 (43)
Height (in.) 67.7(4.0) 61.0-77.0 67.6(4.3)  60.0-73.0 0.93 0.09 (45)
Weight (Ib.) 176.4 115.0- 175.5 118.0-
. .09 (4
(33.0) 255.0 (34.0) 250.0 093 0.09.(43)
BMI (Ib./in.?) 27.1(49) 204-36.8 27.0(4.5) 18.7-339 0.94 0.08 (45)
Trait anxiety 28.3(6.7)  20.0-47.5 30.1(8.9)  20.0-58.0 0.64 -0.46
Schizot SIS
toctaizo ypy (SIS) 115(7.2) 10290  150(7.2)  7.0-39.0 0.11 -1.64 (44)
Alprazolam level 75@1)  00-13.0  7.8(41)  1.0-14.0 0.80 0.26 (42)
(ng/mL) S 4. . . .8 (4. . . . .

Notes: F=female, M=male, R=right, L=left, N=non-smoker, Y=smoker, SD=standard deviation,
BMI=body mass index, SIS=structured interview for schizotypy, DOF = degrees of freedom; reported p-
values are from Fisher’s exact test for categorical variables (sex, handedness, and smoking status),
Wilcoxon rank sum tests for non-normal data (age, trait anxiety), and two-sample t-tests for normally
distributed data (all other variables). * t-statistic for two-sample t-tests, z-statistic for Wilcoxon rank sum
test (degrees of freedom not reported).

Study design and pharmacological challenge

To study the impact of GABAergic modulation on brain activation during emotion processing,
participants underwent fMRI imaging during facial affect processing tasks with and without
administration of alprazolam. Details of study design have been described previously**. Briefly,
participants underwent two identical fMRI sessions approximately one week apart. Participants
were administered 1mg oral alprazolam in one session and an identical-appearing placebo in the
other session, in a balanced double-blind within-subject crossover design.
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Figure 1. Operationalizing network control theory in the context of human neuroimaging. The
strength of structural connections between brain regions were determined by the quantitative anisotropy
(QA) estimated from diffusion spectrum imaging data. We used beta coefficients from general linear
models to specify brain activation maps during task sessions where participants were given 1mg oral
alprazolam or placebo. These maps were then fed into a network control model to analyze the energy
required for transitions between different brain states. We were particularly interested to estimate the
persistence energy, P, defined as the energy required to maintain a state. Brain regions in the cortex and
subcortex were defined by the 234-node Lausanne parcellation.

During each fMRI session, participants performed an emotion identification task followed by an
emotion memory task. In the emotion identification task, 60 unique color pictures of human faces
were presented in pseudorandomized order, with facial expressions falling into one of five
emotional categories: happy, sad, fearful, angry or neutral®?. Participants were asked to identify
the emotion expressed on each face. In the emotion memory task, the same sequence of faces as
in the preceding emotion identification task was presented, with each target face accompanied by
two foil expressions. Participants were instructed to recall the expression that matched the
previously seen face. In both tasks, each emotion category was presented 12 times, with each
emotion being used as a foil 24 times in the emotion memory task. Faces were displayed for 5.5s,
with a variable interval of between 0.5-18.5s, during which a complex crosshair matched to faces
on perceptual qualities was presented. Each task lasted 10.5 min, with a 2 min delay between tasks.
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Image acquisition and processing

Structural and functional image sequences were acquired with a Siemens Trio 3T system
(Erlangen, Germany). Structural images were acquired for the whole brain, whereas functional
volumes were acquired in a slab covering ventral regions of the brain with a spatial resolution of
2x2x2 mm (Figure S1).

We used fMRIPrep software (version 1.2.6) to process the BOLD fMRI data3. Briefly, fMRIPrep
was used to perform brain extraction and segmentation of individual T1-weighted images, spatial
normalization of T1 images to the ICBM 152 Nonlinear Asymmetrical template, susceptibility
distortion correction for BOLD images, estimation of confound variables including head motion
parameters and resampling of BOLD sequences to MNI152NLin2009cAsym standard space. We
excluded sessions for which the average framewise displacement was greater than 0.5mm. No
other exclusion criteria were applied.

Next, we used generalized linear models (GLM) to measure subject-specific brain activation
patterns during emotion identification and memory tasks. Specifically, GLM analysis was
performed using the FEAT module®* in FSL 5.0.10 implemented using XCP Engine®>. BOLD
sequences preprocessed using fMRIPrep were high-pass filtered (100s) and spatially smoothed
(4mm FWHM, isotropic); further, the first 6 non-steady state volumes were discarded. All event
conditions were modeled as 5.5s-boxcars convolved with a canonical hemodynamic response
function. Consistent with previous work!>-%¢, correct responses to fear and anger stimuli were
combined as a “threat” regressor; happy and sad stimuli were combined as a “non-threat”
regressor; and neutral stimuli were modeled separately. All specified contrasts measured BOLD
activation compared to baseline. Incorrect responses and 6 motion parameters were included as
regressors of non-interest. We chose to include only correct responses in the model to limit the
potential effects of inattention due to sedation by alprazolam.

We then divided the brain into 233 parcels based on the Lausanne parcellation (after excluding the
brain stem), which provides coverage of both cortical and subcortical areas including thalamus,
caudate, putamen, pallidum, accumbens, hippocampus, and amygdala®’. Parameter estimates (beta
weights) from each voxel were averaged within each parcel resulting in estimates of brain
activation (brain states); these activation maps were then evaluated using network control theory.

See Supplementary Methods for further details on image acquisition and processing.
Construction of structural brain networks from diffusion spectrum imaging data

Structural brain connections are an essential component of network control theory models. Since
we did not collect structural brain images in our previous study, we leveraged an average structural
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matrix from a separate study. Diffusion spectrum imaging (DSI) data was collected from a separate
set of 10 healthy young adults as described elsewhere*’. Consistent with previous work*4°,
defined nodes of the structural network as brain regions according to the Lausanne atlas®’. To
encode each structural network, we constructed adjacency matrices for each subject based on the

quantitative anisotropy (QA) between each pair of brain regions. The average structural matrix

w¢E

across 10 participants was used for all results shown in the main text.

See Supplementary Methods for further details on DSI image acquisition, processing, and
structural matrix generation.

Network control theory

We used principles from network control theory (NCT) to investigate the effect of alprazolam and
schizophrenia risk status in driving brain state trajectories associated with facial affect processing.
The NCT framework has been used to determine how underlying white matter architecture
constrains transitions between different brain states inferred from neuroimaging data**%-3!, We
begin by approximating brain state dynamics through the linear continuous-time equation

x(t) = Ax(t) + Bu(t),

where x(t) is a vector of size N X 1 (where N is the number of brain regions in the network) that
represents the state of the system at time t, A is the weighted symmetric N X N structural matrix
estimated through diffusion spectrum imaging, B is an input matrix of size N X N specifying the
set of control nodes, and u(t) is the time-dependent control signal in each of the control nodes.

The minimal control energy framework*’ defines the unique control input u*(t) needed to
transition the system from an initial state x(0) = x, to a final target state x(T) = x; over the time
horizon T through the cost function

u*(t) = argminfTu(t)Tu(t)dt.

u
By integrating each control input over time, we can calculate the control energy required by each
brain region as

T
B = [ o
0

By summing the control inputs over all N brain regions, we can obtain the total control energy
needed for the transition from x; to x4, which we write as
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In our model, we used parameter estimates (beta weights from a general linear model) to specify
brain states x from alprazolam and placebo sessions, and a single group-representative structural
matrix A (Figure 1). Since BOLD images were acquired in a slab covering ventral regions, we
restricted our analysis to parcels with at least 50% coverage within the slab (Figure S1). Thus, x,
A, and B matrices were truncated for each individual based on slab coverage. For simplicity, all
nodes within the slab were set as controllers, thus allowing us to evaluate multi-point (as opposed
to single-point) control.

The impact of different modeling choices for the time horizon parameter T (time during which the
control input is effective) was explored by calculating the Pearson correlation between persistence
energies calculated for pairs of parameter values*’. We found that short time horizons resulted in
a different control regime as expected*’; however, correlations were >0.99 overall, indicating that
the choice of time horizon did not significantly affect minimal control energy calculations (Figure
S2). Based on these findings, we chose a time horizon of T = 3 for our simulations.

We wished to extract control energy parameters that reflected the cognitive process of facial affect
processing. Here, we used the notion of persistence energy, defined as the control energy needed
to maintain a brain state**-*!. For an initial brain state X, we defined persistence energy P, as the
minimum control energy needed for the system to reach a final state X = xq, such that the initial
state is maintained at time T (Figure 1). Persistence energy associated with different brain states
can be interpreted as the cognitive effort exerted during the performance of tasks relevant to sustain
those states*>*. States with larger overall magnitude are always more difficult to maintain; thus,
to facilitate comparisons between persistence energies associated with different brain states
independent of the global activation magnitude of each state, we divided each brain state vector, x,
by its Euclidean norm.

In order to evaluate the importance of different brain regions in driving brain state transitions
during facial affect processing, we measured the control impact /; of individual nodes by iteratively
removing each node from the network and recomputing the persistence energy®. Brain regions
with highest control impact are those whose removal from the control set leads to the highest
increase in control energy. Formally, the control impact is defined as
I; = logw,
E*(Ko)

where K, represents the set of all control nodes and K; represents the set of control nodes after
excluding node i.

Spatial correlations with neurotransmitter maps

In order to explore the underlying biology of drug action reflected through control energy
measures, we analyzed the spatial alignment of drug-induced differences in control energy input
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with neurotransmitter receptor maps obtained through PET imaging. Given the known role of
alprazolam as a GABA modulator?’, we expected brain regions whose control energy input varied
strongly with drug condition to also be correlated with GABA receptor density, but not with other
receptors such as serotonin and dopamine.

For this analysis, we used published PET/SPECT maps of the following receptors: 5-HTla
(serotonin 5-hydroxytryptamine receptor subtype 1a), S-HT1b (5-HT subtype 1b), 5-HT2a (5-HT
subtype 2a), D1 (dopamine D1), D2 (dopamine D2), DAT (dopamine transporter), F-DOPA
(dopamine synthesis capacity), GABAa (gamma-aminobutyric acid A receptor), NAT
(noradrenaline transporter), and SERT (serotonin transporter)>*-%4, All provided PET/SPECT maps
were voxel-wise average group maps of variable numbers of healthy volunteers, linearly rescaled
to a range of 0 to 1008, We further averaged the PET/SPECT maps voxel-wise for each Lausanne
parcel to obtain 233X 1vectors, each of which represented a spatial map of the distribution of a
given neurotransmitter. We then evaluated correlations between all PET/SPECT maps and region-
wise difference maps in control input between alprazolam and placebo sessions for all subjects.

Statistical analyses

Primary hypotheses concerning the effects of drug (alprazolam vs. placebo) and group (control vs.
family) on persistence energy were evaluated using linear mixed models to accommodate the
repeated measures data (with performance across two sessions nested within 44 participants in
emotion identification and 40 participants in emotion memory). Categorical indicators for drug
were modeled as O=alprazolam and 1=placebo, and the categorical group indicator was modeled
as O=control and 1=relative. We also evaluated mixed effects models by replacing the categorical
drug indicator with alprazolam blood levels and replacing the categorical group indicator with
schizotypy scores measured as the total score on the structured interview for schizotypy
(Supplementary Information).

Separate models were evaluated for each emotion category (threat, non-threat, neutral) and task
(emotion identification, emotion memory), resulting in 6 models. For each emotion category,
formal models were constructed at level 1 as follows.

Level 1:
SessionPE;; = By; + f1idrug;:s + BriavgeFD;: + e (1)

where B, is the intercept, indicating the average level of persistence energy for the prototypical
male control in an alprazolam session (determined by reference categories of categorical
predictors); [;; indicates within-person differences in persistence energy associated with drug or
placebo sessions; f3,; indicates within-person differences in persistence energy associated with
within-person differences in head motion for each session captured by average framewise
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displacement (avgeFD;;) during each session, and e;; are autocorrelated session-specific residuals
(AR1).

Person-specific intercepts and associations from level 1were specified at level 2 as follows.

Level 2:
Boi = Yoo t Yo1Group; + yo2Age; + vosSex; + ug; (2)
B1i = Y10 + Y11Group; (3)

where y denotes a sample-level parameter and u denotes residual between-person differences that
may be correlated but are uncorrelated with e;;. Parameters y,; to y,3 indicate how between-
person differences in the average persistence energy across sessions were associated with group,
subject age, and subject sex. Parameter y, tests the moderating effect of group on the association
between session persistence energy and drug administration. If there were no significant
interactions, main effects were evaluated after removing interaction terms from the equations.

Exploratory analyses on relationships between persistence energy and task performance were
conducted using a different set of linear mixed models. We evaluated separate models for each
emotion category (threat, non-threat, neutral) and task (emotion identification, emotion memory),
resulting in 6 models. Task performance measured as behavioral efficiency — proportion of correct
responses divided by median reaction time for correct responses — was modeled as the dependent
variable.

For each emotion category, formal models were constructed at level 1 as follows.

Level 1:
Efficiency; = Boi + B1idrugi; +F2:;SessionPE;; + e;; 4)

where f3, is the intercept, indicating the average task efficiency for the prototypical male control
in an alprazolam session (determined by reference categories of categorical predictors); fi;
indicates within-person differences in task efficiency associated with drug or placebo sessions; f55;
indicates within-person differences in task efficiency associated with within-person differences in
session persistence energy, and e;; are autocorrelated session-specific residuals (AR1).

Person-specific intercepts and associations from level 1were specified at level 2 as follows.

Level 2:
Boi = Yoo T Yo1Group; + Yo Age; + vosSex; + uy; (5)
B1i = Y10 + Y11 Group; (6)
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where y denotes a sample-level parameter and u denotes residual between-person differences that
may be correlated but are uncorrelated with e;;. Parameters y,; to y,3 indicate how between-
person differences in task efficiency across sessions were associated with group, subject average
persistence energy across sessions, subject age, and subject sex. Parameter y,, tests the moderating
effect of group on the association between task efficiency and drug administration. If there were
no significant interactions, main effects were evaluated after removing interaction terms from the
equations.

During exploratory analyses of spatial correlations between PET maps and region-wise difference
maps in control input between alprazolam and placebo sessions, statistical significance was
evaluated using permutation tests. Specifically, correlations were recomputed after randomizing
PET spatial maps 10,000 times and p-values were estimated as the fraction of those iterations
where the observed average correlation exceeded the randomized average correlation. Significant
associations in all exploratory analyses were evaluated using the false discovery rate (FDR) to
account for multiple comparisons®.
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Results

Alprazolam differentially modulates persistence energy in relatives and controls during
threat emotion processing

We first tested our primary hypothesis of alprazolam altering persistence energy during threat
emotion processing. Persistence energy was measured as the control energy needed to maintain
specific brain activation patterns observed during in-scanner emotion identification and memory
tasks. We evaluated the effect of group and drug on persistence energy using linear mixed models
with drug and group treated as categorical variables (Equations 1-3). During emotion
identification, there was no main effect of group or drug, and no groupXdrug interaction in any
emotion category (Figure 2A, see Supplementary Data Files 1 for model coefficients and
statistics). During emotion memory, we found that persistence energy was significantly increased
with alprazolam administration during recall of threat stimuli, in family members but not in
controls (Figure 2B, groupXdrug interaction, y;,=-0.048, p=0.026, df=73). There was no main
effect of group (y¢1=0.026, p=0.133, df=73) or drug (f,;=0.01, p=0.50, df=74) (Supplementary
Data Files 1). As expected, no significant effects were found in non-threat and neutral conditions.
Alternate analyses where categorical drug indicator was replaced with alprazolam blood levels and
categorical group indicator was replaced with the total score on the structured interview for
schizotypy (SIS) showed similar results (Supplementary Information, Supplementary Data Files
2-3).

In order to elucidate the influence of structural brain networks and spatial activation patterns on
the observed results, we performed a series of investigations using structural and spatial null
models (see Supplementary Methods for details). These investigations showed that the differential
effect of alprazolam on persistence energy in relatives and controls during recall of threatening
faces was driven partially by structural brain networks but largely by spatial activation patterns
(Figure S4, Figure S5, Supplementary Data Files §, 9).
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Figure 2. Alprazolam modulates persistence energy during recall of threatening faces. (A) Boxplots
show persistence energy for the emotion identification task, grouped by emotion category; P=placebo;
A=alprazolam. (B) Boxplots show persistence energy for emotion memory task, grouped by emotion
category. We observed a significant groupXdrug interaction in the threat condition (y41=-0.048, p=0.026,
df=73); P=placebo, A=alprazolam. (C) Average spatial maps of control impact for threat emotion

identification, shown on surface renderings of cortical and subcortical areas. (D) Average spatial maps of
control impact for threat emotion identification, shown on surface renderings of cortical and subcortical

areas. Parcels outside the imaging slab are colored gray.

Finally, we used control impact analysis to investigate the relative importance of different brain
regions in driving brain state transitions associated with emotion identification and memory.
Control impact of individual nodes was measured by iteratively removing each node from the
network and recomputing the persistence energy®.


https://doi.org/10.1101/2021.04.22.440935
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440935; this version posted April 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

As hypothesized, we found that regions with high control impact in both emotion identification
and memory tasks were primarily located in the fusiform and occipital cortex, reflecting the visual
and facial processing nature of the tasks (Figure 2C-D, Supplementary Data Files 4). One node in
the precentral gyrus also exhibited high control impact, likely reflecting voluntary motor control
for button presses during task execution. Surprisingly, subcortical areas including the amygdala,
hippocampus, and insula had relatively low control impact. Areas with high control impact aligned
largely with areas of high activation obtained from beta weight maps estimated from a general
linear model (Figure S3, Supplementary Data Files 5). Thus, the control model suggests that the
direct and indirect connectivity of the fusiform and occipital regions with the whole brain structural
network facilitates efficient coordination of neural dynamics associated with facial affect
processing.

Individual differences in persistence energy explain variance in task performance during
threat emotion identification

Next, we performed an exploratory analysis to examine the relationship between persistence
energy and task performance. We reasoned that increased persistence energy during emotion
identification and memory tasks might reflect cognitive effort expended and thus might be
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Figure 3. Task performance during threat emotion identification can be predicted from persistence
energy. Scatterplots of efficiency in task performance against persistence energy, shown for the emotion
identification (panels A-C) and emotion memory (panels D-F) tasks, separately for the threat, non-threat,
and neutral categories. Task performance efficiency is measured as the proportion of correct responses
divided by the median reaction time for correct responses. The 8 weights from the linear mixed effects
models containing drug, group, age, and sex as covariates are shown on each plot, along with associated
p-values corrected for multiple comparisons. Associations are significant for threat emotion identification
at a significance level of prpr<0.05.
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reflected in measures of task performance. We summarized task performance using an efficiency
measure (accuracy divided by reaction time), and then evaluated associations between efficiency
and persistence energy using a different set of linear mixed effects models (Equations 4-6).

We found that efficiency during threat emotion identification was positively associated with
persistence energy (Figure 3A, main effect of persistence energy, 3=0.335, prpr=0.047, df=81).
No significant associations were found for other emotion categories, or for the emotion memory
task, after correction for multiple comparisons (Figure 3B-F). Consistent with our previous
study**, we found that alprazolam significantly reduced task efficiency during both emotion
identification and memory tasks (see Supplementary Data Files 6 for all model coefficients and
statistics). We also found, consistent with our previous study, that there were no group effects on
task performance for any of the task conditions (Supplementary Data Files 6). Thus, relatives and
controls performed equally well on emotion identification and memory tasks.

Regional differences in control energy spatially align with neurotransmitter systems

Finally, we explored the underlying biology of control energy measures by evaluating the spatial
correspondence between control energy parameters from our model and known neurotransmitter
systems described through PET/SPECT receptor maps>®. To achieve this, we calculated the spatial
correlation between PET/SPECT maps (Figure 4A-B) and maps describing regional differences
in control energy input between alprazolam and placebo conditions (Figure 4C, Supplementary
Data Files 7). Given the known role of alprazolam as a GABA receptor modulator?’, we expected
brain regions whose control input varied strongly with drug condition to also be correlated with
GABAA receptor density.

To calculate regional control input difference maps, we subtracted total control input in each brain
region (over the simulation time) between alprazolam and placebo sessions. These maps show that
the effects of alprazolam are mainly located in occipital and fusiform areas, with some effects in
frontal and orbitofrontal regions (Figure 4C, Supplementary Data Files 7). We then evaluated
correlations between regional control input difference maps and PET/SPECT receptor maps.
Surprisingly, we found that correlations between control input difference maps and GABAa
receptors were not significant (Figure 4D-E). Moreover, in both emotion identification and
memory tasks, control input difference maps were positively correlated with serotonergic
receptors, and negatively correlated with dopaminergic receptors (Figure 4D-E).
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Figure 4. Neurotransmitter receptor profiles are associated with drug effect on control input. (A)
PET neurotransmitter heatmaps from Dukart et al. (2020). (B) PET map of GABA4 expression shown on
surface renderings of cortical and subcortical areas. (C) Regional differences in average control input on
alprazolam and placebo (absolute values) during threat emotion identification and memory, shown on
surface renderings of cortical and subcortical areas. (D-E) Boxplots of subject-level Spearman correlation
coefficients between PET spatial maps and regional control input differences during threat emotion 1D
(panel D) and threat emotion memory (panel E). Red asterisks indicate the level of statistical significance
from permutation tests with 500 permutations, corrected for multiple comparisons; * prpr < 0.05, ** prpr
< 0.005, *** prpr < 0.0005.
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Discussion

In this study, we applied a network control theory model to investigate the effects of alprazolam
during facial affect processing in a cohort of healthy controls and first-degree relatives of people
with schizophrenia. The main findings from our analysis and their implications are discussed
below.

Control energy measures as an endophenotype of schizophrenia

In our previous study**, we found that alprazolam effects on standard task fMRI measures in
amygdala were stronger in relatives of individuals with schizophrenia compared to controls during
emotion identification, suggesting alprazolam could be unmasking underlying GABAergic
abnormalities. Given these prior results, we expected that alprazolam would also differentially
influence control energy measures associated with whole-brain emotion-processing activation
patterns in relatives versus controls. Indeed, we found that alprazolam increased the persistence
energy associated with brain states during the recall of threatening faces (anger and fear) in family
members but not in controls.

The persistence energy is the control energy needed to maintain a brain state associated with a task
and has been previously associated with the cognitive effort required during those tasks**. We
found further evidence for this relation between energy and effort by demonstrating that increased
persistence energy is associated with better task performance in a subset of tasks. Since family
members demonstrated relatively normal behavioral performance, increased persistence energy
during the processing of threatening faces may represent a compensatory GABAergic mechanism
that enables them to perform as well as controls. Further investigation into potential compensatory
mechanisms might uncover promising avenues to target therapeutic drugs that aim to support
improved cognitive function in schizophrenia.

Control energy measures go beyond traditional measures of activation, instead reflecting brain-
wide network dynamics constrained by underlying white matter architecture**-%>!, Since facial
affect processing is known to involve a distributed network of brain regions'#!>, models that
capture network-wide brain dynamics are important to investigate the neural substrate of this
cognitive domain and its modulation by psychiatric disease. Our results add evidence of
GABAergic abnormalities in family members when processing faces with negative affect,
unmasked by drug action. Importantly, these abnormalities were measured using network-wide
readouts, demonstrating that our analyses provide an important complementary approach to
identifying such effects. Taken together, our results indicate that control energy measures could
potentially be useful as an endophenotype of schizophrenia.
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Regions most impacting network control align with the facial affect processing network and
distributions of neuromodulatory receptors

We sought to understand the impact of different brain regions in driving brain state transitions
associated with emotion processing, expecting that regions of high importance would align with
the distributed network associated with facial affect processing!#!6. In partial support of this
hypothesis, we found that brain regions with high control impact during emotion identification and
memory were primarily in the fusiform and occipital cortices. Fusiform and visual brain regions
are core components of the classical network associated with facial affect processing!#!>66-67 Qur
mathematical model suggests that the direct and indirect connectivity of these regions with the
whole brain structural network facilitates efficient coordination of neural dynamics associated with
performance of face processing behavior, providing novel intuition regarding their role as the “face
areas” of the brain.

Our analysis also showed that limbic and sub-cortical regions such as amygdala, hippocampus and
insula did not have high control impact in any emotion category. These regions have been
classically associated with emotion processing!®®, and their low prominence in our network
control model is therefore somewhat surprising. Our results may suggest that primary sensory
areas associated with visual processing exert top-down control on whole-brain activation during
facial affect processing, while subcortical regions including the amygdala are circumscribed to a
bottom-up role with limited impact on the rest of the brain. Further, the high prominence of
fusiform and occipital regions and low prominence of subcortical regions is also consistent with a
constructive view of emotion® — the perception of faces constructs a multi-modal explanation of
the sensory stimuli and context, triggering an emotion reflected in the instance of emotion depicted
in the face stimuli.

Finally, we sought to understand the underlying biology of alprazolam action during facial affect
processing by evaluating correlations between drug-induced differences in control input and
neurotransmitter receptor maps obtained through PET/SPECT imaging. Due to alprazolam’s
known mechanism of action as a positive allosteric modulator of GABA receptors®’, we expected
drug-induced differences in control input to align spatially with GABAAx receptors. We found that
these correlations, although trending positive, were not statistically significant. However, drug
difference maps were positively correlated with serotonergic receptors and negatively correlated
with dopamine receptors. These results indicate that the effect of alprazolam may manifest
primarily through driving complementary serotonergic and dopaminergic neuromodulatory
systems’%72, perhaps shedding light on a possible mechanistic basis of its well-documented
sedative and anxiolytic effects. Our results align with previous studies which have shown that
benzodiazepines like most drugs do not act in isolation, and their clinical effects likely result from
affecting multiple interacting neurotransmitter systems’?. Overall, our findings and approach
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highlight the utility of network control theory in understanding the neurobiological basis of drug
action in the brain.

Limitations

This study has a number of limitations. The first relates to the sample under study. As discussed
previously®*, the sample studied did not include patients with schizophrenia. The use of control
energy measures as a schizophrenia endophenotype remains to be tested in larger samples, and
control energy abnormalities found here in family members will need to be tested in patients with
frank illness. Further, this particular sample of relatives did not exhibit marked emotion processing
abnormalities assessed by behavioral performance (Supplementary Data Files 6), unlike previous
results with larger cohorts®. It is possible that the lack of more pronounced differences in control
energy parameters between relatives and controls reflects the relative normality of this sample.
Further, we did not find significant associations between schizotypy scores and control energy
measures, perhaps reflecting the lack of significant variation in clinical risk for psychosis in this
sample. Second, while GLM parameter estimates provide a reliable indicator of brain activation
patterns at the group level in response to task stimuli, this approach fails to account for dynamic
variations in activation, including latencies in interactions among different brain regions. Recently
developed network approaches could prove useful in studying the effect of drug and schizophrenia
status on these dynamics’’4. Lastly, we were able to analyze neuroimaging data only from a
limited slab that was chosen for high-resolution coverage of a specific set of emotion processing
areas including fusiform and orbitofrontal cortex in addition to subcortical and limbic regions. The
power of the network control approach in uncovering whole-brain network dynamics was thus
limited to regions covered within the slab. Future studies could extend the network control
approach to whole-brain imaging data obtained during facial affect processing.

Conclusion

In summary, the network control approach described here is a powerful mechanistic framework to
uncover endophenotypes of psychiatric disease and to investigate the effect of pharmacologic
manipulation on the brain. Brain regions identified by the network control approach can be used
to inform more targeted drug development for neuropsychiatric disorders, in addition to informing
novel regions for stimulation through paradigms such as rTMS>. Further, control energy measures
represent a readout of brain function and can be used to investigate abnormalities in various
cognitive domains such as working memory*} and sensorimotor function’®.

Code availability

All analysis code is available at https://github.com/arunsm/alpraz-project.git
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Citation Diversity Statement

Recent work in several fields of science has identified a bias in citation practices such that papers
from women and other minority scholars are under-cited relative to the number of such papers in
the field”’-3!. Here we sought to proactively consider choosing references that reflect the diversity
of the field in thought, form of contribution, gender, race, ethnicity, and other factors. First, we
obtained the predicted gender of the first and last author of each reference by using databases that
store the probability of a first name being carried by a woman®!-#2, By this measure (and excluding
self-citations to the first and last authors of our current paper), our references contain 7.23%
woman(first)/woman(last), 12.66% man/woman, 22.09% woman/man, and 58.01% man/man.
This method is limited in that a) names, pronouns, and social media profiles used to construct the
databases may not, in every case, be indicative of gender identity and b) it cannot account for
intersex, non-binary, or transgender people. Second, we obtained predicted racial/ethnic category
of the first and last author of each reference by databases that store the probability of a first and
last name being carried by an author of color®*%*, By this measure (and excluding self-citations),
our references contain 12.63% author of color (first)/author of color(last), 13.13% white
author/author of color, 19.37% author of color/white author, and 54.87% white author/white
author. This method is limited in that a) names and Florida Voter Data to make the predictions
may not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous and mixed-
race authors, or those who may face differential biases due to the ambiguous racialization or
ethnicization of their names. We look forward to future work that could help us to better understand
how to support equitable practices in science.
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