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Abstract

Background & Objective: Glaucomatous vision loss may be preceded by an enlargement of the
cup-to-disc ratio (CDR). We propose to develop and validate an artificial intelligence based CDR

grading system that may aid in effective glaucoma-suspect screening.

Design, Setting & Participants: 1546 disc-centered fundus images were selected including all 457
images from the Retinal Image Database for Optic Nerve Evaluation dataset, and images
randomly selected from the Age-Related Eye Disease Study, and Singapore Malay Eye Study to
develop the system. First, a proprietary semi-automated software was used by an expert grader to
quantify vertical CDR. Then, using CDR below 0.5 (not suspect) and CDR above 0.5 (glaucoma-

suspect), deep learning architectures were used to train and test a binary classifier system.

Measurements: The binary classifier, with glaucoma-suspect as positive, is measured using

sensitivity, specificity, accuracy, and AUC.

Results: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; AUC,
0.93). For external validation, the Retinal Fundus Image database for Glaucoma Analysis dataset,
which has 638 gradable quality images, was used. Here the model achieved an accuracy of 83.54%

(sensitivity, 80.11%; specificity, 84.96%; AUC, 0.85).

Conclusions: Having demonstrated an accurate and fully automated glaucoma-suspect screening
system that can be deployed on telemedicine platforms, we plan prospective trials to determine

the feasibility of the system in primary care settings.
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1. Introduction

Glaucoma is a group of diseases that damage the eye’s optic nerve and can result in vision loss
and blindness [1] . Glaucoma, with age-related macular degeneration (AMD) and diabetic
retinopathy (DR), is one of the three leading causes of blindness in developed countries, and is now
the second leading cause of blindness globally, after cataracts [2, 3].

Glaucoma is characterized by loss of retinal ganglion cells (RGCs), which results in visual field
impairment and structural changes to the retinal nerve fiber layer (RNFL) and optic disc [4].
Glaucoma has few early symptoms; Over 3 million Americans have glaucoma, and the number is
over 76 million worldwide, with projections showing 111 million by 2040 [5]. About half of those
affected do not know it [6]. Most of the time, when detected, it is already late, i.e., with irreversible
visual field loss. Therefore, it is essential to identify individuals at the early stages of this disease for
treatment. The social and economic costs of vision loss from glaucoma are also extremely high.
Early detection of these conditions halts a downward spiral in overall health: depression, loss of
independence, need for nursing home care, falls, fractures, and death. These adverse outcomes are
also extremely costly. The total economic burden in the US, direct and indirect, of vision loss and
blindness from all causes, is now $145 billion, expected to triple by 2050 in real dollars, with
increased longevity generally [7].

The relationship between estimated RGC counts and CDR suggests that assessment of change
in CDR is a sensitive method for the evaluation of progressive neural losses in glaucoma,
specifically the retinal cup-disc ratio (CDR) is highly correlated with glaucoma [8-13]. Although
several techniques [8, 9, 12-14] have been proposed to measure the cup-disc ratio, they have not
been extensively validated for screening, and the current research is mainly focused on overall
glaucoma detection. For example, Saxena et al. [15] proposed a method for glaucoma detection
using the standard ORIGA dataset in 2020, whose AUC is 0.82. However, the American Academy

of Ophthalmology outlined a set of tests to determine glaucoma which are: eye pressure, eye
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drainage angle, optic nerve damage, peripheral side vision (visual field test), computerized imaging
of optic nerve, and thickness of the cornea [16]. Thus, using color fundus imaging alone is not a
standard protocol for glaucoma detection or diagnosis. The CDR can be an effective tool to identify
the glaucoma suspect and our focus is mainly to identify the glaucoma suspect individuals (as a
screening process from primary care settings), who can be further tested to determine glaucoma
and its progression. Thus, starting with cup-to-disc ratio may also be more suited for clinical
applicability, because of its inherent explicability. At present, although there are techniques to
detect CDRs, a full-fledged low-cost automated system that passively detects glaucoma from
patients’ yearly visits in a primary care setting is still not widely available

We have considered the vertical cup-disc ratio and the threshold value to determine the
normal and abnormal, based on the following studies. A larger or abnormal CDR is mentioned in
[10] and categorized as CDR>0.5. The same research scheme also suggested that small changes in
CDR may be associated with significant losses of RGCs, especially in eyes with large CDRs.
Enlarged CDR is one indicator of the risk of glaucoma [11]. Most individuals fall near the average
vertical CDR of 0.4, and 2.5% of the population have a cup/disc ratio of over 0.7 [17]. Studies
showed that for the normal (non-glaucoma) population, the horizontal C/D ratio is usually larger
than the vertical C/D ratio, but the vertical ratio increases faster in early and intermediate stages of
glaucoma [21]. Also, studies have documented that the normal C/D ratios ranging from less than 0.3
(66 percent of normal individuals) to greater than 0.5 (only 6 percent of normal individuals).
Therefore, we considered CDR 0.5 and above as glaucoma suspect [22, 23] and began exploring
deep learning methods for detecting larger CDRs [24]

We note that we have utilized the quantified vertical CDR when other research schemes used
the qualitative assessment (e.g., small, medium, and large). We developed and validated our
vertical CDR quantification software to perform this quantified grading. The software demonstrates

high repeatability and reliability, which we have also provided in the paper. We developed and
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validated our Al-based glaucoma suspect screening results based on the quantified vertical CDR.

This should provide higher accuracy and confidence than selective judgment.

e The paper describes a method for glaucoma suspect screening which utilizes a cloud-based
system and incorporates the telemedicine facilities. Thus, the screening will be available in
remote clinics and primary care settings.

¢ The paper describes results on a novel automated method that addresses the early
screening of glaucoma suspects which is a major public health concern.

e Therefore, an accurate and efficient screening in the remote primary care settings can
provide a mass screening of the population who are currently dropping from yearly visits

to the ophthalmologist.

The rest of the paper describes the development and validation of this glaucoma suspect

screening tool.

2. Materials and Methods

The global strategy of the study is organized as follows

2.1 Data sources, describing the various datasets,
2.2 Ground truth, describing manual grading
2.3 Preprocessing, describing data curation and data processing before training, and

2.4 Architecture, describing the technical details of the training and validation.

2.1. Data Sources

Fundus images from three sources were used to conduct training experiments and a fourth for
external validation. A total of 1546 color fundus images that included the disc were selected
randomly from the Age-Related Eye Disease Study (AREDS) [37] and Singapore Malay Eye Study
(SIMES) study [38], and all the images from Retinal Image Database for Optic Nerve Evaluation
(RIM-ONE) dataset [39], an ophthalmic reference image database specifically designed for

glaucoma analysis. For external validation, we used the Online Retinal fundus Image database for
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glaucoma analysis (ORIGA) [40]. Although these retinal images had already been graded for
glaucoma, we performed our gradings for consistency (Section 2.2).

Briefly, AREDS is a 13-year study of age-related eye diseases. The participants were of the
ages 55 to 80 when they were enrolled. 30-degree fundus photographs were graded as glaucoma
present or absent by the AREDS ophthalmic grading center. We used fundus images from those
cases as well as from the normal control population for this experiment.

SiIMES-1 was a cross-sectional, population-based epidemiological study of eye diseases. It was
performed on 3,280 randomly selected Malay adults living in the south-western part of Singapore.
All study participants underwent various questionnaires and detailed eye examinations. We have
taken those images for which information about the presence or absence of glaucoma was present.

RIM-ONE is an ophthalmic reference image database specifically designed for glaucoma
diagnosis, not only for medical education purposes but also as an evaluation tool for designers of
segmentation algorithms. RIM-ONE is available as a free download as part of a research
collaboration between three Spanish hospitals: Hospital Universitario de Canarias, Hospital Clinico
San Carlos, and Hospital Universitario Miguel Servet.

The ORIGA-light dataset is an ophthalmic reference image database specifically designed for
glaucoma analysis. ORIGA-light serves as a benchmarking resource for researchers to evaluate
image processing algorithms that detect and analyze various image signs highly related to
glaucoma diagnosis. To facilitate this, the authors of ORIGA used their in-house grading tools to
grade several glaucoma-related signs. The publicly available dataset that we used has 680 graded
images, out of which 460 are healthy and the rest are graded as glaucoma, taken from adults aged
between 40 and 80 years. Each image is segmented and annotated by trained professionals from the
Singapore Eye Research Institute.

AREDS dataset may be obtained with request on their website — “dbgap.ncbi.nlm.nih.gov”. All

the other datasets are available upon request from the authors of the corresponding datasets.
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2.2. Ground truth

As noted, we did not use prior annotations of the presence of glaucoma but instead graded
each image manually for vertical and horizontal CDR. A proprietary software called “CDR
annotator” [36] was used for the purpose. Figure 1 shows the interface for marking the region of the
cup and the disc, from which the vertical and horizontal CDRs are automatically generated. Before
this, regions of interest (optic disc) were identified and cropped from the fundus image
automatically using custom deep learning methods (unpublished, Figure 2).

Two computer engineers at iHealthScreen Inc. were trained by expert ophthalmologists to
grade CDRs in each image. Whenever there was disagreement in grading, the two graders
adjudicated and produced uniform grading (CDRs) as ground truth for the images. Before
adjudication, 250 images were randomly chosen to evaluate intergrader correlation and 200 for
intra-grader correlation. The intergrader and intra-grader Pearson correlations between their CDR
ratio annotations, 0.832 and 0.841 respectively [41], showed good consistency. The vertical CDRs
were used to categorize the images in two classes: Class 1 (not glaucoma suspect): vertical CDR <
0.5 and class 2 (glaucoma suspect): vertical CDR > 0.5. After the categorization, the final dataset
used for training was as shown in Table 1. Similarly, after quality control (removing 42 ungradable
images), 638 images were selected out of a total of 680 images in the ORIGA-light dataset and
processed and graded. CDR’s of 452 images in the ORIGA dataset were graded by the experts to be

less than or equal to 0.5, and those of 186 images were graded to be above 0.5.

2.3. Preprocessing

Two types of input images were used simultaneously —the original RGB and a transformed, or
preprocessed, RGB image. The transformed RGB image is a color space averaged image [42]. We
subtracted the local means with a kernel size 8 and Gaussian blurring. Such a preprocessing

technique of local color averages (LCA) is effective when dealing with images from various sources
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taken under different conditions. Figure 2 (c & d) shows an example of such a preprocessing
technique.

The images from three datasets were combined to form a unified dataset. The test-set was then
taken from these images randomly. These cropped images from the original RGB image set and the

LCA set form the final input for this experiment.

2.4. The architecture and the telemedicine platform

The architecture we propose (shown in Figure 3) consists of an ensemble of five neural
networks and a classical tree learning algorithm. The overall system is a binary classifier that
classifies the images into one of the two categories (CDR <= 0.5 and CDR>0.5).

To build an image classification model robust in terms of image and dataset variations, and
that is capable of learning features on such a wide scale in terms of size and location, the image
preprocessing techniques and neural network selections were made carefully [43]. Multiple
different neural networks, when used, are hypothesized to learn features from an image differently.
Combining the results from different models to produce a final output is a general practice to
obtain a better performance than each of the constituent network architectures [44]. To increase the
robustness, different input sizes for the networks were chosen. Also, two types of images are fed
into the models. One type is regular RGB images, and the other is preprocessed LCA images.

Deep learning architectures were trained and validated to produce completely automatic
outputs. All graded images (1546) were grouped into two categories: CDR < 0.5 (1057 images) and
CDR above 0.5 (489 images) in the two-class model.

The initial test models (from which the final models are chosen) were built to evaluate
feasibility. The network architectures used are Inception-Resnet V2 [45], NasNet [46], Xception [47]
and Inception [48]. Deep learning architectures like alexnet [49] and VGG networks [50] initially
focused on stacking layers deeper and deeper, hoping to get better performance. Inception

architecture changed this approach by going “wider” instead of focusing on going just “deeper”.
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Every version of inception optimized speed and accuracy and the version used in our experiment —
Inception V3 — uses RMSProp optimizer [51], factorized 7 x 7 convolutions, and added batch
normalization [52] in the auxiliary classifiers.

The original Inception networks without depth-wise separable convolutions were modified to
include the residual connections, called the Inception-ResNet networks. Inception modules allowed
for adding more layers, and residual connections made the network converge faster, which is the
basis for Inception-Resnet V2. Xception is a novel deep convolutional neural network architecture
inspired by Inception, but where Inception modules have been replaced with depth-wise separable
convolutions. This architecture slightly outperforms Inception V3 on the ImageNet dataset.
NASNet learns the model architectures directly on the dataset of interest by searching the best
convolutional layer (or “cell”) on a small dataset and then applying it to a larger dataset by stacking
together more copies of this cell.[53]

The various input sizes used range from 71x71 to 399x399. The best models thus obtained will
be ensembled to form a final architecture. Through experimentation, we developed an ensemble of
five networks in the final architecture for the glaucoma screening system. The description of the
five models is given below.

1.  Xception, Input size: 71x71, Input Image Type: Local Color Averaged (transformed)
2. Xception, Input size: 250x250, Input Image Type: RGB

3.  Inception-Resnet-V2, Input size: 200x200, Input Image Type: RGB

4. NasNet, Input Size: 150x150, Input Image Type: RGB

5. Inception-V3, Input size: 299x299, Input image Type: RGB

The full framework for building the model is shown in Figure 3. The networks are trained for 500
epochs. We trained the networks with a batch size of 20 images. This is a high number considering the
limitations of GPU memory. The low resolution of cropped images helped achieve a bigger batch size.

The Adam [54] optimizer was used with a learning rate of 0.0004. To save time, an early stopping

9
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mechanism halted training if there was no improvement for 20 consecutive epochs. Every epoch is
monitored for loss and this value is used for early stopping. The loss function used in this system was
categorical cross-entropy. This quantity was used to determine the hyperparameters of the networks.
SoftMax activation is used as the last layer in each of the architectures. All the networks were trained
on NVIDIA Titan V GPU for two weeks with an average time of 20 to 30 minutes per epoch.

Each model gives a probability array of size 2 for 2 classes. The five arrays from five models
are concatenated to form a feature array of size 10 that is then used to build a Logistic Model Tree
[55] model for final output. Sensitivity, specificity, accuracy, and Cohen’s kappa were calculated to

evaluate the models.

2.5 The role of the Al platform

The CDRcarries three advantages: first, it is a single variable that is known to be strongly correlated
with the disease, in particular with losses of RGCs as noted, and as such, is inherently explicable
and acceptable to the eye community; second, measurement of CDR can be accomplished from a
single retinal color photograph obtained by an automated, non-mydriatic camera in a primary care
office and forwarded on a telemedicine platform for expert interpretation with semi-automated
methods [36]; third, that expert interpretation, which is still time-consuming and expensive for
humans, can be replaced by Al for efficiently and accurately evaluating the images as we propose
to demonstrate herein. In fact, we have already introduced such a HIPAA-compliant telemedicine
platform, iPredict, with the requisite capabilities of Al solutions and report generation.

A telemedicine platform has been introduced that enables the cloud-based processing of the Al
solutions and report generation can extensively simplify the process of evaluating the images on a
mobile/tablet or a low-performance computer, a requirement for the successful glaucoma suspect
screening at primary care settings. We aim to address this with our HIPAA compliant telemedicine

platform iPredict.

10
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In the future, we propose to use the Software Tool ‘iPredict-glaucoma’ at iPredict platform

(https://ipredict.health/): An online version of the Glaucoma Suspect Screening system is available

at https://www.ihealthscreen.org/ipredict-glaucoma/ (the username and password can be obtained
for research purposes through writing the corresponding author). The Al-based telemedicine
platform iPredict developed by iHealthscreen Inc. integrates the server-side programs (the image
analysis and deep-learning modules for screening systems) and local remote computer/mobile
devices (for collecting and uploading patient data and images). The images are first checked for
gradability automatically by an artificial intelligence based system developed in-house from 3000
fundus images manually graded for gradability, the system achieved over 99% accuracy. The server
analyzes the images, and a report will be sent to the remote clinic with an individual’s screening

results and further recommendations.

2.6. Role of the Funding source

This research project was funded by NIH National Eye Institute grant no. R44EY031202. The
funding was for Al based macular degeneration screening through primary care settings. It was
found that this Al based tool can be extended to screen glaucoma suspects and help identification of
glaucoma suspects from the same settings. Nearly half of the glaucoma patients are not identified
on time. Therefore, this tool, with an aim to enable large scale screening for on-time identification

of the glaucoma suspects, is proposed to help prevent this sight threatening disease.

3. Results

The two-class glaucoma model (CDR < 0.5 and above 0.5) achieved an accuracy of 89.67% (95%
CI - 85.65% to 92.87%) with a sensitivity of 83.33% (95% CI - 75.44% to 89.51%) and a specificity of
93.89% (95% CI - 89.33% to 96.91%) along with a Cohen’s kappa of 0.78 (95% CI - 0.71 to 0.85) when
above 0.5 cases are considered as positive. AUC for the same data was 0.93 (0.89 to 0.96) as shown

in Figure 4. The complete results of the system are detailed in Table 2.
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On the external validation dataset, the two-class model achieved a sensitivity of 80.11%
(73.64% to 85.59%) and specificity of 84.96% (81.32% to 88.12%) with a Cohen’s kappa of 0.62 (0.57
to 0.67) on the ORIGA dataset. AUC for the same data was 0.85 (0.81 to 0.90), as shown in Figure 4.
The complete results on the external validation dataset can be found in Table 2.

The cloud-based and HIPAA-compliant telemedicine platform ‘iPredict’

(https://ipredict.health/) has been validated for image and data transfer accuracy. We have

transferred and analyzed nearly 850 images for AMD screening and DR screening from 4 primary
care clinics in Queens and Manhattan, New York, USA. The initial results from utilizing our
platform are reported in [56, 57]. We found a 100% correlation between the results obtained from
directly evaluated images and the images transferred and processed by iPredict. We have also

tested 100 images for vertical CDR computation and received the same accuracy.

4. Discussion

In this study, we have demonstrated an accurate and fully automated deep learning screening

system for glaucoma suspects through retinal photography that may be effective for the
identification of glaucoma suspects in primary care settings.
Glaucoma is a prevalent, blinding disease worldwide with few symptoms until irreversible later
stages and is undiagnosed at rates approaching 50% even in developed countries [6]. Hence the
pressing public health need for effective community screening. The need is even greater in
communities of color, with an overall ratio of 8:1 for nonwhite to white primary glaucoma
blindness, due at least in part to receiving medical care later in the disease than whites [58],
Compounding the problem, there is also a dramatically earlier age of onset in this group. In an
Afro-Caribbean population glaucoma suspect status was high across all age groups, with significant
prevalence even in populations less than 40 years of age [59].

We have shown on several large datasets that the cup/disc ratio (CDR) can be measured

automatically from retinal photography with sufficient accuracy to discriminate suspects from non-
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suspects and thus potentially facilitate referral of suspects to an ophthalmologist for specialized
care. Thus, a future, achievable goal is an Al telemedicine platform in which our current
methodology will be deployed in primary care settings through remote image capture. A
prospective trial will be needed to determine the feasibility of the system in clinical settings, with
inexpensive, automated non-mydriatic retinal cameras and a telemedicine platform for image
transfer to the deep learning screening system. Such systems have been tested clinically with
proven accuracy for screening DR in comparison to expert graders [29]. It is thus reasonable to
expect that similar success may be achieved with glaucoma.

A National Eye Institute study showed that 90% of glaucoma subjects can be prevented from
progression to severe glaucoma through timely identification and intervention [6] However, nearly
sixty percent of Americans with diabetes skip annual sight-saving exams recommended by their
Primary Care Physicians (PCPs). Given such poor compliance by diabetics, who are informed
about the risks to their vision, it is likely that compliance with eye exams is even worse in the
general population [60]. Therefore, our focus is to identify the suspects in the primary care settings,
not only to get them needed care but also to eliminate large numbers of unnecessary specialist visits
for glaucoma screening.

The medical imaging and diagnostics field has been revolutionized by advances in deep
learning in recent years. Extensive research interest is being shown in using artificial intelligence for
solving medical problems [25]. Ting et al. [26] detailed the potential applications of Al in
ophthalmology. Gulshan et al. [27], in their seminal paper, showed the application of Al in diabetic
retinopathy from fundus images using deep learning. Recently, we have published two
groundbreaking works on late AMD prediction [28] and diabetes screening in primary care settings
[29]. There is also considerable research in other medical areas such as multiple sclerosis [30],
neurodegeneration [31], and age-related macular degeneration [32-35]. Several Al techniques [8, 9,
12-14] have been proposed to measure the cup-disc ratio, ; they have not been validated for

screening glaucoma suspects.
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We note that the current research using color fundus imaging is mainly focused on the
detection of glaucoma, which we believe is not an appropriate option for clinical settings if we
follow the glaucoma detection or diagnosis protocol (https://www.aao.org/eye-
health/diseases/glaucoma-diagnosis). Thus, here we aim to clear the differentiation of the term
glaucoma and glaucoma suspect. The glaucoma detection is a diagnosis of glaucoma that requires
the structural and functional abnormalities from glaucoma suspect, which is implied by its name, a
category of markers with an increased likelihood of the disease.

Li et al. [18] and Ting et al. [19] trained computer algorithms to detect the glaucoma-like disc,
defined as a vertical CDR of 0.7 and 0.8, respectively. In general, an eye with vertical CDR above 0.5
is considered a glaucoma suspect [20]. In this paper, we introduced an automated cup-disc
measurement tool which can determine if the vertical cup-disc ratio is above or below 0.5, in
conjunction with a deep machine learning based tool. We have published this approach, an
ensemble of deep learning architectures with a logistic tree at the end, for effective use in AMD
screening, but it is novel in glaucoma screening. With a telemedicine platform, it could provide
screening of glaucoma suspects on a large scale in primary care settings, conferring substantial

public health benefits of reduced vision loss from glaucoma and reduced health care costs.

Limitations and Future Work

In our testing, the sensitivities are somewhat lower than the specificities, with therefore a
somewhat greater risk of missing true cases. In our future work in this project, we aim to
understand and anticipate the doctors’ requirements in this new method of screening and tune the
system such that the false positives and false negatives are in an acceptable ratio. Small discs with
“pathologic cups” are hard to detect. Geometrically, a small disc with a CDR of 0.7 has much less
healthy neural rim tissue than a normal-sized disc with the same CDR. Therefore, CDR asymmetry
would be a reasonable addition to the screening program. In general, a provisional diagnosis of

glaucoma suspect is generally given with CDR asymmetry (>/=0.20) [61]. This criterion could be
14
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implemented in the next version of the present DL architecture that is already tuned to CDR
measures. Asymmetrical cupping of the optic disc was found in 5.6% of normal individuals, in 30%
of a group with ocular hypertension without field defect, and in 36% of those with established
chronic open-angle glaucoma and field loss [62]. We note that our algorithm classifies an optic disc
based on vertical CDR based on single retinal image, and asymmetrical cupping may show up as
different reading in the two eyes of the same image - in turn, helping doctors with an additional

biomarker for glaucoma.

Strengths
The model was built on several large datasets, with external validation on another. The output is

an ideal binary target for glaucoma suspects with a single highly correlated and easily
measured/interpreted variable. We have had success with a novel hybrid Al approach, to screening
for AMD and DR from fundus photos, that performs at least as well as other techniques in the
literature, and so we chose this route again for screening glaucoma suspects: an ensemble of DL
techniques is first trained on the image inputs to produce sets of probabilities (one set for each DL
technique) for classifying the image into a disease state; these sets of probabilities are then inputted
to an independently trained logistic model tree which acts as the final classifier in this system.
Aglaucoma diagnosis requires multiple structural and functional criteria that are not available or
appropriate in the primary care setting. To our knowledge, our system is the only one proposed
that is full-fledged, passive screening system for an adequate screening of glaucoma suspects with a
single disease marker that could be easily obtained in the primary care setting on a telemedicine
platform without expensive, specialized equipment or services.

Future work can carry these methods into the primary care setting to perform annual screening
for this silent blinding disease. We propose to address this urgent public health need with future
prospective trials of our system for low-cost, rapid glaucoma screening. These trials will be

modeled on our current ongoing NIH funded 3-year trial (SBIR Phase IIb R44EY031202, A Bhuiyan
15
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PI, “https://projectreporter.nih.gov/project_info_details.cfm?aid=10010769") for detection and
prediction of AMD in primary care settings with our published DL algorithms [28]. A complete
HIPAA compliant functional Al-based telemedicine platform for real-time diagnosis is already in
place which integrates the server-side screening programs (image analysis and deep-learning

modules) and local remote devices (for collecting patient data and images).

5. Conclusions

We have developed an effective deep learning/logistic model tree hybrid screening tool for the
identification of glaucoma suspects by vertical CDR from non-mydriatic retinal photographs.

Building on this tool, a full Al telemedicine platform is envisioned in a future state in which
our current Al methodology will be deployed in primary care settings. Fully automated cameras
will capture images for transfer through the cloud to the server-side for immediate results and
further patient referral if needed, with significant public health benefit for early detection and

prevention of this sight-threatening disease.
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9. Tables

Table 1. Number of images taken from AREDS, SIMES, and RIMONE1. The table shows the various

groups to which the images belong based on their graded cup/disc ratios.

Category (manually graded for vertical AREDS SIMES RIMONE1 Total

cup/disc ratio)
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<05 462 253 342 1057

above 0.5 131 243 115 489

Table 2. Accuracy, sensitivity, specificity, Cohen’s kappa, and AUC for the system with 95%
confidence intervals on the test data and ORIGA-light (validation data), with the ratio over 0.5

considered as a positive case for the model.

Measure Test data (with 95% CI) ORIGA-light (with 95% CI)
Accuracy 89.67% (85.65% to 92.87%) 80.11% (73.64% to 85.59%)
Sensitivity 83.33% (75.44% to 89.51%) 84.96% (81.32% to 88.12%)
Specificity 93.89% (89.33% to 96.91%) 83.54% (80.43% to 86.34%)
Cohen’s kappa 0.78 (0.71 to 0.85) 0.62 (0.57 to 0.67)

Area Under the Curve 0.93 (0.89 to 0.96) 0.85 (0.81 to 0.90)
10. Figures
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Figure 1. The interface of “CDR annotator”, the proprietary cup/disc ratio grading software. The

optic cup is circled in blue.
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(c) ()

Figure 2. A 30-degree fundus image (a) and the automatically cropped optic disc region (b). (c)

shows another cropped example that is preprocessed to obtain the final image (d).
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Figure 3. Overall schematic representation of the model building. The figure shows the two types of

input images (RGB and transformed) fed into five neural networks. Each network accepts a rescaled

image (shown below the name of the architecture) and produces two probabilities. The ten resulting

probabilities are then concatenated to form a feature array of size 10 and fed as input to a logistic

model tree which acts as the final classifier in this system.
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Figure 4. Area under ROC of the test data results (left) and the results for ORIGA-light dataset

(right) for the two-class cup-to-disc ratio model.
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