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Abstract

The presence of SARS-CoV-2 mutants, including the emerging variant B.1.1.7, has raised
great concerns in terms of pathogenesis, transmission, and immune escape. Characterizing
SARS-CoV-2 mutations, evolution, and effects on infectivity and pathogenicity is crucial to
the design of antibody therapies and surveillance strategies. Here we analyzed 454,443
SARS-CoV-2 spike genes/proteins and 14,427 whole-genome sequences. We
demonstrated that the early variant B.1.1.7 may not have evolved spontaneously in the
United Kingdom or within human populations. Our extensive analyses suggested that
Canidae, Mustelidae or Felidae, especially the Canidae family (for example, dog) could be a
possible host of the direct progenitor of variant B.1.1.7. An alternative hypothesis is that the
variant was simply yet to be sampled. Notably, the SARS-CoV-2 whole genome represents a
large number of potential co-mutations with very strong statistical significances (p value<E—
44). In addition, we used an experimental SARS-CoV-2 reporter replicon system to introduce
the dominant co-mutations NSP12_c14408t, 5UTR_c241t, and NSP3_c3037t into the viral
genome, and to monitor the effect of the mutations on viral replication. Our experimental
results demonstrated that the co-mutations significantly attenuated the viral replication. The
study provides valuable clues for discovering the transmission chains of variant B.1.1.7 and

understanding the evolutionary process of SARS-CoV-2.

Key words: SARS-CoV-2, variant B.1.1.7, transmission chains, co-mutations, viral

replication.
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Introduction

Since the outbreak in December 2019, COVID-19 has been pandemic in over 200
countries. Cases of infection and mortalities have been surging and are an ongoing threat to
public health'*. COVID-19 is caused by infection with the novel coronavirus SARS-CoV-2"°.
Although as a coronavirus, SARS-CoV-2 has genetic proofreading mechanisms®®, the
persistent natural selection pressure in the population drives the virus to gradually
accumulate favorable mutations®®'”. Much attention has been paid to the mutations and
evolution of SARS-CoV-2'""°, since mutations are related to the infectivity and pathogenicity
of viruses'®*'. Beneficial mutants of the virus can better evolve and adapt to the host’, either
strengthening or weakening the infectivity and pathogenicity. In addition, certain variants
may generate drug resistance and reduce the efficacy of vaccines and therapeutics** . In

short, studying mutations and evolution in detail is vital to understand the transformations of

viral properties and to control the pandemic.

A new variant of SARS-CoV-2 named VOC-202012/01 (Variant of Concern 202012/01) or
lineage B.1.1.7 was first detected in the United Kingdom last December’. It appears to be
substantially more transmissible than other variants®®. The variant has been growing
exponentially in the United Kingdom and rapidly spreading to other countries®>*". However,
it is not yet clear if it evolved spontaneously in the United Kingdom or was imported from
other countries. Studying how the variant B.1.1.7 mutates can enable researchers to track its
spread over time and to understand the evolution of SARS-CoV-2.

In this study, large-scale SARS-CoV-2 sequences, consisting of more than 454,000 spike
3
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genes/proteins and 14,000 whole-genome sequences were analyzed. Our extensive
sequence analysis showed that many mutations always co-occur not only in the spike
protein of B.1.1.7, but in the whole genome of SARS-CoV-2. The mutation trajectories of
the spike protein indicate that the early variant B.1.1.7 did not evolve spontaneously in the
United Kingdom or even within human populations. We also investigated possible
SARS-CoV-2 transmission chains of the variant B.1.1.7 based on the mutation analysis of
large-scale spike proteins and the cluster analysis of spike genes. Over the whole genome,
the top 25 high-frequency mutations of SARS-CoV-2 converged into several potential
co-mutation patterns, each of which showed a strong correlation with a very strong
statistical significance (p value<E—44). The potential co-mutations depicted the
evolutionary trajectory of SARS-CoV-2 virus in the population, shaping variable replication
of SARS-CoV-2. In addition, we further explored the effect of the dominant (co-)mutations
5'UTR_c241t, NSP3_c3037t, and NSP12_c14408t on viral replication using a
SARS-CoV-2 replicon based on a four plasmid in-vitro ligation system. The results

suggest that such mutations significantly attenuate the replication of SARS-CoV-2.

Results

Evolutionary trajectories of variant B.1.1.7

The variant B.1.1.7 was generally defined by multiple amino acid changes including 3

deletions (69-70del and 145del) and 7 mutations (N501Y, A570D, D614G, P681H, T716l,
S982A, and D1118H) in the spike protein®’. The number of non-adjacent co-occurrent

changes indicates that they resulted from accumulated mutations. We therefore explored the

4
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evolutionary trajectories of B.1.1.7 by tracing the incremental mutations (Fig. 1a). All routes
along the directions of the arrows are possible evolutionary trajectories of lineage B.1.1.7.
Among all the mutation routes, the green one was the most probable mutation trajectory
based on the number of variant strains. However, it was unlikely that the earliest variant
B.1.1.7 (GISAID: EPI_ISL_601443, 2020-09-20, England) with 9 mutations evolved from the
existing variants with 3—8 mutations, because the former arose much earlier than the latter.
More than 454,000 SARS-CoV-2 strains have been collected and extensive sequenced from
infected humans without finding intermediate variants with 3—9 mutations. It is therefore
unlikely that the intermediate variants with 3-8 mutations have infected humans. Thus, the
early variant B.1.1.7 might not have arisen spontaneously in the UK or within human
populations. An alternative hypothesis is that spillover likely occurred from susceptible

animals.

The co-appearance rates (see Materials and Methods) of all nine mutations are shown in
Fig. 1b. We found that at least five mutations (145del, A570D, T716l, S982A, and D1118H)
of variant B.1.1.7 significantly co-occurred (rate>95%), which indicates a potential
co-mutation pattern in the spike protein, causing us to wonder what selection pressure drove
such co-occurrences of mutations and rapid evolution in the population of SARS-CoV-2.
Note that coronaviruses generally tend to exhibit rapid evolution when they jump to a
different species®. We therefore analyzed the key spike genes and proteins of existing
SARS-CoV-2 strains collected from animals to find a possible direct progenitor of variant
B.1.1.7. The variant with mutations “56” (labeled by “*” in Fig. 1a, termed star variant) had

the minimum phylogenetic distance with EPI_ISL_699508, which was collected from a dog
5
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on 2020-07-28 (Fig. 2) using MEGA®** (see Materials and Methods). The strains collected
from tigers, minks, and cats were also close to the star variant. Our extensive analyses
including mutations, phylogeny (Fig. 2), collection date/location and the number of
sequences (Tables S1-S3) suggested that Canidae, Mustelidae or Felidae, especially the
Canidae family (for example, dog) could be a possible host of the direct progenitor of variant
B.1.1.7. The possible transmission chains of variant B.1.1.7 are shown in Fig. 1c. This star
variant strains in humans could not have evolved into the early variant B.1.1.7, but they
might have infected high-density yet susceptible animals (such as dogs) and adapted to
these species through rapid mutation. Such progenitor variants comprised most or all of the
mutations of the early variant B.1.1.7 within the Canidae family populations, and they may

have spilled back to humans after the rapid mutation period.

High-frequency mutations converge into potential co-mutations

Based on sequence alignment and mutation analysis, we found that 7,441 nucleotide
alterations in the viral 29903-letter RNA code occurred at least once in the samples from
COVID-19 patients. These mutations were dispersed in the 14,427 SARS-CoV-2 strains
collected from all around the world. As shown in the heatmap of the top 1% high-frequency
mutations (Table S4), some sites show very similar mutation rates on most days in samples
isolated globally (Fig. S1), including 8,898 and 815 samples isolated from the U.S. (Fig. S2)
and Australia (Fig. S3). Therefore, these mutations shown in Fig. S4a were selected and
clustered into co-occurrences, which we called potential co-mutation patterns. From the

landscape of the mutation rates (Fig. S4a), 25 nucleotide sites were clearly clustered into
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several potential co-mutation patterns. Among these patterns, there was one consisting of
the top 4 high-frequency mutations (i.e., 5’UTR_c241t, NSP3_c3037t, NSP12_c14408t, and
S_a23403g), which converged into a dominant potential co-mutation pattern. Such
co-occurrence lineage has been found in almost all sequenced samples of SARS-CoV-2.
Within this co-occurrence pattern, mutation S_ a23403g resulted in the amino acid change

°%° albeit debate exists'®. Notably, there

(D614G) that apparently enhances viral infectivity
were three successive sites at the 288815 to 28883" positions of the virus (N_g28881a,
N_g28882a, and N_g28883c) that strictly co-occurred. Comparing Fig. S4a-c and Table S4,

we found that the top 14 high-frequency mutations formed five common co-occurrence

patterns.

To assess the above co-occurrence patterns, we analyzed the correlations and statistical
significance levels of the high-frequency co-occurrence mutations. The heatmap of the
paired Pearson-correlation-coefficients (Fig. 3a) shows that the top 25 high-frequency
mutations clearly cluster into several potential co-mutation groups/patterns with very strong
correlation (>0.8). By regression analyses, the above co-occurrence patterns have statistical
significance levels with p values less than 10™** (Fig. 3b). The detailed mutation transitions
(Fig. 3c—k, Figs. S5-7) provide further evidence that the above mutations form co-mutation

patterns.

Dominant mutations attenuate viral replication

We further explored the effect of the dominant mutations 5'UTR_c241t, NSP3_c3037t,

and NSP12_c14408t on viral replication using a SARS-CoV-2 replicon based on a
7
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four-plasmid in-vitro ligation system. This replicon is devoid of the viral structural proteins
while undergoing viral replication, and the viral replication is sensitive to the antiviral agent
remdesivir’®. The 5'UTR_c241t mutation resides in a highly conserved region in the 5'UTR
(Fig. 4a). The NSP3_c3037t mutation is synonymous. The NSP12_c14408t mutation is
nonsynonymous with an amino acid change of a conserved amino acid P323 in the viral
RNA-dependent RNA polymerase (Fig. 4b). We introduced the NSP12_c14408t mutation or
the NSP12_¢14408t mutation with the other two mutations 5’'UTR_c241t and NSP3 c3037t
into the replicon plasmids. The fragments were released from the plasmids by Bsal digestion,
and then assembled by in-vitro ligation with T4 ligase (Fig. 4c). Replicon RNA transcribed
from the ligation products was co-transfected with N mRNA into Huh7 cells. RNA replication
was monitored by measuring the secreted Gaussia luciferase activity in the supernatants.
Enzymatic dead mutants (759-SAA-761) of the RNA-dependent RNA polymerase NSP12
were introduced, and the mutated replicon served as a non-replication control. As shown in
Fig. 4d, transfection of WT replicon RNA resulted in an obvious increase of luciferase activity,
and SAA RNA did not replicate as expected. Introduction of NSP12_c14408t mutation
resulted in a significant reduction of viral replication. The combination of NSP12_c14408t
mutation with the other two mutations further significantly but only marginally reduced viral
replication. These results demonstrate that the P323L mutation in the viral RNA-dependent
RNA polymerase reduces viral replication, and the synonymous mutations may further

attenuate viral replication.
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Discussion

A well-resolved phylogeny of variant B.1.1.7 spike genes provides an opportunity to
understand the evolutionary process and transmission chains of variant B.1.1.7. Our
incremental mutation and phylogenetic analyses on large-scale SARS-CoV-2 spike
proteins/genes revealed that the early variant B.1.1.7 might not have evolved spontaneously
in the United Kingdom or within human populations. In this case the spillover likely occurred
from susceptible animals. Current evidence® ™ indicates that SARS-CoV-2 can effectively
infect both domestic animals (for example, dog, cat, pig and bovine) and wild animals (for
example, mink, rabbit and fox) by binding their angiotensin converting enzyme 2 (ACE2).
Our further analyses including mutations, phylogeny, collection date/location and the
number of sequences suggested that the earliest variant B.1.1.7 possibly originated from
Canidae, Mustelidae or Felidae, especially the Canidae family (for example, dog). The
cases’’ that the variant B.1.1.7 can easily infect dogs and cats indicated that both are
susceptible to B.1.1.7. Still, due to the limited information available to date, an alternative
hypothesis is that the direct progenitor of variant B.1.1.7 is yet to be sampled. In addition to
variant B.1.1.7, as a future topic we will work on the analysis of other lineages such as P.1,

B.1.351, B.1.427, and B.1.42, when sufficient numbers of their sequences are available.

By tracing the mutation trajectories, we found that at least five mutations of the spike
proteins always co-occurred, and a large number of potential co-mutations appeared in the
top 1% high-frequency mutations of SARS-CoV-2 whole genome. It has been documented

that the mutation S_ a23403g results in the amino acid change of the spike protein D614G
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and enhances viral infectivity'**'**. Here, by using a SARS-CoV-2 reporter replicon system,
we demonstrated that the one of the dominant co-mutations NSP12_c14408t significantly
reduced viral replication and combination of NSP12_c14408t mutation with the other two
synonymous mutations 5’UTR_c241t and NSP3 c3037t although significantly but only
marginally reduced viral replication further. As the 5’UTR play an important role in regulating
viral replication, the synonymous mutations 5’UTR_c241t may attenuate viral replication by
change RNA secondary structure®. These findings imply that SARS-CoV-2 undergoes an
evolution toward enhancing viral infectivity while attenuating viral replication. SARS-CoV-2
has exhibited significant mutations and co-mutations. We evaluated the replication of a
co-mutation pattern including three dominant mutations. If other mutations act similarly on
the viral replication needs to be verified. These results can be further explored for efficient
vaccine design in our future work. In summary, this study provides insights into the
transmission chains of variant B.1.1.7 and the effect of viral dominant mutations on viral

evolution.

Materials and Methods

Data selection and pre-processing

The 454,443 spike gene/protein sequences of SARS-CoV-2 were obtained at
https://www.gisaid.org/. The NCBI website at https://www.ncbi.nlm.nih.gov/sars-cov-2/ has
released more than 1.7 thousand sequences of SARS-CoV-2 viruses before July 31, 2020.
We selected 14,427 sequences that satisfied two criteria: (1) having specific collection dates;

(2) sequence-lengths being no less than 29,305 nt (29903*0.98). It is inevitable that some
10
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sites of sequences are equivocal owing to the limitation of sequencing depth. For instance,
many sites were labeled as letter N in genome sequences. The noise of indeterminate
nucleic-acids was taken into consideration in our experiments so as to boost accuracy. The

co-mutation rate of multi-site co-mutations was calculated by co — mutationrate =

number of sequences containing co—mutaions

. Moreover, the co-appearance rate of a mutation in

number of all sequences

number of B.1.1.7 sequences

B.1.1.7 variant was defined by co — appearance rate = — —,
number of sequences contalmng a mutation

Possible animal host analyses

In addition to the phylogenetic analysis, we further explored the possible animal hosts of
the direct progenitor of variant B.1.1.7 by mutations, collection time/space of strains, the
number of sequences and the edit distance’®*’ of mutations (Table S1-2). Due the late
lockdown policies of some governmental agencies, the spread of SARS-CoV-2 has not been
prevented well in Europe, America, and Australia. We could ignore the impact of policies for
studying the origin of variant B.1.1.7. We quantified the multiple impact factors of viral
transmission as shown in Table S3 based on the criterion that the smaller the value, the
more similar. The results still supported that the Canidae family is a possible host of the

direct progenitor of variant B.1.1.7.

MEGA version and parameter settings

Version: MEGA-X

Statistical Method: Maximum Likelihood

Test of Phylogeny: None

Model/Method: Jones-Taylor-Thornton (JTT) model

11
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Rates among Sites: Uniform Rates

Gaps/Missing Data Treatment: Use all sites

ML Heuristic Method: Nearest-Neighbor-Interchange (NNT)

Initial Tree for ML: Make initial tree automatically (Default - NJ/BioNJ)
Branch Swap Filter: None

Number of Threads: 7

Statistical analysis

The Pearson-correlation-coefficient (PCC) is a classic statistic that measures linear
correlation between two variables. Its value ranges from -1.0 to 1.0. Normally, the two
variables meet a strong correlation or a very strong correlation when the absolutes value of
PCC is between 0.6 and 0.8 or between 0.8 and 1.0. Linear regression is a linear approach
to model the relationship between a scalar response and one or more variables. We used
PCC and significance level (p value) of regression analysis to evaluate the relationships of

the co-occurrence mutations in large-scale SARS-CoV-2 examples.

Plasmids

Four plasmids encompassing the viral genome (pLC-nCoV-A-Bsal, pLC-nCoV-B-Bsal,
pLC-nCoV-C-Bsal, and pnCoV-D-sGluc-Bsal) were described previously®. The
5'UTR_c-241-t and NSP3_c-3037-t mutations were introduced into the pLC-nCoV-A-Bsal by
fusion PCR. The NSP12_c-14408-t mutation was introduced into the pLC-nCoV-B-Bsal by

fusion PCR.

Cell lines

12
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The human hepatoma cells Huh 7 were purchased from the Cell Bank of the Chinese
Academy of Sciences (www.cellbank.org.cn) and routinely maintained in Dulbecco’s

modified medium supplemented with 10% FBS (Gibco) and 25 mM HEPES (Gibco).

In-vitro ligation

Bsal digested fragments were gel purified using Gel Extraction Kit (OMEGA) and ligated
with T4 ligase (New England Biolabs) at room temperature for 1 h. The ligation products
were phenol/chloroform extracted, precipitated by absolute ethanol, and resuspended in

nuclease-free water, quantified by determining the A260 absorbance.

In-vitro transcription

Purified in-vitro ligated product was used as template for the in-vitro transcription by
MMESSAGE mMACHINE T7 Transcription Kit (Ambion) according to the manufacturer’s

protocol. For N mRNA production, we amplified the N coding region by PCR (sense: GGC

ACACCCCTTTGGCTC T;antisense: TTTTTTTTTTTTTITTITTITTTTTTITTITTTT
TTTTTT TCT AGG CCT GAG TTG AGT CAG CAC) with phCMV-N as template. Then the
purified PCR product was used as a template for in-vitro transcription by mMESSAGE
MmMACHINE T7 Transcription Kit as described above. RNA was purified by RNeasy mini

Elute (Qiagen), eluted in nuclease-free water, and quantified by UV absorbance (260 nm).

Transfection

Cells were seeded onto 48-well plates at a density of 7.5x10* per well and then

13
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transfected with 0.3 pg in-vitro transcribed RNA using a TransIT-mRNA transfection kit

(Mirus) according to the manufacturer’s protocol.

Luciferase activity

Supernatants were taken from cell medium and mixed with equal volumes of 2xlysis
buffer (Promega). Luciferase activity was measured with Renilla luciferase substrate

(Promega) according to the manufacturer's protocol.
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Fig. 1 Evolutionary trajectories of variant B.1.1.7. a Incremental mutations of variant B.1.1.7. The
digits in the upper-right-corner rectangle with dotted line indicate the labels of mutations. For

simplicity, the 69-70 deletions were labeled as “1”, and the other mutations “2”-“9” respectively. The
bottom nodes (rectangles) represent the variants with one mutation and the top one was the early
variant B.1.1.7. Each rectangle with solid line consists of lineage (e.g., B.1.243), number of strains
(e.g., N:2382), mutation sites (e.g., M:----56---), the earliest collection date (e.g., 20-03-29, i.e.,

2020-03-29), and collection location (e.g., USA). In the labels of the mutation sites, sign “-” indicated
the corresponding site did not mutate. All routes along the directions of the arrows are possible
evolutionary trajectories of lineage B.1.1.7, where the green one was the most probable mutation
trajectory. Large-scale SARS-CoV-2 analysis demonstrates that the early variant B.1.1.7 might not
have arisen spontaneously in the UK or within human hosts. b Coappearances of variant B.1.1.7
mutations. At least five mutations form a potential co-mutation pattern (coappearance rate > 95%). ¢

Possible transmission chains of variant B.1.1.7. Canidae, Mustelidae or Felidae, especially the

Canidae family (for example, dog) could be a possible host of the direct progenitor of variant B.1.1.7.
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Fig. 2 The Canidae family could be a possible host of the direct progenitor of variant B.1.1.7.

The digits on the left of the figure indicate the labels of mutations, which correspond with the

mutation labels in Fig. 1a. The strains shown in the center of the figure contain at least one spike

mutation of variant B.1.1.7. And these strain examples cover all existing SARS-CoV-2 viruses that

collected from animal hosts. The strain labeled by orange star corresponds with the star variant in Fig.

1a. The strain with orange solid-round label was collected from a dog on 2020-07-28. Such two

strains share the same mutations “56” and have the minimum phylogenetic distance by MEGA tool.

Canidae, Mustelidae or Felidae, especially the Canidae family (for example, dog) could be a possible

host of the direct progenitor of variant B.1.1.7 based on existing stains collected before the end of

Jan. 2021.
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Fig. 3 The strong correlations suggest that the top 25 mutations form eight potential
co-mutation patterns. a The correlation heatmap of the top 25 mutations. These mutations could be
grouped into several clusters with high Pearson-correlation-coefficient (PCC). b Regression analysis
of mutations shows that eight clusters all denote the statistical significance level: ***p value < E-44. c
to k show the transitions of the high-frequency mutations. The sky-blue represents the rate per day of
initial residue in population and the golden the rate per day of substitution/mutant. These mutation

transitions provide further evidence that the above mutations potentially form co-mutation patterns.
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Fig. 4 Dominant co-mutation attenuates viral replication. a Predicted RNA structure of the
SARS-CoV-2 5’'UTR. RNA structure of the 400-nt 5UTR was predicted by “RNAstructure”
(http://rna.urmc.rochester.edu/RNAstructureWeb). The start codon for nsp1 is grey, the TRS-L is
orange, and the mutated nucleotides are red. The bottom panel shows the alignment of the 5’UTR of
SARS-CoV-2 with 5UTRs of related viruses, with c241 highlighted. b Structure of SARS-CoV-2
RdRp/RNA complex. The structure of SARS-CoV-2 RdRp/RNA complex (PDB, 6X2G) was visualized
by Chimera (UCSF). The P323 mutation is highlighted in red, with the alignment of the amino acid
sequences of SARS-CoV-2 and related viruses near the P323 position. ¢ Schematic of the in-vitro
ligation system for SARS-CoV-2 replicon. Four plasmids encompassing the viral genome were
digested by Bsal to release the four fragments. After gel purification, the fragments were ligated by
T4 ligase. The ligation products were purified and used as template for RNA in-vitro transcription.
sGluc, secreted Gaussia luciferase; 2A, foot-and-mouth disease virus (FMDV) 2A peptide; BSD,
blasticidin. d Huh7 cells were co-transfected with in-vitro transcribed replicon RNA (WT or the
indicated mutants) and an mRNA encoding the SARS-CoV-2 N protein. The luciferase activity in the
supernatants was measured at the time points indicated. Medium was changed at 8 hours
post-transfection. Data are shown as meantSEM (n=8). SAA, the NSP12 polymerase active-site
mutant. Unpaired Student’s t-test was performed between the mutants and wild type (WT) and

p

*k*k

between the mutants as indicated (statistical significance level: *p value<0.05, **p value<0.01,
value<0.001).
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