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51 Abstract

52 Recent advances in high-throughput experiments and systems biology approaches
53 have resulted in hundreds of publications identifying “immune signatures”.
54  Unfortunately, these are often described within text, figures, or tables in a format not
55 amenable to computational processing, thus severely hampering our ability to fully
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56  exploit this information. Here we present a data model to represent immune
57  signatures, along with the Human Immunology Project Consortium (HIPC) Dashboard
58  (www.hipc-dashboard.org), a web-enabled application to facilitate signature access
59 and querying. The data model captures the biological response components (e.g.,
60 genes, proteins, cell types or metabolites) and metadata describing the context under
61 which the signature was identified using standardized terms from established
62  resources (e.g., HGNC, Protein Ontology, Cell Ontology). We have manually curated
63  a collection of >600 immune signatures from >60 published studies profiling human
64  vaccination responses for the current release. The system will aid in building a
65 broader understanding of the human immune response to stimuli by enabling
66  researchers to easily access and interrogate published immune signatures.

67

68 Introduction

69  Systems-level profiing of the human immune system has generated important
70  insights into the mechanisms by which humans respond to exposures such as
71  vaccination. These studies, including many conducted through the Human Immune
72  Project Consortium (HIPC), have generated hundreds of publications. While
73  repositories exist to promote re-use of primary experimental immunology data
74  generated from these efforts, such as the Gene Expression Omnibus® (GEO) and the
75 NIAID Division of Allergy, Immunology, and Transplantation (DAIT)-sponsored
76  Immunology Database and Analysis Portal> (ImmPort), there is no centralized
77  framework to aggregate and organize the published findings resulting from the
78 analysis of this data, and particularly the coherent sets of biomarkers, termed here
79  “signatures”. Additionally, such signatures are not published in a consistent format
80 between publications and may be presented as text, tables, or images. This
81 heterogeneity presents a barrier to comparative analyses since identifying published
82  signatures, for example of a vaccine response, requires extensive manual curation of
83 the literature that must be repeated by investigators each time they wish to interpret a
84  set of results. Here, we propose a model to standardize the representation of these
85  published findings and present the Human Immunology Project Consortium (HIPC)
86  Dashboard—a searchable interface to query curated signatures from the corpus of
87  human immunology literature.

88

89  We define a ‘signature’ as the information required to specify a published result. This
90 includes alterations in the levels of a set of one or more response component(s), i.e.,
91 biological entities such as genes or cell types, that are defined by a particular
92  comparison in the context of an immune exposure. The signature also includes
93  contextual information (termed metadata) such as the conditions and circumstances
94  under which the signature was identified, the tissues or cells that were assayed, as
95 well as clinical data such as demographic information about the groups that were
96 included in the analysis. As a motivating example, a study by Bucasas et al.
97 identified a set of genes that are up-regulated in individuals with higher antibody
98 responses (comparison) after vaccination with the 2008-2009 trivalent influenza
99  vaccine (exposure) in an adult cohort. The expression of genes STAT1, IRF9, SPI1,
100 CD74, HLA-E, and TNFSF13B one day after influenza vaccination was predictive of
101  greater antibody responses. In the paper, these results were represented in a table,
102  though similar findings often appear as text or within figures. Without standardization,
103  such findings are not easily accessible to the wider scientific community for further
104  analysis.

105

106  Several existing resources define pathway and gene module signatures through re-
107  analysis of raw data, but few capture the original findings published with these data or
108 are specifically geared towards human immunology research. Among these
109  resources are the OMics Compendia Commons (OMICC)*, EnrichR>®, the integrative
110  Library of Integrated Network-based Cellular Signatures (iLINCS)’, the Molecular
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111 Signatures Database (MSigDB)®°, and VaximmutorDBY. OMICC crowdsources
112  annotations for gene expression data to be used in re-analysis and novel signature
113  generation. EnrichR and iLINCS offer biological annotations built from data re-
114  analyzed en masse, but similarly do not capture published findings. MSigDB does
115 include manually curated gene signatures along with those derived from data re-
116  analysis, albeit with fewer contextual details than captured for the HIPC Dashboard.
117  VaximmutorDB captures published gene expression and proteomic signatures but not
118 cell-type frequency signatures, and signatures from this database are not yet
119  downloadable in a machine-readable format.

120

121  To improve access and to promote reuse of published signatures, we designed a
122 data model that standardizes the content and context of published immune
123 signatures. Our initial curation efforts have focused on gene expression and cell-type
124  frequency/activation signatures of human vaccine responses, but this framework is
125 extensible to other domains such as response to infection. We captured what is
126 changing, (e.g. groups of genes), how that response component changed (e.g. up- or
127  down-regulation), where this change was observed (e.g. in sorted CD8+ T cells from
128  adults), and the comparison that was performed (e.g. individuals with high vs. low
129  antibody titers post-vaccination). We then manually curated signatures from
130  publications both within and outside of HIPC that described changes in gene
131  expression, cell-type frequencies, or cell activation state in response to vaccination.
132 To disseminate these immune signatures, we developed the HIPC Dashboard
133 (www.hipc-dashboard.org), a web-accessible, user-friendly interface to enable
134  signature searching and browsing, and to facilitate rapid comparative analyses. The
135  design of the HIPC Dashboard is based on a similar infrastructure we developed
136 previously for the Cancer Target Discovery and Development network, the CTD?
137  Dashboard', and leverages the same underlying ontological framework for the
138  standardized representation of research findings as well as the emphasis on the
139  consistent, curation-mediated use of controlled vocabularies for linking findings
140  reported in different publications.

141

142 Results

143 A Data Model for Immune Signatures of Vaccination

144

145  We developed a data model that captures, in a detailed and consistent format, the
146  essential information embedded in published immune signatures of vaccination for
147  dissemination through the HIPC Dashboard (Table 1). Key elements of this data
148 model (e.g., genes, vaccines, etc.) are specified using controlled vocabularies, thus
149 making immune signatures of vaccination amenable to data mining and promoting
150 compatibility with projects both within and outside of HIPC. A signature as defined in
151  this model encapsulates both a change in the behavior or abundance of a biological
152  response component as well as the metadata describing the context under which the
153  signature is identified, including (1) the tissue in which the signature was observed,
154  (2) the immune exposure and timing underlying the observed comparison, and (3)
155  clinical details of the cohort from which tissue samples were taken, including age
156  (Figure 1). The model accommodates many types of biological response
157  components (gene, protein, metabolite, pathway, and cell type (e.g. subsets of blood
158 cells). We focused on gene expression and cell type signatures of vaccination, but
159 the data model and HIPC Dashboard infrastructure are flexible and can be easily
160 expanded to accommodate arbitrary signature types.

161

162 To facilitate data mining and comparative analyses between different conditions
163  including vaccine types, and to afford consistency between this database and other
164  projects using the same controlled vocabulary terms, standardized terms and
165 ontology links were used for as many biological response components, immune
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166  exposures, and demographic fields as possible. Gene and cell type response
167  components were standardized to the HGNC' (as provided through the NCBI) and
168  Cell Ontology*>** (CL) respectively to enable comparisons across publications using
169 different naming conventions. Cell types from the Cell Ontology were further
170  differentiated using protein marker terms drawn from Protein Ontology'® (PRO),
171  where possible (e.g. IFNG+ T cells). This same naming convention is used to
172 describe the tissue in which the signature was observed®.

173

174  To annotate the immune challenges driving each signature, we utilized the Immune
175  Exposure model*’, which provides a standardized description of a broad range of
176  potential and actual exposures to different immunological agents (e.g., vaccination,
177  laboratory confirmed infection, living in an endemic area, etc.). Inmune exposures
178  are broken down into Exposure Process, Exposure Material, Disease Name, and
179  Disease Stage. Each of these components is modeled using standardized ontology
180 terminology. Within the data model for the HIPC Dashboard, Exposure Materials such
181 as vaccines are captured using terms in the Vaccine Ontology™® (VO), which further
182  link to target pathogens and strains using the NCBI Taxonomy'®?°. While these
183  ontology choices reflect our initial focus on vaccination, the data model can
184 accommodate other exposure processes beyond vaccination, with links to
185  appropriate ontologies. Integration of the Immune Exposure model in the HIPC
186  Dashboard data model promotes interoperability with other projects that have
187  adopted its use, both within and outside of HIPC, including data repositories such as
188  ImmPort and the Immune Epitope Database®.

189

190 Cohort information that is important for interpreting signatures is also captured.
191  Cohort descriptors can vary widely between studies and can include, for example,
192  sex, antibody response titers, geographic location, health status, vaccination or
193 infection history, etc. This information is currently recorded as unstructured text to
194  maintain flexibility. Cohort age range is standardized separately by storing minimum
195 and maximum ages along with their units. Additional fields describe the particular
196  perturbations that drive the changes to the biological response components. The
197  “comparison” field describes the cohort groups whose differential response under the
198  perturbation is measured. Examples of comparison groups include measurements
199 taken at two different time points (e.g. dayl vs. day 0), correlation with antibody
200 response, differing antibody response outcomes (e.g. high vs. low responders), or
201  comparisons across different demographic parameters such as age or sex (e.g.
202  younger vs. older, female vs. male). The “response_behavior’ field captures the
203  directionality of the differential response (e.g. up or down, positively- or negatively-
204  correlated) under the specified comparison. Fields for which a formal controlled
205 vocabulary was not used, such as cohort descriptions and the comparison, are stored
206  as free text.

207

208  Finally, each signature is tagged with a Pubmed ID (PMID) and publication year field,
209  to connect observations to their literature sources.

210

211 Manual Curation of Published Signatures

212

213 A defined Pubmed search strategy was used (see Methods) to assemble an initial list
214  of publications comprising studies that involved a systems-level profiling of
215 measurable changes before and after vaccination in human subjects. The
216  publications were culled for signatures reporting statistically significant changes in
217  gene expression, cell-type frequency or cell activation state induced by an immune
218  exposure when comparing groups with different features (such as high vs low
219 responders as defined by antibody titers). We focused on components that also
220 included information about response behavior (e.g. up- or down-regulated). In total,
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221 665 immune signatures were manually curated from 69 published studies. After
222  standardization and quality control (see Methods), these curated gene and cell type
223 signatures included 13,812 unique genes, 152 unique cell types (including protein
224  markers and additional type-modifiers), and 44 pathogens across 56 vaccines (Table
225  2). Table 3 illustrates a typical gene-expression type signature after tissue, gene
226 symbol and pathogen standardization.

227

228  The HIPC Signatures Dashboard

229 The data model provides a means for representing immune signatures in a
230 structured, standardized, machine-readable manner while the curation process
231  enables the cross-referencing of signatures from different publications based on their
232 shared response components, by enforcing the consistent use of controlled
233  vocabularies for codifying these components (e.g., genes, cell types, tissues,
234  vaccines, and pathogen strains). These capabiliies come together in the “HIPC
235 Dashboard” (http://hipc-dashboard.org), a web application developed to enable
236  dissemination of the curated set of immune response signatures. The HIPC
237 Dashboard allows signature browsing, as well as searching for one or multiple
238  response components (using the corresponding controlled vocabulary terms and their
239 synonyms), to retrieve all immune signatures involving the query response
240  component(s) across all curated publications.

241  The central viewable element of the HIPC Dashboard is the “Observation Summary”,
242  a human-readable description of the information captured in an immune signature.
243 Observation summaries are constructed “on the fly”, using template text devised as
244 part of the curation process. The template has placeholders for the various elements
245  of an immune signature, including the response component (gene or cell type) and
246  the response behavior type (up/down or correlation). When a specific signature is
247  selected in the process of browsing or searching the Dashboard, the observation
248  summary for that signature is instantiated by replacing the template placeholders with
249  the relevant values from that signature. For example, a joint search on the terms
250 “CD4” and “Zostavax” yields about 35 observation summaries. One of these is related
251  to a change in cell-type frequency:

252

253

254 In peripheral blood mononuclear cell, CD4-positive, alpha-beta memory T cell &
255 CD38+, HLA-DR+, VZV tetramer+ frequency was up at 14 days from time of
256 vaccination for the comparison 14d vs 0d in cohort 50-75 yo after exposure to
257 Zostavax targeting Human alphaherpesvirus 3 (details_»)

258

259  Here, the “&” sign separates the Cell Ontology cell type from Protein Ontology
260 surface and other markers. In a second example, a joint search on the terms
261 “CXCL10” and “BCG” yields 6 observation summaries, one of which reports a
262  correlation of gene expression (at 1 day post-vaccination) to an ELISpot result at 28
263  days post-vaccination:

264

265 In blood, CXCL10 gene expression at 1 day from time of vaccination was positively
266 correlated with IFN-gamma ELISpot spot forming cell 28d in cohort 4-6 mo
267 subgroup BCG-primed after exposure to MVA85A targeting Mycobacterium
268 tuberculosis variant bovis BCG (details »)

269 In both cases, placeholders in the observation summary template have been
270 replaced by controlled terms for the response components and ontology-linked
271  metadata (blue, hyperlinked text) and by free-text metadata describing informative
272 experiment details (black, bold text). Following the hyperlink for a controlled term
273  leads to a dedicated page for the corresponding biological entity, providing additional
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274  details (including links to relevant external annotation sources, e.g., Entrez,
275  GeneCards and UniProt for genes) as well as a listing of all the immune signatures
276  stored in the Dashboard that involve that entity (Figure 2A). Further, the “details” link
277  atthe end of each observation summary points to an “Observation” page (Figure 2B)
278  containing detailed information about the corresponding immune signature, including
279  afull listing of all its available metadata. This includes, for example, structured text for
280  values such as age group and days post-immunization, and links to download the full
281  signature source data (including all metadata) in tab-delimited form. Additionally,
282  each observation includes a link to a file containing the complete set of response
283  components from which it was derived, e.g. the full list of genes or cell types.

284

285 Discussion

286

287  Users of the HIPC Dashboard can easily search and examine hundreds of immune
288  signatures related to human vaccination responses. Consolidating these publications,
289  standardizing their findings in a database, and disseminating them through the
290 Dashboard interface allows for rapid comparative analyses and re-use of published
291 findings. This is particularly important for identifying commonalities across studies
292  that may reflect shared mechanisms. The HIPC Dashboard can offer broad insights
293  into the mechanisms by which our immune systems respond to vaccination and will
294  be of great value to the vaccine research community. Although the HIPC Dashboard
295 is not designed as an analysis engine, all signatures are made available for download
296  so that users may perform more sophisticated and targeted downstream analyses.
297

298  Among data resources dedicated to the collection of vaccination signatures, the HIPC
299 Dashboard is nearly unique in its emphasis on manual curation of published
300 literature. To the best of our knowledge, only MSigDB and VaximmutorDB maintain
301 signatures curated from publications. MSigDB provides minimally redundant gene
302 sets for enrichment analyses, but unlike the HIPC Dashboard does not attempt to
303  capture the full biological context of published results. A reduced set of our curations
304 has recently been made available for gene set enrichment analyses through MSigDB
305 under the C7 VAX gene sets. VaximmutorDB provides access to a collection of
306 immune factors (genes/proteins) that change in response to vaccination against 46
307 pathogens. Compared to VaximmutorDB, the HIPC Dashboard offers several
308 advantages, including: (i) a wider breadth in the types of response components and
309 immune changes that are captured, (ii) improved browsing functionality that facilitates
310 comparisons of immune changes across studies and vaccines, and (iii) the ability to
311 download signature data.

312

313  As of the date of this publication, 152 unique cell types and 13,812 distinct genes
314  have been collected in the HIPC Dashboard; this large number of published results
315 allows users to quickly examine the role of particular biological response
316 components, such as individual genes or cell types, across studies. Most of the
317  currently curated gene signatures have fewer than 50 genes, with a range of 1 to
318 2,036 (Figure 3A), while most cell-type frequency or cell activation state signatures
319 have only a single cell type, with a range up to 9 (Figure 3B). These signatures
320 represent findings from 16 tissues and tissue extracts, including blood, PBMCs, T
321  cells, B cells, monocytes, and NK cells. Nearly 250 entries describe changes over
322  time, more than 75 capture antibody response-associated signatures, and several
323  others come from studies that report effects of age and T cell responses.

324

325  The frequency with which cell types and genes are reported in the Dashboard offers
326  insights about key players of the human immune response to vaccination. The most
327  commonly reported genes are STAT1, a key mediator of immune response activated
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328 by cytokines and interferons; GBP1, an interferon induced gene involved in innate
329  immunity; IFI44L, a paralog of Interferon Stimulated Protein 44, and SERPINGL1, a
330 complement cascade protein (Figure 3C). The most common cell types across
331 pathogens and comparisons are NK cells, CD4+ T cells, and CD8+ T cells. (Figure
332 3D). We searched the HIPC Dashboard data for genes with vaccination signatures
333  across six or more pathogens and found a set of 36 associated genes across 12
334 target pathogens (Figure 3E). Many are interferon stimulated genes, Toll-like
335 receptors, or members of the complement cascade, potentially reflecting a common
336 transcriptional program in response to many different vaccinations.

337

338 By design, our current implementation captures vaccination signatures as they are
339 reported in the literature, but it does not include related methodological or statistical
340 information regarding signature discovery (e.g. p-value cut-off) or provide analytical
341 tools that can be applied to the curated signatures. Test statistics are not usually
342  comparable across study designs, and we believe this information may give users a
343 false sense that some signatures are more statistically reliable than others. We
344  instead defer to the judgement of each study’s authors and their peer reviewers, and
345  capture signatures as they were reported in each publication. We also caution that
346  bias regarding the number of times particular genes or cell types were investigated
347  might skew relationships in the Dashboard, thus precluding certain types of analyses.
348  As a result, high level analytical tools have not been integrated into the Dashboard,
349 although all of the signatures with full metadata can be downloaded to enable the use
350 of third-party tools. Despite this, we believe the signatures available in the HIPC
351 Dashboard will allow the research community to quickly query the literature and
352  provide valuable comparisons and context for their own experimental results.

353

354  The number of genes and cell types captured reflects publications curated through
355  January 2021, but we anticipate the HIPC Dashboard will undergo regular updates to
356 accommodate new findings and additional domains of interest. The current
357 implementation includes gene and cell type response components, as these
358 represent the most commonly published signature types, but it will be valuable to also
359 curate other response components, such as pathways, proteins, and metabolites.
360  Additionally, we recognize that researchers may wish to compare a vaccine response
361 against a particular pathogen to its corresponding disease response; it is easy to see
362 how future iterations could expand the existing vaccine signature framework to
363 capture signatures of infection. Based on our experience, we expanded the data
364 model to include figure numbers or supplementary file annotations within publications
365 as this can greatly simplify quality control during manual curation. We have provided
366 links in the Dashboard to original sources wherever possible. We are also keen on
367 exploring advancements in text-mining and artificial intelligence (Al), to assess how
368 they can assist in automating signature identification and coding. To that end, the
369 immune signatures in the HIPC Dashboard can be used as a data source for
370 training/testing such Al solutions in the future.

371

372 In summary, we present the HIPC Dashboard (hipc-dashboard.org) to provide the
373  vaccine research community with easy access to hundreds of published human
374  systems vaccinology signatures. This resource will allow researchers to rapidly
375 compare their own experimental results against existing findings that may otherwise
376  be difficult to locate in the literature. This resource encourages the re-use of
377  published results for advancing our understanding of human vaccine responses and
378  provides a framework that can be extended to capture signatures from other types of
379 immune exposures.

380

381 Methods
382 Manual Curation
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383

384  The initial list of publications to curate into the HIPC Dashboard were derived from a
385 PubMed search of papers matching the terms “Vaccine [AND] Signatures” or “Vaccine
386 [AND] Gene expression”. Publications were further filtered to meet a set of inclusion
387  criteria: (i) study involved human subjects, (ii) provided a comparison of a measurable
388 change or correlation before and after vaccination (or challenge), and (iii) were
389 reported as statistically significant. Signatures were excluded if they were missing
390 directionality, or if they were derived from datasets external to the publication, to
391 avoid redundancy. Two data curators manually collected a standard set of
392 information from each study according to the designed data model (see Figure 1)
393 and recorded it into a spreadsheet. Each signature was entered by one curator, and
394  subsequently double-checked by the second curator. Table 3 shows a representative
395  portion of the standardized information captured for each signature (12 data fields out
396 of a total of 25).

397

398  Assays in the curated publications included gene expression analysis and measured
399 changes in cell-type frequency and cell activation state. Each publication could give
400 rise to any number and type of individual signatures. The signature content is
401 centered on a list of biological response components (genes or cell types) that had a
402  statistically significant change in the assay. These were designated as “response
403 components” to capture different types of entities in a single standardized template
404  column. For example, for gene expression assays, this was often a list of differentially
405  expressed genes.

406

407  For genes, an initial manual curation process was applied to make a first pass at
408 symbol standardization and detect any mistakes in copying. Gene names, symbols
409 and or IDs (which may include HGNC symbols, Entrez IDs, Ensembl IDs etc.) were
410 searched in turn against Panther, (www.pantherdb.org)®, using the “Functional
411  classification viewed in gene list” search, followed if needed by searches against
412 UniProt (www.uniprot.org)®® and NCBI (www.nchi.nlm.nih.gov/search) until either a
413  match or updated symbol was found; in the case of no match, the original
414  representation was left unchanged. Any IDs that matched entries that were
415  deprecated or defined as pseudogenes were removed from the curation.

416

417  Data Standardization

418

419  The manually curated data required further steps to match terms encountered to their
420 appropriate ontology representations. A number of the translations described below
421  were orchestrated using an R script, which generated files ready for loading into the
422  HIPC Dashboard.

423

424  Gene symbols - Outdated gene symbols and known aliases were translated to their
425  current NCBI representation, which is the HGNC symbol in all but one case. The first
426  pass of conversion used the function alias2SymbolUsingNCBI() from the
427  Bioconductor limma package® with the most recent available gene annotation file.
428  This function returns either an exactly matching official symbol, or if none, the alias
429  with the lowest EntrezID. We followed this by a second R package, HGNChelper?®®,
430 which was able to resolve additional unmatched gene symbols to valid NCBI
431 symbols. Genbank accession numbers were converted to gene symbols where
432  possible using the org.Hs.egACCNUMZ2EG translation table which is part of the
433  Bioconductor org.Hs.eg.db package®. Selected symbols still not matching NCBI
434  names were investigated and corrected manually where possible after checking the
435  original publications for context or for errors in transcription. Symbols for which no
436 valid NCBI gene symbol was found, e.g. some pseudogenes, antisense, or
437  uncharacterized genes, are not included in the HIPC Dashboard proper, since a



https://doi.org/10.1101/2021.04.15.439017
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.439017; this version posted October 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

438  requirement of the Dashboard framework is that all gene symbols must appear in the
439  controlled vocabulary (NCBI/HGNC). However, these symbols are included in
440 downloadable complete gene lists for each signature.

441

442  Cell types - Cell types as response components were first curated from the
443  publications as published using a combination of cell type terms and additional
444  descriptive terms, such as protein marker expression. This information was then
445  mapped to a combination of Cell Ontology and Protein Ontology terms, according to
446  a published model®. Note that cell types can appear in two different contexts, either
447  as response components themselves, or as the cell type isolated for gene expression
448  experiments. In some cases, additional information was provided which could not be
449  mapped to an ontology term*®. This type of information related to a wide variety of cell
450 identification techniques and included the use of additional stains such as viability
451 dyes or tetramer staining. For each set of terms, an entry was created in a lookup
452  table by assigning (1) a parent cell type from the cell ontology, (2) mapping additional
453  protein marker terms to the protein ontology, and then (3) separately retaining as free
454  text descriptors not mapped to an ontology entry, such as tetramer specificity. Thus,
455 the original entry was mapped to up to three descriptor columns, which can be
456  combined as needed for display purposes. For a full, translated cell type, the
457  displayed format is the cell ontology name followed by, if there are additional terms,
458  the “&” symbol, followed by any PRO terms and then any free text.

459

460 Vaccines - Vaccine names collected from the literature were manually mapped to the
461  most specific vaccine ontology term available. If a specific vaccine could not be found
462 in VO, new terms were requested. Some examples of terms we included were
463 VO_0004899 (2012-2013 seasonal trivalent inactivated influenza vaccine),
464 VO_0003961 (ChAd63-KH vaccine, Leishmania donovani), VO 0004890 (gH1-Qbeta
465  vaccine, novel pandemic-influenza), and VO_0004891 (CN54gp1400+0GLA, HIV-1).
466

467  Pathogens - The viral, bacterial or protozoan pathogens targeted by each vaccine are
468  represented with terms from the NCBI Taxonomy. For the case of influenza
469  vaccines, a table was created mapping vaccines by year of administration and type
470 (e.g. trivalent or quadrivalent) to their seasonal viral components, unless otherwise
471 indicated in the publication (e.g. for monovalent or specialized vaccines such as
472  Pandemrix). For the few cases where the exact viral strain was not present in the
473  NCBI Taxonomy, the closest more general term in the hierarchy was used. This
474  mapping table was used to substitute in the actual viral pathogen names.

475

476  Data Availability

477  Curated signatures are available on the HIPC Dashboard website (http://hipc-
478 dashboard.org) and Github (see Code Availability for details). Files listing all
479 response components for a signature can be downloaded from within individual
480 observations in the Dashboard. The complete set of signature data can be
481 downloaded from the GitHub repository at https://github.com/floratos-lab/hipc-
482  dashboard-pipeline. This repository contains copies of (1) the original curated data
483  sheets, (2) the response components in individual files, one per signature, (3) the
484  response components in the Broad GMT format®, and (4) the actual tab-delimited
485  Dashboard load files, in which the complete signature data is fully denormalized into
486  an easy-to-parse format. Further details about the file formats are available on the
487  GitHub project page. R session information for the Dashboard signature pre-
488  processing pipeline is available on GitHub.
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489  Code Availability

490  Source curated data and mapping files (cell types, vaccine components, the NCBI
491 gene file used, etc.), as well as the R code for the processing pipeline used to create
492  the Dashboard  submission files, are available on  GitHub  at
493  https://github.com/floratos-lab/hipc-dashboard-pipeline. The data in this paper
494  corresponds to pipeline and data version 1.2.1 in the pipeline GitHub repository.
495 Code for the HIPC Dashboard web interface is available on GitHub at
496  https://github.com/floratos-lab/hipc-signature.

497  Supported web browsers - The HIPC Dashboard has been tested on recent versions

498  of

499 e Chrome (Version 93.0.4577.63 (Official Build) (64-bit))
500 o Firefox (Version 92.0 (64-bit))

501 e Edge (Version 93.0.961.38 (Official build) (64-bit))

502
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518 Figure Legends

519  Figure 1. Overview of the manual curation process for extracting immune signatures
520 from relevant publications into the HIPC signatures database and a web-accessible
521  HIPC Dashboard. The middle panel highlights the various fields that are captured for
522 a given immune signature, with examples provided in red font. Key fields are
523  standardized using existing ontologies or pre-defined criteria in order to capture a
524  wide array of signatures.

525

526  Figure 2. HIPC Dashboard web interface. A. Subject page for cell type “CD4-
527  positive, alpha-beta T cell” showing a link-out to the Cell Ontology, the filtering box to
528 further narrow the displayed observations, and the first two observation summaries
529  (“Related observations”). B. Partial view of a details page for a CD4-positive, alpha-
530 beta T cell observation. For each controlled term, its name, plus its class, role, and
531 description are shown. Linked pages list details from the relevant ontology and list all
532  observations containing that term. The class equates to its controlled vocabulary
533  type; values are cell subset, gene, pathogen, and vaccine. Roles are used to further
534 differentiate how each term, whether controlled or standardized, is being used.
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535  Among the classes in the HIPC Dashboard, only the class “cell subset” has more
536 than one role, these being “tissue” and “cell_biomarker”. Full metadata, not shown
537 here, is contained in the table labeled “Evidence” at the bottom.

538

539  Figure 3. Summarization of HIPC Dashboard contents. Signature size distributions
540 showing the number of response components across A. gene and B. cell type
541  signatures. C. Word cloud of the top 50 most frequent gene symbols and D. top 10
542  most frequent cell types, where size corresponds to the total number of observations
543  in the Dashboard. E. Heatmap of recurring genes across vaccines targeting different
544  pathogens. Temporally associated genes in adult whole blood or PBMCs were
545 filtered to those with signatures for six or more pathogens. Color indicates up (red) or
546 down (blue) regulation. Genes with opposing directions in multiple studies were
547  marked ‘trends up’ or ‘trends down’ according to the most common direction (or
548  marked ‘no consensus’ for perfect ties).

549

550 Tables

551

552  Table 1. Data model for capturing immune signatures. Genes and cell types are
553  captured as response components, with terms standardized against NCBI/HGNC or
554  CL+PRO, respectively. Exposures are captured and standardized against VO terms
555 and NCBI Taxonomy IDs. Metadata includes observed tissue, study timing, cohort
556  descriptors, and age characteristics. *fields in the Immune Exposure model*’

557

558 Table 2. Dashboard summary statistics for gene and cell-type signatures. *“Joint”
559 refers to the union of the two signature types, as they overlap in the various
560 components. “Total Response Components” lists the number of genes or parent cell
561 types from the Cell Ontology (CL) across all signatures. When additional cell-type
562  markers are included, e.g. from the Protein Ontology (PRO), there are 152 unique
563 cell types represented among the signatures. “Response Components per
564  Signature” shows the range of the number of response components found in
565 individual signatures.

566

567 Table 3. Key fields in the immune signature data model for a gene expression
568  signature. This signature reports positive correlation between gene expression and a
569  computed titer response index (TRI).

570

571
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Table 1

Elements

Response Component

Response Component Type

Tissue Type

Exposure Process Type *
Exposure Material *
Disease Name *

Disease Stage *

Target Pathogen

Vaccine Year

Adjuvant

Route

Scheduling

Time Point

Time Point Units
Baseline Time Event

Cohort

Age Min

Age Max

Age Units

Publication Reference

Publication Year
Publication Reference URL

Comparison

Response Behavior

Content Definition

The biological entity being observed:
either a specific gene or cell subset

Type of response agent, e.g. gene, cell
subset

The type of cells analyzed, e.g. whole
blood, gated cells

Category of immune exposure

Eg, the type of vaccine administered
The condition being observed

Stage of infection (e.g. acute, chronic,
post, etc.)

The pathogenic organism (e.g. virus,
bacterium, prion, fungus) being studied
Year for seasonal vaccines

A substance added to vaccines to increase

the body's immune response to the
vaccine

Eg oral, nasal spray, intradermal
injection, etc.

The number of times a substance is
administered within a specific time
period.

The starting point against which other
events are compared
Features that describe study cohorts

{days, weeks, months, years}

PubMed unique identifier of an article.
The year in which the study was
published

Link to article in PubMed

The contrast used for deriving the
signature

Observed change in the response agent
under the comparison

Field value Example Ontology

NCBI/HGNC for genes,
Cell Ontology for cell
types, PRO for

CKS1B

proteins)

gene

Blood + PRO/CL

whole blood (UBERON:0000178)

Vaccination

V0:0001176 \'e}
None DO
None OGMS

Influenza A, Influenza B

2012

VO

VO
Intramuscular, intradermal, transcutaneous

e.g. prime / boost scheme

1
day

time of vaccination (first dose)
e.g. antibody responders

18

45

years

30843873

2019

https://www.ncbi.nlm.nih.gov/pubmed/30843873
1d-0d

Up

NCBI Taxonomy ID

Data Type Content Format

String Controlled
String Fixed List
String Controlled

String Fixed List
String Controlled
String Controlled

String Controlled

String Controlled

Numeric  Free text

String Controlled
String Controlled
String Free text
Numeric

String Fixed List

String Free Text
String Free Text
Numeric

Numeric

String Fixed List
Numeric  Controlled
Numeric

String URL
String Free Text
String Free Text
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Table 2
Si ¢ T ¢ Total Response

'ghature Vaccines arge Publications | Signatures | Response Components per
Type Pathogens .

Components | Signature

Gene 52 38 62 480 13,812 genes |1 to 2,036 genes
Cell type |28 26 31 185 47 celltypes |1 to 9 cell types
Joint 56 44 69 665
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Table 3

Column name Ontology Values

response_component HGNC STAT1, IRF9, SPI1, CD74, HLA-E, TNFSF13B
tissue type Cell Ontology peripheral blood mononuclear cell
exposure_material Vaccine Ontology | VO:0000045; VO:0000046 (Fluarix; Fluvirin)

Influenza A virus (A/Brisbane/59/2007(H1N1));
target_pathogen NCBI Taxonomy |Influenza A virus (A/Brisbane/10/2007(H3N2));
Influenza B virus (B/Florida/4/2006)

vaccine year 2008

time point 1

time point units days

baseline time event time of vaccination (first dose)

cohort 18-40 yo, subgroup high responders
publication_reference (PMID) 21357945

comparison correlated with titer response index (TRI)

response behavior positive
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