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Abstract 51 

Recent advances in high-throughput experiments and systems biology approaches 52 

have resulted in hundreds of publications identifying “immune signatures”. 53 

Unfortunately, these are often described within text, figures, or tables in a format not 54 

amenable to computational processing, thus severely hampering our ability to fully 55 
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exploit this information. Here we present a data model to represent immune 56 

signatures, along with the Human Immunology Project Consortium (HIPC) Dashboard 57 

(www.hipc-dashboard.org), a web-enabled application to facilitate signature access 58 

and querying. The data model captures the biological response components (e.g., 59 

genes, proteins, cell types or metabolites) and metadata describing the context under 60 

which the signature was identified using standardized terms from established 61 

resources (e.g., HGNC, Protein Ontology, Cell Ontology). We have manually curated 62 

a collection of >600 immune signatures from >60 published studies profiling human 63 

vaccination responses for the current release. The system will aid in building a 64 

broader understanding of the human immune response to stimuli by enabling 65 

researchers to easily access and interrogate published immune signatures. 66 

 67 

Introduction 68 

Systems-level profiling of the human immune system has generated important 69 

insights into the mechanisms by which humans respond to exposures such as 70 

vaccination. These studies, including many conducted through the Human Immune 71 

Project Consortium (HIPC), have generated hundreds of publications. While 72 

repositories exist to promote re-use of primary experimental immunology data 73 

generated from these efforts, such as the Gene Expression Omnibus1 (GEO) and the 74 

NIAID Division of Allergy, Immunology, and Transplantation (DAIT)-sponsored 75 

Immunology Database and Analysis Portal2 (ImmPort), there is no centralized 76 

framework to aggregate and organize the published findings resulting from the 77 

analysis of this data, and particularly the coherent sets of biomarkers, termed here 78 

“signatures”. Additionally, such signatures are not published in a consistent format 79 

between publications and may be presented as text, tables, or images. This 80 

heterogeneity presents a barrier to comparative analyses since identifying published 81 

signatures, for example of a vaccine response, requires extensive manual curation of 82 

the literature that must be repeated by investigators each time they wish to interpret a 83 

set of results. Here, we propose a model to standardize the representation of these 84 

published findings and present the Human Immunology Project Consortium (HIPC) 85 

Dashboard—a searchable interface to query curated signatures from the corpus of 86 

human immunology literature. 87 

  88 

We define a ‘signature’ as the information required to specify a published result. This 89 

includes alterations in the levels of a set of one or more response component(s), i.e., 90 

biological entities such as genes or cell types, that are defined by a particular 91 

comparison in the context of an immune exposure. The signature also includes 92 

contextual information (termed metadata) such as the conditions and circumstances 93 

under which the signature was identified, the tissues or cells that were assayed, as 94 

well as clinical data such as demographic information about the groups that were 95 

included in the analysis. As a motivating example, a study by Bucasas et al.3 96 

identified a set of genes that are up-regulated in individuals with higher antibody 97 

responses (comparison) after vaccination with the 2008-2009 trivalent influenza 98 

vaccine (exposure) in an adult cohort. The expression of genes STAT1, IRF9, SPI1, 99 

CD74, HLA-E, and TNFSF13B one day after influenza vaccination was predictive of 100 

greater antibody responses. In the paper, these results were represented in a table, 101 

though similar findings often appear as text or within figures. Without standardization, 102 

such findings are not easily accessible to the wider scientific community for further 103 

analysis. 104 

 105 

Several existing resources define pathway and gene module signatures through re-106 

analysis of raw data, but few capture the original findings published with these data or 107 

are specifically geared towards human immunology research. Among these 108 

resources are the OMics Compendia Commons (OMiCC)4, EnrichR5,6, the integrative 109 

Library of Integrated Network-based Cellular Signatures (iLINCS)7, the Molecular 110 
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Signatures Database (MSigDB)8,9, and VaximmutorDB10. OMiCC crowdsources 111 

annotations for gene expression data to be used in re-analysis and novel signature 112 

generation. EnrichR and iLINCS offer biological annotations built from data re-113 

analyzed en masse, but similarly do not capture published findings. MSigDB does 114 

include manually curated gene signatures along with those derived from data re-115 

analysis, albeit with fewer contextual details than captured for the HIPC Dashboard. 116 

VaximmutorDB captures published gene expression and proteomic signatures but not 117 

cell-type frequency signatures, and signatures from this database are not yet 118 

downloadable in a machine-readable format.  119 

 120 

To improve access and to promote reuse of published signatures, we designed a 121 

data model that standardizes the content and context of published immune 122 

signatures. Our initial curation efforts have focused on gene expression and cell-type 123 

frequency/activation signatures of human vaccine responses, but this framework is 124 

extensible to other domains such as response to infection. We captured what is 125 

changing, (e.g. groups of genes), how that response component changed (e.g. up- or 126 

down-regulation), where this change was observed (e.g. in sorted CD8+ T cells from 127 

adults), and the comparison that was performed (e.g. individuals with high vs. low 128 

antibody titers post-vaccination). We then manually curated signatures from 129 

publications both within and outside of HIPC that described changes in gene 130 

expression, cell-type frequencies, or cell activation state in response to vaccination. 131 

To disseminate these immune signatures, we developed the HIPC Dashboard 132 

(www.hipc-dashboard.org), a web-accessible, user-friendly interface to enable 133 

signature searching and browsing, and to facilitate rapid comparative analyses. The 134 

design of the HIPC Dashboard is based on a similar infrastructure we developed 135 

previously for the Cancer Target Discovery and Development network, the CTD2 136 

Dashboard11, and leverages the same underlying ontological framework for the 137 

standardized representation of research findings as well as the emphasis on the 138 

consistent, curation-mediated use of controlled vocabularies for linking findings 139 

reported in different publications. 140 

 141 

Results 142 

A Data Model for Immune Signatures of Vaccination 143 

 144 

We developed a data model that captures, in a detailed and consistent format, the 145 

essential information embedded in published immune signatures of vaccination for 146 

dissemination through the HIPC Dashboard (Table 1). Key elements of this data 147 

model (e.g., genes, vaccines, etc.) are specified using controlled vocabularies, thus 148 

making immune signatures of vaccination amenable to data mining and promoting 149 

compatibility with projects both within and outside of HIPC. A signature as defined in 150 

this model encapsulates both a change in the behavior or abundance of a biological 151 

response component as well as the metadata describing the context under which the 152 

signature is identified, including (1) the tissue in which the signature was observed, 153 

(2) the immune exposure and timing underlying the observed comparison, and (3) 154 

clinical details of the cohort from which tissue samples were taken, including age 155 

(Figure 1). The model accommodates many types of biological response 156 

components (gene, protein, metabolite, pathway, and cell type (e.g. subsets of blood 157 

cells). We focused on gene expression and cell type signatures of vaccination, but 158 

the data model and HIPC Dashboard infrastructure are flexible and can be easily 159 

expanded to accommodate arbitrary signature types.  160 

 161 

To facilitate data mining and comparative analyses between different conditions 162 

including vaccine types, and to afford consistency between this database and other 163 

projects using the same controlled vocabulary terms, standardized terms and 164 

ontology links were used for as many biological response components, immune 165 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.04.15.439017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439017
http://creativecommons.org/licenses/by/4.0/


4 

 

exposures, and demographic fields as possible. Gene and cell type response 166 

components were standardized to the HGNC12 (as provided through the NCBI) and 167 

Cell Ontology13,14 (CL) respectively to enable comparisons across publications using 168 

different naming conventions. Cell types from the Cell Ontology were further 169 

differentiated using protein marker terms drawn from Protein Ontology15 (PRO), 170 

where possible (e.g. IFNG+ T cells). This same naming convention is used to 171 

describe the tissue in which the signature was observed16.  172 

 173 

To annotate the immune challenges driving each signature, we utilized the Immune 174 

Exposure model17, which provides a standardized description of a broad range of 175 

potential and actual exposures to different immunological agents (e.g., vaccination, 176 

laboratory confirmed infection, living in an endemic area, etc.). Immune exposures 177 

are broken down into Exposure Process, Exposure Material, Disease Name, and 178 

Disease Stage. Each of these components is modeled using standardized ontology 179 

terminology. Within the data model for the HIPC Dashboard, Exposure Materials such 180 

as vaccines are captured using terms in the Vaccine Ontology18 (VO), which further 181 

link to target pathogens and strains using the NCBI Taxonomy19,20. While these 182 

ontology choices reflect our initial focus on vaccination, the data model can 183 

accommodate other exposure processes beyond vaccination, with links to 184 

appropriate ontologies. Integration of the Immune Exposure model in the HIPC 185 

Dashboard data model promotes interoperability with other projects that have 186 

adopted its use, both within and outside of HIPC, including data repositories such as 187 

ImmPort and the Immune Epitope Database21.  188 

 189 

Cohort information that is important for interpreting signatures is also captured. 190 

Cohort descriptors can vary widely between studies and can include, for example, 191 

sex, antibody response titers, geographic location, health status, vaccination or 192 

infection history, etc. This information is currently recorded as unstructured text to 193 

maintain flexibility. Cohort age range is standardized separately by storing minimum 194 

and maximum ages along with their units. Additional fields describe the particular 195 

perturbations that drive the changes to the biological response components.  The 196 

“comparison” field describes the cohort groups whose differential response under the 197 

perturbation is measured. Examples of comparison groups include measurements 198 

taken at two different time points (e.g. day1 vs. day 0), correlation with antibody 199 

response, differing antibody response outcomes (e.g. high vs. low responders), or 200 

comparisons across different demographic parameters such as age or sex (e.g. 201 

younger vs. older, female vs. male). The “response_behavior” field captures the 202 

directionality of the differential response (e.g. up or down, positively- or negatively-203 

correlated) under the specified comparison. Fields for which a formal controlled 204 

vocabulary was not used, such as cohort descriptions and the comparison, are stored 205 

as free text. 206 

 207 

Finally, each signature is tagged with a Pubmed ID (PMID) and publication year field, 208 

to connect observations to their literature sources. 209 

  210 

Manual Curation of Published Signatures 211 

 212 

A defined Pubmed search strategy was used (see Methods) to assemble an initial list 213 

of publications comprising studies that involved a systems-level profiling of 214 

measurable changes before and after vaccination in human subjects. The 215 

publications were culled for signatures reporting statistically significant changes in 216 

gene expression, cell-type frequency or cell activation state induced by an immune 217 

exposure when comparing groups with different features (such as high vs low 218 

responders as defined by antibody titers). We focused on components that also 219 

included information about response behavior (e.g. up- or down-regulated). In total, 220 
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665 immune signatures were manually curated from 69 published studies. After 221 

standardization and quality control (see Methods), these curated gene and cell type 222 

signatures included 13,812 unique genes, 152 unique cell types (including protein 223 

markers and additional type-modifiers), and 44 pathogens across 56 vaccines (Table 224 

2). Table 3 illustrates a typical gene-expression type signature after tissue, gene 225 

symbol and pathogen standardization. 226 

 227 

The HIPC Signatures Dashboard 228 

The data model provides a means for representing immune signatures in a 229 

structured, standardized, machine-readable manner while the curation process 230 

enables the cross-referencing of signatures from different publications based on their 231 

shared response components, by enforcing the consistent use of controlled 232 

vocabularies for codifying these components (e.g., genes, cell types, tissues, 233 

vaccines, and pathogen strains). These capabilities come together in the “HIPC 234 

Dashboard” (http://hipc-dashboard.org), a web application developed to enable 235 

dissemination of the curated set of immune response signatures. The HIPC 236 

Dashboard allows signature browsing, as well as searching for one or multiple 237 

response components (using the corresponding controlled vocabulary terms and their 238 

synonyms), to retrieve all immune signatures involving the query response 239 

component(s) across all curated publications.   240 

The central viewable element of the HIPC Dashboard is the “Observation Summary”, 241 

a human-readable description of the information captured in an immune signature. 242 

Observation summaries are constructed “on the fly”, using template text devised as 243 

part of the curation process. The template has placeholders for the various elements 244 

of an immune signature, including the response component (gene or cell type) and 245 

the response behavior type (up/down or correlation). When a specific signature is 246 

selected in the process of browsing or searching the Dashboard, the observation 247 

summary for that signature is instantiated by replacing the template placeholders with 248 

the relevant values from that signature. For example, a joint search on the terms 249 

“CD4” and “Zostavax” yields about 35 observation summaries. One of these is related 250 

to a change in cell-type frequency:  251 

 252 
 253 
In peripheral blood mononuclear cell, CD4-positive, alpha-beta memory T cell &  254 
CD38+, HLA-DR+, VZV tetramer+ frequency was up at 14 days from time of 255 
vaccination for the comparison 14d vs 0d in cohort 50-75 yo after exposure to 256 
Zostavax targeting  Human alphaherpesvirus 3 (details ») 257 

 258 

Here, the “&” sign separates the Cell Ontology cell type from Protein Ontology 259 

surface and other markers. In a second example, a joint search on the terms 260 

“CXCL10” and “BCG” yields 6 observation summaries, one of which reports a 261 

correlation of gene expression (at 1 day post-vaccination) to an ELISpot result at 28 262 

days post-vaccination:  263 
 264 
In blood, CXCL10 gene expression at 1 day from time of vaccination was positively 265 
correlated with IFN-gamma ELISpot spot forming cell 28d in cohort 4-6 mo 266 
subgroup BCG-primed after exposure to MVA85A targeting Mycobacterium 267 
tuberculosis variant bovis BCG (details ») 268 

In both cases, placeholders in the observation summary template have been 269 

replaced by controlled terms for the response components and ontology-linked 270 

metadata (blue, hyperlinked text) and by free-text metadata describing informative 271 

experiment details (black, bold text). Following the hyperlink for a controlled term 272 

leads to a dedicated page for the corresponding biological entity, providing additional 273 
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details (including links to relevant external annotation sources, e.g., Entrez, 274 

GeneCards and UniProt for genes) as well as a listing of all the immune signatures 275 

stored in the Dashboard that involve that entity (Figure 2A). Further, the “details” link 276 

at the end of each observation summary points to an “Observation” page (Figure 2B) 277 

containing detailed information about the corresponding immune signature, including 278 

a full listing of all its available metadata. This includes, for example, structured text for 279 

values such as age group and days post-immunization, and links to download the full 280 

signature source data (including all metadata) in tab-delimited form. Additionally, 281 

each observation includes a link to a file containing the complete set of response 282 

components from which it was derived, e.g. the full list of genes or cell types. 283 

 284 

Discussion 285 

 286 

Users of the HIPC Dashboard can easily search and examine hundreds of immune 287 

signatures related to human vaccination responses. Consolidating these publications, 288 

standardizing their findings in a database, and disseminating them through the 289 

Dashboard interface allows for rapid comparative analyses and re-use of published 290 

findings. This is particularly important for identifying commonalities across studies 291 

that may reflect shared mechanisms. The HIPC Dashboard can offer broad insights 292 

into the mechanisms by which our immune systems respond to vaccination and will 293 

be of great value to the vaccine research community. Although the HIPC Dashboard 294 

is not designed as an analysis engine, all signatures are made available for download 295 

so that users may perform more sophisticated and targeted downstream analyses. 296 

 297 

Among data resources dedicated to the collection of vaccination signatures, the HIPC 298 

Dashboard is nearly unique in its emphasis on manual curation of published 299 

literature. To the best of our knowledge, only MSigDB and VaximmutorDB maintain 300 

signatures curated from publications. MSigDB provides minimally redundant gene 301 

sets for enrichment analyses, but unlike the HIPC Dashboard does not attempt to 302 

capture the full biological context of published results. A reduced set of our curations 303 

has recently been made available for gene set enrichment analyses through MSigDB 304 

under the C7 VAX gene sets. VaximmutorDB provides access to a collection of 305 

immune factors (genes/proteins) that change in response to vaccination against 46 306 

pathogens. Compared to VaximmutorDB, the HIPC Dashboard offers several 307 

advantages, including: (i) a wider breadth in the types of response components and 308 

immune changes that are captured, (ii) improved browsing functionality that facilitates 309 

comparisons of immune changes across studies and vaccines, and (iii) the ability to 310 

download signature data.  311 

 312 

As of the date of this publication, 152 unique cell types and 13,812 distinct genes 313 

have been collected in the HIPC Dashboard; this large number of published results 314 

allows users to quickly examine the role of particular biological response 315 

components, such as individual genes or cell types, across studies. Most of the 316 

currently curated gene signatures have fewer than 50 genes, with a range of 1 to 317 

2,036 (Figure 3A), while most cell-type frequency or cell activation state signatures 318 

have only a single cell type, with a range up to 9 (Figure 3B). These signatures 319 

represent findings from 16 tissues and tissue extracts, including blood, PBMCs, T 320 

cells, B cells, monocytes, and NK cells. Nearly 250 entries describe changes over 321 

time, more than 75 capture antibody response-associated signatures, and several 322 

others come from studies that report effects of age and T cell responses.  323 

 324 

The frequency with which cell types and genes are reported in the Dashboard offers 325 

insights about key players of the human immune response to vaccination. The most 326 

commonly reported genes are STAT1, a key mediator of immune response activated 327 
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by cytokines and interferons; GBP1, an interferon induced gene involved in innate 328 

immunity; IFI44L, a paralog of Interferon Stimulated Protein 44, and SERPING1, a 329 

complement cascade protein (Figure 3C). The most common cell types across 330 

pathogens and comparisons are NK cells, CD4+ T cells, and CD8+ T cells. (Figure 331 

3D). We searched the HIPC Dashboard data for genes with vaccination signatures 332 

across six or more pathogens and found a set of 36 associated genes across 12 333 

target pathogens (Figure 3E). Many are interferon stimulated genes, Toll-like 334 

receptors, or members of the complement cascade, potentially reflecting a common 335 

transcriptional program in response to many different vaccinations. 336 

 337 

By design, our current implementation captures vaccination signatures as they are 338 

reported in the literature, but it does not include related methodological or statistical 339 

information regarding signature discovery (e.g. p-value cut-off) or provide analytical 340 

tools that can be applied to the curated signatures. Test statistics are not usually 341 

comparable across study designs, and we believe this information may give users a 342 

false sense that some signatures are more statistically reliable than others. We 343 

instead defer to the judgement of each study’s authors and their peer reviewers, and 344 

capture signatures as they were reported in each publication. We also caution that 345 

bias regarding the number of times particular genes or cell types were investigated 346 

might skew relationships in the Dashboard, thus precluding certain types of analyses. 347 

As a result, high level analytical tools have not been integrated into the Dashboard, 348 

although all of the signatures with full metadata can be downloaded to enable the use 349 

of third-party tools. Despite this, we believe the signatures available in the HIPC 350 

Dashboard will allow the research community to quickly query the literature and 351 

provide valuable comparisons and context for their own experimental results. 352 

  353 

The number of genes and cell types captured reflects publications curated through 354 

January 2021, but we anticipate the HIPC Dashboard will undergo regular updates to 355 

accommodate new findings and additional domains of interest. The current 356 

implementation includes gene and cell type response components, as these 357 

represent the most commonly published signature types, but it will be valuable to also 358 

curate other response components, such as pathways, proteins, and metabolites. 359 

Additionally, we recognize that researchers may wish to compare a vaccine response 360 

against a particular pathogen to its corresponding disease response; it is easy to see 361 

how future iterations could expand the existing vaccine signature framework to 362 

capture signatures of infection. Based on our experience, we expanded the data 363 

model to include figure numbers or supplementary file annotations within publications 364 

as this can greatly simplify quality control during manual curation. We have provided 365 

links in the Dashboard to original sources wherever possible. We are also keen on 366 

exploring advancements in text-mining and artificial intelligence (AI), to assess how 367 

they can assist in automating signature identification and coding. To that end, the 368 

immune signatures in the HIPC Dashboard can be used as a data source for 369 

training/testing such AI solutions in the future. 370 

 371 

In summary, we present the HIPC Dashboard (hipc-dashboard.org) to provide the 372 

vaccine research community with easy access to hundreds of published human 373 

systems vaccinology signatures. This resource will allow researchers to rapidly 374 

compare their own experimental results against existing findings that may otherwise 375 

be difficult to locate in the literature. This resource encourages the re-use of 376 

published results for advancing our understanding of human vaccine responses and 377 

provides a framework that can be extended to capture signatures from other types of 378 

immune exposures.  379 

 380 

Methods 381 

Manual Curation  382 
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 383 

The initial list of publications to curate into the HIPC Dashboard were derived from a 384 

PubMed search of papers matching the terms “Vaccine [AND] Signatures” or “Vaccine 385 

[AND] Gene expression”. Publications were further filtered to meet a set of inclusion 386 

criteria: (i) study involved human subjects, (ii) provided a comparison of a measurable 387 

change or correlation before and after vaccination (or challenge), and (iii) were 388 

reported as statistically significant. Signatures were excluded if they were missing 389 

directionality, or if they were derived from datasets external to the publication, to 390 

avoid redundancy. Two data curators manually collected a standard set of 391 

information from each study according to the designed data model (see Figure 1) 392 

and recorded it into a spreadsheet. Each signature was entered by one curator, and 393 

subsequently double-checked by the second curator. Table 3 shows a representative 394 

portion of the standardized information captured for each signature (12 data fields out 395 

of a total of 25). 396 

 397 

Assays in the curated publications included gene expression analysis and measured 398 

changes in cell-type frequency and cell activation state. Each publication could give 399 

rise to any number and type of individual signatures. The signature content is 400 

centered on a list of biological response components (genes or cell types) that had a 401 

statistically significant change in the assay. These were designated as “response 402 

components” to capture different types of entities in a single standardized template 403 

column. For example, for gene expression assays, this was often a list of differentially 404 

expressed genes.  405 

 406 

For genes, an initial manual curation process was applied to make a first pass at 407 

symbol standardization and detect any mistakes in copying.  Gene names, symbols 408 

and or IDs (which may include HGNC symbols, Entrez IDs, Ensembl IDs etc.) were 409 

searched in turn against Panther, (www.pantherdb.org)22, using the  “Functional 410 

classification viewed in gene list” search, followed if needed by searches against 411 

UniProt (www.uniprot.org)23 and NCBI (www.ncbi.nlm.nih.gov/search) until either a 412 

match or updated symbol was found; in the case of no match, the original 413 

representation was left unchanged. Any IDs that matched entries that were 414 

deprecated or defined as pseudogenes were removed from the curation. 415 

 416 

Data Standardization 417 

 418 

The manually curated data required further steps to match terms encountered to their 419 

appropriate ontology representations. A number of the translations described below 420 

were orchestrated using an R script, which generated files ready for loading into the 421 

HIPC Dashboard.   422 

 423 

Gene symbols - Outdated gene symbols and known aliases were translated to their 424 

current NCBI representation, which is the HGNC symbol in all but one case. The first 425 

pass of conversion used the function alias2SymbolUsingNCBI() from the 426 

Bioconductor limma package24 with the most recent available gene annotation file. 427 

This function returns either an exactly matching official symbol, or if none, the alias 428 

with the lowest EntrezID.  We followed this by a second R package, HGNChelper25, 429 

which was able to resolve additional unmatched gene symbols to valid NCBI 430 

symbols. Genbank accession numbers were converted to gene symbols where 431 

possible using the org.Hs.egACCNUM2EG translation table which is part of the 432 

Bioconductor org.Hs.eg.db package26.  Selected symbols still not matching NCBI 433 

names were investigated and corrected manually where possible after checking the 434 

original publications for context or for errors in transcription. Symbols for which no 435 

valid NCBI gene symbol was found, e.g. some pseudogenes, antisense, or 436 

uncharacterized genes, are not included in the HIPC Dashboard proper, since a 437 
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requirement of the Dashboard framework is that all gene symbols must appear in the 438 

controlled vocabulary (NCBI/HGNC).  However, these symbols are included in 439 

downloadable complete gene lists for each signature.  440 

 441 

Cell types - Cell types as response components were first curated from the 442 

publications as published using a combination of cell type terms and additional 443 

descriptive terms, such as protein marker expression. This information was then 444 

mapped to a combination of Cell Ontology and Protein Ontology terms, according to 445 

a published model
16

. Note that cell types can appear in two different contexts, either 446 

as response components themselves, or as the cell type isolated for gene expression 447 

experiments. In some cases, additional information was provided which could not be 448 

mapped to an ontology term16. This type of information related to a wide variety of cell 449 

identification techniques and included the use of additional stains such as viability 450 

dyes or tetramer staining. For each set of terms, an entry was created in a lookup 451 

table by assigning (1) a parent cell type from the cell ontology, (2) mapping additional 452 

protein marker terms to the protein ontology, and then (3) separately retaining as free 453 

text descriptors not mapped to an ontology entry, such as tetramer specificity.  Thus, 454 

the original entry was mapped to up to three descriptor columns, which can be 455 

combined as needed for display purposes. For a full, translated cell type, the 456 

displayed format is the cell ontology name followed by, if there are additional terms, 457 

the “&” symbol, followed by any PRO terms and then any free text. 458 

    459 

Vaccines - Vaccine names collected from the literature were manually mapped to the 460 

most specific vaccine ontology term available. If a specific vaccine could not be found 461 

in VO, new terms were requested. Some examples of terms we included were 462 

VO_0004899 (2012-2013 seasonal trivalent inactivated influenza vaccine),  463 

VO_0003961 (ChAd63-KH vaccine, Leishmania donovani), VO_0004890 (gH1-Qbeta 464 

vaccine, novel pandemic-influenza), and VO_0004891 (CN54gp140�+�GLA, HIV-1).   465 

 466 

Pathogens - The viral, bacterial or protozoan pathogens targeted by each vaccine are 467 

represented with terms from the NCBI Taxonomy.  For the case of influenza 468 

vaccines, a table was created mapping vaccines by year of administration and type 469 

(e.g. trivalent or quadrivalent) to their seasonal viral components, unless otherwise 470 

indicated in the publication (e.g. for monovalent or specialized vaccines such as 471 

Pandemrix). For the few cases where the exact viral strain was not present in the 472 

NCBI Taxonomy, the closest more general term in the hierarchy was used. This 473 

mapping table was used to substitute in the actual viral pathogen names. 474 

 475 

Data Availability 476 

Curated signatures are available on the HIPC Dashboard website (http://hipc-477 

dashboard.org) and Github (see Code Availability for details). Files listing all 478 

response components for a signature can be downloaded from within individual 479 

observations in the Dashboard. The complete set of signature data can be 480 

downloaded from the GitHub repository at https://github.com/floratos-lab/hipc-481 

dashboard-pipeline. This repository contains copies of (1) the original curated data 482 

sheets, (2) the response components in individual files, one per signature, (3) the 483 

response components in the Broad GMT format8, and (4) the actual tab-delimited 484 

Dashboard load files, in which the complete signature data is fully denormalized into 485 

an easy-to-parse format. Further details about the file formats are available on the 486 

GitHub project page. R session information for the Dashboard signature pre-487 

processing pipeline is available on GitHub. 488 
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Code Availability 489 

Source curated data and mapping files (cell types, vaccine components, the NCBI 490 

gene file used, etc.), as well as the R code for the processing pipeline used to create 491 

the Dashboard submission files, are available on GitHub at 492 

https://github.com/floratos-lab/hipc-dashboard-pipeline. The data in this paper 493 

corresponds to pipeline and data version 1.2.1 in the pipeline GitHub repository. 494 

Code for the HIPC Dashboard web interface is available on GitHub at 495 

https://github.com/floratos-lab/hipc-signature.  496 

Supported web browsers - The HIPC Dashboard has been tested on recent versions 497 

of 498 

• Chrome (Version  93.0.4577.63 (Official Build) (64-bit))  499 

• Firefox (Version  92.0 (64-bit)) 500 

• Edge (Version 93.0.961.38 (Official build) (64-bit)) 501 
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Figure Legends 518 

Figure 1. Overview of the manual curation process for extracting immune signatures 519 

from relevant publications into the HIPC signatures database and a web-accessible 520 

HIPC Dashboard. The middle panel highlights the various fields that are captured for 521 

a given immune signature, with examples provided in red font. Key fields are 522 

standardized using existing ontologies or pre-defined criteria in order to capture a 523 

wide array of signatures. 524 

 525 

Figure 2.  HIPC Dashboard web interface. A. Subject page for cell type “CD4-526 

positive, alpha-beta T cell” showing a link-out to the Cell Ontology, the filtering box to 527 

further narrow the displayed observations, and the first two observation summaries 528 

(“Related observations”). B. Partial view of a details page for a CD4-positive, alpha-529 

beta T cell observation.  For each controlled term, its name, plus its class, role, and 530 

description are shown. Linked pages list details from the relevant ontology and list all 531 

observations containing that term. The class equates to its controlled vocabulary 532 

type; values are cell subset, gene, pathogen, and vaccine. Roles are used to further 533 

differentiate how each term, whether controlled or standardized, is being used. 534 
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Among the classes in the HIPC Dashboard, only the class “cell subset” has more 535 

than one role, these being “tissue” and “cell_biomarker”. Full metadata, not shown 536 

here, is contained in the table labeled “Evidence” at the bottom. 537 

 538 

Figure 3.  Summarization of HIPC Dashboard contents. Signature size distributions 539 

showing the number of response components across A. gene and B. cell type 540 

signatures. C. Word cloud of the top 50 most frequent gene symbols and D. top 10 541 

most frequent cell types, where size corresponds to the total number of observations 542 

in the Dashboard. E. Heatmap of recurring genes across vaccines targeting different 543 

pathogens. Temporally associated genes in adult whole blood or PBMCs were 544 

filtered to those with signatures for six or more pathogens. Color indicates up (red) or 545 

down (blue) regulation.  Genes with opposing directions in multiple studies were 546 

marked ‘trends up’ or ‘trends down’ according to the most common direction (or 547 

marked ‘no consensus’ for perfect ties).  548 

 549 

Tables 550 

 551 

Table 1. Data model for capturing immune signatures. Genes and cell types are 552 

captured as response components, with terms standardized against NCBI/HGNC or 553 

CL+PRO, respectively. Exposures are captured and standardized against VO terms 554 

and NCBI Taxonomy IDs. Metadata includes observed tissue, study timing, cohort 555 

descriptors, and age characteristics. *fields in the Immune Exposure model17 556 

 557 

Table 2. Dashboard summary statistics for gene and cell-type signatures.  “Joint” 558 

refers to the union of the two signature types, as they overlap in the various 559 

components. “Total Response Components” lists the number of genes or parent cell 560 

types from the Cell Ontology (CL) across all signatures.  When additional cell-type 561 

markers are included, e.g. from the Protein Ontology (PRO), there are 152 unique 562 

cell types represented among the signatures.  “Response Components per 563 

Signature” shows the range of the number of response components found in 564 

individual signatures. 565 

 566 

Table 3. Key fields in the immune signature data model for a gene expression 567 

signature.  This signature reports positive correlation between gene expression and a 568 

computed titer response index (TRI). 569 

 570 

  571 
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Elements Content Definition Field value Example Ontology Data Type Content Format

Response Component
The biological entity being observed: 

either a specific gene or cell subset
CKS1B

NCBI/HGNC for genes, 

Cell Ontology for cell 

types, PRO for 

proteins)

String Controlled

Response Component Type
Type of response agent, e.g. gene,  cell 

subset gene
String Fixed List

Tissue Type
The type of cells analyzed, e.g. whole 

blood, gated cells whole blood (UBERON:0000178)
Blood + PRO/CL String Controlled

Exposure Process Type * Category of immune exposure Vaccination String Fixed List

Exposure Material * Eg, the type of vaccine administered VO:0001176 VO String Controlled

Disease Name * The condition being observed None DO String Controlled

Disease Stage *
Stage of infection (e.g. acute, chronic, 

post, etc.)
None OGMS String Controlled

Target Pathogen
The pathogenic organism (e.g. virus, 

bacterium, prion, fungus) being studied
Influenza A, Influenza B NCBI Taxonomy ID String Controlled

Vaccine Year Year for seasonal vaccines 2012 Numeric Free text

Adjuvant

A substance added to vaccines to increase 

the body's immune response to the 

vaccine

VO String Controlled

Route
Eg oral, nasal spray, intradermal 

injection, etc. Intramuscular, intradermal, transcutaneous
VO String Controlled

Scheduling

The number of times a substance is 

administered within a specific time 

period.

e.g. prime / boost scheme String Free text

Time Point 1 Numeric

Time Point Units day String Fixed List

Baseline Time Event
The starting point against which other 

events are compared time of vaccination (first dose)
String Free Text

Cohort Features that describe study cohorts e.g. antibody responders String Free Text

Age Min 18 Numeric

Age Max 45 Numeric

Age Units {days, weeks, months, years} years String Fixed List

Publication Reference PubMed unique identifier of an article. 30843873 Numeric Controlled

Publication Year
The year in which the study was 

published
2019 Numeric

Publication Reference URL Link to article in PubMed https://www.ncbi.nlm.nih.gov/pubmed/30843873 String URL

Comparison
The contrast used for deriving the 

signature
1d-0d String Free Text

Response Behavior
Observed change in the response agent

under the comparison
Up String Free Text
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Signature 

Type
Vaccines

Target 

Pathogens
Publications Signatures

Total 

Response 

Components

Response 

Components per

Signature

Joint 56 44 69 665

1 to 2,036 genes

Cell type 28 26 31 185 47 cell types 1 to 9 cell types

Gene 52 38 62 480 13,812 genes
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Column name Ontology Values

response_component HGNC STAT1, IRF9, SPI1, CD74, HLA-E, TNFSF13B

tissue_type Cell Ontology peripheral blood mononuclear cell

exposure_material Vaccine Ontology VO:0000045; VO:0000046 (Fluarix; Fluvirin)

target_pathogen NCBI Taxonomy

Influenza A virus (A/Brisbane/59/2007(H1N1));

Influenza A virus (A/Brisbane/10/2007(H3N2));

Influenza B virus (B/Florida/4/2006)

vaccine_year  2008

time_point  1

time_point_units  days

baseline_time_event time of vaccination (first dose)

cohort 18-40 yo, subgroup high responders

publication_reference (PMID) 21357945

comparison correlated with titer response index (TRI)

response_behavior  positive
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