

1 **Title**

2 Artificial selection of stable rhizosphere microbiota leads to heritable plant phenotype changes

3 **Authors**

4 Samuel Jacquiod¹, Aymé Spor¹, Shaodong Wei², Victoria Munkager³, David Bru¹, Søren J.
5 Sørensen², Christophe Salon¹, Laurent Philippot¹, Manuel Blouin^{1*}

6 **Affiliations**

7 ¹Université Bourgogne Franche-Comté, Agroécologie, AgroSup Dijon, INRAE, Université
8 Bourgogne, Dijon, France

9 ²Section of Microbiology, University of Copenhagen, Denmark

10 ³Section of Terrestrial Ecology, University of Copenhagen, Denmark

11 *Correspondence to: manuel.blouin@agrosupdijon.fr

12 †Additional author notes should be indicated with symbols (e.g., for equal contributions or
13 current addresses).

14 **Short Sentence**

15 Stable microbiota selection enables trait heritability

16

17 **Abstract**

18 Research on artificial selection of microbial community has become popular due to perspectives
19 in improving plant and animal health¹⁻⁴. However, reported results still lack consistency⁵⁻⁸. We
20 hypothesized that artificial selection may provide desired outcomes provided that microbial
21 community structure has stabilized along the selection process. In a ten-generation artificial
22 selection experiment involving 1,800 plants, we selected rhizosphere microbiota of
23 *Brachypodium distachyon* that were associated with high or low levels of leaf greenness, a proxy
24 for plant health⁹. Monitoring of the rhizosphere microbiota dynamics showed strong oscillations
25 in community structure during an initial transitory phase of five generations, with no heritability
26 in the selected property. In the last five generations, the structure of microbial communities
27 displayed signs of stabilization, concomitantly to the appearance of heritability in leaf greenness.
28 Selection pressure, initially ineffective, became successful in changing the greenness index in the
29 intended direction, especially toward high greenness values. We showed a remarkable
30 congruence between plant traits and selected microbial community structures, highlighting two
31 phylogenetically distinct microbial sub-communities correlating with leaf greenness, whose
32 abundance was significantly steered by directional artificial selection. Understanding microbial
33 community structure stabilization can thus help improve the reliability of artificial microbiota
34 selection.

35

36

37 **Main Text**

38

39 Empirical studies of artificial selection have demonstrated that it is possible to steer microbiota
40 across generations to modify microbial ecosystems properties⁴⁻⁸. In some cases, the selected
41 property can be a trait displayed by the host of a microbiota, like with microbial communities
42 associated to plants^{5,10-13}. This opens new avenues for plant breeding *via* directional artificial
43 selection of rhizosphere microbiota¹⁻⁴. Still, while previous studies reported significant selection
44 effects^{6,7,11}, the selected property may not be perennial and lost during the process^{6,9}. From a
45 practical point of view, it is thus crucial to understand the causes behind this inconsistency. We
46 hypothesized that an important prerequisite for successful selections is to reach a stable state in
47 microbial community structure¹⁴. In the field of artificial selection of communities¹⁵⁻¹⁷,
48 mathematical models have shown that the heritability of the selected property, one of the three
49 essential features of a unit of selection¹⁸, depends on the stability of community structure^{19,20}.
50 However, this hypothesis about ‘stability of community structure being a prerequisite for the
51 heritability of the selected property’ has never been empirically confirmed. Here, we tested it by
52 investigating the dynamics of microbial community and the heritability in the selected property
53 during the selection process.

54

55 We artificially selected rhizosphere microbiota according to their impact on a leaf greenness
56 index, a remote proxy for plant nutritional and health status⁹ (Fig. S1), using the grass species
57 *Brachypodium distachyon* grown in microcosms in a climatic chamber (Fig. S2-S3). There were
58 two treatments, in which low and high levels of leaf greenness were selected for, respectively
59 (hereafter, the low and high selection groups). There was also a control group, in which selection
60 was random. The selection process was repeated across ten generations, each lasting four weeks
61 (Fig. S2). The three experimental groups (low selection, high selection, and control) each
62 contained three independent replicate lineages composed of twenty microcosms. At the end of
63 each generation, 3 of the 20 microcosms within each lineage were selected based on their leaf
64 greenness values (Fig. S4). Their rhizosphere microbiota were extracted, pooled, and used to
65 inoculate seedlings of the next generation (Fig. S2-S3). We used the same seed batch throughout
66 the experiment, thus only the rhizosphere microbiota could evolve, not the plant genotype.

67

68 Analysis of leaf greenness revealed a generation effect (39.77% of the variance, $P < 0.001$; Table
69 S1, Fig.1, A-B) due to uncontrolled biotic and/or abiotic variations, as commonly observed in
70 this kind of selection experiments^{5,12}. Nevertheless, we detected significant changes in leaf
71 greenness due to the microbiota-based artificial selection (selection + lineage = 10.15% of the
72 variance, $P < 0.001$, Tab.S1), occurring at specific generations (Fig. 1, A-B). Across the entire
73 experiment, this resulted in a significant increase in leaf greenness in the high selection group
74 compared to the control, but not for the low selection group (Fig. 1, C). This trend was also
75 observed on the other plant traits acquired by the image analysis (Fig. S4), again with a
76 significant increase only for the high selection group (Fig. S5). The effect of selection on the
77 targeted plant trait was more pronounced once data was standardized with the random selection
78 group to control the generation effect (z-score normalization, Fig. 1, D-E).

79

80 In parallel, our findings underscore strong oscillations of bacterial community structure for the
81 first five generations of selection (dotted line, $R^2 = 0.56$, $P < 9.99 \times 10^{-5}$, Fig. 2, A), occurring for
82 all selection groups (Fig. S6). These oscillations were not observed any more from generation

83 G05, denoting a stabilization of bacterial community structure. Fungal community structure
84 abruptly shifted early on and then continued to change at a slower pace for all selection groups
85 (dotted line, $R^2 = 0.59$, $P < 9.99 \times 10^{-5}$, Fig. 2, B, Fig. S6). We found that this stabilization was
86 more pronounced for bacteria in the high selection group (Fig. S6), where the effect of selection
87 on the selected property was the most significant (Fig. 1, C). The overall stabilization of the
88 microbiota was also observed on the alpha diversity for both bacteria (Fig. S7) and fungi (Fig.
89 S8), displaying an initial increase and then plateaued in all treatment groups. Since molecular
90 quantification of bacterial and fungal markers were stable across the experiment (Fig. S9), the
91 most parsimonious interpretation of these results is that our iterative microbiota inoculation
92 procedure in all selection groups has decreased the dominance of microbial species initially
93 present, and promoted rare species, resulting in more even communities. To detect an eventual
94 tipping point in community structure over the course of generations, we applied an unsupervised
95 segmented regression analysis on the beta diversity dynamics of each lineage (Fig. S10, A).
96 Results confirmed the presence of a breaking point at generation G05 on average for both
97 bacterial (range: 3.00-6.65; Fig. S11) and fungal (range: 4.00-7.43, Fig. S12) lineages. When
98 considering all data points regardless of lineages, we confirmed that microbial community
99 dissimilarity sharply decreased from generation G01 to G05 and then stabilized (the slope not
100 significantly different from 0 for bacteria and a weaker slope for fungi; Fig. 3, A, Fig. S10, B).
101 This stabilization was not due to a homogenization of microbial communities amongst lineages
102 due to cross or environmental contaminations, as shown by the distinct microbial community
103 structures obtained in each lineage for all selection groups, except the random lineages of
104 bacteria ($P < 0.05$, Fig. S13). These results suggested the existence of two distinct phases during
105 the course of microbiota selection: a transitory phase before generation G05 and thereafter a
106 stabilization phase (Fig. 3, A). The presence of these two phases was also visible on the selected
107 property (Fig. S1, C), and became blatant when analyzing the property for each phase separately,
108 as the leaf greenness index clearly increased significantly in the high selection group after
109 generation G05 (Fig. S14, A), for all three high lineages (Fig. S14, B). Results in the low
110 selection were more contrasted. Pronounced leaf discoloration was observed in lineage LL1 (Fig.
111 S14, B-D), responsible of the overall trend observed in the low selection group (Fig. 1, E; Fig.
112 S14 A). Lineage LL2 did not differ from the control group, while LL3 displayed the opposite
113 trend compared to our expectations (Fig. S14, B), probably due to the lack of bacterial
114 community stabilization (Fig. S11).
115

116 Our hypothesis was that stability in microbial community structure is a prerequisite to the
117 heritability of the selected property. Here, we considered community heritability as the
118 regression coefficient between the parental and offspring values of the selected property⁷. We
119 calculated this regression across all selection groups to get both low, random and high values of
120 parent/offspring couples, for the transitory and stabilization phases respectively (Fig. 3, B).
121 According to our prediction, we observed no significant correlations between greenness indices
122 of the parental and offspring microbial communities during the transitory phase ($R^2 = 0.03$, $P =$
123 0.66), but a significant correlation during the stabilization phase ($R^2 = 0.21$, $P = 5.42 \times 10^{-3}$). We
124 also noted that community dissimilarity in the high selection lineages, for which selection was
125 efficient, was significantly lower compared to the other groups (Fig. S10, C). Taken together,
126 these results confirm modeling predictions that successful artificial selection on microbial
127 communities requires stability, thus enabling a heritable property^{19,20}. Indeed, during the
128 transitory phase, as each microbial species had its own population dynamic depending on biotic

129 and abiotic factors, there was no *a priori* synchronicity between their abundance variations.
130 Directional artificial selection applied during this phase resulted in the selection of microbial
131 community that i) may contribute to the observed plant property and ii) reached a certain degree
132 of synchronicity amongst the multiple population dynamics, thus leading to the emergence of a
133 reproduced pattern in microbial community structures that will ensure the heritability of the
134 selected property across generations^{19,20}. Microbial species not showing synchronicity might be
135 selected once, but not over the course of the entire iterative process.
136

137 We then searched for differences in community structure that could explain changes in leaf
138 greenness amongst selection groups. In this aim, we first looked at microbial community
139 structure in the selection groups between the two phases. We could not identify any effects of
140 selection on the structure of the bacterial ($R^2 = 0.03, P = 0.82$, Fig. 4, A) and fungal communities
141 ($R^2 = 0.03, P = 0.64$, Fig. 4, B) during the transitory phase (generation G01 to G05). However,
142 when assessing the selection effect during the stabilization phase (generation G06 to G10), we
143 detected significant effects both for bacterial ($R^2 = 0.08, P = 1.30 \times 10^{-3}$, Fig. 4, C) and fungal (R^2
144 = 0.16, $P = 9.99 \times 10^{-5}$, Fig. 4, D) communities. These results confirmed that directional selection
145 became operational on the community structure only after stabilization was reached, and
146 motivated the search for correlations between the evolution of all recorded plant traits and
147 microbial community composition throughout the whole dataset. All morphological plant traits
148 recovered from the camera-based phenotyping (convex hull perimeter, leaf area, maximum width
149 and height, projected leaf area, density, and the greenness index; Fig. S4-S5) were considered as
150 a “plant multivariate dataset”. Using two separate sparse partial least squares discriminant
151 analysis, we estimated the level of congruence between the plant multivariate dataset and either
152 the bacterial (Fig. S15) or fungal datasets (Fig. S16). We found a strong correlation between
153 plant traits and microbial community structure ($R^2 = 0.61, P < 0.001$ for bacteria, Fig. 4, D, and
154 $R^2 = 0.63, P < 0.001$ for fungi, Fig. 4, E), which can be assimilated to a causal relationship, since
155 the transfer of microbial communities from one generation to the other was the unique source of
156 non-random variation influencing plant traits during the experiment.
157

158 From this analysis, we specifically excavated the microbial taxa that correlated either positively
159 or negatively with the leaf greenness from the multivariate plant dataset, regardless of
160 generation, selection group, or lineage. When considering only strong correlations ($>|0.4|$), we
161 detected two distinct microbial sub-communities: i) one made of 325 taxa whose abundances
162 were positively correlated with leaf greenness (hereafter called “positive taxa”, 313 bacterial and
163 12 fungal, Fig. S17) and ii) one made of 68 taxa whose abundances were negatively correlated
164 with leaf greenness (hereafter called “negative taxa”, 49 bacterial and 19 fungal, Fig. S17). The
165 taxa in the positive and negative microbial sub-communities belonged to very distinct
166 phylogenetic groups, with a greater diversity for positive bacteria than the negative ones, while
167 the negative fungal taxa showed slightly higher diversity than the positive ones (Fig S17).
168 Finally, we investigated the effect of selection on the grouped relative abundance of these
169 positive and negative microbial taxa in order to identify how they responded to directional
170 artificial selection between the transitory and stabilization phases (Fig. S18). We noted
171 significant changes in the relative abundance of these taxa between the two phases regardless of
172 the selection groups, with a significant increase of positive bacterial and fungal taxa as well as a
173 significant decrease of negative bacterial taxa and increase in negative fungal taxa (mostly
174 explained by the low selection group, panel F) from the transitory to the stabilization phase ($P <$

175 0.001; Fig. S18 A-B). This general trend was well captured in the control group, which was not
176 subjected to directional selection (blue lines and stars, control at transitory vs control at
177 stabilization, $P < 0.05$, Fig. S18 C-F). These observations indicated that the transfer of random
178 parental microbial communities to the offspring generations was not a neutral process, as it led to
179 significant changes in the community structure (Fig. 4 C-D) and the abundance of taxa
180 correlating with greenness (Fig. S18). This phenomenon, known to occur in experimental
181 evolution experiments in the absence of selection pressure, is referred to as '*controlled natural*
182 *selection*'²¹, and is due to the selection effect of the plant on its microbiota *via* specific
183 recruitment mechanisms²². Concomitantly, directional artificial selection in the high and low
184 selection group significantly altered the abundance of positive and negative taxa between phases.
185 While no differences among the selection groups were observed in the transitory phase,
186 significant effects occurred in the stabilization phase. Indeed, compared to the control group
187 during this phase, the low selection resulted in a significant reduction of positive bacterial (red
188 stars, from 22.44% to 14.66%, $P < 0.01$, Fig. S18, C) and fungal taxa (red star, from 8.60% to
189 6.35%, $P < 0.05$, Fig. S18, D), as well as a significant increase in negative bacterial (red star,
190 from 2.05% to 2.82%, $P < 0.001$, Fig. S18, E) and fungal taxa (red star, from 1.08% to 12.93%,
191 $P < 0.001$, Fig. S18, F). These results indicated that despite the lack of reliable effects on the
192 selected plant property (Fig. S14), the low selection modality has resulted in a significant
193 steering of the rhizosphere microbiota structure. On the other hand, the efficient high selection
194 resulted in a significant increase of positive fungal taxa (green stars, from 8.60% to 13.10%, $P <$
195 0.001, Fig. S18, D), as well as a significant reduction of negative bacterial (green stars, from
196 2.05% to 1.48%, $P < 0.001$, Fig. S18, E) and fungal taxa (green stars, from 1.08% to 0.29%, $P <$
197 0.001, Fig. S18, E) compared to the control group during the stabilization phase. The increase of
198 positive bacterial taxa was not significant (Fig. S18, D). Therefore, directional selection has
199 either accelerated or slowed the controlled natural selection process instigated by the plant, by
200 increasing or decreasing the relative abundance of phylogenetic distinct taxa correlating with the
201 targeted property.

202
203 Directional selection of the rhizosphere microbiota is a promising strategy for modifying plant
204 phenotypes without changing plant genotypes. Here, we provide empirical evidence that plant
205 phenotype can be altered by exclusively transferring rhizosphere microbiota from generation to
206 generation (Fig. 1). We observed strong oscillations in microbial community structure during the
207 first generations, followed by the maintenance of a stable community structure (Fig. 2), with a
208 clear breaking point at generation G05 that supported the distinction between a transitory and a
209 stabilization phase (Fig. 3, A). Once community structure stabilized, the selected plant property
210 became heritable between generations G06 and G10 (Fig. 3, B), concomitantly to the appearance
211 of distinct community structures in each selection group (Fig. 4, C-D). There was a strong and
212 significant congruence between manipulated microbial community structures and all measured
213 plant traits, suggesting a causal effect (Fig. 4, E-F). The specific focus on microbial taxa
214 correlating with the leaf greenness revealed significant effects in the control group between the
215 two phases, suggesting a controlled natural selection of the plant in favor of potentially
216 beneficial taxa in the absence of directional artificial selection (Fig. S18). Compared to the
217 control group, we verified that the selection pressure has indeed altered the abundance of two
218 phylogenetically distinct microbial sub-communities correlating with the property of interest. We
219 concluded that in artificial selection of microbial communities, the heritability of the selected
220 property depends on the stability of microbial community structure^{19,20}. We believe that

221 understanding the conditions leading to microbiota stability is an essential cornerstone for the
222 development of efficient microbiota selection programs, that deserves increased attention in
223 future research in this field.

224 **Acknowledgments**

225

226 We would like to thank the members of the 4PMI platform for their expertise and help during plant
227 phenotyping (For Plant and Microbe Interaction, INRAE Centre Dijon, France,
228 <https://www6.dijon.inra.fr/umragroecologie/Plateformes/Serres-PPHD>). Respectively, we thank Damien
229 Gironde, Frédéric Saignole, Noureddine El-Mjiyad and Karine Palavioux for helping during plant
230 growth monitoring; Franck Zenk and Julien Martinet for image capture; and Mickael Lamboeuf
231 for image processing; Sébastien Anselme, Richard Sibout and Thomas Girin from the
232 *Brachypodium* resources center at the Institut Jean Pierre-Bourgin, (INRAE Centre Versailles,
233 France) for seeds provision; Beatriz Decencière, Amandine Hansart and Florent Massol of the
234 CEREEP - Ecotron IDF/UMS CNRS/ENS 3194 for soil provision. We would like to thank Tiffany
235 Raynaud, Luiz Domeignoz Horta, Florian Bizouard, Eric Pimet and Chantal Ducourtieux for their
236 technical help during soil sampling, the artificial selection and the post-selection experiments. We
237 would like to thank Annick Matejicek for her help with the CHN measures. We also thank Jessica
238 Pearce-Duvet for the English editing of our manuscript
239 (jpearce@englishservicesforscientists.com).

240

241 **Funding**

242 This study was funded by the Bourgogne Franche-Comté region via the FABER program (grant
243 n°2017-9201AAO049S01302).

244

245 **Author contributions**

246 Conceptualization, funding acquisition and project administration (MB). Supervision and
247 methodology (MB and SJ). Investigation (SJ, SW, VM, DB). Resources (4PMI: CS, molecular
248 biology: LP, sequencing: SJS). Formal analysis (SJ and AS). Validation (AS, LP and MB). Writing
249 - original draft (SJ and MB). Writing – review & editing (AS, SW, VM, DB, SJS, CS, LP).

250

251 **Competing interests**

252 Authors declare no competing interests.

253

254 **Data and materials availability:** Sequencing data generated in this study has been deposited in
255 the Sequence Read Archive public repository (SRA: <https://www.ncbi.nlm.nih.gov/sra/docs/>) with
256 an embargo of six months or until publication of the manuscript (Accession number for the
257 bacterial and fungal datasets: SUB7720753 and SUB7738355). Images of plants are stored at the
258 4PMI platform server (350973 files worth 463gB of data) and can be made available upon request
259 addressed to the corresponding author. The Matlab RGB routine script used at the 4PMI platform
260 to estimate leaf colors can be made available upon request to the corresponding author. Plant traits
261 data is available as supporting data. Statistical analysis was performed with the publically available
262 software Rgui, with function packages and documentation that are publically available and
263 referenced. The Rgui scripts can be made available upon request to Samuel Jacquiod.

264

265

266 **List of Supplementary Materials:**

267

268 - Materials and Methods (see Supplementary Materials file)

269 - Figs. S1 to S19

270 - Table S1 to S2

271 - References that are only cited in Supplementary Materials: [22-44]

272

273 **References**

274

275 1. F. I. Arias-Sánchez, B. Vessman, S. Mitri. Artificially selecting microbial communities: If we
276 can breed dogs, why not microbiomes? *PLoS Biol* **17**, doi:10.1371/journal.pbio.3000356
277 (2019).

278 2. U. G. Mueller, J. L. Sachs. Engineering Microbiomes to Improve Plant and Animal Health.
279 *Trends Microbiol* **23**, 606–617 (2015).

280 3. Z. Wei, A. Jousset. Plant Breeding Goes Microbial. *Trends Plant Sci* **22**, 555-558. (2017).

281 4. A. Sanchez A., J. C. C. Vila, C. Chang, J. Diaz-Colunga, S. Estrela, M. Rebolleda-Gomez.
282 Directed evolution of microbial communities. *EcoEvoRxiv Preprints*. Doi:
283 10.32942/osf.io/gsz7j (2020).

284 5. W. Swenson, D. S. Wilson, R. Elias. Artificial ecosystem selection. *Proc Natl Acad Sci U S A*
285 **97**, 9110–9114 (2000).

286 6. W. Swenson, J. Arendt, D. Sloan-Wilson. Artificial selection of microbial ecosystems for 3-
287 chloroaniline biodegradation. *Environ Microbiol* **2**, 564–571 (2000).

288 7. M. Blouin, B. Karimi, J. Mathieu, T. Z. Lerch. Levels and limits in artificial selection of
289 communities. *Ecol Lett* **18**, 1040–1048 (2015).

290 8. T. Raynaud, M. Devers, A. Spor, M. Blouin. Effect of the Reproduction Method in an
291 Artificial Selection Experiment at the Community Level. *Front. Ecol. Evol.* **7**, doi:
292 10.3389/fevo.2019.00416 (2019).

293 9. Y. Akmouche, J. Cheneby, M. Lamboeuf, N. Elie, A. Laperche, J. Bertheloot, P. D'Hooghe, J.
294 Trouverie, J. C. Avice, P. Etienne, S. Brunel-Muguet, Do nitrogen- and sulphur-
295 remobilization-related parameters measured at the onset of the reproductive stage provide
296 early indicators to adjust N and S fertilization in oilseed rape (*Brassica napus L.*) grown under
297 N- and/or S-limiting supplies? *Planta* **250**, 2047–2062 (2019).

298 10. J. A. Lau, J. T. Lennon. Rapid responses of soil microorganisms improve plant fitness in
299 novel environments. *Proc Natl Acad Sci U S A* **109**, 14058–14062 (2012).

300 11. K. Panke-Buisse, A. C. Poole, J. K. Goodrich, R. E. Ley, J. Kao-Kniffin. Selection on soil
301 microbiomes reveals reproducible impacts on plant function. *ISME J.* **9**, 980–989 (2015).

302 12. U. G. Mueller, T. E. Juenger, M. R. Kardish, A. L. Carlson, K. Burns, C. C. Smith, D. L. De
303 Marais. Artificial Microbiome Selection to Engineer Microbiomes That Confer Salt-
304 Tolerance to Plants. *BioRxiv* doi: <https://doi.org/10.1101/081521> (2016).

305 13. N. M. Morella, F. C. H. Weng, P. M. Joubert, C. Jessica, S. Lindow, B. Koskella. Successive
306 passaging of a plant-associated microbiome reveals robust habitat and host genotype-
307 dependent selection. *Proc Natl Acad Sci U S A*, **117**, 1148–1159 (2020).

308 14. L. Xie, A. E. Yuan, S. Wenyng. Simulations reveal challenges to artificial community
309 selection and possible strategies for success. *PLoS Biol*, **17**, e3000295 (2019).

310 15. C. J. Goodnight. Experimental studies of community evolution 1. The response to selection
311 at the community level. *Evolution (N. Y.)*, **44**, 1614–1624 (1990a).

312 16. C. J. Goodnight. Experimental studies of community evolution. 2. The ecological basis of the
313 response to community selection. *Evolution (N. Y.)* **44**, 1625–1636 (1990b).

314 17. C. J. Goodnight. Heritability at the ecosystem level. *Proc Natl Acad Sci U S A* **97**, 9365–
315 9366 (2000).

316 18. R. C. Lewontin. “The Units of Selection.” *Annu Rev Ecol Evol Syst* **1**, 1–18 (1970).

317 19. A. Penn, “Modelling Artificial Ecosystem Selection: A Preliminary Investigation” in
318 *Advances in Artificial Life*, ECAL 2003, Lecture Notes in Computer Science (Springer,
319 Berlin, Heidelberg, 2003) vol. 2801.

320 20. A. Penn, I. Harvey “The Role of Non-Genetic Change in the Heritability, Variation and
321 Response to Selection of Artificially Selected Ecosystems” in *Proceedings of the ninth
322 international conference on artificial life*. (MIT Press, 2004). pp. 352–357.

323 21. J. K. Conner. Artificial Selection: A Powerful Tool for Ecologists. *Ecology* **84**, 1650–1660.
324 (2003).

325 22. P. Lemanceau, M. Blouin, D. Muller, Y. Moënne-Locoz. Let the Core Microbiota Be
326 Functional. *Trends Plant Sci* **22**, 583–595 (2017).

327 23. S. Jacquiod, R. Puga-Freitas, A. Spor, A. Mounier, C. Monard, C. Mougel, L. Philippot, M.
328 Blouin. A core microbiota of the plant-earthworm interaction conserved across soils. *Soil Biol
329 Biochem* **144**, 107754 (2020).

330 24. J. Draper, L. A. J. Mur, G. Jenkins, G. C. Ghosh-Biswas, P. Bablak, R. Hasterok, A. P. M.
331 Routledge. Brachypodium distachyon. A new model system for functional genomics in
332 grasses. *Plant Physiol* **127**, 1539–1555 (2001).

333 25. T. Girin, L. C. David, C. Chardin, R. Sibout, A. Krapp, S. Ferrario-Méry, F. Daniel-Vedele.
334 Brachypodium: a promising hub between model species and cereals. *J Exp Bot* **65**, 5683–5696
335 (2014).

336 26. M. Watt, K. Schneebeli, P. Dong, I. W. Wilson. The shoot and root growth of Brachypodium
337 and its potential as a model for wheat and other cereal crops. *Funct Plant Biol* **36**, 960–969
338 (2009).

339 27. M. Kalacska, M. Lalonde, T. R. Moore. Estimation of foliar chlorophyll and nitrogen content
340 in an ombrotrophic bog from hyperspectral data: scaling from leaf to image. *Remote Sens
341 Environ.* **169**, 270–279 (2015).

342 28. C. Salon. PPHD: a platform for phenotyping. *Biofutur* **338**, 61–64 (2012).

343 29. R core Team, “R: A Language and Environment for Statistical Computing”, (R Foundation
344 for Statistical Computing, Vienna, Austria, 2020, <http://www.R-project.org/>).

345 30. L. Komsta, F. Novomestky. Moments: Moments, Cumulants, Skewness, Kurtosis and
346 Related Tests R Package Version 0.12 (2011).

347 31. G. C. Baker, J. J. Smith, D. A. Cowan. Review and re-analysis of domain-specific 16S
348 primers. *J Microbiol Methods* **55**, 541–55 (2003).

349 32. D. P. Herlemann, M. Labrenz, K. Jurgens, S. Bertilsson, J. J. Waniek, A. F. Andersson.
350 Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea.
351 *ISME J* **5**, 1571–1579 (2011).

352 33. K. Ihrmark, I. T. M. Bödeker, K. Cruz-Martinez, H. Friberg, A. Kubartova, J. Schenck, Y.
353 Strid, J. Stenlid, M. Brandström-Durling, K. E. Clemmensen, B. D. Lindahl. New primers to
354 amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural
355 communities, *FEMS Microbiol Ecol* **82**, 666–677 (2012).

356 34. T. White, T. Bruns, S. Lee, F. Taylor, T. J. White, S. H. Lee, L. Taylor, J. S. Taylor
357 “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics” in

358 *PCR protocols: a guide to methods and applications*, (Academic Press, London, ed. 18,
359 1990), pp. 315–322.

360 35. J. Zhang, K. Kober, T. Flouri, A. Stamatakis. PEAR: a fast and accurate Illumina Paired-End
361 reAd mergeR. *Bioinformatics* **30**, 614–620 (2014).

362 36. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N.
363 Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T Kelley, D. Knights, J. E.
364 Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R.
365 Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R.
366 Knight. QIIME allows analysis of high-throughput community sequencing data. *Nat. Methods*
367 **7**, 335–336 (2010).

368 37. T. Rognes, T. Flouri, B. Nichols, C. Quince, F. Mahe. VSEARCH: a versatile open source
369 tool for metagenomics. *PeerJ* **4**, e2584 (2016).

370 38. R. C. Edgar. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*
371 **26**, 2460–2461 (2010).

372 39. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F. O. Glöckner.
373 The SILVA ribosomal RNA gene database project: improved data processing and web-based
374 tools. *Nucleic Acids Res* **41**(Database issue): D590–D596 (2013)

375 40. K. Abarenkov, R. H. Nilsson, K. H. Larsson, I. J. Alexander, U. Eberhardt, S. Erland, K.
376 Høiland, R. Kjøller, E. Larsson, T. Pennanen, R. Sen, A. F. S. Taylor, L. Tedersoo, B. M.
377 Ursing, T. Vrålstad, K. Liimatainen, U. Peintner, U. Köljal. The UNITE database for
378 molecular identification of fungi—Recent updates and future perspectives. *New Phytol* **186**,
379 281–285 (2010).

380 41. G. Muyzer, E. C. De Waal, A. G. Uitterlinden. Profiling of complex microbial populations by
381 denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes
382 coding for 16S rRNA. *Appl Environ Microbiol* **59**, 65-700 (1993).

383 42. P. Dixon. VEGAN, a package of R functions for community ecology. *J Veg Sci* **14**, 927–930
384 (2003).

385 43. A. Schöler, S. Jacquiod, G. Vestergaard, S. Schulz, M. Schloter. Analysis of soil microbial
386 communities based on amplicon sequencing of marker genes. *Biol Fertil* **53**, 485 (2017).

387 44. V. Muggeo, R. Muggeo. Segmented: an R Package to Fit Regression Models With Broken-
388 line Relationships. (*R News*, 8/1, 20-25, 2008, <https://cran.r-project.org/web/packages/segmented/segmented.pdf>)

389 45. F. Rohart, B. Gautier, A. Singh, K.-A. Lê Cao. mixOmics: An R package for ‘omics’ feature
390 selection and multiple data integration. *PLOS Comput Biol* **13**, e1005752 (2017).

391

392

393

394

395

396

397 **Figures legends**

398
399

400 **Figure 1:** Analysis of the leaf greenness during the course of selection. Panel A and B are
401 showing the evolution of shoot greenness across the ten generations in the high and low selection
402 groups compared to the control group, respectively. Panel C shows the overall averaged leaf
403 greenness values in all selection groups. Panel D shows the evolution of the standardized leaf
404 greenness (z-score using the control group average and standard deviation) for the high and low
405 selection groups across the ten generations. Panel E is showing the overall averaged leaf
406 greenness values in all selection groups for the z-score standardized data. Statistical comparisons
407 were done against the control group with a one-sided, two samples Student test (panels A-C) and
408 a one-sided, one samples Student test for the standardized data (z-score, tested against zero,
409 panels D-E). P -value significance: « *** » for $P < 0.001$; « ** » for $P < 0.01$; « * » for $P < 0.05$;
410 « . » for $P < 0.1$. For panel A, B and D: $N = 55-60$ replicates per group per time point. For panel
411 C and E: $N = 591-596$ replicates per group. Error-bar are representing the standard error of the
412 mean.

413

414 **Figure 2:** Distance-based redundancy analysis of the microbiota rhizosphere during the course of
415 selection. Panel A and B represent the evolution of community dissimilarity for bacteria and
416 fungi respectively. The same analysis applied for each selection group is available in supporting
417 data (Fig. S6). The models were built using the Bray-Curtis dissimilarity index, with 10.000
418 group permutations (Bray-Curtis ~ generation/selection/lineage). The R^2 values are indicating the
419 percentage of variance explained by the model. If significant, the constrained coordinates are
420 shown (model $P < 0.05$, CAP, Constrained Analysis of Principal coordinates). If not, the
421 unsupervised coordinates are shown (model $P > 0.05$, MDS: Multi-Dimensional Scaling).

422

423 **Figure 3:** Evolution of the microbial beta diversity and the trait heritability. Panel A shows the
424 overall evolution of each lineage (colored here by bacterial and fungal microbial groups for
425 clarity sake) during the course of selection. The evolution of each bacterial and fungal lineages
426 are displayed in supporting data (Fig. S11-S12). To generate this analysis, we compared six
427 offspring rhizosphere microbiota from G10 in each lineage to their respective pools in
428 descending order until reaching the initial pool used to inoculate the experiment at the beginning
429 (see Fig. S10, A). An unsupervised segmented analysis was performed on each lineage, revealing
430 an average breaking point in the beta diversity slope occurring at generation G05 (Fig. S11-S12).
431 Panel B shows the concomitant evolution of the leaf greenness heritability, calculated as the
432 slope between the averaged selected ‘parent’ phenotype at generation « n » and their averaged
433 ‘offspring’ phenotype at generation « n+1 » in all high, low and control lineages, respectively. A
434 first model was constructed at the transitory phase ([G01-G05], light gray) and a second one at
435 the stabilization phase ([G06-G10], dark gray) according to the beta diversity breaking point. To
436 accurately estimate heritability in our experiment, we integrated values from all lineages (high,
437 low and control) during the [G01-G05] and [G06-G10] intervals based on our unsupervised
438 segmented analysis to spawn sufficient variability to be able to detect whether or not a
439 relationship existed between selected parents and offspring plants. The linear equation for the
440 stabilization phase was $y = 0.454x - 6E-16$.

441

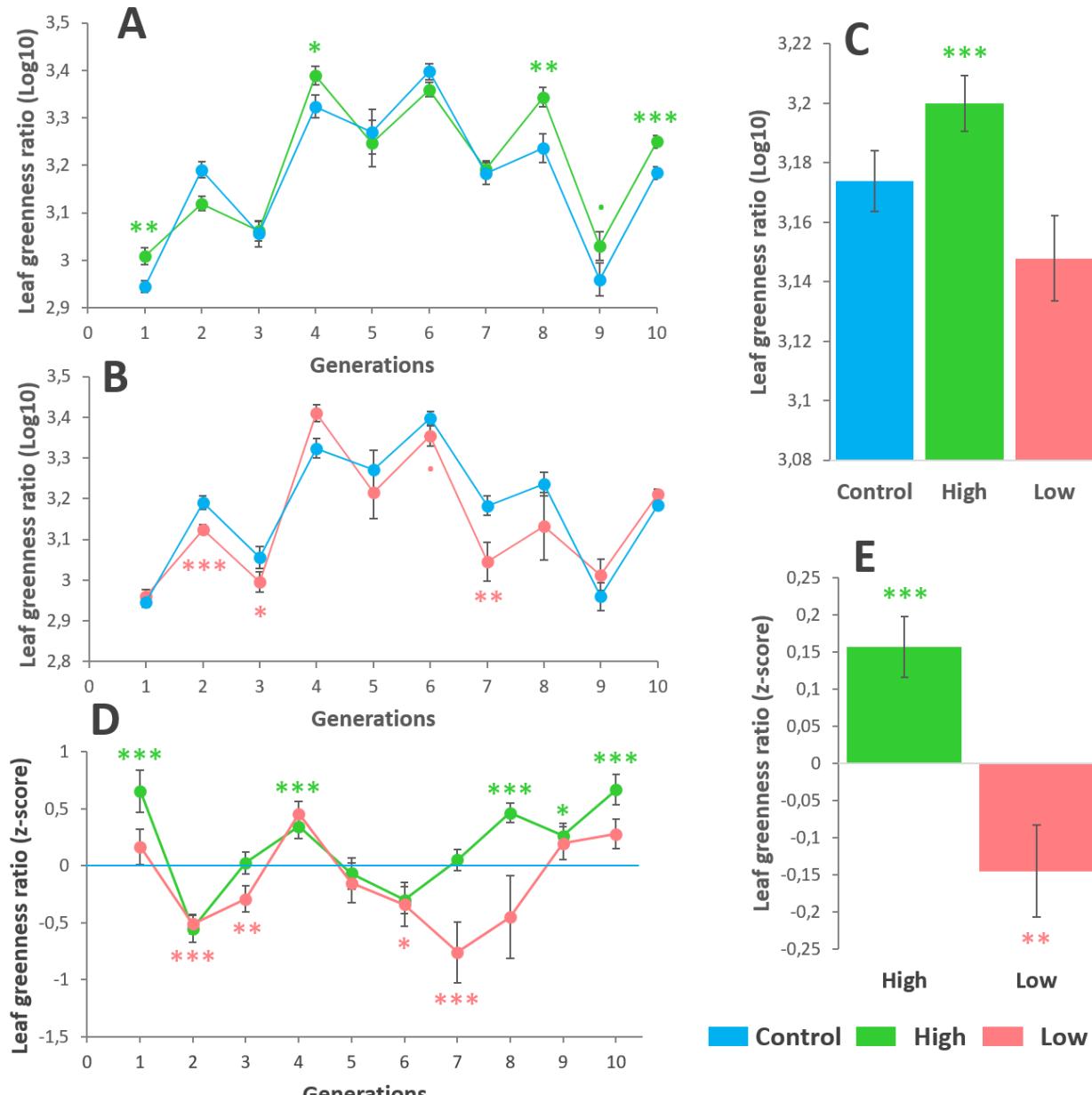
442 **Figure 4:** Effect of artificial selection on the selected microbiota community structure and sparse
443 partial least square discriminant analysis (sPLS-DA). Panel A and B show the structure of the
444 rhizosphere bacterial and fungal communities during the transitory phase [G01-G05]. Panel C
445 and D show the structure of the rhizosphere bacterial and fungal communities during the
446 stabilization phase [G06-G10]. The models were built using the Bray-Curtis dissimilarity index,
447 with 10.000 group permutations (Bray-Curtis ~ selection). The R^2 values are indicating the
448 percentage of variance explained by the model. If significant, the constrained coordinates are
449 shown (model $P < 0.05$, CAP, Constrained Analysis of Principal coordinates). If not, the
450 unsupervised coordinates are shown (model $P > 0.05$, MDS: Multi-Dimensional Scaling). Panel
451 E and F are showing the results of the sPLS-DA between the plant traits dataset and the bacterial
452 or fungal datasets, respectively. Arrow plots are showing the samples correspondence between
453 microbial and plant data. The start of arrows indicates the location of the sample in the PCA of
454 the dataset 1 (bacteria or fungi datasets), and the arrow tips indicate the location of the sample in
455 the PCA of the dataset 2 (plant traits dataset). Arrow location, length and direction is
456 corresponding to the congruence between datasets, which was tested with a randomized group
457 simulation ($N = 1,000$ permutations, Fig. S15-S16).

458
459

460 **Figures**

461

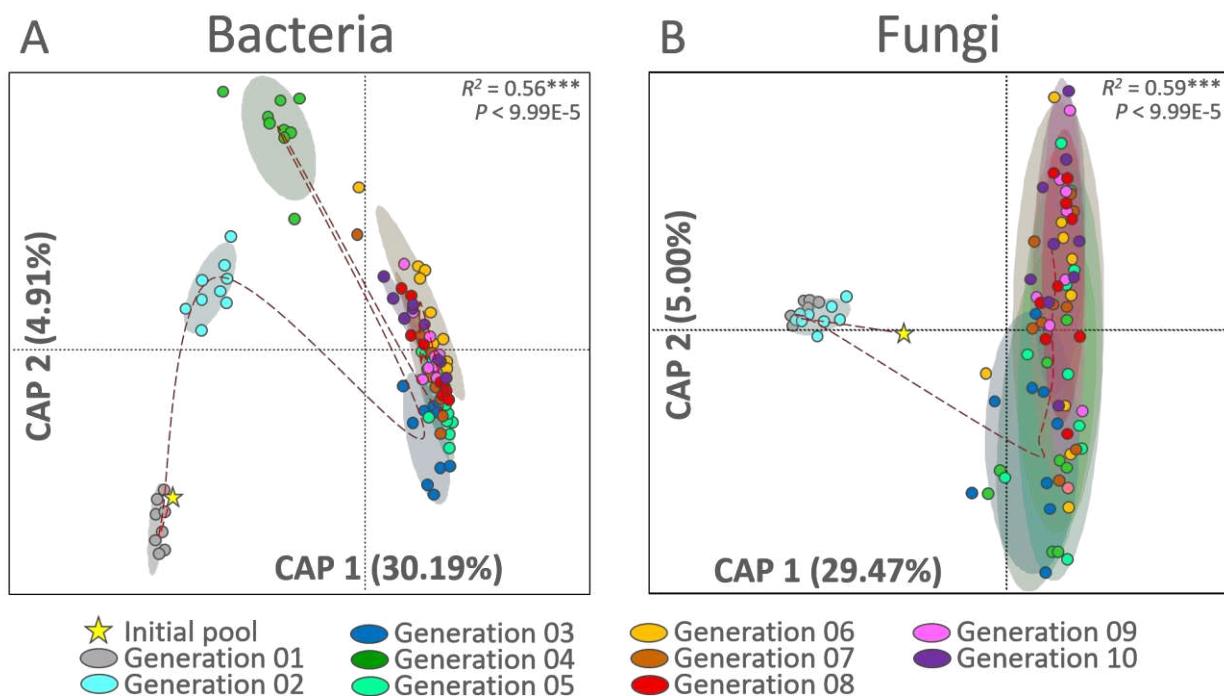
462 Figure 1



463

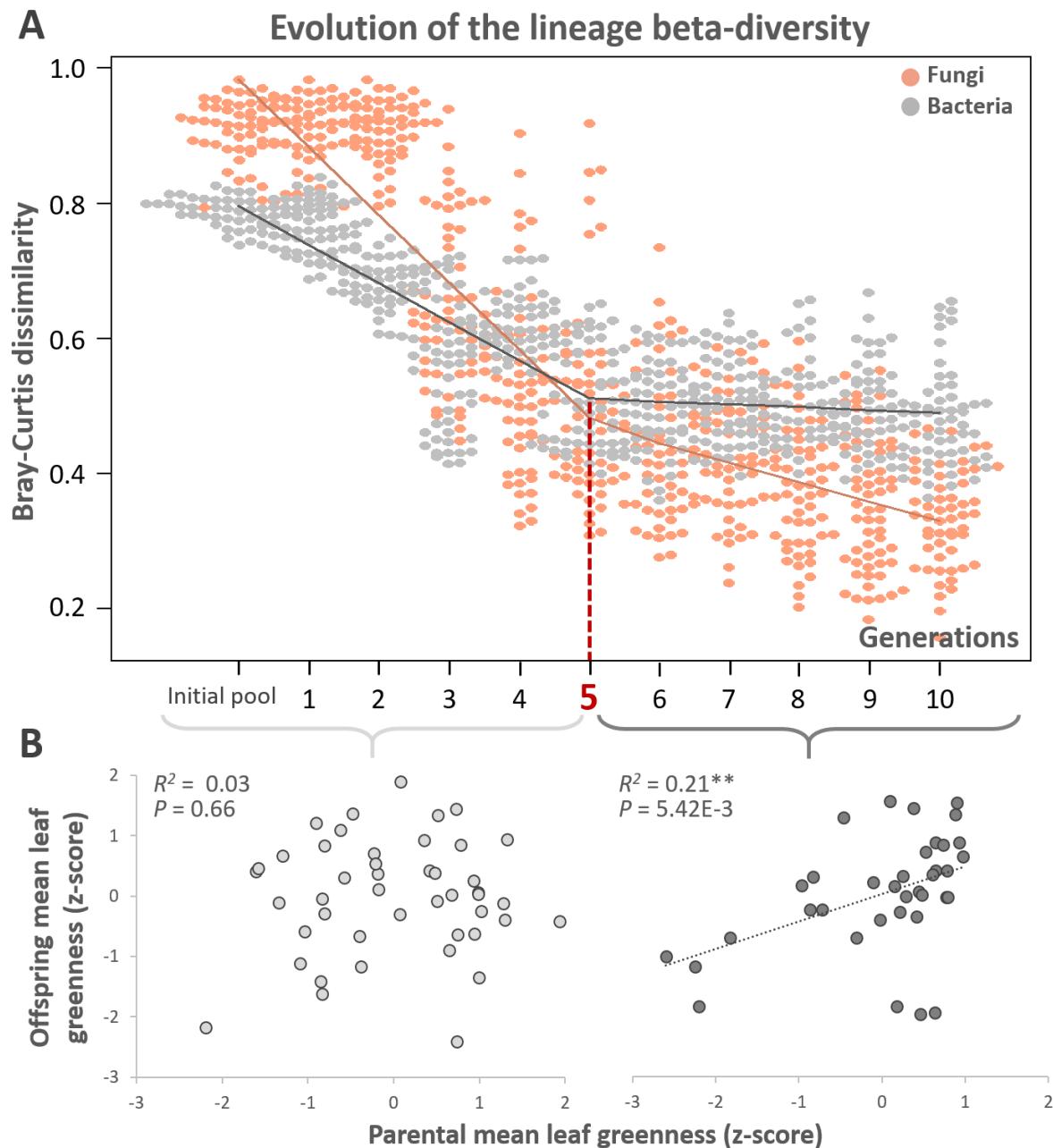
464

465 Figure 2



466
467

468 **Figure 3**

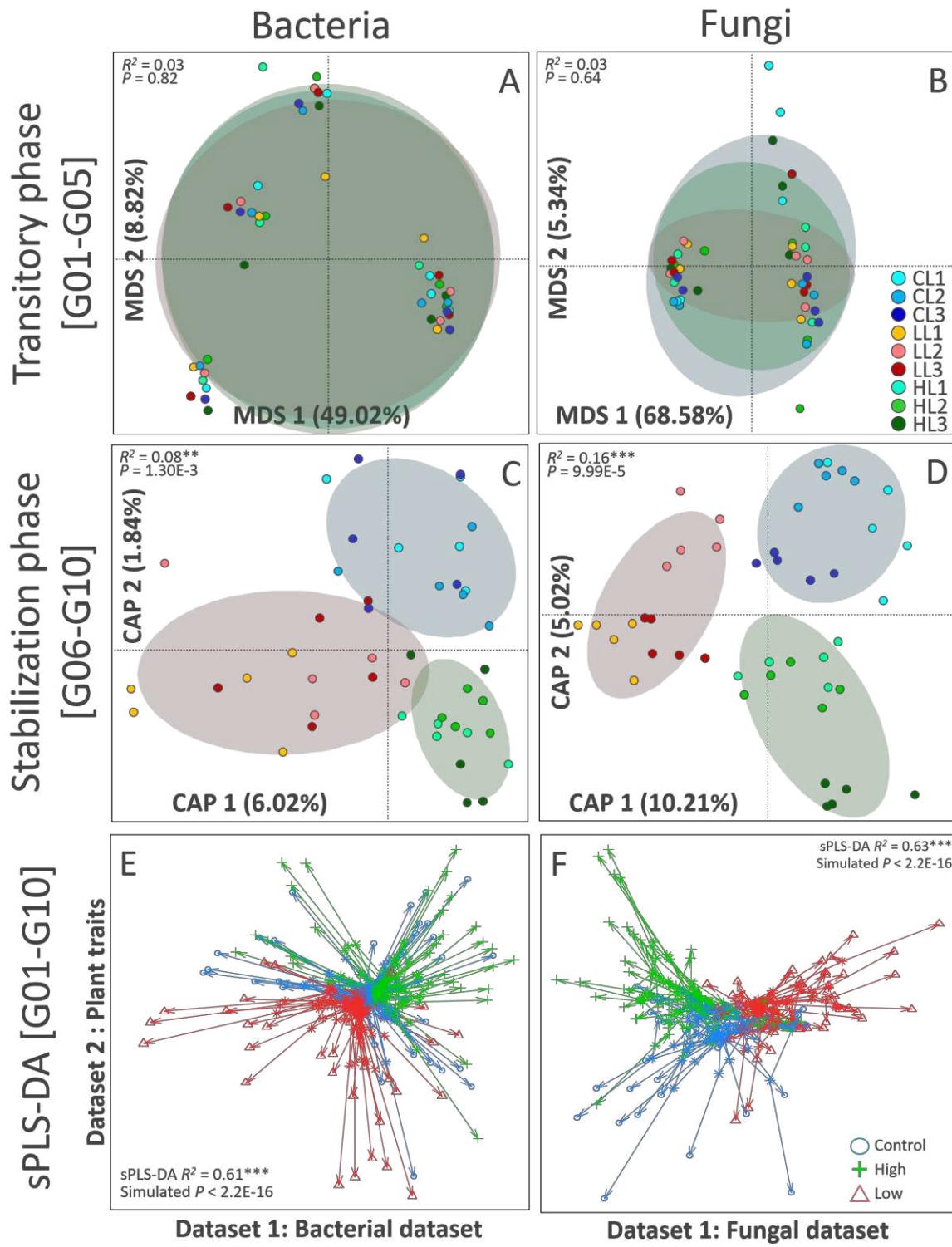


469

470

471

472 Figure 4



473

474

475

476