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Short Sentence 14 

Stable microbiota selection enables trait heritability 15 

 16 

Abstract 17 

Research on artificial selection of microbial community has become popular due to perspectives 18 

in improving plant and animal health1-4. However, reported results still lack consistency5-8. We 19 

hypothesized that artificial selection may provide desired outcomes provided that microbial 20 

community structure has stabilized along the selection process. In a ten-generation artificial 21 

selection experiment involving 1,800 plants, we selected rhizosphere microbiota of 22 

Brachypodium distachyon that were associated with high or low levels of leaf greenness, a proxy 23 

for plant health9. Monitoring of the rhizosphere microbiota dynamics showed strong oscillations 24 

in community structure during an initial transitory phase of five generations, with no heritability 25 

in the selected property. In the last five generations, the structure of microbial communities 26 

displayed signs of stabilization, concomitantly to the appearance of heritability in leaf greenness. 27 

Selection pressure, initially ineffective, became successful in changing the greenness index in the 28 

intended direction, especially toward high greenness values. We showed a remarkable 29 

congruence between plant traits and selected microbial community structures, highlighting two 30 

phylogenetically distinct microbial sub-communities correlating with leaf greenness, whose 31 

abundance was significantly steered by directional artificial selection. Understanding microbial 32 

community structure stabilization can thus help improve the reliability of artificial microbiota 33 

selection. 34 

 35 
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Main Text 37 

 38 

Empirical studies of artificial selection have demonstrated that it is possible to steer microbiota 39 

across generations to modify microbial ecosystems properties4-8. In some cases, the selected 40 

property can be a trait displayed by the host of a microbiota, like with microbial communities 41 

associated to plants5,10-13. This opens new avenues for plant breeding via directional artificial 42 

selection of rhizosphere microbiota1-4. Still, while previous studies reported significant selection 43 

effects6,7,11, the selected property may not be perennial and lost during the process6,9. From a 44 

practical point of view, it is thus crucial to understand the causes behind this inconsistency. We 45 

hypothesized that an important prerequisite for successful selections is to reach a stable state in 46 

microbial community structure14. In the field of artificial selection of communities15-17, 47 

mathematical models have shown that the heritability of the selected property, one of the three 48 

essential features of a unit of selection18, depends on the stability of community structure19,20. 49 

However, this hypothesis about 8stability of community structure being a prerequisite for the 50 

heritability of the selected property9 has never been empirically confirmed. Here, we tested it by 51 

investigating the dynamics of microbial community and the heritability in the selected property 52 

during the selection process. 53 

 54 

We artificially selected rhizosphere microbiota according to their impact on a leaf greenness 55 

index, a remote proxy for plant nutritional and health status9 (Fig. S1), using the grass species 56 

Brachypodium distachyon grown in microcosms in a climatic chamber (Fig. S2-S3). There were 57 

two treatments, in which low and high levels of leaf greenness were selected for, respectively 58 

(hereafter, the low and high selection groups). There was also a control group, in which selection 59 

was random. The selection process was repeated across ten generations, each lasting four weeks 60 

(Fig. S2). The three experimental groups (low selection, high selection, and control) each 61 

contained three independent replicate lineages composed of twenty microcosms. At the end of 62 

each generation, 3 of the 20 microcosms within each lineage were selected based on their leaf 63 

greenness values (Fig. S4). Their rhizosphere microbiota were extracted, pooled, and used to 64 

inoculate seedlings of the next generation (Fig. S2-S3). We used the same seed batch throughout 65 

the experiment, thus only the rhizosphere microbiota could evolve, not the plant genotype. 66 

 67 

Analysis of leaf greenness revealed a generation effect (39.77% of the variance, P < 0.001; Table 68 

S1, Fig.1, A-B) due to uncontrolled biotic and/or abiotic variations, as commonly observed in 69 

this kind of selection experiments5,12. Nevertheless, we detected significant changes in leaf 70 

greenness due to the microbiota-based artificial selection (selection + lineage = 10.15% of the 71 

variance, P < 0.001, Tab.S1), occurring at specific generations (Fig. 1, A-B). Across the entire 72 

experiment, this resulted in a significant increase in leaf greenness in the high selection group 73 

compared to the control, but not for the low selection group (Fig. 1, C). This trend was also 74 

observed on the other plant traits acquired by the image analysis (Fig. S4), again with a 75 

significant increase only for the high selection group (Fig. S5). The effect of selection on the 76 

targeted plant trait was more pronounced once data was standardized with the random selection 77 

group to control the generation effect (z-score normalization, Fig. 1, D-E). 78 

 79 

In parallel, our findings underscore strong oscillations of bacterial community structure for the 80 

first five generations of selection (dotted line, R2 = 0.56, P < 9.99×10-5, Fig. 2, A), occurring for 81 

all selection groups (Fig. S6). These oscillations were not observed any more from generation 82 
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G05, denoting a stabilization of bacterial community structure. Fungal community structure 83 

abruptly shifted early on and then continued to change at a slower pace for all selection groups 84 

(dotted line, R2 = 0.59, P < 9.99×10-5, Fig. 2, B, Fig. S6). We found that this stabilization was 85 

more pronounced for bacteria in the high selection group (Fig. S6), where the effect of selection 86 

on the selected property was the most significant (Fig. 1, C). The overall stabilization of the 87 

microbiota was also observed on the alpha diversity for both bacteria (Fig. S7) and fungi (Fig. 88 

S8), displaying an initial increase and then plateaued in all treatment groups. Since molecular 89 

quantification of bacterial and fungal markers were stable across the experiment (Fig. S9), the 90 

most parsimonious interpretation of these results is that our iterative microbiota inoculation 91 

procedure in all selection groups has decreased the dominance of microbial species initially 92 

present, and promoted rare species, resulting in more even communities. To detect an eventual 93 

tipping point in community structure over the course of generations, we applied an unsupervised 94 

segmented regression analysis on the beta diversity dynamics of each lineage (Fig. S10, A). 95 

Results confirmed the presence of a breaking point at generation G05 on average for both 96 

bacterial (range: 3.00-6.65; Fig. S11) and fungal (range: 4.00-7.43, Fig. S12) lineages. When 97 

considering all data points regardless of lineages, we confirmed that microbial community 98 

dissimilarity sharply decreased from generation G01 to G05 and then stabilized (the slope not 99 

significantly different from 0 for bacteria and a weaker slope for fungi; Fig. 3, A, Fig. S10, B). 100 

This stabilization was not due to a homogenization of microbial communities amongst lineages 101 

due to cross or environmental contaminations, as shown by the distinct microbial community 102 

structures obtained in each lineage for all selection groups, except the random lineages of 103 

bacteria (P < 0.05, Fig. S13). These results suggested the existence of two distinct phases during 104 

the course of microbiota selection: a transitory phase before generation G05 and thereafter a 105 

stabilization phase (Fig. 3, A). The presence of these two phases was also visible on the selected 106 

property (Fig. S1, C), and became blatant when analyzing the property for each phase separately, 107 

as the leaf greenness index clearly increased significantly in the high selection group after 108 

generation G05 (Fig. S14, A), for all three high lineages (Fig. S14, B). Results in the low 109 

selection were more contrasted. Pronounced leaf discoloration was observed in lineage LL1 (Fig. 110 

S14, B-D), responsible of the overall trend observed in the low selection group (Fig. 1, E; Fig. 111 

S14 A). Lineage LL2 did not differ from the control group, while LL3 displayed the opposite 112 

trend compared to our expectations (Fig. S14, B), probably due to the lack of bacterial 113 

community stabilization (Fig. S11). 114 

 115 

Our hypothesis was that stability in microbial community structure is a prerequisite to the 116 

heritability of the selected property. Here, we considered community heritability as the 117 

regression coefficient between the parental and offspring values of the selected property7. We 118 

calculated this regression across all selection groups to get both low, random and high values of 119 

parent/offspring couples, for the transitory and stabilization phases respectively (Fig. 3, B). 120 

According to our prediction, we observed no significant correlations between greenness indices 121 

of the parental and offspring microbial communities during the transitory phase (R² = 0.03, P = 122 

0.66), but a significant correlation during the stabilization phase (R² = 0.21, P =5.42×10-3). We 123 

also noted that community dissimilarity in the high selection lineages, for which selection was 124 

efficient, was significantly lower compared to the other groups (Fig. S10, C). Taken together, 125 

these results confirm modeling predictions that successful artificial selection on microbial 126 

communities requires stability, thus enabling a heritable property19,20. Indeed, during the 127 

transitory phase, as each microbial species had its own population dynamic depending on biotic 128 
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and abiotic factors, there was no a priori synchronicity between their abundance variations. 129 

Directional artificial selection applied during this phase resulted in the selection of microbial 130 

community that i) may contribute to the observed plant property and ii) reached a certain degree 131 

of synchronicity amongst the multiple population dynamics, thus leading to the emergence of a 132 

reproduced pattern in microbial community structures that will ensure the heritability of the 133 

selected property across generations19,20. Microbial species not showing synchronicity might be 134 

selected once, but not over the course of the entire iterative process. 135 

 136 

We then searched for differences in community structure that could explain changes in leaf 137 

greenness amongst selection groups. In this aim, we first looked at microbial community 138 

structure in the selection groups between the two phases. We could not identify any effects of 139 

selection on the structure of the bacterial (R2 = 0.03, P = 0.82, Fig. 4, A) and fungal communities 140 

(R2 = 0.03, P = 0.64, Fig. 4, B) during the transitory phase (generation G01 to G05). However, 141 

when assessing the selection effect during the stabilization phase (generation G06 to G10), we 142 

detected significant effects both for bacterial (R2 = 0.08, P = 1.30×10-3, Fig. 4, C) and fungal (R2 143 

= 0.16, P = 9.99×10-5, Fig. 4, D) communities. These results confirmed that directional selection 144 

became operational on the community structure only after stabilization was reached, and 145 

motivated the search for correlations between the evolution of all recorded plant traits and 146 

microbial community composition throughout the whole dataset. All morphological plant traits 147 

recovered from the camera-based phenotyping (convex hull perimeter, leaf area, maximum width 148 

and height, projected leaf area, density, and the greenness index; Fig. S4-S5) were considered as 149 

a <plant multivariate dataset=. Using two separate sparse partial least squares discriminant 150 

analysis, we estimated the level of congruence between the plant multivariate dataset and either 151 

the bacterial (Fig. S15) or fungal datasets (Fig. S16). We found a strong correlation between 152 

plant traits and microbial community structure (R² = 0.61, P < 0.001 for bacteria, Fig. 4, D, and 153 

R² = 0.63, P < 0.001 for fungi, Fig. 4, E), which can be assimilated to a causal relationship, since 154 

the transfer of microbial communities from one generation to the other was the unique source of 155 

non-random variation influencing plant traits during the experiment.  156 

 157 

From this analysis, we specifically excavated the microbial taxa that correlated either positively 158 

or negatively with the leaf greenness from the multivariate plant dataset, regardless of 159 

generation, selection group, or lineage. When considering only strong correlations (>|0.4|), we 160 

detected two distinct microbial sub-communities: i) one made of 325 taxa whose abundances 161 

were positively correlated with leaf greenness (hereafter called <positive taxa=, 313 bacterial and 162 

12 fungal, Fig. S17) and ii) one made of 68 taxa whose abundances were negatively correlated 163 

with leaf greenness (hereafter called <negative taxa=, 49 bacterial and 19 fungal, Fig. S17). The 164 

taxa in the positive and negative microbial sub-communities belonged to very distinct 165 

phylogenetic groups, with a greater diversity for positive bacteria than the negative ones, while 166 

the negative fungal taxa showed slightly higher diversity than the positive ones (Fig S17). 167 

Finally, we investigated the effect of selection on the grouped relative abundance of these 168 

positive and negative microbial taxa in order to identify how they responded to directional 169 

artificial selection between the transitory and stabilization phases (Fig. S18). We noted 170 

significant changes in the relative abundance of these taxa between the two phases regardless of 171 

the selection groups, with a significant increase of positive bacterial and fungal taxa as well as a 172 

significant decrease of negative bacterial taxa and increase in negative fungal taxa (mostly 173 

explained by the low selection group, panel F) from the transitory to the stabilization phase (P < 174 
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0.001; Fig. S18 A-B). This general trend was well captured in the control group, which was not 175 

subjected to directional selection (blue lines and stars, control at transitory vs control at 176 

stabilization, P < 0.05, Fig. S18 C-F). These observations indicated that the transfer of random 177 

parental microbial communities to the offspring generations was not a neutral process, as it led to 178 

significant changes in the community structure (Fig. 4 C-D) and the abundance of taxa 179 

correlating with greenness (Fig. S18). This phenomenon, known to occur in experimental 180 

evolution experiments in the absence of selection pressure, is referred to as 8controlled natural 181 

selection921, and is due to the selection effect of the plant on its microbiota via specific 182 

recruitment mechanisms22. Concomitantly, directional artificial selection in the high and low 183 

selection group significantly altered the abundance of positive and negative taxa between phases. 184 

While no differences among the selection groups were observed in the transitory phase, 185 

significant effects occurred in the stabilization phase. Indeed, compared to the control group 186 

during this phase, the low selection resulted in a significant reduction of positive bacterial (red 187 

stars, from 22.44% to 14.66%, P < 0.01, Fig. S18, C) and fungal taxa (red star, from 8.60% to 188 

6.35%, P < 0.05, Fig. S18, D), as well as a significant increase in negative bacterial (red star, 189 

from 2.05% to 2.82%, P < 0.001, Fig. S18, E) and fungal taxa (red star, from 1.08% to 12.93%, 190 

P < 0.001, Fig. S18, F). These results indicated that despite the lack of reliable effects on the 191 

selected plant property (Fig. S14), the low selection modality has resulted in a significant 192 

steering of the rhizosphere microbiota structure. On the other hand, the efficient high selection 193 

resulted in a significant increase of positive fungal taxa (green stars, from 8.60% to 13.10%, P < 194 

0.001, Fig. S18, D), as well as a significant reduction of negative bacterial (green stars, from 195 

2.05% to 1.48%, P < 0.001, Fig. S18, E) and fungal taxa (green stars, from 1.08% to 0.29%, P < 196 

0.001, Fig. S18, E) compared to the control group during the stabilization phase. The increase of 197 

positive bacterial taxa was not significant (Fig. S18, D). Therefore, directional selection has 198 

either accelerated or slowed the controlled natural selection process instigated by the plant, by 199 

increasing or decreasing the relative abundance of phylogenetic distinct taxa correlating with the 200 

targeted property. 201 

 202 

Directional selection of the rhizosphere microbiota is a promising strategy for modifying plant 203 

phenotypes without changing plant genotypes. Here, we provide empirical evidence that plant 204 

phenotype can be altered by exclusively transferring rhizosphere microbiota from generation to 205 

generation (Fig. 1). We observed strong oscillations in microbial community structure during the 206 

first generations, followed by the maintenance of a stable community structure (Fig. 2), with a 207 

clear breaking point at generation G05 that supported the distinction between a transitory and a 208 

stabilization phase (Fig. 3, A). Once community structure stabilized, the selected plant property 209 

became heritable between generations G06 and G10 (Fig. 3, B), concomitantly to the appearance 210 

of distinct community structures in each selection group (Fig. 4, C-D). There was a strong and 211 

significant congruence between manipulated microbial community structures and all measured 212 

plant traits, suggesting a causal effect (Fig. 4, E-F). The specific focus on microbial taxa 213 

correlating with the leaf greenness revealed significant effects in the control group between the 214 

two phases, suggesting a controlled natural selection of the plant in favor of potentially 215 

beneficial taxa in the absence of directional artificial selection (Fig. S18). Compared to the 216 

control group, we verified that the selection pressure has indeed altered the abundance of two 217 

phylogenetically distinct microbial sub-communities correlating with the property of interest. We 218 

concluded that in artificial selection of microbial communities, the heritability of the selected 219 

property depends on the stability of microbial community structure19,20. We believe that 220 
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understanding the conditions leading to microbiota stability is an essential cornerstone for the 221 

development of efficient microbiota selection programs, that deserves increased attention in 222 

future research in this field. 223 
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Figures legends 397 

 398 
 399 

Figure 1: Analysis of the leaf greenness during the course of selection. Panel A and B are 400 

showing the evolution of shoot greenness across the ten generations in the high and low selection 401 

groups compared to the control group, respectively. Panel C shows the overall averaged leaf 402 

greenness values in all selection groups. Panel D shows the evolution of the standardized leaf 403 

greenness (z-score using the control group average and standard deviation) for the high and low 404 

selection groups across the ten generations. Panel E is showing the overall averaged leaf 405 

greenness values in all selection groups for the z-score standardized data. Statistical comparisons 406 

were done against the control group with a one-sided, two samples Student test (panels A-C) and 407 

a one-sided, one samples Student test for the standardized data (z-score, tested against zero, 408 

panels D-E). P-value significance: « *** » for P < 0.001; « ** » for P < 0.01; « * » for P < 0.05; 409 

« . » for P < 0.1. For panel A, B and D: N = 55-60 replicates per group per time point. For panel 410 

C end E: N = 591-596 replicates per group. Error-bar are representing the standard error of the 411 

mean. 412 

 413 

Figure 2: Distance-based redundancy analysis of the microbiota rhizosphere during the course of 414 

selection. Panel A and B represent the evolution of community dissimilarity for bacteria and 415 

fungi respectively. The same analysis applied for each selection group is available in supporting 416 

data (Fig. S6). The models were built using the Bray-Curtis dissimilarity index, with 10.000 417 

group permutations (Bray-Curtis ~ generation/selection/lineage). The R2 values are indicating the 418 

percentage of variance explained by the model. If significant, the constrained coordinates are 419 

shown (model P < 0.05, CAP, Constrained Analysis of Principal coordinates). If not, the 420 

unsupervised coordinates are shown (model P > 0.05, MDS: Multi-Dimensional Scaling). 421 

 422 

Figure 3: Evolution of the microbial beta diversity and the trait heritability. Panel A shows the 423 

overall evolution of each lineage (colored here by bacterial and fungal microbial groups for 424 

clarity sake) during the course of selection. The evolution of each bacterial and fungal lineages 425 

are displayed in supporting data (Fig. S11-S12). To generate this analysis, we compared six 426 

offspring rhizosphere microbiota from G10 in each lineage to their respective pools in 427 

descending order until reaching the initial pool used to inoculate the experiment at the beginning 428 

(see Fig. S10, A). An unsupervised segmented analysis was performed on each lineage, revealing 429 

an average breaking point in the beta diversity slope occurring at generation G05 (Fig. S11-S12). 430 

Panel B shows the concomitant evolution of the leaf greenness heritability, calculated as the 431 

slope between the averaged selected 8parent9 phenotype at generation « n » and their averaged 432 

8offspring9 phenotype at generation « n+1 » in all high, low and control lineages, respectively. A 433 

first model was constructed at the transitory phase ([G01-G05], light gray) and a second one at 434 

the stabilization phase ([G06-G10], dark gray) according to the beta diversity breaking point. To 435 

accurately estimate heritability in our experiment, we integrated values from all lineages (high, 436 

low and control) during the [G01-G05] and [G06-G10] intervals based on our unsupervised 437 

segmented analysis to spawn sufficient variability to be able to detect whether or not a 438 

relationship existed between selected parents and offspring plants. The linear equation for the 439 

stabilization phase was y = 0.454x - 6E-16. 440 

 441 
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Figure 4: Effect of artificial selection on the selected microbiota community structure and sparse 442 

partial least square discriminant analysis (sPLS-DA). Panel A and B show the structure of the 443 

rhizosphere bacterial and fungal communities during the transitory phase [G01-G05]. Panel C 444 

and D show the structure of the rhizosphere bacterial and fungal communities during the 445 

stabilization phase [G06-G10]. The models were built using the Bray-Curtis dissimilarity index, 446 

with 10.000 group permutations (Bray-Curtis ~ selection). The R2 values are indicating the 447 

percentage of variance explained by the model. If significant, the constrained coordinates are 448 

shown (model P < 0.05, CAP, Constrained Analysis of Principal coordinates). If not, the 449 

unsupervised coordinates are shown (model P > 0.05, MDS: Multi-Dimensional Scaling). Panel 450 

E and F are showing the results of the sPLS-DA between the plant traits dataset and the bacterial 451 

or fungal datasets, respectively. Arrow plots are showing the samples correspondence between 452 

microbial and plant data. The start of arrows indicates the location of the sample in the PCA of 453 

the dataset 1 (bacteria or fungi datasets), and the arrow tips indicate the location of the sample in 454 

the PCA of the dataset 2 (plant traits dataset). Arrow location, length and direction is 455 

corresponding to the congruence between datasets, which was tested with a randomized group 456 

simulation (N = 1,000 permutations, Fig. S15-S16). 457 

 458 
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Figures 460 

 461 

Figure 1 462 

 463 
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Figure 2 465 

 466 
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Figure 3 468 

 469 
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Figure 4 472 

 473 
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