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14 Short Sentence

15  Stable microbiota selection enables trait heritability
16

17 Abstract

18  Research on artificial selection of microbial community has become popular due to perspectives
19 in improving plant and animal health!*. However, reported results still lack consistency’. We
20  hypothesized that artificial selection may provide desired outcomes provided that microbial

21  community structure has stabilized along the selection process. In a ten-generation artificial

22 selection experiment involving 1,800 plants, we selected rhizosphere microbiota of

23 Brachypodium distachyon that were associated with high or low levels of leaf greenness, a proxy
24 for plant health’. Monitoring of the rhizosphere microbiota dynamics showed strong oscillations
25  in community structure during an initial transitory phase of five generations, with no heritability
26  in the selected property. In the last five generations, the structure of microbial communities

27  displayed signs of stabilization, concomitantly to the appearance of heritability in leaf greenness.
28  Selection pressure, initially ineffective, became successful in changing the greenness index in the
29  intended direction, especially toward high greenness values. We showed a remarkable

30  congruence between plant traits and selected microbial community structures, highlighting two
31  phylogenetically distinct microbial sub-communities correlating with leaf greenness, whose

32 abundance was significantly steered by directional artificial selection. Understanding microbial
33  community structure stabilization can thus help improve the reliability of artificial microbiota

34 selection.
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Main Text

Empirical studies of artificial selection have demonstrated that it is possible to steer microbiota
across generations to modify microbial ecosystems properties*®. In some cases, the selected
property can be a trait displayed by the host of a microbiota, like with microbial communities
associated to plants>!%!3, This opens new avenues for plant breeding via directional artificial
selection of rhizosphere microbiota'™. Still, while previous studies reported significant selection
effects®”!!, the selected property may not be perennial and lost during the process®’. From a
practical point of view, it is thus crucial to understand the causes behind this inconsistency. We
hypothesized that an important prerequisite for successful selections is to reach a stable state in
microbial community structure'®. In the field of artificial selection of communities>!”7,
mathematical models have shown that the heritability of the selected property, one of the three
essential features of a unit of selection'®, depends on the stability of community structure!-°.
However, this hypothesis about ‘stability of community structure being a prerequisite for the
heritability of the selected property’ has never been empirically confirmed. Here, we tested it by
investigating the dynamics of microbial community and the heritability in the selected property
during the selection process.

We artificially selected rhizosphere microbiota according to their impact on a leaf greenness
index, a remote proxy for plant nutritional and health status® (Fig. S1), using the grass species
Brachypodium distachyon grown in microcosms in a climatic chamber (Fig. S2-S3). There were
two treatments, in which low and high levels of leaf greenness were selected for, respectively
(hereafter, the low and high selection groups). There was also a control group, in which selection
was random. The selection process was repeated across ten generations, each lasting four weeks
(Fig. S2). The three experimental groups (low selection, high selection, and control) each
contained three independent replicate lineages composed of twenty microcosms. At the end of
each generation, 3 of the 20 microcosms within each lineage were selected based on their leaf
greenness values (Fig. S4). Their rhizosphere microbiota were extracted, pooled, and used to
inoculate seedlings of the next generation (Fig. S2-S3). We used the same seed batch throughout
the experiment, thus only the rhizosphere microbiota could evolve, not the plant genotype.

Analysis of leaf greenness revealed a generation effect (39.77% of the variance, P < 0.001; Table
S1, Fig.1, A-B) due to uncontrolled biotic and/or abiotic variations, as commonly observed in
this kind of selection experiments>!2. Nevertheless, we detected significant changes in leaf
greenness due to the microbiota-based artificial selection (selection + lineage = 10.15% of the
variance, P < 0.001, Tab.S1), occurring at specific generations (Fig. 1, A-B). Across the entire
experiment, this resulted in a significant increase in leaf greenness in the high selection group
compared to the control, but not for the low selection group (Fig. 1, C). This trend was also
observed on the other plant traits acquired by the image analysis (Fig. S4), again with a
significant increase only for the high selection group (Fig. S5). The effect of selection on the
targeted plant trait was more pronounced once data was standardized with the random selection
group to control the generation effect (z-score normalization, Fig. 1, D-E).

In parallel, our findings underscore strong oscillations of bacterial community structure for the
first five generations of selection (dotted line, R?>=0.56, P <9.99x107, Fig. 2, A), occurring for
all selection groups (Fig. S6). These oscillations were not observed any more from generation
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GO05, denoting a stabilization of bacterial community structure. Fungal community structure
abruptly shifted early on and then continued to change at a slower pace for all selection groups
(dotted line, R’ = 0.59, P < 9.99x10, Fig. 2, B, Fig. S6). We found that this stabilization was
more pronounced for bacteria in the high selection group (Fig. S6), where the effect of selection
on the selected property was the most significant (Fig. 1, C). The overall stabilization of the
microbiota was also observed on the alpha diversity for both bacteria (Fig. S7) and fungi (Fig.
S8), displaying an initial increase and then plateaued in all treatment groups. Since molecular
quantification of bacterial and fungal markers were stable across the experiment (Fig. S9), the
most parsimonious interpretation of these results is that our iterative microbiota inoculation
procedure in all selection groups has decreased the dominance of microbial species initially
present, and promoted rare species, resulting in more even communities. To detect an eventual
tipping point in community structure over the course of generations, we applied an unsupervised
segmented regression analysis on the beta diversity dynamics of each lineage (Fig. S10, A).
Results confirmed the presence of a breaking point at generation GOS5 on average for both
bacterial (range: 3.00-6.65; Fig. S11) and fungal (range: 4.00-7.43, Fig. S12) lineages. When
considering all data points regardless of lineages, we confirmed that microbial community
dissimilarity sharply decreased from generation GO1 to GO5 and then stabilized (the slope not
significantly different from O for bacteria and a weaker slope for fungi; Fig. 3, A, Fig. S10, B).
This stabilization was not due to a homogenization of microbial communities amongst lineages
due to cross or environmental contaminations, as shown by the distinct microbial community
structures obtained in each lineage for all selection groups, except the random lineages of
bacteria (P < 0.05, Fig. S13). These results suggested the existence of two distinct phases during
the course of microbiota selection: a transitory phase before generation GO5 and thereafter a
stabilization phase (Fig. 3, A). The presence of these two phases was also visible on the selected
property (Fig. S1, C), and became blatant when analyzing the property for each phase separately,
as the leaf greenness index clearly increased significantly in the high selection group after
generation GO5 (Fig. S14, A), for all three high lineages (Fig. S14, B). Results in the low
selection were more contrasted. Pronounced leaf discoloration was observed in lineage LL1 (Fig.
S14, B-D), responsible of the overall trend observed in the low selection group (Fig. 1, E; Fig.
S14 A). Lineage LL2 did not differ from the control group, while LL3 displayed the opposite
trend compared to our expectations (Fig. S14, B), probably due to the lack of bacterial
community stabilization (Fig. S11).

Our hypothesis was that stability in microbial community structure is a prerequisite to the
heritability of the selected property. Here, we considered community heritability as the
regression coefficient between the parental and offspring values of the selected property’. We
calculated this regression across all selection groups to get both low, random and high values of
parent/offspring couples, for the transitory and stabilization phases respectively (Fig. 3, B).
According to our prediction, we observed no significant correlations between greenness indices
of the parental and offspring microbial communities during the transitory phase (R?=0.03, P =
0.66), but a significant correlation during the stabilization phase (R2 = 0.21, P =5.42x107%). We
also noted that community dissimilarity in the high selection lineages, for which selection was
efficient, was significantly lower compared to the other groups (Fig. S10, C). Taken together,
these results confirm modeling predictions that successful artificial selection on microbial
communities requires stability, thus enabling a heritable property'®?. Indeed, during the
transitory phase, as each microbial species had its own population dynamic depending on biotic
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and abiotic factors, there was no a priori synchronicity between their abundance variations.
Directional artificial selection applied during this phase resulted in the selection of microbial
community that i) may contribute to the observed plant property and ii) reached a certain degree
of synchronicity amongst the multiple population dynamics, thus leading to the emergence of a
reproduced pattern in microbial community structures that will ensure the heritability of the
selected property across generations'>*’. Microbial species not showing synchronicity might be
selected once, but not over the course of the entire iterative process.

We then searched for differences in community structure that could explain changes in leaf
greenness amongst selection groups. In this aim, we first looked at microbial community
structure in the selection groups between the two phases. We could not identify any effects of
selection on the structure of the bacterial (R* = 0.03, P = 0.82, Fig. 4, A) and fungal communities
(R>=0.03, P =0.64, Fig. 4, B) during the transitory phase (generation GO1 to G05). However,
when assessing the selection effect during the stabilization phase (generation G06 to G10), we
detected significant effects both for bacterial (R? = 0.08, P = 1.30x107, Fig. 4, C) and fungal (R?
=0.16, P =9.99x107, Fig. 4, D) communities. These results confirmed that directional selection
became operational on the community structure only after stabilization was reached, and
motivated the search for correlations between the evolution of all recorded plant traits and
microbial community composition throughout the whole dataset. All morphological plant traits
recovered from the camera-based phenotyping (convex hull perimeter, leaf area, maximum width
and height, projected leaf area, density, and the greenness index; Fig. S4-S5) were considered as
a “plant multivariate dataset”. Using two separate sparse partial least squares discriminant
analysis, we estimated the level of congruence between the plant multivariate dataset and either
the bacterial (Fig. S15) or fungal datasets (Fig. S16). We found a strong correlation between
plant traits and microbial community structure (R? = 0.61, P < 0.001 for bacteria, Fig. 4, D, and
R?2=0.63, P <0.001 for fungi, Fig. 4, E), which can be assimilated to a causal relationship, since
the transfer of microbial communities from one generation to the other was the unique source of
non-random variation influencing plant traits during the experiment.

From this analysis, we specifically excavated the microbial taxa that correlated either positively
or negatively with the leaf greenness from the multivariate plant dataset, regardless of
generation, selection group, or lineage. When considering only strong correlations (>[0.4]), we
detected two distinct microbial sub-communities: i) one made of 325 taxa whose abundances
were positively correlated with leaf greenness (hereafter called “positive taxa”, 313 bacterial and
12 fungal, Fig. S17) and i1) one made of 68 taxa whose abundances were negatively correlated
with leaf greenness (hereafter called “negative taxa”, 49 bacterial and 19 fungal, Fig. S17). The
taxa in the positive and negative microbial sub-communities belonged to very distinct
phylogenetic groups, with a greater diversity for positive bacteria than the negative ones, while
the negative fungal taxa showed slightly higher diversity than the positive ones (Fig S17).
Finally, we investigated the effect of selection on the grouped relative abundance of these
positive and negative microbial taxa in order to identify how they responded to directional
artificial selection between the transitory and stabilization phases (Fig. S18). We noted
significant changes in the relative abundance of these taxa between the two phases regardless of
the selection groups, with a significant increase of positive bacterial and fungal taxa as well as a
significant decrease of negative bacterial taxa and increase in negative fungal taxa (mostly
explained by the low selection group, panel F) from the transitory to the stabilization phase (P <
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0.001; Fig. S18 A-B). This general trend was well captured in the control group, which was not
subjected to directional selection (blue lines and stars, control at transitory vs control at
stabilization, P < 0.05, Fig. S18 C-F). These observations indicated that the transfer of random
parental microbial communities to the offspring generations was not a neutral process, as it led to
significant changes in the community structure (Fig. 4 C-D) and the abundance of taxa
correlating with greenness (Fig. S18). This phenomenon, known to occur in experimental
evolution experiments in the absence of selection pressure, is referred to as ‘controlled natural
selection’®!, and is due to the selection effect of the plant on its microbiota via specific
recruitment mechanisms??. Concomitantly, directional artificial selection in the high and low
selection group significantly altered the abundance of positive and negative taxa between phases.
While no differences among the selection groups were observed in the transitory phase,
significant effects occurred in the stabilization phase. Indeed, compared to the control group
during this phase, the low selection resulted in a significant reduction of positive bacterial (red
stars, from 22.44% to 14.66%, P < 0.01, Fig. S18, C) and fungal taxa (red star, from 8.60% to
6.35%, P < 0.05, Fig. S18, D), as well as a significant increase in negative bacterial (red star,
from 2.05% to 2.82%, P < 0.001, Fig. S18, E) and fungal taxa (red star, from 1.08% to 12.93%,
P <0.001, Fig. S18, F). These results indicated that despite the lack of reliable effects on the
selected plant property (Fig. S14), the low selection modality has resulted in a significant
steering of the rhizosphere microbiota structure. On the other hand, the efficient high selection
resulted in a significant increase of positive fungal taxa (green stars, from 8.60% to 13.10%, P <
0.001, Fig. S18, D), as well as a significant reduction of negative bacterial (green stars, from
2.05% to 1.48%, P < 0.001, Fig. S18, E) and fungal taxa (green stars, from 1.08% to 0.29%, P <
0.001, Fig. S18, E) compared to the control group during the stabilization phase. The increase of
positive bacterial taxa was not significant (Fig. S18, D). Therefore, directional selection has
either accelerated or slowed the controlled natural selection process instigated by the plant, by
increasing or decreasing the relative abundance of phylogenetic distinct taxa correlating with the
targeted property.

Directional selection of the rhizosphere microbiota is a promising strategy for modifying plant
phenotypes without changing plant genotypes. Here, we provide empirical evidence that plant
phenotype can be altered by exclusively transferring rhizosphere microbiota from generation to
generation (Fig. 1). We observed strong oscillations in microbial community structure during the
first generations, followed by the maintenance of a stable community structure (Fig. 2), with a
clear breaking point at generation GO5 that supported the distinction between a transitory and a
stabilization phase (Fig. 3, A). Once community structure stabilized, the selected plant property
became heritable between generations GO6 and G10 (Fig. 3, B), concomitantly to the appearance
of distinct community structures in each selection group (Fig. 4, C-D). There was a strong and
significant congruence between manipulated microbial community structures and all measured
plant traits, suggesting a causal effect (Fig. 4, E-F). The specific focus on microbial taxa
correlating with the leaf greenness revealed significant effects in the control group between the
two phases, suggesting a controlled natural selection of the plant in favor of potentially
beneficial taxa in the absence of directional artificial selection (Fig. S18). Compared to the
control group, we verified that the selection pressure has indeed altered the abundance of two
phylogenetically distinct microbial sub-communities correlating with the property of interest. We
concluded that in artificial selection of microbial communities, the heritability of the selected
property depends on the stability of microbial community structure!®*’. We believe that
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221 understanding the conditions leading to microbiota stability is an essential cornerstone for the
222 development of efficient microbiota selection programs, that deserves increased attention in
223 future research in this field.
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397  Figures legends

398
399

400  Figure 1: Analysis of the leaf greenness during the course of selection. Panel A and B are

401  showing the evolution of shoot greenness across the ten generations in the high and low selection
402  groups compared to the control group, respectively. Panel C shows the overall averaged leaf

403  greenness values in all selection groups. Panel D shows the evolution of the standardized leaf
404  greenness (z-score using the control group average and standard deviation) for the high and low
405  selection groups across the ten generations. Panel E is showing the overall averaged leaf

406  greenness values in all selection groups for the z-score standardized data. Statistical comparisons
407  were done against the control group with a one-sided, two samples Student test (panels A-C) and
408  aone-sided, one samples Student test for the standardized data (z-score, tested against zero,

409  panels D-E). P-value significance: « *** » for P < 0.001; « ** » for P < 0.01; « * » for P < 0.05;
410  «.» for P <0.1. For panel A, B and D: N = 55-60 replicates per group per time point. For panel
411 Cend E: N =591-596 replicates per group. Error-bar are representing the standard error of the
412 mean.

413

414  Figure 2: Distance-based redundancy analysis of the microbiota rhizosphere during the course of
415  selection. Panel A and B represent the evolution of community dissimilarity for bacteria and

416  fungi respectively. The same analysis applied for each selection group is available in supporting
417  data (Fig. S6). The models were built using the Bray-Curtis dissimilarity index, with 10.000

418  group permutations (Bray-Curtis ~ generation/selection/lineage). The R? values are indicating the
419  percentage of variance explained by the model. If significant, the constrained coordinates are

420  shown (model P < 0.05, CAP, Constrained Analysis of Principal coordinates). If not, the

421  unsupervised coordinates are shown (model P > 0.05, MDS: Multi-Dimensional Scaling).

422

423 Figure 3: Evolution of the microbial beta diversity and the trait heritability. Panel A shows the
424 overall evolution of each lineage (colored here by bacterial and fungal microbial groups for

425  clarity sake) during the course of selection. The evolution of each bacterial and fungal lineages
426  are displayed in supporting data (Fig. S11-S12). To generate this analysis, we compared six

427  offspring rhizosphere microbiota from G10 in each lineage to their respective pools in

428  descending order until reaching the initial pool used to inoculate the experiment at the beginning
429  (see Fig. S10, A). An unsupervised segmented analysis was performed on each lineage, revealing
430  an average breaking point in the beta diversity slope occurring at generation GOS (Fig. S11-S12).
431  Panel B shows the concomitant evolution of the leaf greenness heritability, calculated as the

432 slope between the averaged selected ‘parent’ phenotype at generation « n » and their averaged
433 ‘offspring’ phenotype at generation « n+1 » in all high, low and control lineages, respectively. A
434 first model was constructed at the transitory phase ([GO1-GO05], light gray) and a second one at
435  the stabilization phase ([G06-G10], dark gray) according to the beta diversity breaking point. To
436  accurately estimate heritability in our experiment, we integrated values from all lineages (high,
437  low and control) during the [GO1-GOS5] and [G06-G10] intervals based on our unsupervised

438  segmented analysis to spawn sufficient variability to be able to detect whether or not a

439  relationship existed between selected parents and offspring plants. The linear equation for the
440  stabilization phase was y = 0.454x - 6E-16.

441
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Figure 4: Effect of artificial selection on the selected microbiota community structure and sparse
partial least square discriminant analysis (SPLS-DA). Panel A and B show the structure of the
rhizosphere bacterial and fungal communities during the transitory phase [G01-GO05]. Panel C
and D show the structure of the rhizosphere bacterial and fungal communities during the
stabilization phase [G06-G10]. The models were built using the Bray-Curtis dissimilarity index,
with 10.000 group permutations (Bray-Curtis ~ selection). The R? values are indicating the
percentage of variance explained by the model. If significant, the constrained coordinates are
shown (model P < 0.05, CAP, Constrained Analysis of Principal coordinates). If not, the
unsupervised coordinates are shown (model P > 0.05, MDS: Multi-Dimensional Scaling). Panel
E and F are showing the results of the sSPLS-DA between the plant traits dataset and the bacterial
or fungal datasets, respectively. Arrow plots are showing the samples correspondence between
microbial and plant data. The start of arrows indicates the location of the sample in the PCA of
the dataset 1 (bacteria or fungi datasets), and the arrow tips indicate the location of the sample in
the PCA of the dataset 2 (plant traits dataset). Arrow location, length and direction is
corresponding to the congruence between datasets, which was tested with a randomized group
simulation (N = 1,000 permutations, Fig. S15-S16).
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