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Abstract

Advances in next-generation sequencing technologies have led to the development of person-
alized genomic profiles in diagnostic panels that inform oncologists of alterations in clinically
relevant genes. While targeted therapies for some alterations may be found, an effective thera-
peutic strategy should consider multiple and dependent genetic interactions that affect cancer
progression, a task which remains challenging. There are ongoing efforts to profile cancer cells
in-vitro, both to catalog their genomic information and study their sensitivity to various drugs.
There is a need for tools that can interpret the personalized genomic profile of a patient in
light of information from these biological and pre-clinical studies and recommend potentially
useful drugs. To address this need, we develop a new algorithmic framework called DruID, to
effectively combine drug efficacy predictions from a deep neural network model with informa-
tion, such as drug sensitivity, drug-drug interactions and genetic dependencies, from multiple
publicly available databases. We empirically evaluate DruID on cancer cell line data on which
efficacy of many drugs have been experimentally determined. We find that DruID outperforms
competing approaches and promises to be a useful tool in clinical decision-making.

1 Introduction

1.1 Objective

Advances in next-generation sequencing technologies have led to the development of personalized
genomic profiles that can now be used in clinical diagnostics. These diagnostic panels inform oncolo-
gists of alterations in specific genes, for which targeted therapies are available or being investigated.
However, effectively utilizing the information in these panels to guide treatment decisions remains
difficult due to various reasons [1, 2]. For example, therapies targeting specific genetic alterations
may not always be effective, and the cancer may become resistant to them [3, 4, 5]. Suitable
combination of therapies that target multiple alterations or that combine targeted therapies with
traditional chemotherapy, may need to be found which can also be challenging [6, 7].

Genetic alterations and their dependencies are not fully understood and there are several ongoing
efforts to profile cancer cells in-vitro, both to catalog their genomic information and to study their
sensitivity to various drugs [8, 9, 10]. There is a need for tools that can integrate information
from these biological and pre-clinical studies to analyze and interpret the personalized genomic
profile of a patient and recommend potentially useful drugs [11]. To address this need, we aim to
develop an algorithmic framework called DruID (Drug Recommendations by Integrating Multiple
Biomedical Databases), to effectively combine a deep neural network model for predicting drug
efficacy on a genomic profile with information from multiple databases, that can include drug
sensitivity information on model cancer cell lines, drug-drug interactions and genetic dependencies
such as synthetic lethality.

1.2 Background and Significance

Cancer treatment is challenging due to inter-tumor and intra-tumor heterogeneity that results in
considerable diversity in subtypes, treatment sensitivity and outcomes across patients. As a result,
cancer care has been progressively moving from a ‘one-size-fits-all’ approach to a more personalized
strategy based on patient-specific molecular characteristics [12]. Such personalization has been
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enabled by targeted therapies – drugs designed to interfere with a specific molecular target, typically
a protein, that is believed to have a critical role in tumour growth or progression [13]. These therapies
have mainly focused on targeting recurrent actionable mutations in oncogenic drivers. Yet, many
challenges remain due to heterogeneity in genomic alterations across tumors, low prevalence of
some alterations and emergence of acquired resistance [6, 5]. Clinical significance of many of the
alterations are unknown and the list of actionable cancer driver genes remains incomplete [14, 1, 15].
Suitable drugs to target specific alterations may not be known [16], cancers may harbour loss-of-
function mutations in tumour-suppressor genes or activating mutations in currently undruggable
oncogenes [17], or the right treatment approach may require a combination of drugs that may be
difficult to find [6].

The dynamic changes in the genome due to cancer lead to various genetic aberrations such as
somatic mutations, copy number variations, changed gene expression profiles, and different epi-
genetic alterations. There has been concerted efforts to create many public databases to catalog
these molecular phenotypes. For instance, The Cancer Genome Atlas (TCGA) [18] has data from
more than 11,000 patient across 33 cancer types. Cancer cell lines derived from naturally occur-
ring tumours have been generated and the effect of many drugs on them have been documented,
e.g., in the Genomics of Drug Sensitivity in Cancer (GDSC) database [8] and Cancer Cell Line
Encyclopedia [9], to aid therapeutic development. The analysis of such molecular and genomic
data has vastly improved our understanding of the underlying mechanisms of cancer [19]. Advances
in next-generation sequencing technologies have also led to the development of customizable gene
panels that have reached the clinic. For instance, Foundation Medicine provides FDA-approved
genomic profiling tests comprising clinically relevant biomarkers and genomic alterations which can
potentially be used by oncologists to match the patient to appropriate targeted therapies [20].

While target drugs for each alteration may be found, the efficacy of drugs for a given combination
of mutations is difficult to determine. This restricts the applicability of targeted therapies to a
‘one target - one drug’ mode which may have limited efficacy. Cancer progression occurs through
accumulation of multiple interacting genetic interactions [21, 22], and so, the entire mutational
landscape should be considered for making treatment decisions. Thus, for oncologists to utilize
these diagnostic profiles, there is a need for tools that can analyze the collective information of
the alterations found to determine the therapeutic strategy. Such tools can leverage the growing
catalog of information in public databases to learn latent correlations among alterations, including
those that are not oncogenes, and integrate known pharmacological evidence, to recommend drugs
personalized for the input profile.

Previous studies have attempted to provide such recommendations through predictive models
that can predict the efficacy of a drug for an input genomic profile. For instance, [23] proposed an
algorithm based on combined drug and cell line similarity score to prioritize drugs specific to a cell
line (or a patient profile) based on similarity of the input drug and cell line to those in GDSC and
CCLE. Recently, [24] design a neural network that takes as input mutation and expression data from
cell lines to predict drug responses. These methods require gene expression data as inputs which are
less commonly used in clinical settings. To predict drug response from mutation profiles alone, [25]
develop DrugCell, an interpretable deep neural network that takes as input mutation data (from
a cell line) and drug chemical structure to predict drug response. Its interpretability comes from
a hierarchical network architecture that is based on the structure of biological processes from the
Gene Ontology (GO) database. However it is difficult to extend its use across panels because its
network architecture would have to change for different diagnostic panels containing different sets
of genes, based on the GO hierarchy for the input genes.

To our knowledge, PanDrugs [26] is the only previous method that integrates evidence from
multiple public databases and can be utilized to prioritize drugs according to individual genomic
data. Pandrugs collects pharmacological data and drug annotations from 24 databases compris-
ing a variety of clinical, biological, and pharmacological sources. Drug names are standardized
and annotated with additional information such as drug indication status and gene-drug relation-
ships. PanDrugs also provides two scores that are calculated by integrating information from these
databases. Gene Score (GScore) measures the biological relevance and clinical implication of the
gene in cancer. Drug Score (DScore) is an estimate of drug response and treatment suitability with
respect to a gene. PanDrugs has a web interface where a list of mutated genes (optionally, with
variant information) can be given and a list of drugs, prioritized based on their GScore and DScore,
can be viewed.

In this paper we present a new, general framework, called DruID, to utilize both predictive
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models and public databases for drug recommendations personalized to a input genomic profile. A
Prescriptive Analytics framework based on Integer Programming is used within DruID to integrate
information from diverse sources. Previous approaches such as drug efficacy predictors and precom-
puted scores like GScore and DScore can be effectively combined through DruID as we demonstrate
in our experiments.

2 Materials and Methods

We first provide a brief overview of the publicly available data used in DruID. Then we give a
detailed description of how DruID integrates the available information.

2.1 Data

We describe the publicly available datasets that have been integrated using DruID and used in our
experiments.

• Cancer Cell Lines. The Cancer Cell Line Encyclopedia (CCLE) [27, 9] is a collection of more
than 1800 human cancer cell lines along with pharmacological profiling of 24 drugs on 504 of
these cell lines. Genomic characterization of the cell lines have been performed, using various
platforms, to obtain somatic mutation profiles, DNA copy numbers, DNA methylation, RNA
expression, protein expression and other data. The Genomics of Drug Sensitivity in Cancer
(GDSC) database [8] also contains drug sensitivity data of nearly 450 drugs on 1000 cancer
cell lines. The data is linked to genomic data (somatic mutations in cancer genes, gene
amplification and deletion, tissue type and transcriptional data) to facilitate biomarker and
drug discovery. CCLE and GDSC share 988 cell lines in common. Pharmacological profiles
have been obtained by exposing cells to different concentrations of a drug and scoring cell
viability. The viability relative to untreated controls is typically assumed to follow a sigmoid
response as a function of the logarithm of the drug concentration. Thus, a sigmoid curve is
fitted to the experimental dose response data to estimate a non-linear mixed effect model.
The Area Under the Curve (AUC) is a measure of the efficacy of the drug: small AUC values
indicate strong response, whereas large values indicate limited or no response [28]. Thus, AUC
value is a combined single value representing potency and efficacy of drug in inhibiting the
growth in cell line. More details can be found in [8, 29, 30].

• Drug-drug Interaction. Drug interactions are important to consider in combination therapy
regimens to maximize efficacy of their synergistic use and minimize toxicity due to antagonistic
interactions [7]. The Therapeutic Target Database (TTD) [31] contains detailed information
of drugs and their targets, such as target function, sequence and 3D structure, and drug
structure, therapeutic class, and clinical development status. Drug Combination Databases
(DrugCombDB [32] and DCDB [33]) contain information of synergistic and antagonistic com-
binations of drugs, curated from multiple sources (e.g., the Food and Drug Administration
(FDA) electronic orange book and clinical studies from the literature).

• Synthetic Lethality. A pair of genes is considered Synthetic Lethal (SL) when the cell
remains viable with functional loss of either gene but the loss of both genes is lethal. SL holds
great promise for developing targeted anticancer therapies [17]. The key idea is to exploit the
presence of an SL pair (A,B) where one of them (say, A) may be mutated in cancer cells.
Then, a drug targeting B would kill cancer cells but normal cells, with functional A, would
remain viable even with the loss of B. This would lead to highly specific therapies with minimal
side effects. Thus, SL can be leveraged to identify novel drug targets in cancers driven by
loss of a tumour-suppressor gene or a currently undruggable oncogene and can expand the
scope of precision medicine [17, 34]. SynLethDB [35] provides a database for human SL gene
pairs, in turn collected from various sources such as from shRNA and RNAi screens [36],
the DECIPHER project [37], BioGRID [38], DAISY [39] and text mining. In total there are
19,952 predicted human SL pairs.

• PanDrugs Scores. PanDrugs provides two scores – Drug Score (DScore) and Gene Score
(GScore) – that are precomputed and stored in their database. DScore measures the thera-
peutic suitability of a drug with respect to a particular gene (alteration). The computation of
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DScore takes into account multiple factors – drug-cancer type indication, drug clinical status,
in-vitro drug screening data, gene–drug relationship and number of curated databases sup-
porting that relationship. GScore measures the biological relevance of the gene in the tumoral
process and its therapeutic actionability. The computation of GScore considers genomic fea-
ture evidence, relevance in cancer estimated by various cancer data portals, gene essentiality
and its clinical implications. More details can be found in [26]. Note that the computation of
these scores utilizes information from multiple public databases.

The datasets obtained from these sources required minimal preprocessing as described in the
following before their use in DruID. For SL pairs from SynLethDB, we choose a threshold value
(t = 0.9): all pairs with scores above t are considered SL and given value 1, others are given value
0. Further, we consider only those pairs that have been validated from genomeRNAi experimental
screens to minimize false positives. We add 1 to the Drug Interaction scores obtained from the
database to make the range [0, 2]. Thus, 0 indicates antagonistic interaction, 1 indicates no (known)
interaction and 2 indicates synergistic interaction: higher values are more favorable. For drug
efficacy we use (1-AUC) values: thus higher values indicate better drug efficacy on the cell line.
The ordering of entities (genes, drugs and cell lines) is ensured to be uniform across all datasets.

2.2 Our Model: DruID

DruID takes a list of genes with mutations, from a single patient or cell line, as input. This list may
be obtained from genomic profiles such as the FoundationOne diagnostic test [20]. Using multiple
public databases, DruID aims to find a list of drugs most suitable for the input set of genomic
alterations. DruID is an Integer Programming model that is designed to simultaneously find (i) a
set of cell lines, (ii) a set of genes in the cell lines and (iii) a set of drugs, in a manner such that
multiple criteria are satisfied. There are two input parameters L and M to specify the minimum
number of cell lines to select and maximum number of drugs. The criteria used are as follows.

• DruID selects a set of at least L cell lines and a set of mutations such that:

– the selected cell lines contain all the input mutations, thereby selecting the “closest” set
of cell lines similar to the input sample.

– the GScores of selected mutated genes in the cell lines are maximized. Note that these
genes need not be just those in the input set.

• DruID selects a set of at most M drugs such that:

– the sensitivity of the selected drugs to the selected cell lines is maximized.

– synergistic interactions among the selected drugs is maximized and antagonistic interac-
tions are minimized.

– efficacy (measured by DScores) on SL partners of input genes is maximized.

– predicted drug efficacy (using a predictive model) on the selected cell lines is maximized.

The inputs to our model are summarized in Table 1, along with the notations used in the
following. More details of the deep neural network used as the predictive model are in section 2.2.2.

2.2.1 DruID Integer Programming Model

We define the following binary decision variables whose values are learnt through the optimization:

• zk: to select drugs, k = 1, . . . ,K

• ti: to select cell lines, i = 1, . . . , I

• ej : to select genes, j = 1, . . . , J

We now describe the objectives and constraints in the model.
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Table 1: Input to DruID: matrices from public databases and predictive model

Matrix (Symbol) Row (index) Column (index) Datatype Description Source

1. Cell line - Drug efficacy (C) Cell line (i) Drug (k) Float, (1-AUC), range: 0–1 CCLE, GDSC

2. Cell line – Gene mutations (Q) Cell line (i) Gene (j) Binary, 1: damaging CCLE
non-conserving mutation

3. Drug-Drug Interaction (N) Drug (k) Drug (k) Values: {0,1,2}. TTD, DCDB,
0: antagonist, 1: no interaction DrugCombDB
2: synergistic

4. DScore (D) Gene (j) Drug (k) Float, range: 0–1 PanDrugs

5. GScore (G) Gene (j) – Float, range: 0–1 PanDrugs
(one score per gene)

6. SL Gene Pair (S) Gene (j) Gene (j) Binary SynLethDB
1 if gene pair is predicted/
known to be SL

7. Predicted Drug Efficacy (R) Drug (k) – Prediction for each drug on input, Neural Network
Float, range: 0–1

Cell Line Drug Efficacy. The first objective is to select those cell lines and drugs such that
the efficacy of the selected drugs on the selected cell lines is maximized. This is done through the
following objective term.

I∑
i=1

K∑
k=1

tizkCik (1)

GScores. We maximize the GScores of the selected genes in the selected cell lines:

J∑
j=1

I∑
i=1

tiejQijGj (2)

Cell Line Selection. We minimize the number of cell lines selected by maximizing:

−
∑
i

ti. (3)

Without this term, the optimization can yield trivial solutions by selecting all the input cell lines.

Drug-Drug Interactions. To maximize the synergistic effect (and minimize antagonistic effect)
of the selected drugs, we maximize:

K∑
k=1

K∑
k′=1

zkzk′Nkk′ (4)

SL Interactions. To identify SL partners of selected genes, we introduce another binary indicator
Wj′ that is set to 1 if gene j′ is an SL partner gene to one or more of input genes. This can be
done by iterating through the SL matrix S and checking if there are reported partner genes for any
of the input genes. Note that W is an input to and not a variable in the optimization model. We
maximize the DScores of the selected drugs on the partner genes through:

J∑
j=1

K∑
k=1

zkWjDjk (5)

Predictive Model. To maximize the predicted drug efficacy on the input cell line/patient, we
maximize:

K∑
k=1

zkRk (6)

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.11.439315doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439315
http://creativecommons.org/licenses/by-nc-nd/4.0/


Predictions from any model, e.g., logistic regression, decision trees or neural network, may be used.
More details of the neural network we use are in section 2.2.2.

Mutation Coverage Constraints. We ensure that at least one cell line is present for each selected
mutation, this ensures that the selected cell lines contain all the mutations. This is enabled through
the standard IF-ELSE construct: if ej = 1 then

∑I
i=1 tiQij ≥ 1. We introduce a large constant B2

and a binary variable vj . The following two sets of constraints implement the IF-ELSE construct.

ej ≤ B2(1− vj) ∀j (7)

1−
I∑

i=1

tiQij ≤ B2vj ∀j (8)

Input Mutation Constraints. Further, we ensure that all the input mutations are covered:

ej = 1 for all genes in the input list (9)

User Input Constraints. To ensure at most M selected drugs and at least L selected cell lines,
we add the constraints: ∑

k

zk ≤M,
∑
i

ti ≥ L (10)

Thus, we get the following Integer Programming Model, with objective terms from (1), (2),
(3), (4), (5) and (6). We add the denominators to ensure that each term is normalized and lies
between 0 and 1. Weights α, β can be set by the user to increase the relative importance of the
terms corresponding to the known drug efficacy on selected cell lines and predicted drug efficacy on
input cell line.

max
ti,zk,ej

α

∑I
i=1

∑K
k=1 tizkCik∑I

i=1

∑K
k=1 Cik

+

∑J
j=1

∑I
i=1 tiejQijGj∑J

j=1

∑I
i=1QijGj

−
∑I

i=1 ti
I

+

∑K
k=1

∑K
k′=1 zkzk′Nkk′∑K

k=1

∑K
k′=1Nkk′

+

∑J
j=1

∑K
k=1 zkWjDjk∑J

j=1

∑K
k=1Djk

+ β

∑K
k=1 zkRk∑K
k=1Rk

subject to Mutation coverage constraints (7) and (8), input mutation constraint (9) and user-selected
maximum drugs and minimum cell lines constraints (10). Figure 1 shows a schematic of DruID.

Integer Programming models, including DruID, can leverage accurate and efficient heuristics,
such as LP-based Branch and Bound and Cutting Plane methods, with readily available implemen-
tations in general-purpose solvers (e.g. Gurobi [40]) to find approximate solutions. These heuristics
are designed to run for a pre-specified period of time, during which they can find multiple optimal
and near-optimal solutions.

2.2.2 Deep Neural Network

A predictive model is used in term (6) within DruID. For this, we use a deep neural network (DNN).
The DNN is trained to take as input a pair – drug and mutation profile – and predict the AUC for
the drug on that profile. The mutation profiles are 324-dimensional binary vector representing the
324 genes in the FoundationOne CDx panel. A value of 1 in the ith position indicates a mutation
in the ith gene. The drugs are represented by 2048-dimensional Morgan fingerprint bit vectors that
encode the chemical structure. Thus, the input to the DNN is a (2048 + 324 =) 2372-dimensional
binary vector and the output is a real number indicating the AUC.

Our DNN has a feedforward network architecture comprising 3 layers. The first two layers are of
size 1000 and 100 with Tanh and ReLU activations. The final output layer has a sigmoid activation
to obtain an output value that lies between 0 and 1 to represent the AUC. The network is trained
to minimize the mean squared error loss, using the Adam optimizer [41]. Dropout with rate 0.5 is
used to prevent overfitting and batch size of 1000 is used. Training is done for 50 epochs. Note that
DruID only utilizes the predictions of the model. Any other predictive model, e.g., DrugCell [25],
may also be used within DruID.
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Figure 1: A schematic of DruID. Decision variables are ti, ej , zk that are used to select cell lines,
genes and drugs respectively. L and M are user inputs that affect the number of cell lines and drugs
selected. Other constraints are described in the text.

3 Empirical Evaluation

We evaluate DruID using cell line data on which the efficacy of many drugs have been tested and
thus provides us with “ground truth” of drug efficacy which would not be available for real patients.
Each cell line comes from a different tumour and serves as a proxy for a real patient. Note that
while other information about these cell lines could potentially be used, such as gene expression, we
restrict ourselves to mutations from the cell lines to simulate real life settings of diagnostic panels
that provide mutation information only.

Our input data consists of 980 cell lines from GDSC (also present in CCLE) on which sensitivity
to up to 400 drugs have been evaluated. We consider 324 genes that are used in the FoundationOne
CDx panel. For the 980 cell lines, we obtained the list of mutations in these 324 genes from CCLE.
Both variant types ‘damaging’ and ‘other non-conserving’ mutations were included. We retrieved
1,461 synergistic and 15 antagonist drug interactions across these 400 drugs from DDI databases.
Synthetic lethality (SL) interactions for the 324 genes were retrieved from SynLethDB. GScores for
the 324 genes and DScores for all pairs of 400 drugs and 324 genes were obtained from PanDrugs.
We retrieved all 400 drugs’ chemical structure from PubChem [42] in SMILES format and then
used the RDKit open-source cheminformatics tool [43] to convert the SMILE chemical structure
into 2,048 Morgan fingerprint bit-vector for each drug.

3.1 Experiment Setting

We conduct two experiments to evaluate DruID. First, we compare its performance with that
of PanDrugs. Second, we investigate the effect of each objective term within DruID through an
ablation study. This is conducted by comparing the performance of the model as presented above
with models where each objective term is removed, one at a time. These terms include CD: Cell
line Drug Efficacy term, GS: GScore term, SL: Synthetic Lethal Interaction term, DDI: Drug-
Drug Interaction term, NN: Neural Network prediction term. Both the experiments are done on 3
randomly selected test sets from the cell line data, by dividing the input 980 cell lines into train and
test splits, consisting of 80% and 20% of the cell lines respectively. Cell lines with no mutations in
the considered 324 genes were removed in each test set.

For each test cell lines GDSC has a different number of drugs, ranging from 123–395, whose

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.11.439315doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439315
http://creativecommons.org/licenses/by-nc-nd/4.0/


sensitivity have been tested. Let fi denote the number of drugs whose AUC values are known, for
the ith cell line. For DruID, only the cell lines in the train set were considered in input matrices C
and Q. All pairs of cell lines and the associated fi drugs were used to train the neural network. The
predictions of this model was used to obtain vector R of predicted drug efficacies for each cell line
in the test set. DruID was run, with α = 1, β = 5, for M = 5, 10, 15, 20 to obtain four different lists
of drug recommendations. For each input cell line in the test set, we randomly select cell lines in
the train set until the selected cell lines contain all input mutations. We set L as the number of cell
lines selected. This approximates the minimum number of cell lines covering all input mutations
and is sufficient since the optimization within DruID can select more cell lines if required as L is a
lower bound.

To obtain the performance of PanDrugs, for each test cell line we input the list of mutations
(from the 324 considered mutations) to PanDrugs and obtain their recommendations using their
backend API [44], where we set the biomarker and direct target gene parameters to be true. Their
recommendations are sorted in descending order of DScore. For each value of M , we consider the
top 5, 10, 15 and 20 drug recommendations respectively.

Let Aik be true value of the efficacy of the kth drug on the ith cell line (from GDSC). Let
AiM

DruID and AiM
PanDrugs be the mean efficacy of the recommended M drugs by DruID and PanDrugs

respectively. The mean efficacy is given by the average (true) efficacy of recommended drug on the

ith cell line: AiM
∗ =

∑M
k=1Aik/M , where ∗ indicates DruID or PanDrugs. For each test set, we

report the average of the mean efficacy for both the methods (
∑Nt

i=1A
iM
∗ /Nt), where Nt is the

number of cell lines in the test set.

3.2 Results

Set Method M
5 10 15 20

I
DruID 0.360998 0.426308 0.460313 0.490436

PanDrugs 0.835825 0.852154 0.857834 0.857522
# 97% 98% 99% 99%

II
DruID 0.357093 0.419458 0.453292 0.482423

PanDrugs 0.850439 0.85595 0.859943 0.858741
# 98% 99% 99% 99%

III
DruID 0.363323 0.421508 0.458321 0.485403

PanDrugs 0.84197 0.85310 0.854305 0.85380
# 98% 99% 100% 100%

Average
DruID 0.36047 0.42242 0.45730 0.48608

PanDrugs 0.84274 0.85373 0.85736 0.85668

Table 2: Mean efficacy (lower is better) obtained by DruID and PanDrugs in 3 randomly selected
test sets. # indicates percentage of cell lines on which DruID obtains better AUC compared to
PanDrugs.

Table 2 shows the mean efficacy of DruID and PanDrugs over 3 randomly selected sets of cell
lines, for M = 5, 10, 15, 20. Note that smaller AUC values indicates better drug efficacy, and so,
lower values indicate better performance. Our results show that the integrative approach of DruID
outperforms PanDrugs. For all four values of M , the drugs recommended by DruID had better
efficacy (lower AUC) in nearly all cell lines.

Table 3 shows the results of our ablation studies. The lowest (best) mean efficacy values, for
M = 20, are obtained by DruID. Removing the objective function terms corresponding to CD,
GS, DDI and NN within DruID increases the AUC (lowers the performance). This shows that
each of these terms contributes to the performance of DruID. No SL partners were found for these
input genes in the data we considered, and so the SL term (and its removal) had no effect on
the optimization. Further, the neural network alone also obtains AUC that is higher (lowers the
performance) than that of DruID. This indicates that combining neural network predictions within
the ILP framework of DruID helps in improving the overall performance.
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Set DruID [DruID - CD] [DruID - GS] [DruID - SL] [DruID - DDI] [DruID - NN] NN

I 0.490436 0.532594 0.533016 0.490436 0.52658 0.498091 0.496963
II 0.482423 0.540918 0.541149 0.482423 0.530251 0.482423 0.489172
III 0.485403 0.540241 0.539433 0.485403 0.530468 0.491612 0.495418

Average 0.486087 0.537917 0.537866 0.486087 0.529099 0.490708 0.493851

Table 3: Comparison of DruID, Neural Network (NN) within DruID and component-wise removal
of objective terms within DruID. CD: Cell line Drug Efficacy term, GS: GScore term, SL: Synthetic
Lethal Interaction term, DDI: Drug-Drug Interaction term, NN: Neural Network prediction term.
All results are for M=20.

4 Discussion and Conclusion

In this paper we present DruID, an optimization framework that internally utilizes a deep neural
network, and combines its predictions with a variety of evidence from public databases related to
multi-gene markers, drug response screens, gene essentiality and clinical status of drugs, among oth-
ers. Our empirical results show that DruID can effectively integrate multiple sources of information
and find potentially useful drug combinations for a patient. Its performance is superior to that of
PanDrugs, the best previous method designed for the same purpose. Both PanDrugs and DruID
use GScores and DScores. The difference lies in the way they are used to prioritize drugs. Moreover,
DruID integrates predictions from a deep neural network and information on drug-drug interactions
and synthetic lethal interactions that can potentially improve its final recommendations both with
respect to drug efficacy and choices provided to the clinician.

The genes we considered in our experiments, both for the predictive model as well as in cell lines
were restricted to 324 genes from the Foundation One report. This was a deliberate choice to mimic
the practical setting where clinicians have information of these genes only from the diagnostic panel
report. Our framework is not limited to this setting, and can consider other genes as well. DruID
is also not limited to the neural network we used in our experiments; any other predictive model
may be used including those that offer more interpretability to the clinician, such as decision trees
or logistic regression.

Our framework can be modified and/or extended to consider other kinds of data by adding
appropriate terms and constraints to the optimization model. Integrating functional dependencies,
in addition to the considered SL interactions, protein interaction networks, pathway contexts, tran-
scriptional regulatory modules and clinical data may improve the modeling of latent correlations
and help in exploring alternative treatments. Our model may also be made more specific with
respect to selection of cell lines. For instance, the alterations given in the diagnostic panel may be
reverse annotated [45] to match the exact genomic variant in the cell lines. This would make the
matching more stringent and reduce the number of cell lines, and thus may be considered when
more cell line data is available. The use of multiple data sources and models within DruID may
allow new ways of interpreting the evidence for decision making. Future work can explore these
research directions. It would also be interesting to evaluate the utility of DruID in a real clinical
setting.

We assert that the aim of DruID is not to replace the clinician but only to provide decision
support. The amount and heterogeneity of evidence available from various sources that can poten-
tially aid the decision of which drugs to combine and prescribe is increasing rapidly. DruID aims
to integrate such information from multiple databases and present it to the clinician for subsequent
decision-making. Our hope is that the efficacy of integrative methods like DruID would continue
to improve with increasing availability of high resolution genomic data in public databases, to the
benefit of the prescribing clinician.
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