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Summary 

Data-driven differential dependency network analysis identifies in a complex and often 

unknown overall molecular circuitry a network of differentially connected molecular entities 

(pairwise selective coupling or uncoupling depending on the specific phenotypes or experimental 

conditions) (Herrington, et al., 2018; Zhang, et al., 2009; Zhang and Wang, 2010; Zhang, et al., 

2016). Such differential dependency networks are typically used to assist in the inference of 

potential key pathways. Based on our previously developed Differential Dependency Network 

(DDN) method, we report here the fully implemented R and Python software tool packages for 

public use. The DDN2.0 algorithm uses a fused Lasso model and block-wise coordinate descent 

to estimate both the common and differential edges of dependency networks. The identified 

DDN can help to provide plausible interpretation of data, gain new insight of disease biology, 

and generate novel hypotheses for further validation and investigations.  

To address the imbalanced sample group problem, we propose a sample-size normalized 

formulation to correct systematic bias. To address high computational complexity, we propose 

four strategies to accelerate DDN2.0 learning. The experimental results show that new DDN2.0+ 

learning speed with combined four accelerating strategies is hundreds of times faster than that of 

DDN2.0 algorithm on medium-sized data (Fu, 2019). To detect intra-omics and inter-omics 

network rewiring, we propose multiDDN using a multi-layer signaling model to integrate multi-

omics data. The simulation study shows that the multiDDN method can achieve higher accuracy 

of detecting network rewiring (Fu, 2019).   

 

Availability and Implementation:  The open-source R and Python codes are freely available 

for download at https://github.com/MintaYLu/DDN 

Contact: yuewang@vt.edu, lyz66@vt.edu 

Supplementary information: Supplementary data are available upon request. 
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1 Introduction 

Data-driven differential network analysis identifies in a complex and often unknown overall 

molecular regulatory circuitry a network of differentially connected molecular entities (Fig. 1a; 

pairwise selective coupling or uncoupling depending on the specific phenotypes or experimental 

conditions, including the associated regulatory elements) (Ha, et al., 2015; Herrington, et al., 

2018; Hu, et al., 2016; Mitra, et al., 2013; Ottenbros, et al., 2021; Tolios, et al., 2020; Zhang, et 

al., 2016). Such differential regulatory networks are typically used to assist in the inference of 

potential key pathways 

and targets in tumor 

biology. They can serve as 

useful frameworks for the 

construction and 

verification of mechanistic 

cancer models, which in 

turn help to provide 

plausible interpretation of 

data, gain new insight of 

cancer biology, and 

generate hypotheses for 

further validation and 

investigations (Califano, 

2011; Gill, et al., 2010; 

Hudson, et al., 2009; Ideker and Krogan, 2012; Zhang, et al., 2016). It should be noted that the 

pairwise selective coupling or uncoupling in such data-derived network are based on statistical 

significance in differential co-expressions, representing possible underlying mechanisms 

involving direct or indirect, and single or collective effect of a multitude of regulatory pathways. 

The publicly available Differential Dependency Network (DDN) analysis software tool 

(Zhang, et al., 2009; Zhang, et al., 2011; Zhang and Wang, 2010) and its recent extension, 

knowledge-fused DDN (kDDN) (Tian, et al., 2014), represent our continuous effort to develop 

novel bioinformatics tools to detect statistically significant rewiring and robust subnetworks with 

 

Figure 1. (a) DDN from analysis 171 BRCA1/2 related proteins form 
HRD and non-HRD patients, where red (blue) connections indicate 
protein correlations existed only in HRD (non-HRD) patients. (b) 
Proteins with dotted circles are known to be involved in H4 histone 
acetylation or deacetylation, suggesting a role of histone H4 
acetylation (together with HDAC) in modulating the choice of DSB 
repair mechanisms. (c) Differential acetylation of K12 and K16 of 
histone H4 between HRD and non-HRD by independent samples and 
techniques. 
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phenotype-specific changes. We have successfully applied DDN tools to real gene expression 

and proteomics data with promising findings and novel hypotheses (Crawford, et al., 2010; Hu, 

et al., 2015; Tian, et al., 2014; Zhang, et al., 2009; Zhang, et al., 2016). The current DDN tool 

can infer statistically significant coupling or uncoupling between pairs of molecular entities (e.g., 

genes/ proteins) that are dependent on the specific phenotypes or experimental conditions  using 

transcriptome/proteome expression data (Tian, et al., 2014; Zhang, et al., 2009; Zhang, et al., 

2011). To assess the DDN’s effectiveness, we have compared the accuracy of inferring 

differential networks by DDN with other tools using realistic simulations (Tian, et al., 2014; 

Zhang, et al., 2009). The DDN tool has been used to detect critical changes in molecular 

networks in breast cancer (Madhavan, et al., 2011), ovarian cancer (Zhang, et al., 2016), and 

medulloblastoma . This has led to novel findings and hypotheses that have been validated 

experimentally (Hu, et al., 2015; Zhang, et al., 2016).  

 From a scientific perspective, the main role of DDN is at least two twofold. First, an 

enrichment analysis focused on the genes/proteins that are differentially connected (nodes of 

differential networks including associated regulatory elements), not simply differentially 

expressed, can identify the more relevant pathways that functionally control phenotypes 

(Barabasi, et al., 2011; Califano, 2011; Hu, et al., 2015; Mitra, et al., 2013). Second, the hubs of 

differential networks (densely and differentially connected nodes) can hint at changes in the 

regulatory mechanisms, e.g., PTM or mutations in the regulatory elements of master regulators 

(Hudson, et al., 2009; Zhang, et al., 2016). By contrast, classic differential or co-expression 

analysis (i.e., identifying a subset of differentially or co- expressed genes/proteins) is insufficient 

here because the low level of transcription factors (TF) differential expression makes their 

detection challenging, even though TFs play a central regulatory role in controlling gene 

expression (Reverter, et al., 2010). DDN addresses an important biological issue because it better 

accounts for the functional activation/deactivation of TF (e.g., reversible phosphorylation, 

enhancer binding, chromatin openness) than does differential expression alone. Simple 

differential expression will overlook these vital changes in regulatory mechanism. For example, 

Hudson et al. reported that the myostatin gene containing a causal mutation was not detected 

because myostatin was not differentially expressed at any of ten developmental time points under 

surveillance (Hudson, et al., 2009). 
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The goal of studying network remodeling is not to solve the entire and common network 

at once but to find small, most-relevant, and critical features (e.g, topological changes 

within/between pathway networks) that can explain how the network functions to control 

phenotype. For example, most existing approaches infer gene co-expression networks under a 

single biological condition and are focused on the disease-related pathways enriched on a subset 

of differentially expressed genes. In marked contrast, DDN infers differential regulatory 

networks, i.e., differentially connected genes between different cancer subtypes, and is focused 

on the disease-related pathways enriched on (i) a subset of multi-omics expressions whose 

regulatory patterns (e.g., paired miRNA-mRNA/protein co-expressions) meet biological 

expectations and/or (ii) a subset of differentially connected genes/proteins (selectively coupled or 

uncoupled protein/gene pairs and associated regulatory elements depending on the specific 

cancer subtype). Another advantage is that we obtain small/sparse experimentally tractable 

models, i.e., rather than complex hairballs, DDN generally produces models that allow for the 

design of feasible wet lab experiments that enable mechanistic validation (Hu, et al., 2015; 

Tyson, et al., 2011; Zhang, et al., 2016). 

 

2 Results 

Case study on initial application of DDN to CPTAC proteomics data. In our recent work on 

integrated proteogenomic characterization of human high grade serous ovarian cancer (Zhang, et 

al., 2016), applying DDN on a set of 171 BRCA1/2-related proteins, we identified a sub-network 

of 30 proteins that displayed differential co-expression patterns between HRD (homologous 

recombination deficiency) from non-HRD patients (Fig. 1a). Several of the proteins in these 

modules are known to be involved in histone acetylation or deacetylation. Although statistical 

association predicted by DDN cannot distinguish between drivers and consequences of HRD 

status, the observed enrichment of proteins associated with histone acetylation motivated us to 

identify and quantify acetylated peptides from our CPTAC global proteomic data. Comparative 

analysis of 399 acetylated peptides identified 15 acetylated peptides with significant differences 

between the HRD and non-HRD samples (dual acetylation at K12 and K16 of histone H4). 

Acetylation of H4 is involved in the choice of DNA double strand break (DSB) repair pathways 

(homologous recombination or non-homologous end joining). This relationship is regulated 
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partially by HDAC1 (Fig. 1b). The findings were verified using independent samples and

independent technical approaches (Fig. 1c) (Zhang, et al., 2016). The combined observations of

increased HDAC1 (a hub protein also identified by DDN) and associated proteins at the pathway

level, together with decreased acetylation of H4 in HRD patients at the (post-translational

modifications) PTM level, provide insight regarding the potential role of HDAC1 in modulating

the choice of DSB repair pathways (Zhang, et al., 2016).    

Case study to validate phenotype-specific differential networks of breast cancer dormancy

and/or resistance. We have been 

previously funded to study how gene 

networks may adapt to affect the 

biology of breast cancers. Our 

CCSB/CSBC project is focused on 

understanding how estrogen receptor-

positive (ER+) breast cancer cells 

adapt to the stress of endocrine-based 

therapies. Our central hypothesis 

invokes a gene network that 

coordinately regulates the functions of a cell and determines and executes the cell’s fate decision.

Using DDN tool we were able to identify three small topological features, one of which

independently reflected much of our prior knowledge despite not explicitly incorporating this

knowledge in learning the models (Zhang, et al., 2009). We followed the predictions of this

differential topology and validated fundamentally new insights into molecular signaling, e.g.,

direct regulation of BCL2 by XBP1 and the requirement of NFκB for XBP1 signaling to regulate

the pro-survival cell fate outcome in the cellular context of antiestrogen treatment and resistance

(E2 versus E2+ICI) (Fig. 2) (Clarke, et al., 2011; Crawford, et al., 2010; Hu, et al., 2015; Tyson,

et al., 2011). Specifically, DDN tool identified a new non-canonical UPR signaling route that

was not previously known. Canonical signaling in the UPR would have predicted that changes in

JNK regulated BCL2 but DDN predicted that XBP1 (not JNK) regulated BCL2 (Zhang, et al.,

2009). We then found (i) response elements to XBP1 in the BCL2 promoter, (ii) that cells over

expressing endogenous XBP1 also had higher BCL2 expression, (iii) that knockdown of XBP1

in these cells with RNAi reduced BCL2 expression, (iv) that constitutive overexpression of the

Figure 2. DDN application to study how ER+ breast cancer 
cells adapt to the stress of endocrine-based therapies, where red 
connections indicate gene correlations existed only in E2 
samples and green connections indicate gene correlations 
existed only in E2+ICI samples. 
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XBP1 cDNA increased BCL2 expression and (v) that knockdown of BCL2 phenocopies 

knockdown of XBP1 with respect to reversing endocrine resistance (Crawford, et al., 2010; Hu, 

et al., 2015). We went on to further explore the DDN model and further confirmed the role of 

XBP1 regulation of NFkB (also not previously known) as another key driver of the prosurvival 

activities of XBP1 and the UPR (Hu, et al., 2015). In more detail, XBP1 can function as a 

direct/co-regulator through binding to its responsive element, most notably ERα. BCL2 contains 

response elements for both ERa and XBP1, thus XBP1-BCL2 may either be rewired or involve 

ERa as a latent variable, or intervening gene. In the non-recurring breast cancer, the affected 

network involves both signals received from activation of the membrane receptors and a cascade 

of signaling path inside a cell to promote apoptosis as well as survival. A balance between 

apoptosis and survival is necessary for damaged cells to be eliminated and repaired cells to 

survive. Three immune response genes (IL1B, NFκB and TNFα) for increased resistance to 

breast cancer treatment were identified in the recurring tumors. These genes formed a path to 

inhibit pro-apoptotic CASP3 and PPP3R1, and to activate pro-survival gene PIK3R5 or 

CSF2RB.  

Case study to validation of DDN prediction on CPTAC data and identify phenotype-

associated co-regulatory subnetworks. In our recent work (Zhang, et al., 2016), we reported a 

key finding on proteogenomic analysis of TCGA ovarian tumors in which DDN played a critical 

role (Fig. 1). The differentially networked proteins identified by DDN analysis on global 

proteomics data suggest that histone acetylation might play a role in DNA repair. We studied the 

downstream effects and identified several peptides of histone H4 showing differentially 

acetylated K12 and K16. We validated these discoveries using SWATH proteomics technology, 

in addition to a separate yet direct evidence demonstrated on a cell line model. In more detail, 

DDN analysis on ovarian cancer samples helped identifying a sub-network of 30 proteins 

involved in histone acetylation or deacetylation (Fig. 1). In cell line data, acetylation of H4 has 

previously been reported to be involved in the choice of DNA double strand break (DSB) repair 

pathways (homologous recombination or non-homologous end joining). This relationship is 

regulated partially by HDAC1, a protein also identified in the DDN analysis. We observed a 

significant enrichment of HDAC1 and its co-regulated proteins in tumors with HRD and low H4 

acetylation relative to non-HRD tumors with high H4 acetylation (DDN analysis: permutation 

tests, p value <0.05; differentially acetylated peptides: t-tests, p value <0.05 with an estimated 
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FDR < 0.5% by bootstrap/permutation tests). The identification of these acetylation events 

associated with HRD may provide an alternative biomarker of HRD for patient selection in 

future clinical trials of HDAC inhibitors alone or in combination with PARP inhibition. This 

may help to resolve the current discrepancy between the initial observation of limited single 

agent activity of HDAC inhibitors in ovarian cancer and more recent findings of a >40% 

response rate when used in combination with cytotoxic chemotherapy in platinum-resistant 

patients (Zhang, et al., 2016).  

The integration of proteogenomic data also refers to the integration of molecular 

networks across different phenotypes/conditions to identify functional modules that are rewired 

in response to conditional fluxes. The types of networks themselves could be physical interaction 

networks, signaling and metabolic pathways, and others. The inference of conditional network 

often requires the ability to bridge between prior knowledge and experimental data and with 

built-in resampling/permutation to offer statistically sound and robust results (Zhang, et al., 

2014). It should be noted that while DDN infers both common and differential networks, its 

unique and main function is to differentially detect the statistically significant "rewiring" 

associated with phenotypic differences. Thus, only rewired edges are included in the final 

differential dependency networks that are not meant to represent the complete regulatory 

network that supports the entire functions of the phenotypes. By definition, the rewired part of 

the networks are not supposed to be huge. We emphasize that the entire molecular machinery 

behind HR repairing of DSB is much more completed than the DDN detected. However, this is 

the part that contains key elements differentiating HRD and non-HRD and pin-pointed to histone 

H4 peptide acetylation as a critical point of the mechanism.  

Case study to analyze PTM interactome. The aforementioned findings of HRD status-

dependent H4 acetylations, consistent with recent reports in the literature, indicate that much of 

the cancer associated 

molecular alterations will 

not necessarily be limited 

to the form of 

coordinated variations 

among DNA, copy  

Figure 3. (a) Analysis of pTyr kinase-substrate interactome by LC-MS/MS, 
HuProt protein array, and experimentally generated kinase-substrate 
relationship map. (b) DDN identified several key kinase hubs, such as 
MAP2K4, that are known drug targets.  

a b
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number, and mRNA/protein expression, but rather as complex rewiring of signaling

pathways/networks carried out in the protein and post-translational modification (PTM)

interactomes. The DDN in its current form, and more so with its proposed addition, can play an

important role in differential analysis of PTM interactomes to capture phenotype/experiment

condition-dependent changes. As an example, through CPTAC, we analyzed the tyrosine

phosphorylation substrate activity data using the HuProt protein arrays(Hu, et al., 2014). The LC-

MS/MS global protein profiles include those proteins that are known pTyr kinases. DDN was

applied to identify subnetworks of highly correlated kinase (MS data) – substrate (HuProt array

data) pairs that are dependent on HRD phenotypes. The identified subnetworks were further

compared against the previously experimentally generated kinase-substrate relationship (KSR)

map(Hu, et al., 2014) to retain only connections that are known possible KSRs (Fig. 3a). We were

able to identify several kinase hubs, such as MAP2K4. Many of them are known drug targets

(unpublished, on-going research) (Fig. 3b). In this example, the relationship between K and S nodes

are directional (downstream substrates). The superposition of KSR map was applied separately. The

extension of DDN to allow for seamless integration of such knowledge in a quantitative and

computational way will further optimize such analysis approaches.  

Case study on cancer prevention research. DDN tool has generated biologically meaningful

hypotheses that guided further investigations. To study the 

consequence of possible transcriptional re-programming 

regulated by promoter methylation status (effectors ER, BCL2, 

LEP, and EGR1; AKT1 can regulate methylation patterns in 

some promoters, e.g., AKT1-EGR1 edge), revealed by DDN, 

we found that in utero estrogen exposures induce a rewired 

network pattern in the mammary glands of rodent offspring that 

predicts for resistance to endocrine therapies. Subsequent 

studies have shown that tumors that arise in these mammary 

glands are less responsive to Tamoxifen (TAM) (Hilakivi-Clarke, et al., 2017). This represents

the first study to explain why many ER+ breast cancers fail to respond (or respond and later

recur) with TAM treatment (Fig. 4).  

 

 

Figure 4. DDN application to 
study how in utero estrogen 
exposures modulate methylation 
re-programming.  
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3. DDN2.0+ new development 

3.1 Correction of imbalanced sample size between two groups 

Though DDN2.0 is a powerful differential network analysis tool (Zhang, et al., 2009; 

Zhang and Wang, 2010), some drawbacks hinder the DDN tool from being more widely used in 

network study or biomedical data analysis. Firstly, the initial design of the DDN method is for 

comparing two groups with equal sizes of samples. In practice, we notice that for imbalance data, 

i.e., two groups have different sample sizes, DDN seems to detect network rewiring favoring one 

condition over the other. A systematic bias caused by data imbalance may exist and need to be 

correct. Secondly, when limited by the algorithm running time, DDN can handle only dozens of 

features and samples. The actual computation time grows more than cubically with a feature 

scale. In biological network analysis, the feature size in gene regulatory network inference could 

be as large as tens of thousands. The development of accelerated DDN learning algorithms is an 

urgent need for extending DDN’s application to broader fields. Thirdly, for omics data analysis, 

the current DDN method is designed for analyzing a single type of omics data. Though a simple 

method of merging multiple data matrices into a single matrix could theoretically extend the 

DDN method to multi-omic data, this kind of integration method would double to triple the 

feature scale and take impractically long computation time. This simple merging method also 

ignores inter-omics regulation knowledge. We believe a multi-omics integration method could 

take advantage of the additional knowledge such as directional inter-omics interactions 

(Buescher, et al., 2016), to effectively reduce the feature scale and increase the accuracy in 

differential network learning. With the advent of more are more multi-omics research projects, 

DDN needs such an integration method to discover novel network rewiring facilitated by multi-

omics data.  

In detecting network rewiring between two conditions, we expect that network rewiring 

events are sparse.  In other words, we assume that the networks under two conditions will share a 

large portion of common network structures. Based on this assumption, Zhang and Wang (2010) 

further improved the initial DDN method by jointly solving Fused LASSO regressions via 

introducing a penalty term on the structural difference. We denote this version of the DDN 

method as DDN2.0. The DDN2.0 optimization problem is: 
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where i is the node index; βji is the regression coefficient from node i to node j under a specific 

condition; yi and X are the expression values of dependent and input variables, respectively; P is 

the number of nodes; λ1 and λ2 are the parameters on the two penalty terms that are used to assure 

both a sparse common network structure and sparse differential network rewiring. 
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 and 
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 indicate the differential dependence edges, while 

common dependence edges in the network are inferred by the consistent coefficients. Note that 

the differential dependences are of particular interest, because such network rewiring may reveal 

pivotal information on how the biological system responds to different biological conditions.  

The permutation test is introduced in DDN to evaluate empirical p-values of the detected 

network rewiring (Tian, et al., 2011). The detected differential edges with multi-test corrected p-

values less than the preset significance threshold (e.g., p-value<0.05) are marked as significant 

network rewiring.  

 However, in the design of the DDN framework, the objective function does not explicitly 

consider the sample size difference between the two groups. If we expand the objective function 

of DDN, we have:  
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∑ ∑

∑ ∑ ∑ ∑

β β β

β β β β

  

We can see that, although the weights for each group (case vs. control) are equal, and the 

sample-wise squared residual is at a comparable level, the actual weighted penalty of beta added 

to each sample differs. Suppose one group’s sample scale is ten times as the other group, the 

actual sample-wise weight penalty term is as small as one-tenth of the other group. When 
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minimizing the total object function with the L-1 penalty, the samples in the group of smaller 

sizes would be more likely to have smaller sparsity in network structure.  

To redesign the weights applied to each group, we first define two LASSO objective 

functions(Friedman, et al., 2017) for each group, and rewrite the DDN objective function as 

follows: 

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )

2
1 1 1 1 1

1 1
2

22 2 2 2 2
2 1

2

1 2 1 2 1 2
1 2 2

1

1

2
1

2

min ,i i i i i i i

f

f

f f f f

λ

λ

λ

⎧
= − +⎪⎪

«
⎪ = − +
⎪¬

= = + + −

β y X β β

β y X β β

β β β β β β β
 

in which 1f  only contains measurement and regression coefficients of condition 1, and so does 

2f to condition 2.  

For standardized data, the LASSO objective functions 1f and 2f  is positively dependent 

on the sample size N. To make the two group’s objective function values at a comparable level, 

we simply add sample scale normalizer to the basic form of LASSO objective function. Define 

the LASSO objective function with the sample scale normalizer as:  

( ) 2

2

1

2
f

N
λ λ= − +β, y Xβ β% % %

 

where λ%  is the parameter for controlling the sparsity. Basically, we use mean squared error to 

replace the square error term in the original LASSO objective function. This normalized LASSO 

objective function is the scaled version of basic LASSO form, with Nλ λ= % : 

( ) ( )2

2

1 1 1
β, y Xβ β β,

2
f N f N

N N
λ λ λ

⎛ ⎞
= − + =⎜ ⎟

⎝ ⎠
% % % %

 

Therefore, the solutions to these two forms of LASSO objective functions are identical, with the 

condition of Nλ λ= % . When the value λ% is given, the normalized LASSO objective function is 

independent of the sample scale N. We now adjust DDN’s formulation accordingly to the 

normalized LASSO objective function, and hence make the new DDN objective function also 

independent of the sample scales. The new DDN objective function is:  
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( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
1 1 2

1

1 2 1 2
1 2 2

1

2 2
1 2 1 2 1 2

, , , , 1 2
1

1 1 1 1 11 2

1 1 1

2

i i i i

n n nP P P

i l k l ik i l x l ik ji ji i i
l k l n k j

f f f

x x x x
n n

λ

β β λ β β λ
+

= = = + = =

= + + −

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑ ∑

β β β β β

β β

% % %

. 

We designed a simulation experiment to confirm the bias brought by imbalanced data in 

the original DDN method, and also to show our proposed reformulated DDN objective function 

is capable of handling imbalanced data correctly. To illustrate the systematic bias, we need to 

identify which differential edges are the false positive detections caused by the bias. We 

purposely designed the data that contains no groud truth positives of differential edges, and 

hence all detected differential edges will be false positives. The simulated data is actually single 

condition data that follow i.i.d multi-variate Gaussian distribution, and is manually divided into 

two groups to form the pseudo two conditions. We generate data with the total sample scale 

N=500 and the feature scale P=30, and then divided into two groups with three settings of 

sample ratios: 1:1, 1:10, and 10:1. The first sample ratio of 1:1 represents the perfect balance of 

sample scale, which corresponds to balanced data; the rest two sample ratios correspond to 

imbalanced data wither the larger sample scale in either the first or the second group.   

The generated data are standardized to zero-mean and unit variance, and then test by the 

original DDN method and the reformulated DDN method. The original DDN method is 

performed by kDDN plugin in Cytoscape without knowledge input, which is mathematically 

equivalent to the DDN2 method. The reformulated DDN method is implemented by the R 

language. Its results are visualized by Cytoscape to compare with results from the original DDN 

method. 

The simulation results are shown Figure 5. The condition-specific differential edges are 

colored as red or green for condition 1 or 2. The edge width is mapped from p-values evaluated 

by a permutation test, and wider edges have smaller p-values. For data group with a sample size 

ratio of 1:1, which is balanced data, the original DDN method and the sample-scale-normalized 

DDN method gave identical results: only two network rewirings events with insignificant p-

values are detected. These results fit the expectation since there should be no network rewiring in 

the simulated data.  For imbalanced data groups with sample size ratios of 1:10 and 10:1, original 

DDN2.0 gives network rewiring detection results of overwhelmingly one-sided condition-

specific network rewiring. Some of the detected differential edges have significant p-values 
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evaluated from the permutation test. Since there is no network rewiring in the designed ground

truth network, all these condition-specific network rewiring detected by the original DDN2.0

method are false positives, and they confirm the existence of systematic bias brought by

imbalanced data. On the other hand, the sample-scale-normalized DDN2.0+ method detected

only one or zero network rewiring events in these imbalanced data. The detected differential

edges have insignificant p-values and could be further filtered. The results show the low false

positive rate of the sample-scale-normalized DDN2.0+ method in the simulation data. The

systematic bias in the original DDN2.0 method, i.e., the condition-specific false positives in the

imbalanced data, has been successfully corrected.   

Figure 5- Comparison of DDN2.0 vs DDN2.0+ detected network rewiring from data with

different group size ratios. 

3.2 Accelerated DDN2.0+ algorithm 

3.2.1 BCD ResiUpd strategy 

 We rewrite the DDN2.0+’s objective function into two parts as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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The second part of the objective function can be written as the sum of p terms with non-

overlapping members 
( ) ( )( )1 2, , 1, ,j j j pβ β = L

 . Each 
( ) ( )( )1 2, , 1, ,j j j pβ β = L

is a coordinate block. 

The essence of the BCD algorithm is “one-block-at-a-time”. At iteration r + 1, only one 

coordinate block, 
( ) ( )( )1 2,k kβ β

is updated, with the remaining 

( ) ( )( ) { }1 2, , 1, 1, 1, ,j j j k k pβ β ∈ − +L L

fixed at their values. The cyclic rule is used to update 

parameter estimation iteratively, i.e., update parameter pair 
( ) ( )( )1 2,j jβ β

for each 1, ,j p= L , one 

by one in a circular way in the iterations. 

In DDN2.0+, we will derive the solution of 
( ) ( )( )1 2,k kβ β

 that updated at the end of each 

iteration. Take DDN objective function’s partial derivative to 
( )1 ,r
kβ and 

( )2 ,r
kβ : 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
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Define the residual as: 

( ) ( ) ( ) ( )1 , 1 1 1 ,
,

,

r r
i k i l l

l i k

β−
≠

= −∑y y x
,

( ) ( ) ( ) ( )2 , 2 2 2 ,
,

,

r r
i k i l l

l i k

β−
≠

= −∑y y x
 

And define the inner products between the residuals and current node’s observation: 

( ) ( ) ( ) ( ) ( ) ( )1 , 1 , 1 2 , 2 , 2
, ,

1 2

1 1
,r r r r

i k k i k kn n
ρ ρ− −= y x = y x� �

 

Recalling that the standardized data have unit-variance, the partial derivative equations could be 

further written as: 

( )
( ) ( ) ( )( ) ( ) ( )( )

( )
( ) ( ) ( )( ) ( ) ( )( )

1 , 1 , 1 , 1 , 2 ,
1 21 ,
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Giving the sign of 
( )1 ,r
kβ ,

( )2 ,r
kβ and 

( ) ( )1 , 2 ,r r
k kβ β− , we can get closed-form solutions of 

( )1 ,r
kβ  and 

( )2 ,r
kβ . For example, when the conditions are 

( )1 , 0r
kβ > ( )1 , 0r

kβ > and 
( ) ( )1 , 2 , 0r r
k kβ β− > , the solution 

is  

( ) ( )

( ) ( )
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2 , 2 ,
1 2

r r
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r r
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β ρ λ λ
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⎧ = − −⎪
«

= − +⎪¬  

And the condition could then be converted to a sub-region in the plane of 
( ) ( )( )1 , 2 ,,r rρ ρ

, which is: 
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«
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Similarly, we can get all other closed-form solutions for possible conditions, and convert the 

conditions accordingly to sub-regions on the plane of 
( ) ( )( )1 , 2 ,,r rρ ρ

. We list all solutions and 

corresponding subregions as follows 
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In Figure 6, we illustrate the solution subregions of 
( )1 ,r
kβ and

( )2 ,r
kβ  on the plane of 

( ) ( )( )1 , 2 ,,r rρ ρ
.

Recalling that in the BCD algorithm we only update one coordinate at a time, the updated 
rβ

will has most of its elements overlapped with those of 
1r−β from the previous iteration.

Reinspection on the residuals ,
r
i k−y

used in the original form of 
( )1 ,rρ or

( )2 ,rρ definition reveals its

relationship with the previous residual: 

( )
( ) ( ) ( ) ( )
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y x x x

y x x , for  

Instead of directly calculating residuals from P weighted observed vectors, we can update the

residuals in a new iteration from the previous one, with a small computation load on adding 2

weighted observation vectors. We call this computation skill as the method of BCD with residual

updating, or BCD-ResiUpd algorithm, and notated the DDN method utilizing this BCD-ResiUpd

algorithm as DDN-ResiUpd. 

 

Figure 6. BCD solution subregions on the plane of rho1 and rho2. 

3.2.2 BCD-CorrMtx strategy 
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In the original form of 
( )1 ,rρ  and

( )2 ,rρ , it firstly needs to calculate the residuals ,
r
i k−y

  

which are the summation of P weighted observation vectors, and takes about PN times of 

multiplication to complete. Second, the inner product of the residual vector and the current 

response variable vector requires another N time of multiplication operation. Therefore, 

calculation of  
( )1 ,rρ and 

( )2 ,rρ  in each BCD update needs about ( )2 2PN N PN× + ≅
times of 

multiplication. And in conclusion, the computation complexity of DDN is about 

( ) ( )2 32 2O TP PN O P N× =
. For observations with large sample scale N or feature scale P, it 

will be a heavy burden of computation. 

Consider the fact of zero-mean and unit-variance for the standardized data, the inner 

products between two observed data vectors are actually linear to the elements in their 

covariance matrix, or equivalently, the Pearson’s correlation matrix R. Therefore, we can replace 

the inner product of observed data by the pre-calculated correlation coefficients: 

( ) ( ) ( ) ( )( ) ( )1 1 1 1 1
1 1cov ,l k l k ikn n=x x x x = R�

and 
( ) ( ) ( )2 2 2

2l k ikn=x x R� . In the neighborhood selection approach, 

the response variable is one of the nodes: 
( ) ( )1 1
i i=y x . Recalling the definition of

( )1 ,rρ and
( )2 ,rρ , we 

rewrite them in the form of correlation matrix elements: 
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Therefore, 
( )1 ,rρ and

( )2 ,rρ could be directly calculated from 
1r−β  and the observation’s 

correlation matrix 
( )1R and 

( )2R , without the need for direct computing on the original data 

matrix X. We call this computation skill as the BCD algorithm using the correlation matrix, or 

BCD-CorrMtx for short, and notated the DDN method utilizing this BCD-CorrMtx algorithm as 

DDN-CorrMtx. 

The new form of 
( )1 ,rρ or

( )2 ,rρ has only one inner product of two P-element vectors, and 

thus needs only 2P times of multiplication operations in each updating iteration. Therefore, the 

computation complexity of DDN-Corr is  ( ) ( )2 32 2O TP P O TP× =
, approximately N times 

faster than the procedure with the original definition. 

3.2.3 BCD StrongRule strategy 

 Tibshirani, et al. (2012) proposed “Strong” rules for discarding predictors in Lasso-type 

problems before for computational efficiency. The Strong rules are developed based on the 

“Safe” rules proposed by El Ghaoui et al. (2010), and are able to effectively reduce the actual 

number of predictors need to be solved in LASSO problems. Tibshirani, et al. (2012) also 

showed that, although in extremely rare cases the Strong rules may erroneously discarding 

predictors, the error could be amended by checking the KKT conditions. The basic Strong rule is 

defined as follows: for the lasso problem, discard the j-th predictor from the optimization 

problem if: 

T
maxx y 2j λ λ< −

 

where 
T

max max x yj jλ =
is the smallest tuning parameter value such that ( )maxβ 0λ =$

.  

For the BCD algorithm used in DDN2.0, we use a cross-validation strategy to estimate 

the optimal value of 1λ while setting 2 0λ = . Because DDN2.0 optimization is degraded to basic 

LASSO problems in this case, DDN2.0+ applies the “Strong” rule to discard predictors before 

applying the BCD algorithm. The remaining predictors in DDN2.0+ after applying the basic 

Strong rule will still cover all true predictors, and the results will be identical to predictors 

without applying the Strong rule.  Since the number of remaining predictors is much smaller than 
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the total number of matrix elements, the procedure of LASSO problem solving in DDN2.0+ will 

take much less computation time (Tibshirani, et al., 2012).  

3.2.4 BCD with parallel computing 

In the procedure of the neighborhood selection approach, the solution of one node’s 

optimization is independent of the other nodes’ solution. Therefore, the BCD optimization in 

DDN2.0+ could work parallelly for each node selected from the total P nodes in the network. In 

parallel computing, we assign one CPU core from a multi-core computer to independently solve 

one node’s DDN optimization problem. The whole DDN network construction could be about 

N_core times fast, in which N_core is the number of available CPU cores. We developed an R 

package to implement DDN2.0+ parallel computing along with other accelerating methods of 

DDN2.0+-CorrMtx or DDN2.0+-ResiUpd. 

3.2.5 Simulation studies 

 We set a series of simulation studies to compare the actual computation time of DDN2.0+ 

with the four proposed accelerating strategies: DDN-CorrMtx, DDN-ResiUpd, DDN-StrongRule 

and DDN-CorrMtx/ResiUpd-Parallel. To compare the methods on a fairground, we set the 

simulation conditions as follows: each of the simulated P nodes’ observation data follows i.i.d 

standard Gaussian distribution; the true covariance matrix is set to the identity matrix, hence no 

edges exist in the graph and only the first round of iterations is needed for each node; 1λ and 2λ are 

also set to big enough, therefore the convergence is expected to achieve after the first round of 

iterations. For each case of simulated data, all methods are using the same data as inputs. The 

testing environment is listed as follows: CPU Intel® Core™ i5-8300H @2.30Ghz; RAM 16GB; 

R version 3.6.1. The computation time is recorded by the R function of system.time().  

Table 1 listed two simulated cases: one with high feature scale P and the other with high 

sample scale N. From the comparison of computation time used for each method we could see 

that, the original DDN method takes the longest time which is unbearable in large scale; DDN 

with correlation matrix takes little time for large sample scale N, but is slower than DDN with 

residual updating strategy in case of large feature scale P. Parallel computing offers great help 

when P is large, but the time saving is limited in case of moderate value of P.   

Table 1. The computation time of accelerated DDN2.0+ methods 
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Figure 7. DDN2.0+ computation time versus feature scale P 

Figure 7 shows the computation time used by DDN-CorrMtx, DDN-ResiUpd and the original

DDN versus the feature scale P. The DDN-ResiUpd method shows a large advantage when P

grows. Figure  shows the computation time used by the three methods versus sample scale N.

Since the size of the correlation matrix only relies on P, the DDN-CorrMtx method uses almost

the same time for different sample scales, and hence is much faster than the other two methods

when N is large.   

 

Figure 8 DDN2.0+ computation time versus the sample scale N 

We compare the computation time of the DDN-CorrMtx methods with and without parallel

computing (Figure ). Since parallel computing is done for each node selected from all P nodes,

 N=100, P=1600 N=1600, P=100 

Original DDN 2695.48s 141.25s 

DDN-CorrMtx 93.19s 0.28s 

DDN-CorrMtx- 

Parallel (nCore=7) 
1.48s 0.25s 

DDN-ResiUpd 31.39s 2.94s 

al 
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N.  
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the parallel computing uses much leas computation time when the feature scale P is large. On the

other hand, the time saved by parallel computing is limited when P is small.  

Figure 9 DDN2.0+ computation time comparison between parallel and non-parallel computing 

Table  shows the effectiveness of the Strong rule. In this simulation study, the ground truth

network is designed as a single ring in which each node has exactly two neighbors. Therefore,

the basic Strong rules could effectively discard most of the predictors. The results show that

computation time could be significantly reduced by applying the Strong rule when the network

has high sparsity.  

 
N=100, P=400 N=100, P=800 

DDN-CorrMtx 57.86s 393.15s 

DDN-CorrMtx+ 

Strong Rule 
2.15s 5.91s 

Table 2. Computation time comparison between DDN2.0+ with and without Strong rule 

In summary, we proposed three reformulated computing methods for the BCD algorithm used in

solving optimization in DDN. We also propose accelerating strategies of discarding predictors by

the Strong rule and by parallel computing. Depending on which one of the sample scale N and

the feature scale P has the larger value, we may choose from the method of computation with

correlation matrix, or residual updating strategy, or with combined effort in coefficient updating

strategy. The results show a tremendous reduction in computation time comparing to the original

DDN method. The proposed DDN-ResiUpd method with parallel computing is now able to
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handle hundreds of genes in a reasonable time period (<1 hour), compared with the original 

DDN method which is only capable of handling dozens of genes.    

3.3 Multi-omics DDN development 

Data integration has a long history in omics data study (Gatza, et al., 2014). There are different 

categories of data integration methods. While the naïve merging of multi-omics data is simple, it 

suffers many drawbacks. It completely ignores the inter-omics interaction, and cannot benefit 

from the knowledge of regulation in the multi-omics data. Some other multi-omics integration 

methods take the use of inter-omics associations. For example, expression quantitative trait loci 

(eQTL) analysis uses both genomics and transcriptomics data to detect genomic loci that explain 

the variation of gene expression levels(Shabalin, 2012). Similarly, methylation quantitative trait 

loci (mQTL) analysis tries to find loci associated with methylation levels(Volkov, et al., 2016). 

CPTAC-OV project explored the correlation between chromosome instability summarized from 

genomics data and the abundance of proteins (Zhang, et al., 2016). These multi-omics integration 

methods enable researchers to gain unique insights into inter-omics associations. 

In integrating multi-omics data in differential networks analysis, we believe that the integration 

of omics should be more than the sum of its parts. We design a multi-layer integrated signaling 

model to reduce the total feature scale by incorporating knowledge of inter-omics interaction, 

accordingly propose a multiDDN that is capable of integrating multi-omics data and detecting 

both intra- and inter-omics network rewiring. 

 One of the most import regulatory factors to gene expression level is the gene dosage 

effect from the transcribed gene itself (Gardiner, 2004). A gene’s dosage which is quantified as 

the gene copy number determines the maximum number of copies of the gene that can be 

transcribed into mRNA simultaneously. Yang, et al. (2007) reported that the gene dosage effect 

could reach as high as r=0.98 in some genes such as HER2 and GRB7. By sorting the significant 

correlations between gene’s copy number variation and mRNA expression with their genomic 

locations, we also noticed that gene locations are highly likely to positively correlated with copy 

numbers from genes in nearby genomic locations. This phenomenon referred to as cis-correlation 

is likely caused by long-range structural variations in the DNA chain, and is confirmed by many 

reports (Bryois, et al., 2014; Yang, et al., 2007). It is one of the major confounding factors in 
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gene regulatory network inference, and our integrated model aims to alleviate this confounding

factor. 

 Based on the facts of the gene dosage effect of copy numbers, we propose an integration

method to add DNA copy number information as additional predictors to gene expression

variation in the gene regulation network construction. Figure  shows an illustrative example of

this model shows how the DNA copy number information interacts with the gene regulation

network in the mRNA level. Although DNA may carry germline or somatic copy number

variations in living cells, it is commonly believed that the numbers of gene copies are not

regulation targets and are not altered by other biomolecules. Therefore, in the network

construction we may treat DNA copy number signals solely as input predictor variables. We also

limit its response variables as its gene expression variable due to the strong gene dosage effect,

so that only one additional predictor is added to each node in gene expression layer, and the total

feature scale in each node’s DDN optimization problem will be p+1 instead of 2p.  

 

Figure 10 Integrated data model of gene copy number and mRNA expression 

A pilot simulation study is designed to show the integrated model’s effectiveness in

inferring a gene regulatory network. We predesigned a gene regulatory network of 15 genes in

the RNA layer, and associate the genes’ expression to their own copy numbers in the DNA layer

and some additional weaker links that represent the cis-correlation effect. The copy number and

gene expression values are sampled from multivariate Gaussian distributions. We compare two

methods to reconstruct the sparse networks: the first one is the baseline LASSO regression

approach for the single-omics data (gene expression data) alone; and the second one is the

integrated method of the LASSO regression with an additional predictor of copy number of the

same gene. We use the receiver operating characteristic curve (ROC) which is the curve of the
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true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. We

also use the bootstrapping method with 100 times of boosting to evaluate the confidence interval

(CI) of the ROC. The simulation result shows the integrated method has a larger area under the

curve (AUC) than the method on single-omics data alone. And for a given false positive rate

(FPR), the integrated method has a significantly higher true positive rate than the single-omics

method. 

 

Figure 11 ROC curves of constructing sparse genetic networks from single omics data and from

integrated data 

The role of TFs in the integrated data signaling model is the regulators of the genes in the

RNA layer. Gene regulatory network is inferred mainly from gene expression data and from

inter-omics dependency between gene expression and TF expression. We are not detecting

regulations between TFs in this model, but the method of multiDDN could be easily extended to

include such dependencies between nodes in the protein layer.   
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Figure 12 Graphical model of gene entities for multiDDN 

There are various ways of selecting candidate nodes from the whole set of molecules in

omics data. For multiDDN, we may choose genes from pathways of interest or curated gene list;

or if pathway information is not available, we significantly differentially expressed genes from

transcriptomics data. We select the TF nodes for the integration model in the following way: The

TF-gene binding information is retrieved from the TRRUST database(Han, et al., 2017),

restricted to the Homo Sapiens and with experimental evidence. The genes in the RNA layer are

used as input to find their regulating TFs. The retrieved list of TFs is further filtered to keep only

those regulate at least three genes in the RNA layer and P-value less than 1E-3.   
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Figure 12 Multi-layer data signaling model for multiDDN 

The multi-layer model could be summarized to dependency networks of gene entities. Gene

entity in a multiDDN network is defined as one gene’s expression combined with its own copy

number regulator and with its regulating TFs.  The differential dependency (i.e., the network

rewiring) in the multiDDN network is in two tiers: the first is the intra-omics network rewiring

between the gene entities; and the second is the inter-omics network rewiring within a gene

entity. Figure  illustrates the conceptional multiDDN network between gene entities.  

 Now consider the problem of learning graphical structure changes in the data model

between two conditions. The problem is equivalent to estimate the conditional dependence or

independence between a subset of random variables as gene entities under two conditions, with

additional variables to each gene entity as entity-specific predictors. We have a set of

G Ep p p= =  genes of interest which are bind with a total of Pp TF proteins.  We observed

samples from 1n  objects under condition 1, and 2n  objects under condition 2. For each object,

we collected three variables of copy number, gene expression and TF expression.  

For convenience, we firstly define a few terms. Define the vectors of variables observed from the

i-th sample under condition 1 as: 
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in which the letter G, E, P represents data from genomics data, gene expression data and protein 

data, respectively. The vectors of variables under condition 2 are defined in a similar manner.  

In the dimension of features, denote all observation on j-th gene or j’-th TF protein under 

condition 1 as: 
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Similarly denote the observation vectors under condition 2. The vectors of variables are merged 

to data matrices of omics, either from sample dimension or feature dimension.  

Define: 
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as the three data matrices of three omics under condition 1, and similarly for condition 2. 

( ) ( ) ( ) { }G E PX ,X ,X , 1,2c c c c ∈
are data matrices of gene copy number, mRNA expression and protein 

expression, respectively. Denote
( ) ( ) ( ) ( ) { }G E PX = X ,X ,X , 1,2c c c c c⎡ ⎤ ∈⎣ ⎦ as the entire observation data 
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matrix under conditions 1 or 2. For the j-th gene entity, omics under condition 1 or 2, define the 

coefficient β vector which is combined from three sub β vectors from each omics as:  
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The β vector under condition 1 or 2 for all gene entities are merged into the β matrix which is the 

representation of the multiDDN network structure: 

( ) ( ) ( ) ( )

( )

( )

( )

X X, ,1 X, ,2 X, ,β ,β , β

c
G

c c c c c
p E

c
P

⎡ ⎤Β
⎢ ⎥

⎡ ⎤Β = = Β⎢ ⎥⎣ ⎦ ⎢ ⎥
Β⎢ ⎥⎣ ⎦

� � �
L

, 

Along the sample feature dimension, the β vector for the j-th gene entity under both conditions 

form the network dependency structure for the j-th gene entity, define as: 
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Finally, define two LASSO objective function for each condition and the multiDDN’s objective 

function as: 
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Mathematically, we formulate a multiDDN problem of learning structural changes of the multi-

omics data model between two conditions as a convex optimization problem. We solve the 

following optimization problem for the j-th gene entity as follows (j = 1, 2, ..., p): 
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In the multiDDN optimization problem, we learn the graphical structures of the integrated data 

model under two conditions jointly. The LASSO objective function 
( )( )1

1 X, ,β jf
� and 

( )( )2
2 X, ,β jf

�  for 

each condition lead to the identification of a sparse graph structure. The penalty term ( )X, ,β jg
� , 

encourages sparse changes in the network structure of both intra-omics and inter-omics 

interactions between two conditions, and thereby suppresses parametric inconsistencies due to 

noise or limited samples.  

After solving the multiDDN optimization problem for each gene entity, the matrix of 

( ) ( ) ( ) ( )
X X, ,1 X, ,2 X, ,β ,β , β
c c c c

p
⎡ ⎤Β = ⎣ ⎦� � �

L

 are the parametric representation of the multiDDN network under 

each condition. For
( )
E, ,

c
i jβ

and 
( )
E, ,

c
j iβ

, we may replace them with the one with the larger absolute 

value to get a symmetric parametric structure for the intra-omics part (
( )c
EΒ ) which could be 

converted to adjacency matrix for nodes in the RNA layer. The two parametric representations 

( )1
XΒ and 

( )2
XΒ are then compared to exact the network rewiring events from the differential matrix 

( ) ( )1 2
X X∆Β = Β − Β . We may further separate the differential matrix to G∆Β  E∆Β  and P∆Β , to 

categorize the network rewiring events into intra-omics network rewiring and inter-omics 

network rewiring.  

We design a simulation study to show that our proposed multiDDN method will have 

higher prediction precision in constructing differential networks from the multi-omic data, 

comparing with the DDN method on single omics data. The ground truth of the multi-layer 
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regulation network is designed as a scale-free network to mimic the gene regulatory network 

form real biological data, as shown in Figure 1. We then generate the adjacency network 

according to the ground truth. For the regulation strengths, we measure the intra-omics Pearson’s 

correlation coefficient distribution from over 200 samples in TCGA ovarian cancer dataset 

(Cancer Genome Atlas Research, 2011; Zhang, et al., 2016), and take the mean and variance 

values as the guiding parameters for the simulated covariance matrix, giving the fact that the 

correlation matrix is identical to the covariance matrix for standardized data. Similarly, we 

measure inter-omics Pearson’s correlation coefficient distribution for interactions between DNA 

and mRNA, and interactions between TF with mRNA. Depending on the type, the non-zero 

elements in simulated covariance Σ  are sampled from one of the three distributions, and the 

whole data matrix is then sampled from multivariate Gaussian distribution of ( )0,G Σ
. These 

steps are repeated once again with a slightly different network skeleton and covariance matrix, to 

generate the data matrix of condition 2. The network structure differences between conditions 1 

and 2 are recorded as the ground truth of network rewiring, as shown in Figure 1 as colored 

edges.  

We test the multiDDN method on four groups of simulated data: 1. Single omics data that 

contains only gene expression; 2. Two-omics data combined from copy number data and gene 

expression data; 3. Two-omics data combined from gene expression data and TF expression data; 

4. Three-omics data combined from all three types of omics data. To compare the results on a 

fairground, only the common layer of four groups’ networks which is the RNA layer is 

compared. The multiDDN performance in these four groups is shown in Figure 14 The ROC 

curves for multiDDN on multi-omics data with different integration levels. The black curve is for 

the multiDDN method with all three types of omics data as the input. The blue and red curves 

are for the multiDDN method with only two of the three types of omics data. The green curve is 

for the DDN method with single-omics data of mRNA expression. 

As expected, multiDDN on the integrated three omics data has the largest area under the 

ROC curve, and DDN on single omics data has the smallest. This confirms the benefit of 

integrating additional omics data into differential network analysis.   
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Figure 1 Synthesized multi-layer differential network used in multiDDN simulation 

 

Figure 14 The ROC curves for multiDDN on multi-omics data with different integration levels.

The black curve is for the multiDDN method with all three types of omics data as the input. The

blue and red curves are for the multiDDN method with only two of the three types of omics data.

The green curve is for the DDN method with single-omics data of mRNA expression. 
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