bioRxiv preprint doi: https://doi.org/10.1101/2021.04.10.439301; this version posted April 19, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

DDN2.0: R and Python packages for differential dependency
network analysis of biological systems

Bai Zhang"", Yi Fu"', Yingzhou Lu*', Zhen Zhang?, Robert Clarke®, Jennifer E. Van Eyk®,

David M. Herrington®, and Y ue Wang"*

'Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State
University, Arlington, VA 22203, USA; “Department of Pathology, Johns Hopkins Medical
Institutions, Baltimore, MD 21231, USA; *The Hormel Institute, University of Minnesota,
Austin, MN 55912, USA; “Advanced Clinical Biosystems Research Institute, Cedars Sinai
Medical Center, Los Angeles, CA 90048, USA; *Department of Internal Medicine, Wake Forest
University, Winston-Salem, NC 27157, USA

" These authors are with equal contributions

# Author for correspondence: Y ue Wang, Ph.D.
Virginia Tech Research Center - Arlington
900 N. Glebe Road, Arlington, VA 22203

E-mail: yuewang@vt.edu



https://doi.org/10.1101/2021.04.10.439301
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.10.439301; this version posted April 19, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Summary

Data-driven differential dependency network analysisidentifiesin a complex and often
unknown overall molecular circuitry a network of differentially connected molecular entities
(pairwise selective coupling or uncoupling depending on the specific phenotypes or experimental
conditions) (Herrington, et al., 2018; Zhang, et al., 2009; Zhang and Wang, 2010; Zhang, et al.,
2016). Such differential dependency networks are typically used to assist in the inference of
potential key pathways. Based on our previously developed Differential Dependency Network
(DDN) method, we report here the fully implemented R and Python software tool packages for
public use. The DDNZ2.0 algorithm uses a fused Lasso model and block-wise coordinate descent
to estimate both the common and differential edges of dependency networks. The identified
DDN can help to provide plausible interpretation of data, gain new insight of disease biology,
and generate novel hypotheses for further validation and investigations.

To address the imbalanced sample group problem, we propose a sample-size normalized
formulation to correct systematic bias. To address high computational complexity, we propose
four strategies to accelerate DDNZ2.0 learning. The experimental results show that new DDN2.0+
learning speed with combined four accelerating strategies is hundreds of times faster than that of
DDNZ2.0 algorithm on medium-sized data (Fu, 2019). To detect intra-omics and inter-omics
network rewiring, we propose multiDDN using a multi-layer signaling model to integrate muilti-
omics data. The ssimulation study shows that the multiDDN method can achieve higher accuracy
of detecting network rewiring (Fu, 2019).

Availability and Implementation: The open-source R and Python codes are freely available
for download at https://github.com/MintaY Lu/DDN

Contact: yuewang@vt.edu, lyz66@vt.edu

Supplementary infor mation: Supplementary data are available upon request.
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1 Introduction

Data-driven differential network analysis identifies in a complex and often unknown overall
molecular regulatory circuitry a network of differentially connected molecular entities (Fig. 1a;
pai rwise selective coupling or uncoupling depending on the specific phenotypes or experimental
conditions, including the associated regulatory elements) (Ha, et al., 2015; Herrington, et al.,
2018; Hu, et al., 2016; Mitra, et al., 2013; Ottenbros, et al., 2021; Tolios, et al., 2020; Zhang, et
al., 2016). Such differential regulatory networks are typically used to assist in the inference of
potential key pathways

a POLRZA

and targets in tumor Y . AN
biology. They can serve as Sy
useful frameworks for the @ |/ \ .
contruction and Y
verification of mechanistic s 2
cancer models, which in \ :
TUBST STH11 — HUSL 3 = g . L
turn  help to provide L T4 § | —
METI] s EPID0 s KPHAG : _ i .
plausible interpretation of r " _ § [t N
MED?] e POLRIK E2F4 e oy oV

data, gain new insight of

cancer  biology, and

generate hypotheses for

further  validation and

investigations  (Califano,

2011; Gill, et al., 2010;

Hudson, et al., 2009; Ideker and Krogan, 2012; Zhang, et al., 2016). It should be noted that the

pairwise selective coupling or uncoupling in such data-derived network are based on dtatistical

significance in differential co-expressions, representing possible underlying mechanisms

involving direct or indirect, and single or collective effect of a multitude of regulatory pathways.
The publicly available Differential Dependency Network (DDN) analysis software tool

(Zhang, et al., 2009; Zhang, et al., 2011; Zhang and Wang, 2010) and its recent extension,

knowledge-fused DDN (KDDN) (Tian, et al., 2014), represent our continuous effort to develop

novel bioinformatics tools to detect statistically significant rewiring and robust subnetworks with
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phenotype-specific changes. We have successfully applied DDN tools to real gene expression
and proteomics data with promising findings and novel hypotheses (Crawford, et al., 2010; Hu,
et a., 2015; Tian, et al., 2014; Zhang, et a., 2009; Zhang, et a., 2016). The current DDN tool
can infer atistically significant coupling or uncoupling between pairs of molecular entities (e.g.,
genes proteins) that are dependent on the specific phenotypes or experimental conditions using
transcriptome/proteome expression data (Tian, et al., 2014; Zhang, et a., 2009; Zhang, et al.,
2011). To assess the DDN'’s effectiveness, we have compared the accuracy of inferring
differential networks by DDN with other tools using realigtic simulations (Tian, et al., 2014;
Zhang, et al., 2009). The DDN tool has been used to detect critical changes in molecular
networks in breast cancer (Madhavan, et al., 2011), ovarian cancer (Zhang, et a., 2016), and
medulloblastoma . This has led to nove findings and hypotheses that have been validated
experimentally (Hu, et al., 2015; Zhang, et al., 2016).

From a scientific perspective, the main role of DDN is at least two twofold. First, an
enrichment analysis focused on the genes/proteins that are differentially connected (nodes of
differential networks including associated regulatory elements), not simply differentially
expressed, can identify the more relevant pathways that functionally control phenotypes
(Barabag, et a., 2011; Califano, 2011; Hu, et a., 2015; Mitra, et a., 2013). Second, the hubs of
differential networks (densely and differentially connected nodes) can hint at changes in the
regulatory mechanisms, e.g., PTM or mutations in the regulatory elements of master regulators
(Hudson, et a., 2009; Zhang, et al., 2016). By contrast, classic differential or co-expression
analysis (i.e., identifying a subset of differentially or co- expressed genes/proteins) is insufficient
here because the low level of transcription factors (TF) differential expression makes their
detection challenging, even though TFs play a central regulatory role in controlling gene
expression (Reverter, et al., 2010). DDN addresses an important biological issue because it better
accounts for the functional activation/deactivation of TF (e.g., reversible phosphorylation,
enhancer binding, chromatin openness) than does differential expression alone. Simple
differential expression will overlook these vital changes in regulatory mechanism. For example,
Hudson et al. reported that the myostatin gene containing a causal mutation was not detected
because myostatin was not differentially expressed at any of ten developmental time points under
surveillance (Hudson, et al., 2009).
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The goal of studying network remodeling is not to solve the entire and common network
at once but to find small, most-rdlevant, and critical features (e.g, topological changes
within/between pathway networks) that can explain how the network functions to control
phenotype. For example, most existing approaches infer gene co-expression networks under a
single biological condition and are focused on the disease-related pathways enriched on a subset
of differentially expressed genes. In marked contrast, DDN infers differential regulatory
networks, i.e., differentially connected genes between different cancer subtypes, and is focused
on the disease-related pathways enriched on (i) a subset of multi-omics expressions whose
regulatory patterns (e.g., paired miRNA-mRNA/protein co-expressions) meet biological
expectations and/or (ii) a subset of differentially connected genes/proteins (selectively coupled or
uncoupled protein/gene pairs and associated regulatory elements depending on the specific
cancer subtype). Another advantage is that we obtain small/sparse experimentally tractable
models, i.e., rather than complex hairballs, DDN generally produces models that allow for the
design of feasible wet lab experiments that enable mechanistic validation (Hu, et a., 2015;
Tyson, et a., 2011; Zhang, et a., 2016).

2 Results

Case study on initial application of DDN to CPTAC proteomics data. In our recent work on
integrated proteogenomic characterization of human high grade serous ovarian cancer (Zhang, et
al., 2016), applying DDN on a set of 171 BRCA1/2-related proteins, we identified a sub-network
of 30 proteins that displayed differential co-expression patterns between HRD (homologous
recombination deficiency) from non-HRD patients (Fig. 1a). Several of the proteins in these
modules are known to be involved in histone acetylation or deacetylation. Although statistical
association predicted by DDN cannot distinguish between drivers and consequences of HRD
status, the observed enrichment of proteins associated with histone acetylation motivated us to
identify and quantify acetylated peptides from our CPTAC global proteomic data. Comparative
analysis of 399 acetylated peptides identified 15 acetylated peptides with significant differences
between the HRD and non-HRD samples (dual acetylation at K12 and K16 of histone H4).
Acetylation of H4 isinvolved in the choice of DNA double strand break (DSB) repair pathways
(homologous recombination or non-homologous end joining). This relationship is regulated
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partially by HDAC1 (Fig. 1b). The findings were verified using independent samples and
independent technical approaches (Fig. 1c) (Zhang, et al., 2016). The combined observations of
increased HDACL (ahub protein also identified by DDN) and associated proteins at the pathway
level, together with decreased acetylation of H4 in HRD patients at the (post-trandlational
modifications) PTM level, provide insight regarding the potential role of HDAC1 in modulating
the choice of DSB repair pathways (Zhang, et al., 2016).

Case study to validate phenotype-specific differential networks of breast cancer dormancy
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adapt to the stress of endocrine-based
therapies. Our centra hypothesis
invokes a gene network that

coordinately regulates the functions of a cell and determines and executes the cell’ s fate decision.
Using DDN tool we were able to identify three small topological features, one of which
independently reflected much of our prior knowledge despite not explicitly incorporating this
knowledge in learning the models (Zhang, et al., 2009). We followed the predictions of this

differential topology and validated fundamentally new insights into molecular signaling, e.g.,

direct regulation of BCL2 by XBP1 and the requirement of NF«B for XBP1 signaling to regulate
the pro-survival cell fate outcome in the cellular context of antiestrogen treatment and resistance
(E2 versus E2+ICI) (Fig. 2) (Clarke, et a., 2011; Crawford, et al., 2010; Hu, et al., 2015; Tyson,
et a., 2011). Specifically, DDN tool identified a new non-canonical UPR signaling route that
was not previously known. Canonical signaling in the UPR would have predicted that changesin
JINK regulated BCL2 but DDN predicted that XBP1 (not JNK) regulated BCL2 (Zhang, et al.,
2009). We then found (i) response e ements to XBP1 in the BCL2 promoter, (ii) that cells over
expressing endogenous XBP1 also had higher BCL2 expression, (iii) that knockdown of XBP1

in these cells with RNAI reduced BCL2 expression, (iv) that constitutive overexpression of the


https://doi.org/10.1101/2021.04.10.439301
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.10.439301; this version posted April 19, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

XBP1 cDNA increased BCL2 expression and (v) that knockdown of BCL2 phenocopies
knockdown of XBP1 with respect to reversing endocrine resistance (Crawford, et al., 2010; Hu,
et a., 2015). We went on to further explore the DDN mode and further confirmed the role of
XBP1 regulation of NFKB (also not previously known) as another key driver of the prosurvival
activities of XBP1 and the UPR (Hu, et al., 2015). In more detail, XBP1 can function as a
direct/co-regulator through binding to its responsive element, most notably ERa. BCL2 contains
response elements for both ERa and XBP1, thus XBP1-BCL2 may either be rewired or involve
ERa as a latent variable, or intervening gene. In the non-recurring breast cancer, the affected
network involves both signals received from activation of the membrane receptors and a cascade
of signaling path inside a cell to promote apoptosis as well as survival. A balance between
apoptosis and survival is necessary for damaged cells to be eiminated and repaired cells to
survive. Three immune response genes (IL1B, NFkB and TNFa) for increased resistance to
breast cancer treatment were identified in the recurring tumors. These genes formed a path to
inhibit pro-apoptotic CASP3 and PPP3R1, and to activate pro-survival gene PIK3R5 or
CSF2RB.

Case study to validation of DDN prediction on CPTAC data and identify phenotype-
associated co-regulatory subnetworks. In our recent work (Zhang, et al., 2016), we reported a
key finding on proteogenomic analysis of TCGA ovarian tumors in which DDN played a critical
role (Fig. 1). The differentially networked proteins identified by DDN analysis on global
proteomics data suggest that histone acetylation might play arole in DNA repair. We studied the
downstream effects and identified several peptides of histone H4 showing differentially
acetylated K12 and K16. We validated these discoveries using SWATH proteomics technology,
in addition to a separate yet direct evidence demonstrated on a cell line model. In more detail,
DDN analysis on ovarian cancer samples helped identifying a sub-network of 30 proteins
involved in histone acetylation or deacetylation (Fig. 1). In cell line data, acetylation of H4 has
previously been reported to be involved in the choice of DNA double strand break (DSB) repair
pathways (homologous recombination or non-homologous end joining). This relationship is
regulated partially by HDAC1, a protein also identified in the DDN analysis. We observed a
significant enrichment of HDAC1 and its co-regulated proteins in tumors with HRD and low H4
acetylation relative to non-HRD tumors with high H4 acetylation (DDN analysis: permutation
tests, p value <0.05; differentialy acetylated peptides: t-tests, p value <0.05 with an estimated
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FDR < 0.5% by bootstrap/permutation tests). The identification of these acetylation events
associated with HRD may provide an alternative biomarker of HRD for patient selection in
future clinical trials of HDAC inhibitors alone or in combination with PARP inhibition. This
may help to resolve the current discrepancy between the initial observation of limited single
agent activity of HDAC inhibitors in ovarian cancer and more recent findings of a >40%
response rate when used in combination with cytotoxic chemotherapy in platinum-resistant
patients (Zhang, et al., 2016).

The integration of proteogenomic data also refers to the integration of molecular
networks across different phenotypes/conditions to identify functional modules that are rewired
in response to conditional fluxes. The types of networks themselves could be physical interaction
networks, signaling and metabolic pathways, and others. The inference of conditional network
often requires the ability to bridge between prior knowledge and experimental data and with
built-in resampling/permutation to offer statistically sound and robust results (Zhang, et al.,
2014). It should be noted that while DDN infers both common and differential networks, its
unique and main function is to differentially detect the statistically significant "rewiring"
associated with phenotypic differences. Thus, only rewired edges are included in the fina
differential dependency networks that are not meant to represent the complete regulatory
network that supports the entire functions of the phenotypes. By definition, the rewired part of
the networks are not supposed to be huge. We emphasize that the entire molecular machinery
behind HR repairing of DSB is much more completed than the DDN detected. However, thisis

the part that contains key elements differentiating HRD and non-HRD and pin-pointed to histone

H4 peptide acetylation as a critical point of the mechanism.

Case study to analyze PTM interactome. The aforementioned findings of HRD status-
dependent H4 acetylations, consistent with recent reports in the literature, indicate that much of
the cancer associated
molecular alterations will

not necessarily be limited
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number, and mMRNA/protein expression, but rather as complex rewiring of signaling
pathways/networks carried out in the protein and post-trandlational modification (PTM)
interactomes. The DDN in its current form, and more so with its proposed addition, can play an
important role in differential analysis of PTM interactomes to capture phenotype/experiment
condition-dependent changes. As an example, through CPTAC, we analyzed the tyrosine
phosphorylation substrate activity data using the HuProt protein arrays(Hu, et al., 2014). The LC-
MS/MS global protein profiles include those proteins that are known pTyr kinases. DDN was
applied to identify subnetworks of highly correlated kinase (MS data) — substrate (HuProt array
data) pairs that are dependent on HRD phenotypes. The identified subnetworks were further
compared against the previoudy experimentaly generated kinase-substrate relationship (KSR)
map(Hu, et a., 2014) to retain only connections that are known possible KSRs (Fig. 3a). We were
able to identify severa kinase hubs, such as MAP2K4. Many of them are known drug targets
(unpublished, on-going research) (Fig. 3b). In this example, the relationship between K and S nodes
are directional (downstream subgtrates). The superposition of KSR map was applied separately. The
extenson of DDN to alow for seamless integration of such knowledge in a quantitative and

computational way will further optimize such analysis approaches.

Case study on cancer prevention research. DDN tool has generated biologically meaningful
hypotheses that guided further investigations. To study the

consequence of possible transcriptional re-programming  sms= -

regulated by promoter methylation status (effectors ER, BCL2, E;)_ )

LEP, and EGRL; AKT1 can regulate methylation patterns in ey gy -
some promoters, e.g., AKT1-EGR1 edge), revealed by DDN, 331/@ ) @
we found that in utero estrogen exposures induce a rewired cw

network pattern in the mammary glands of rodent offspring that
predicts for resistance to endocrine therapies. Subsequent
studies have shown that tumors that arise in these mammary

glands are less responsive to Tamoxifen (TAM) (Hilakivi-Clarke, et al., 2017). This represents

the first study to explain why many ER+ breast cancers fail to respond (or respond and later
recur) with TAM treatment (Fig. 4).
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3. DDN2.0+ new development

3.1 Correction of imbalanced sample size between two groups

Though DDN2.0 is a powerful differential network analysis tool (Zhang, et al., 2009;
Zhang and Wang, 2010), some drawbacks hinder the DDN tool from being more widely used in
network study or biomedical data analysis. Firstly, the initial design of the DDN method is for
comparing two groups with equal sizes of samples. In practice, we notice that for imbalance data,
i.e., two groups have different sample sizes, DDN seems to detect network rewiring favoring one
condition over the other. A systematic bias caused by data imbalance may exist and need to be
correct. Secondly, when limited by the algorithm running time, DDN can handle only dozens of
features and samples. The actual computation time grows more than cubically with a feature
scale. In biological network analysis, the feature size in gene regulatory network inference could
be as large as tens of thousands. The development of accelerated DDN learning algorithms is an
urgent need for extending DDN'’s agpplication to broader fields. Thirdly, for omics data analysis,
the current DDN method is designed for analyzing a single type of omics data. Though a smple
method of merging multiple data matrices into a single matrix could theoretically extend the
DDN method to multi-omic data, this kind of integration method would double to triple the
feature scale and take impractically long computation time. This smple merging method also
ignores inter-omics regulation knowledge. We believe a multi-omics integration method could
take advantage of the additional knowledge such as directional inter-omics interactions
(Buescher, et al., 2016), to effectively reduce the feature scale and increase the accuracy in
differential network learning. With the advent of more are more multi-omics research projects,
DDN needs such an integration method to discover novel network rewiring facilitated by multi-
omics data.

In detecting network rewiring between two conditions, we expect that network rewiring
events are sparse. In other words, we assume that the networks under two conditions will share a
large portion of common network structures. Based on this assumption, Zhang and Wang (2010)
further improved the initial DDN method by jointly solving Fused LASSO regressions via
introducing a penalty term on the structural difference. We denote this version of the DDN
method as DDN2.0. The DDNZ2.0 optimization problem is:
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where i isthe node index; g is the regression coefficient from node i to node j under a specific
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condition; y; and X are the expression values of dependent and input variables, respectively; P is
the number of nodes; A, and A, are the parameters on the two penalty terms that are used to assure
both a sparse common network structure and sparse differential network rewiring.

@ (2)
The differences between Pi and Pi indicate the differential dependence edges, while
common dependence edges in the network are inferred by the consistent coefficients. Note that
the differential dependences are of particular interest, because such network rewiring may reveal

pivotal information on how the biological system responds to different biological conditions.

The permutation test is introduced in DDN to evaluate empirical p-values of the detected
network rewiring (Tian, et a., 2011). The detected differential edges with multi-test corrected p-
values less than the preset significance threshold (e.g., p-value<0.05) are marked as significant

network rewiring.

However, in the design of the DDN framework, the objective function does not explicitly
consider the sample size difference between the two groups. If we expand the objective function
of DDN, we have:
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sample-wise squared residual is at a comparable level, the actual weighted penalty of beta added
to each sample differs. Suppose one group’s sample scale is ten times as the other group, the
actual sample-wise weight penalty term is as small as one-tenth of the other group. When
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minimizing the total object function with the L-1 penalty, the samples in the group of smaller
sizeswould be more likely to have smaller sparsity in network structure.

To redesign the weights applied to each group, we first define two LASSO objective
functions(Friedman, et al., 2017) for each group, and rewrite the DDN objective function as

follows:
Jfl(ﬁ(l)):%‘y(l) _XWpY le B
lfz([;@)):%”y@) _x2p? z + %‘B(Z)‘

i (0)= 1 (087) = 1 (07) . (07) 2 677

1

f

in which 't only contains measurement and regression coefficients of condition 1, and so does

f, to condition 2.

1:1and f, is positively dependent

For standardized data, the LASSO objective functions
on the sample size N. To make the two group’s objective function values at a comparable level,
we simply add sample scale normalizer to the basic form of LASSO objective function. Define

the LASSO objective function with the sample scale normalizer as:
S a1 » s
f(B.2) =y — X8I, +2Ip]

where A Is the parameter for controlling the sparsity. Basically, we use mean squared error to

replace the square error term in the original LASSO objective function. This normalized LASSO

objective function isthe scaled version of basic LASSO form, with A=NA.
-/ 1(1 2 5 1 1
F(B0)= o Sly-xE N |- 5 1 (v

Therefore, the solutions to these two forms of LASSO objective functions are identical, with the

condition of 2=NZ_ When the value 4is given, the normalized LASSO objective function is
independent of the sample scale N. We now adjust DDN’s formulation accordingly to the
normalized LASSO objective function, and hence make the new DDN objective function also
independent of the sample scales. The new DDN objective functioniis:
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We designed a simulation experiment to confirm the bias brought by imbalanced datain
the original DDN method, and aso to show our proposed reformulated DDN objective function
is capable of handling imbalanced data correctly. To illustrate the systematic bias, we need to

identify which differential edges are the false positive detections caused by the bias. We
purposely designed the data that contains no groud truth positives of differential edges, and
hence all detected differential edges will be false positives. The simulated data is actually single
condition data that follow i.i.d multi-variate Gaussian distribution, and is manually divided into
two groups to form the pseudo two conditions. We generate data with the total sample scale
N=500 and the feature scale P=30, and then divided into two groups with three settings of
sampleratios: 1:1, 1:10, and 10:1. The first sample ratio of 1:1 represents the perfect balance of
sample scale, which corresponds to balanced data; the rest two sample ratios correspond to
imbalanced data wither the larger sample scale in either the first or the second group.

The generated data are standardized to zero-mean and unit variance, and then test by the
original DDN method and the reformulated DDN method. The original DDN method is
performed by kDDN plugin in Cytoscape without knowledge input, which is mathematically
equivalent to the DDN2 method. The reformulated DDN method is implemented by the R
language. Its results are visualized by Cytoscape to compare with results from the original DDN
method.

The ssimulation results are shown Figure 5. The condition-specific differential edges are
colored as red or green for condition 1 or 2. The edge width is mapped from p-values evaluated
by a permutation test, and wider edges have smaller p-values. For data group with a sample size
ratio of 1:1, which is balanced data, the original DDN method and the sample-scale-normalized
DDN method gave identical results: only two network rewirings events with insignificant p-
values are detected. These results fit the expectation since there should be no network rewiring in
the smulated data. For imbalanced data groups with sample sizeratios of 1:10 and 10:1, original
DDN2.0 gives network rewiring detection results of overwhelmingly one-sided condition-
specific network rewiring. Some of the detected differential edges have significant p-values
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evaluated from the permutation test. Since there is no network rewiring in the designed ground
truth network, all these condition-specific network rewiring detected by the original DDN2.0
method are false positives, and they confirm the existence of systematic bias brought by
imbalanced data. On the other hand, the sample-scale-normalized DDN2.0+ method detected
only one or zero network rewiring events in these imbalanced data. The detected differential
edges have inggnificant p-values and could be further filtered. The results show the low false
positive rate of the sample-scale-normalized DDN2.0+ method in the simulation data. The
systematic bias in the original DDN2.0 method, i.e., the condition-specific false positives in the
imbalanced data, has been successfully corrected.

nln2=1:10 nln2=1:1 nln2=10:1

Original DDN , X o8

l.k_gglwdency
onbyincond. 1
[hpc.ndcncy ) iR
onlyincond. £

N16

DDN with RS i T :
group size nurmalizer !

...............

Figure 5- Comparison of DDN2.0 vs DDN2.0+ detected network rewiring from data with
different group sizeratios.
3.2 Accelerated DDN2.0+ algorithm
3.2.1 BCD ResiUpd strategy
We rewrite the DDN2.0+’ s objective function into two parts as follows:
L S al

L yw — xwpw
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The second part of the objective function can be written as the sum of p terms with non-
W p@Y i _1... W p@Y i _1...
(BY.87)i=1p _ (BYB7)i=1p
The essence of the BCD agorithm is “one-block-at-a-time’. At iteration r + 1, only one

(8.87)

overlapping members is a coordinate block.

coordinate block,

(BY.87),je{L - k-1k+1-, p}

is updated, with the remaining

fixed at their values. The cyclic rule is used to update
( BY, p®
IR

parameter estimation iteratively, i.e., update parameter pair )for each 1 =1 P one

by onein acircular way in the iterations.

(82.87)

In DDN2.0+, we will derive the solution of that updated at the end of each

(1),r (2).r
iteration. Take DDN objective function’s partial derivative to B and B :

af 1 r r T I
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Definetheresidual as:
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And define the inner products between the residuals and current node' s observation:
=L o @r— 1 @@
P E=Y DX P ==Y X
n n,

Recalling that the standardized data have unit-variance, the partial derivative equations could be
further written as:
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, We can get closed-form solutions of B and
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(D) (. (),
. For example, when the conditions are B >0B7 > 0and B , the solution
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And the condition could then be converted to a sub-region in the plane of , whichis:
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Similarly, we can get al other closed-form solutions for possible conditions, and convert the

<p(1)'f ’p(Z)’f)

conditions accordingly to sub-regions on the plane of . We ligt al solutions and

corresponding subregions as follows
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In Figure 6, we illustrate the solution subregions of ~« and/x  on the plane of :

Recalling that in the BCD algorithm we only update one coordinate at a time, the updated B

r-1
will has most of its elements overlapped with those of B from the previous iteration.

r . - @) @ ,
Reinspection on the residuals Yi-<used in the original formof #~ or”  definition reveals its

relationship with the previous residual :
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Instead of directly calculating residuals from P weighted observed vectors, we can update the
residuals in a new iteration from the previous one, with a small computation load on adding 2
weighted observation vectors. We call this computation skill as the method of BCD with residual
updating, or BCD-ResiUpd algorithm, and notated the DDN method utilizing this BCD-ResiUpd
algorithm as DDN-ResiUpd.
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Figure 6. BCD solution subregions on the plane of rhol and rho2.

3.2.2 BCD-CorrMtx strategy
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. (@) @r . '
In the origina form of £ and® | it firstly needs to calculate the residuals i~
which are the summation of P weighted observation vectors, and takes about PN times of
multiplication to complete. Second, the inner product of the residual vector and the current

response variable vector requires another N time of multiplication operation. Therefore,

. @)y 2. . -
caculation of 7 and A in each BCD update needs about 2% (PN +N)=2PN

multiplication. And in concluson, the computation complexity of DDN is about

O(TP?*x2PN)=0(2P°N)

times of

. For observations with large sample scale N or feature scale P, it
will be a heavy burden of computation.

Consider the fact of zero-mean and unit-variance for the standardized data, the inner
products between two observed data vectors are actualy linear to the elements in ther
covariance matrix, or equivalently, the Pearson’s correlation matrix R. Therefore, we can replace
the inner product of observed data by the pre-caculated correlation coefficients.

W@ — @ @)= RO
XX =ncov(x”, X’ |=nR; (2 (2) — (2 _ )
= ( Tk ) R g XX =R 5 the neighborhood selection approach,

(1

. . y,(l) =xW . . @.r (2)r
the response variable is one of the nodes: 7' i . Recalling the definitionof #~ and” |, we

rewrite them in the form of correation matrix e ements:
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(@ (2)r . Bt -
Therefore, 7 and”  could be directly calculated from and the observation’s

corrdlation matrix R” and R? , Without the need for direct computing on the original data
matrix X. We call this computation skill as the BCD algorithm using the correlation matrix, or
BCD-CorrMtx for short, and notated the DDN method utilizing this BCD-CorrMtx algorithm as
DDN-CorrMtx.

@r @2 ,
The new form of # or” ~ has only one inner product of two P-element vectors, and
thus needs only 2P times of multiplication operations in each updating iteration. Therefore, the

O(TP*x2P)=0(2TP°)

computation complexity of DDN-Corr is , approximately N times

faster than the procedure with the original definition.
3.2.3 BCD StrongRule strategy

Tibshirani, et a. (2012) proposed “ Strong” rules for discarding predictors in Lasso-type
problems before for computational efficiency. The Strong rules are developed based on the
“Safe’ rules proposed by El Ghaoui et a. (2010), and are able to effectively reduce the actual
number of predictors need to be solved in LASSO problems. Tibshirani, et al. (2012) also
showed that, although in extremely rare cases the Strong rules may erroneously discarding
predictors, the error could be amended by checking the KKT conditions. The basic Strong ruleis
defined as follows: for the lasso problem, discard the j-th predictor from the optimization

problem if:

‘x}y‘ <20— A,

~

e =16 i) =0

where is the smallest tuning parameter value such that

For the BCD algorithm used in DDN2.0, we use a cross-validation strategy to estimate

the optimal value of ﬂlwhile Setting A = 0. Because DDN2.0 optimization is degraded to basic
LASSO problems in this case, DDN2.0+ applies the “Strong” rule to discard predictors before
applying the BCD algorithm. The remaining predictors in DDN2.0+ after applying the basic
Strong rule will still cover al true predictors, and the results will be identical to predictors

without applying the Strong rule. Since the number of remaining predictors is much smaller than
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the total number of matrix e ements, the procedure of LASSO problem solving in DDNZ2.0+ will
take much less computation time (Tibshirani, et al., 2012).

3.2.4 BCD with parallel computing

In the procedure of the neighborhood selection approach, the solution of one node's
optimization is independent of the other nodes’ solution. Therefore, the BCD optimization in
DDN2.0+ could work parallelly for each node selected from the total P nodes in the network. In
parallel computing, we assign one CPU core from a multi-core computer to independently solve
one node's DDN optimization problem. The whole DDN network construction could be about
N_core times fast, in which N_core is the number of available CPU cores. We developed an R
package to implement DDN2.0+ parallel computing along with other accelerating methods of
DDNZ2.0+-CorrMtx or DDN2.0+-ResiUpd.

3.2.5 Simulation studies

We set a series of simulation studies to compare the actual computation time of DDN2.0+
with the four proposed accelerating strategies: DDN-CorrMtx, DDN-ResiUpd, DDN-StrongRule
and DDN-CorrMtx/ResiUpd-Parallel. To compare the methods on a fairground, we set the
simulation conditions as follows: each of the ssimulated P nodes observation data follows i.i.d
standard Gaussian distribution; the true covariance matrix is set to the identity matrix, hence no

edges exist in the graph and only the first round of iterations is needed for each node; Zland’22 are
also set to big enough, therefore the convergence is expected to achieve after the first round of
iterations. For each case of simulated data, all methods are using the same data as inputs. The
testing environment is listed as follows: CPU Intel® Core™ i5-8300H @2.30Ghz; RAM 16GB;
R version 3.6.1. The computation timeis recorded by the R function of system.time().

Table 1 listed two simulated cases: one with high feature scale P and the other with high
sample scale N. From the comparison of computation time used for each method we could see
that, the original DDN method takes the longest time which is unbearable in large scale; DDN
with correlation matrix takes little time for large sample scale N, but is dower than DDN with
residual updating strategy in case of large feature scale P. Paralel computing offers great help
when Pislarge, but the time saving islimited in case of moderate value of P.

Table 1. The computation time of accelerated DDN2.0+ methods
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N=100, P=1600 N=1600, P=100
Original DDN 2695.48s 141.25s
300
DDN-CorrMtx 93.19s 0.28s
—~ 250
¢ . DDN-CorrMix-
£ 1.48s 0.25s
210 Pardlel (nCore=7)
§'°  DDN-ResiUpd 31.39s 2.94s

Figure 7. DDN2.0+ computation time versus feature scale P

Figure 7 shows the computation time used by DDN-CorrMtx, DDN-ResiUpd and the original
DDN versus the feature scale P. The DDN-ResiUpd method shows a large advantage when P
grows. Figure shows the computation time used by the three methods versus sample scale N.
Since the size of the correlation matrix only relies on P, the DDN-CorrMtx method uses almost
the same time for different sample scales, and hence is much faster than the other two methods

when N islarge.

DDN Computing Time vs. N
P=50,100

150

= © 'DDN-CorrMtx, P=50 I
= @ *DDN-ResiUpd, P=50 I
= @ - Original DDN, P=50 I}
—*#— DDN-CorrMtx, P=100 /
—+#— DDN-ResiUpd, P=100 1
—+#— QOriginal DDN, P=100 ]

100

Computing Time (sec)

Sample scale N

Figure 8 DDN2.0+ computation time versus the sample scale N

We compare the computation time of the DDN-CorrMtx methods with and without parallel

computing (Figure ). Since parallel computing is done for each node selected from all P nodes,
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the parallel computing uses much leas computation time when the feature scale P is large. On the

other hand, the time saved by parallel computing is limited when Pissmall.

DDN Computing Time
non-Parallel vs. Parallel, nCore=7, N1=N2=50

DDN Computing Time
non-Parallel vs. Parallel, nCore=7, P=100
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Figure 9 DDN2.0+ computation time comparison between parallel and non-parallel computing

Table shows the effectiveness of the Strong rule. In this smulation study, the ground truth
network is designed as a single ring in which each node has exactly two neighbors. Therefore,
the basic Strong rules could effectively discard most of the predictors. The results show that
computation time could be significantly reduced by applying the Strong rule when the network

has high sparsity.
N=100, P=400 N=100, P=800
DDN-CorrMtx 57.86s 393.15s
DDN-CorrMtx+
2.15s 5.91s

Strong Rule
Table 2. Computation time comparison between DDN2.0+ with and without Strong rule

In summary, we proposed three reformulated computing methods for the BCD algorithm used in
solving optimization in DDN. We also propose accelerating strategies of discarding predictors by
the Strong rule and by parallel computing. Depending on which one of the sample scale N and
the feature scale P has the larger value, we may choose from the method of computation with
correlation matrix, or residual updating strategy, or with combined effort in coefficient updating
strategy. The results show a tremendous reduction in computation time comparing to the original
DDN method. The proposed DDN-ResiUpd method with parallel computing is now able to
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handle hundreds of genes in a reasonable time period (<1 hour), compared with the original
DDN method which is only capable of handling dozens of genes.

3.3 Multi-omics DDN development

Data integration has a long history in omics data study (Gatza, et al., 2014). There are different
categories of data integration methods. While the naive merging of multi-omics datais smple, it
suffers many drawbacks. It completely ignores the inter-omics interaction, and cannot benefit
from the knowledge of regulation in the multi-omics data. Some other multi-omics integration
methods take the use of inter-omics associations. For example, expression quantitative trait loci
(eQTL) analysis uses both genomics and transcriptomics data to detect genomic loci that explain
the variation of gene expression levels(Shabalin, 2012). Similarly, methylation quantitative trait
loci (mMQTL) analysis tries to find loci associated with methylation levels(Volkov, et al., 2016).
CPTAC-QV project explored the correlation between chromosome instability summarized from
genomics data and the abundance of proteins (Zhang, et a., 2016). These multi-omics integration
methods enable researchers to gain unique insights into inter-omics associations.

In integrating multi-omics data in differential networks analysis, we believe that the integration
of omics should be more than the sum of its parts. We design a multi-layer integrated signaling
model to reduce the total feature scale by incorporating knowledge of inter-omics interaction,
accordingly propose a multiDDN that is capable of integrating multi-omics data and detecting
both intra- and inter-omics network rewiring.

One of the most import regulatory factors to gene expression level is the gene dosage
effect from the transcribed gene itself (Gardiner, 2004). A gene's dosage which is quantified as
the gene copy number determines the maximum number of copies of the gene that can be
transcribed into mRNA simultaneoudly. Yang, et al. (2007) reported that the gene dosage effect
could reach as high as r=0.98 in some genes such as HER2 and GRB7. By sorting the significant
correlations between gene's copy number variation and mRNA expression with their genomic
locations, we aso noticed that gene locations are highly likely to positively correlated with copy
numbers from genes in nearby genomic locations. This phenomenon referred to as cis-correation
is likely caused by long-range structural variations in the DNA chain, and is confirmed by many
reports (Bryois, et al., 2014; Yang, e al., 2007). It is one of the major confounding factors in
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gene regulatory network inference, and our integrated model aims to alleviate this confounding

factor.

Based on the facts of the gene dosage effect of copy numbers, we propose an integration
method to add DNA copy number information as additional predictors to gene expression
variation in the gene regulation network construction. Figure shows an illustrative example of
this moddl shows how the DNA copy number information interacts with the gene regulation
network in the mRNA level. Although DNA may carry germline or somatic copy number
variations in living cells, it is commonly believed that the numbers of gene copies are not
regulation targets and are not altered by other biomolecules. Therefore, in the network
construction we may treat DNA copy number signals solely as input predictor variables. We also
limit its response variables as its gene expression variable due to the strong gene dosage effect,
so that only one additional predictor is added to each node in gene expression layer, and the total
feature scale in each node’'s DDN optimization problem will be p+1 instead of 2p.
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Figure 10 Integrated data model of gene copy number and mRNA expression

A pilot ssimulation study is designed to show the integrated model’s effectiveness in
inferring a gene regulatory network. We predesigned a gene regulatory network of 15 genesin
the RNA layer, and associate the genes' expression to their own copy numbers in the DNA layer
and some additional weaker links that represent the cis-correlation effect. The copy number and
gene expression values are sampled from multivariate Gaussian distributions. We compare two
methods to reconstruct the sparse networks: the first one is the baseline LASSO regression
approach for the single-omics data (gene expression data) alone; and the second one is the
integrated method of the LASSO regression with an additional predictor of copy number of the
same gene. We use the receiver operating characteristic curve (ROC) which is the curve of the
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true positive rate (TPR) againgt the false positive rate (FPR) at various threshold settings. We
also use the bootstrapping method with 100 times of boosting to evaluate the confidence interval
(CI) of the ROC. The simulation result shows the integrated method has a larger area under the
curve (AUC) than the method on single-omics data alone. And for a given false positive rate

(FPR), the integrated method has a significantly higher true positive rate than the single-omics
method.

Boosting time:100

S

TPR

integrated data
single omics data

0 0.2 0.4 0.6 0.8 1
FPR

Figure 11 ROC curves of constructing sparse genetic networks from single omics data and from
integrated data

Therole of TFsin the integrated data signaling model is the regulators of the genesin the
RNA layer. Gene regulatory network is inferred mainly from gene expression data and from
inter-omics dependency between gene expression and TF expression. We are not detecting
regulations between TFs in this model, but the method of multiDDN could be easily extended to
include such dependencies between nodes in the protein layer.
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Figure 12 Graphical model of gene entities for multiDDN

There are various ways of selecting candidate nodes from the whole set of molecules in
omics data. For multiDDN, we may choose genes from pathways of interest or curated gene list;
or if pathway information is not available, we significantly differentially expressed genes from
transcriptomics data. We select the TF nodes for the integration model in the following way: The
TF-gene binding information is retrieved from the TRRUST database(Han, et al., 2017),
restricted to the Homo Sapiens and with experimental evidence. The genes in the RNA layer are
used asinput to find their regulating TFs. The retrieved list of TFsis further filtered to keep only
those regulate at |east three genes in the RNA layer and P-value less than 1E-3.
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DNA layer
[rene copy number}

Figure 12 Multi-layer data signaling model for multiDDN

The multi-layer model could be summarized to dependency networks of gene entities. Gene
entity in a multiDDN network is defined as one gen€e's expression combined with its own copy
number regulator and with its regulating TFs. The differential dependency (i.e., the network
rewiring) in the multiDDN network is in two tiers: the first is the intra-omics network rewiring
between the gene entities; and the second is the inter-omics network rewiring within a gene

entity. Figure illustrates the conceptional multiDDN network between gene entities.

Now consider the problem of learning graphical structure changes in the data model
between two conditions. The problem is equivalent to estimate the conditional dependence or
independence between a subset of random variables as gene entities under two conditions, with
additional variables to each gene entity as entity-specific predictors. We have a set of

Pe = Pe =P genes of interest which are bind with a total of PP TF proteins. We observed

samples from n, objects under condition 1, and n, objects under condition 2. For each object,

we collected three variables of copy number, gene expression and TF expression.

For convenience, we firstly define a few terms. Define the vectors of variables observed from the

i-th sample under condition 1 as:
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in which the letter G, E, P represents data from genomics data, gene expression data and protein
data, respectively. The vectors of variables under condition 2 are defined in a ssmilar manner.

In the dimension of features, denote al observation on j-th gene or j’-th TF protein under
condition 1 as:

JG[, (X, e T

1Je{l’p}
T
IX(El)D,] |: ELj? XE2]’ ’X'(El,)nl,j:|
X(;?D,i'z[xg)l,i”xs)z,i”' Pnll] el pe}

Similarly denote the observation vectors under condition 2. The vectors of variables are merged

to data matrices of omics, either from sample dimension or feature dimension.

Define:

I L N S S TIA
X(El)= 5 :[X(El?[,yx(lzl,)uzf"1X(E1,)Dp:|=[X(E1’)i’i]nlxp’

1 . 1 1 1 1
X(P) = = |:X(E?ﬂ,1'xsi?[,2"“'Xsi?ﬁ Pp :| = [Xi(j,)i,j’]nlxpp '

as the three data matrices of three omics under condition 1, and similarly for condition 2.

(e) yw(c) y(o)
Xs X X5 ce 1.2} are data matrices of gene copy number, mRNA expression and protein

X=X, X, X | ,ce {1,2}

expression, respectively. Denote as the entire observation data
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matrix under conditions 1 or 2. For the j-th gene entity, omics under condition 1 or 2, define the

coefficient P vector which is combined from three sub P vectors from each omics as:

B(C) 16(311’18621 ”8((30 l:|T

G,lj

.
Bgf,)aj = B(Ec,)zj = _/BE,CLJ‘ ,IBE,Cz,J ""ﬂECPJ] ce L2}
© | |r !

Bes _,BF(,,Cl),,- /”écz)J ’ﬁl(ﬂ,cp)p,j ]

The P vector under condition 1 or 2 for all gene entities are merged into the B matrix which isthe

representation of the multiDDN network structure:

BY
BY = B, BBk, | =| BY
B

Along the sample feature dimension, the B vector for the j-th gene entity under both conditions

form the network dependency structure for the j-th gene entity, define as:

B(;)D]
Bxu; :[B 2) ]

Finally, define two LASSO objective function for each condition and the multiDDN'’ s objective

function as:
fc(B(xC,)D,J)ﬂ 1 ‘X(EC)]] - XELJH ‘-f-/"ia Pl]‘ ce {lz}
( )Dﬂz E1j E1]‘+ﬂ4 B(Pl,)Ej_Bg%j

F (B y)0 R (BY )+ £ (B2 )+ 9 (B )

Mathematically, we formulate a multiDDN problem of learning structural changes of the multi-
omics data model between two conditions as a convex optimization problem. We solve the

following optimization problem for the j-th gene entity asfollows (j = 1, 2, ..., p):
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ﬁ)(,!"j
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B4 = 2. =0,if no binding between I-th TF and j-th Gene

1L

In the multiDDN optimization problem, we learn the graphical structures of the integrated data

o o (B ) T (BRL)
model under two conditions jointly. The LASSO objective function 1 and S for

each condition lead to the identification of a sparse graph structure. The penalty term g (B X )

encourages sparse changes in the network structure of both intra-omics and inter-omics
interactions between two conditions, and thereby suppresses parametric inconsistencies due to

noise or limited samples.

After solving the multiDDN optimization problem for each gene entity, the matrix of

B :[B(C) B(C) '”B(C) :|
X XU EXRZTEXER | gre the parametric representation of the multiDDN network under

(c) ()
each condition. For Pei and Peii , We may replace them with the one with the larger absolute

(©)
value to get a symmetric parametric structure for the intra-omics part (B E ) which could be

converted to adjacency matrix for nodes in the RNA layer. The two parametric representations

@) (2)
Bx and Bx are then compared to exact the network rewiring events from the differential matrix

AB=BY —B{? AB; AB. . AB,

. We may further separate the differential matrix to , to
categorize the network rewiring events into intra-omics network rewiring and inter-omics

network rewiring.

We design a smulation study to show that our proposed multiDDN method will have
higher prediction precision in constructing differential networks from the multi-omic data,

comparing with the DDN method on single omics data. The ground truth of the multi-layer


https://doi.org/10.1101/2021.04.10.439301
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.10.439301; this version posted April 19, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

regulation network is designed as a scale-free network to mimic the gene regulatory network
form real biological data, as shown in Figure 1. We then generate the adjacency network
according to the ground truth. For the regulation strengths, we measure the intra-omics Pearson’s
correlation coefficient digtribution from over 200 samples in TCGA ovarian cancer dataset
(Cancer Genome Atlas Research, 2011; Zhang, et a., 2016), and take the mean and variance
values as the guiding parameters for the simulated covariance matrix, giving the fact that the
correlation matrix is identical to the covariance matrix for standardized data. Similarly, we
measure inter-omics Pearson’s correlation coefficient distribution for interactions between DNA
and mRNA, and interactions between TF with mRNA. Depending on the type, the non-zero

elements in simulated covariance ~ are sampled from one of the three distributions, and the

whole data matrix is then sampled from multivariate Gaussian distribution of G(O’Z). These
steps are repeated once again with a dightly different network skeleton and covariance matrix, to
generate the data matrix of condition 2. The network structure differences between conditions 1
and 2 are recorded as the ground truth of network rewiring, as shown in Figure 1 as colored
edges.

We test the multiDDN method on four groups of simulated data: 1. Single omics data that
contains only gene expression; 2. Two-omics data combined from copy number data and gene
expression data; 3. Two-omics data combined from gene expression data and TF expression data;
4. Three-omics data combined from all three types of omics data. To compare the results on a
fairground, only the common layer of four groups networks which is the RNA layer is
compared. The multiDDN performance in these four groups is shown in Figure 14 The ROC
curves for multiDDN on multi-omics data with different integration levels. The black curve is for
the multiDDN method with all three types of omics data as the input. The blue and red curves
are for the multiDDN method with only two of the three types of omics data. The green curve is
for the DDN method with single-omics data of mRNA expression.

As expected, multiDDN on the integrated three omics data has the largest area under the
ROC curve, and DDN on single omics data has the smallest. This confirms the benefit of
integrating additional omics data into differential network analysis.
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Figure 1 Synthesized multi-layer differential network used in multiDDN simulation

o
o
'_
| integrated 3 omics
0.2 ——DNA+mRNA
—— mRNA+TF
~mRNA only
0!

0O 02 04 06 08 1
FPR

Figure 14 The ROC curves for multiDDN on multi-omics data with different integration levels.
The black curve is for the multiDDN method with all three types of omics data as the input. The
blue and red curves are for the multiDDN method with only two of the three types of omics data.

The green curveisfor the DDN method with single-omics data of mRNA expression.
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