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Abstract

Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals,
including humans. Notably, action and valence are not independent in motivated tasks, and it is
particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have
previously observed that the carriers of the DRD2/ANKKT1 TaqlA Al allele, that has been associated with
reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when
required to learn response inhibition to obtain rewards, a finding that was replicated in two independent
cohorts. In the present study, we first report a replication of this finding in a third independent cohort of
99 participants. Interestingly, after combining all three cohorts (total N = 281), exploratory analyses
regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which
has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results
corroborate the importance of genetic variability of the dopaminergic system in individual learning
differences of action-valence interaction and, furthermore, suggest that motivational learning biases are

differentially modulated by genetic determinants of striatal and prefrontal dopamine function.


https://doi.org/10.1101/2021.04.08.438916
http://creativecommons.org/licenses/by-nc/4.0/

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.438916; this version posted April 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Introduction

The impact of motivation on cognitive functions has been subject to intense investigation over the past
two decades. While the influence of motivational salience on cognitive processes and goal-directed
behavior is common knowledge nowadays, theories of instrumental learning have until recently neglected
the influence of outcome valence on action initiation. However, when action and valence are
experimentally orthogonalized, signals that predict reward are prepotently associated with behavioral
activation, whereas signals that predict punishment are intrinsically coupled to behavioral inhibition. This
finding has been robustly replicated in multiple studies [1-15]. Understanding the neurocognitive
mechanisms underlying this behavioral bias is thus important for developing more comprehensive
theories of instrumental learning.

Numerous studies in a multitude of species, including humans, indicate the importance of dopamine (DA)
in the neural manifestation of motivated behavior and the human dopaminergic system is subject to
considerable genetic variability. According to a prevalent view in reinforcement learning and decision
making, DA neurons signal reward prediction errors [16-18], in the form of phasic bursts for positive
prediction errors and dips below baseline firing rate for negative prediction errors [19], resulting in
corresponding peaks and dips of DA availability in target structures, most prominently the striatum [20-
23]. In the striatum, increased DA release in response to an unexpected reward reinforces the direct
pathway via activation of D1 receptors and thereby facilitates the future generation of go choices under
similar circumstances, while dips in DA levels in response to an unexpected punishment reinforce the
indirect pathway via reduced activation of D2 receptors, thereby facilitating the subsequent generation of
no-go choices in comparable situations [24-27].

In line with those assumptions, we observed in a previous study [5] that the coupling of action and
valence during learning was modulated by a genetic variant linked to striatal DA D2 receptor expression.
We argued that Al carriers with presumably less D2 receptors would be assumed to have less limitation

of dopaminergic signaling after negative prediction errors in the indirect pathway and a shift to a more
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action-oriented behavioral pattern mediated by the direct pathway. In line with that framework, in a
recent study, de Boer et al. [10] found a positive correlation between the strength of the action by valence
interaction and dorsal striatal D1 receptor availability measured using positron emission tomography
(PET). Therefore, striatal dopaminergic effects may be sufficient to explain biased motivational learning
[9,10]. On the other hand, Guitart-Masip et al. [4] observed that levodopa administration led to a reduced
coupling of action and valence that cannot be explained by striatal action of DA. The authors attributed
their observation to an effect on prefrontal cortex (PFC) functioning, where DA plays a role in facilitating
working memory and attentional processes [28-30] that may help to overcome the biased behavior. This
effect of levodopa administration was recently replicated in patients with non-tremor Parkinson's disease
[14], and studies investigating frontal network dynamics using electroencephalography further
demonstrate that prefrontal control processes (as indexed by higher mid-frontal theta power) are
important to overcome biased behavior [1,8]. Therefore, DA may influence these learning biases in a
regionally specific manner.

Numerous previous studies have investigated the influence of candidate single nucleotide polymorphisms
(SNPs) of DA on instrumental learning [25,31-34]. As the expression of several key molecules of the
dopaminergic system shows a characteristic regional distribution in the brain, genetically mediated
differences may also provide some information about the contributions of different brain regions to DA-
dependent learning and memory processes [34-36]. In the current study, we aimed to examine differential
contributions of two prominent dopaminergic SNPs: the DRD2/ANKKI1 TaqlA SNP (rs1800497) that has
been implicated in striatal DA metabolism and the COMT Val108/158Met SNP (rs4680) which has been
shown to influence prefrontal DA availability.

The TaqlA polymorphism has repeatedly been linked to lower striatal D2 binding availability using PET
in carriers of the less common Al allele [37-40]. With respect to motivated behavior, Stice et al. [41]
found stronger midbrain activation in A1 carriers compared with A2 homozygotes on reward expectancy,

and Stelzel et al. [42] reported generally increased striatal BOLD signaling in Al carriers. In addition,
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relative to A2 homozygotes, Al carriers showed poorer performance in avoiding actions associated with
punishment and lower activations of PFC and striatum during processing of negative feedback [31-33].
Catechol-O-methyltransferase (COMT) plays a key role in the breakdown of DA in the PFC [43,44]. The
frequent Val108/158Met SNP in the COMT gene (chromosome 22) leads to an amino acid exchange from
valine (Val) to methionine (Met). In Met carriers reduced enzymatic activity and increased prefrontal DA
availability have been observed, presumably due to lower thermostability of the enzyme [45].. This SNP
has mainly been investigated with respect to PFC-dependent executive functions (for reviews, see
[46,47]), and a meta-analysis of functional magnetic resonance imaging (fMRI) studies confirmed that
Met-carriers show more efficient performance in executive functions and higher neural activations during
emotion processing [36]. In the context of motivated behavior, the Met allele has been associated with
more successful reward learning (for a meta-analysis see [34]). Moreover, Met allele carriers adapt
behavior more rapidly on a trial-to-trial basis during reinforcement learning [25,31].

We have previously shown in two independent cohorts that carriers of the Al allele of the
DRD2/ANKKI1 TaqIA polymorphism show a rather selective deficit in learning to inhibit an action to
receive a reward [5]. With our present study we followed two aims: Firstly, we aimed to replicate our
finding on the TaqlA polymorphism in a third independent cohort and to investigate the nature of the
genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the
combined dataset (N=281). Secondly, we aimed to assess a potentially modulatory role of prefrontal DA
availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. Regarding the
TaqlA SNP, we hypothesized that, in line with our previous observations [5], Al carriers would show a
higher coupling of action and valence. With respect to the COMT polymorphism, we hypothesized that,
given the preferential role of COMT in PFC versus striatal DA availability, carriers of the low-activity

Met allele would more readily overcome the learning bias and show less coupling of valence with action.
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Materials and methods

Participants

In addition to our previously described two cohorts of 87 and 95 participants [5], 99 newly recruited
participants were tested (55 females and 44 males; age: range 20-34 years, mean 25.2 years, SD = 2.6
years; demopgraphic description of all three samples in Supplementary Table S1). According to self-
report all participants were of European ethnicity, right-handed, had obtained at least a university
entrance diploma (Abitur) as educational certificate, had no present or past neurological or mental
disorder, alcohol or drug abuse, did not use centrally acting medication, and had no history of psychosis
or bipolar disorder in a first-degree relative. Additionally, given the design of the experiment, regularly
gambling was defined as an exclusion criterion for participation.

All participants gave written informed consent in accordance with the Declaration of Helsinki and
received financial compensation for participation. The study was approved by the Ethics Committee of

the Faculty of Medicine at the Otto von Guericke University of Magdeburg.

Genotyping

Genomic DNA was extracted from blood leukocytes using the KingFisher™ Duo Prime Purification
System (Thermo Scientific™) according to the manufacturer’s protocol. Genotyping of the SNPs
DRD2/ANKKI1 TaqlA (NCBI accession number: rs1800497) and COMT Val108/158Met (rs4680) was
performed using PCR-based restriction fragment length analysis according to previously described
protocols [5,35,48-50]. A1 carriers of the TaqlA SNP were grouped together (Al+: A1/A1 and A1/A2;

Al-: A2/A2) as in previous studies [5,31-33,41,42,48,49].

Paradigm
We used a previously employed go/no-go learning task with orthogonalized action requirements and

outcome valence [3]. Detailed descriptions of the task have been presented previously [5,6]. Figure 1A
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displays the trial timeline. Briefly, each trial consisted of the presentation of a fractal cue, a target
detection task, and a probabilistic outcome. First, one out of four abstract fractal cues was displayed.
Prior to the beginning of the task, participants were informed that a fractal indicated i) whether they
would subsequently be required to perform a target detection task by pressing a button (go) or not (no-go)
and ii) the possible valence of the outcome of the subjects’ behavior (reward/no reward or punishment/no
punishment). Importantly, subjects were not instructed with respect to the contingencies of each fractal
image and had to learn them by trial and error. There were four trial types: press the correct button in the
target detection task to gain a reward of 0.50 € [“go fo win” (gw)]; press the correct button to avoid a
punishment of -0.50 € [“go to avoid losing” (gal)]; do not press a button to gain a reward [“no-go to win”
(ngw)]; do not press a button to avoid punishment [“no-go to avoid losing” (ngal)]. The outcome was
probabilistic (see figure 1B). To avoid incidental effects of specific cue images, the association of the
fractal images with the specific conditions (go vs. no-go * reward vs. punishment) was randomized across
participants. The task included 240 trials (60 trials per condition) and was divided into four sessions.
Subjects were told that they would be paid their earnings of the task up to a total of 25 € and a minimum
of 7 €. Before starting the actual learning task, subjects performed 10 trials of the target detection task in

order to familiarize themselves with the speed requirements.

Statistical analysis of accuracy

Accuracy was analyzed using IBM® SPSS® Statistices version 21. The percentage of correct choices in
the target detection task (button press in go trials and omission of responses in no-go trials) was collapsed
across time bins of 30 trials per condition. To assess the learning enhancement, the slope was calculated
by substracting the mean values in the first half of the experiment from the mean values of the second
half of the experiment (slope = mean[2"¢ half] - mean[1* half]).

For the replication of our previous study [5] in the new cohort (N=99) we compared TaqlA genotype

groups with a r-test for independent samples and investigated task effects with a mixed analysis of
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variance (ANOVA) with time (1°2"¢ half), action (go/no-go), and valence (win/avoid losing) as within-
subject factors.

Then, by combining all three datasets (N=281), we included the two genotypes as between-subject factors
in the analysis and added cohort (three cohorts represented in two dichotomous dummy coded variables
for cohort 2 and 3), age and gender as covariates (analysis of covariance, ANCOVA). The increased
number of participants allowed us to run a logistic regression on the trial-by-trial go responses as in Swart
et al. [9] which more accurately analyzes the data, as it is closer to the actual behavior of each participant
by including inter- and intraindividual variability (see supplementary methods for details).

Unless stated otherwise, independent samples #-tests were used as post hoc tests, and the significance
threshold was set to .05, two-tailed. Whenever Levene’s test was significant, statistics were adjusted, but

for better readability, uncorrected degrees of freedom are reported.

Computational Modeling of task performance

Computational Modeling of task performance was employed using MATLAB® R2016B (Mathworks®).
We used a previously published modeling procedure [3,51]. Detailed descriptions of the reinforcement
learning models as well as the model fitting procedure and comparison have been described in a recent
study of age effects in the same task [6]. Briefly, we constructed six nested reinforcement learning models
to fit participants’ behavior (Table 2). The base model was a Q-learning algorithm [52] that used a
Rescorla-Wagner update rule to independently track the action value of each choice (go; no go), given
each fractal image, with a learning rate (£) as a free parameter. In this model, the probability of choosing
one action on a trial was a sigmoid function of the difference between the action values scaled by a slope
parameter that was parameterized as sensitivity to reward (p). This basic model was augmented with an
irreducible noise parameter (£) and then further expanded by adding a static bias parameter to the value
of the go action (b). Further, we allowed for separate sensitivities to rewards (pwin) and punishments
(piose). As in our recent study of age effects [6], the model was then extended by adding a constant

Pavlovian value of 1 or -1 to the value of the go action as soon as the first reward for win cues or the first
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punishment for avoid losing cues, respectively, was encountered. This fixed Pavlovian value was
weighted by a further free parameter (Pavlovian parameter) into the value of the go action (7). Model
comparisons demonstrated a better fit compared to a variable Pavlovian value used in previous studies
[1,3,10] (see Table 2). As in previous reports [3,51], we employed a hierarchical Type II Bayesian
procedure using maximum likelihood to fit simple parameterized distributions for higher-level statistics
of the parameters. All six computational models were fit to the data using a single distribution for all
participants. This fitting procedure was, therefore, blind to the existence of different genotype groups
with putatively different parameter values. Models were compared using the integrated Bayesian
Information Criterion (iBIC) with small iBIC values indicating a model that fits the data better after
penalizing for the number of data points associated with each parameter. Finally, we assessed genotype-
related effects on all modeling parameters using IBM® SPSS® Statistices version 21. To test for
differences regarding specific model parameters we calculated t-tests for independent samples. As one
could not exclude that not one specific parameter but a combination of them differed between genotypes,
we performed a multivariate test of differences — a linear discriminant analysis (LDA). The purpose of
LDA was to find a linear combination of the six model parameters that gives the best possible separation
between the genotype groups. This method simultaneously accounts for differences in combinations of

variables between groups over and beyond differences across single multiple variables [53].
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Results

Reduced learning performance in DRD2/ANKKI1 TaqlIA A1 carriers

In our previous study [5] we observed that in the no-go to win condition TaqlA Al carriers showed a
significantly diminished improvement from the first to the second half of the experiment compared to A2
homozygotes (cohort 1: #g5 = -2.78, p = 0.007; cohort 2: to3 = -2.16, p = 0.033). As expected, we
replicated this finding in our current sample (cohort 3: f97 = 2.05, p = .043; Figure 2A). In all other
conditions A1l carriers and A2 homozygotes did not significantly differ (all p >.100), nor in gender
(p=.621), age (p=.749), the number of smokers and nonsmokers (p=.084) or in the COMT
Val108/158Met genotype distribution (p = .901).

Furthermore, we also analyzed task effects and replicated previous results showing an action by valence

interaction on overall task performance [1-15] (see supplementary results and Table S2 for details).

DRD2/ANKKI1 TaqlIA and COMT genotypes differentially modulate motivational learning biases
Our further analyses of genetically driven effects were performed in the entire sample comprising all
three cohorts (N = 281 participants). Genotype frequencies were in Hardy—Weinberg equilibrium (all
p > .145), and there was no linkage between the two polymorphisms (p = .971; for detailed demographics
see Table 1).

In line with our previous work [5], we observed for the TaqIA SNP a significant genotype x time x action
X valence interaction (Fi271=11.18, p=.001; see Figure 2B), as well as significant interactions of
genotype x time (F1271 = 11.08, p =.001) and genotype x time X action (F1271 = 11.94, p = .001). Post-hoc
comparisons revealed that Al carriers exhibited an overall significantly worse learning performance
throughout the experiment compared to A2 homozygotes (overall slope: t279 =-3.72, p <.001, Cohen's
d=0.47). This effect was solely carried by the no-go conditions (no-go slope: t279 =-4.56, p <.001,
Cohen's d = 0.58; go slope: p =.748), and specifically by the no-go to win condition (ngw slope: t279 = -

4.41, p < .001, Cohen's d = 0.54; all other conditions: all p > .087). As displayed in Figure 2B and 2C, the
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TaqlA Al carriers reached their learning asymptote earlier and to a lower level. They significantly
differed in performance from the A2 homozygotes only during the second half of the experiment,
pointing to different learning capacities (overall 2™ half: 279 = -2.21, p =.028, Cohen's d = 0.35; no-go
2" half: fa79 = -2.28, p =.024, Cohen's d =0.29; ngw 2" half: f279 = -2.06, p =.041, Cohen's d = 0.26;
equivalent 1°" half comparisons: all p > .340). A summary of the statistics is displayed in Supplementary
Tables S3 and S4.

The combined datasets allowed for a logistic regression on the trial-by-trial go responses. This analysis
confirmed the ANCOVA results with Al carriers showing significantly diminished no-go fo win
performance in the course of the experiment (see Figure 2C and supplementary results for details).

For the COMT Vall08/158Met polymorphism, we observed a trend towards a significant four-way
interaction genotype X time X action X valence (F2271=2.96, p=.053). Met homozygotes showed
significantly increased learning throughout the experiment in the no-go to win (ngw slope: f209 = 2.02,
p = .045; Figure 3) and the go to avoid losing conditions (gl slope: t200 =2.48, p =.014) compared to
heterozygotes (other conditions: all p > .922). The logistic regression did not show an effect of COMT
genotype (p = .381; see supplementary results and Figure S2 for details).

In light of previous evidence that Met homozygotes have a higher response bias relative to Val carriers
[34,54-56], in an additional analysis participants were separated into Met homozygotes (Met/Met) and
Val allele carriers (Val/Val and Val/Met). The ANCOVA revealed a significant genotype x time x action
x valence interaction (F1.273 =4.30, p=.039) as well as a significant main effect of COMT genotype
(F1273=4.55, p=.034) and interestingly also a significant interaction of the COMT with the TaqlA
genotype (F1.273 = 3.88, p =.050). The latter finding indicates a benefical effect of Met homozygosity on
overall performance in A1 carriers (97 = 2.31, p = .024) but not in A2 homozygotes (p = .971).

We controlled for potential effects in reaction times (participants were explicitly instructed to respond
accurately) and false responses in the target detection task (i.e., left when the target was on the right side
of the display or vice versa) and found no significant differences between genotype groups (p > .187; see

supplement for details).
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Computational Modeling of Task Performance

To identify components of the observed asymmetry during learning, we constructed six nested
reinforcement learning models to fit participants’ behavior (Table 2). Our computational modeling
approach demonstrated that the marked asymmetry in learning could be best accounted for by the model
including separate parameters for sensitivity to rewards and punishments as well as a learning rate, an
irreducible noise parameter, a constant go bias parameter, and a constant Pavlovian bias parameter (see
Table 2), which is consistent with our recently published lifetime study on motivational learning [6]. The
simulations of the winning model are presented in Figure 1C. Neither one specific model parameter
(independent samples #-tests: all p > .119), nor a linear combination of the parameters (LDA: all p > .636)

showed significant genotype-related differences.
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Discussion

In the present study, we investigated how genetic determinants of striatal and prefrontal DA function
modulate learning biases when action and valence are experimentally orthogonalized. Using the
previously established valenced go/no-go task [3], we provide independent confirmation for a selective
deficit of DRD2 TaqlA Al carriers in learning to inhibit an action in order to obtain a reward. Moreover,
our exploratory analysis yielded preliminary evidence that COMT Met homozygotes show superior

learning during trials with incongruent coupling of action and valence.

Genetically driven contributions to the coupling of action and valence during learning

For the TaqlA polymorphism, we replicated our previous observation [5] that A1 carriers show a stronger
coupling of action and valence in a third independent cohort. As in our previous study, Al carriers
exhibited a specific impairment in learning to withhold actions in reward contexts. When combining all
three datasets (N = 281), we could more closely investigate the nature of this effect. Moreover, the larger
sample size of our three combined samples made it possible to investigate the effects of and potential
interactions with the COMT Val108/158Met polymorphism.

Due to previous knowledge about their neurophysiological consequences, the genetic polymorphisms
studied here allow conclusions about differential contributions of striatal and prefrontal DA function to
instrumental control mechanisms [34-36]. D2-type DA receptors are primarily expressed in the striatum
(post mortem autoradiography: [57-59]; in vivo PET: [60,61]). They function as both postsynaptic
inhibitory receptors and as presynaptic autoreceptors that regulate neurotransmission via negative
feedback ([62], for reviews, see [63,64]). While DRD?2 is, albeit sparsely, expressed in extrastriatal
regions (2-8% of the expression level in the striatum [65]) and cortically mediated effects can thus not be
excluded, differences for the ANKKI1 TaqlA genotypes have thus far only been observed for the striatum
- with lower DRD2 expression resp. binding availability in Al carriers (post mortem autoradiography:

[66-68]; in vivo PET: [37-40])).
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In contrast, the decreased enzymatic activity of COMT in 108/158Met homozygotes primarily affects DA
availability in the PFC, which has been attributed to the sparse cortical expression of the DA transporter
(DAT) [45,69]. Therefore, the COMT polymorphism has mostly been studied in relation to PFC-
dependent executive functions (for reviews, see [46,47]; for a meta-analysis see [36]). With respect to
motivated behavior, homozygosity for the Met allele has been associated with relatively increased reward
learning (for a meta-analysis see [34]). In our study, Met homozygosity was associated with stronger
learning enhancement during Pavlovian conflict (i.e., incongruent coupling of action and valence)
throughout the experiment. Our data suggest that higher prefrontal DA levels may improve performance
when motivational biases are involved. Guitart-Masip et al. [4] hypothesized this mechanism to explain
their unexpected finding that levodopa administration led to a reduced coupling of action and valence.
These surprising effects of levodopa were replicated in a recent study [14]. Moreover,
electrophysiological studies [1,8] point to the involvement of the same prefrontal control mechanism,
when subjects learn to overcome Pavlovian conflicts.

Although COMT activity is of negligible importance to striatal DA availability [70], a potential indirect
effect of COMT on striatal DA function cannot be excluded. Animal studies suggest that transgenic mice
with increased COMT activity, equivalent to the relative increase in activity observed with the human
COMT Val allele, do not only show deficits in PFC-dependent tasks (e.g., stimulus—response learning
and working memory), but also increased DA release capacity in the striatum [71]. This finding
corroborates earlier human neuroimaging studies that reported higher midbrain DA synthesis capacity in
Val compared to Met homozygotes [72,73]. Thus, the effects of the COMT polymorphism on
motivational learning may not only be explained by increased DA signaling in the cortex, but also contain

a minor component of presynaptic DA availability in the striatum.

Limitations
A limitation in the interpretation of our data that is also common in other studies on this topic lies in the

fact that the molecular mechanisms underlying the observed effects are still under debate. It is well
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known that the TaqIA polymorphism is not located within the DRD2 gene but 10kb downstream of its
termination codon on chromosome 11g23.1, within the coding region of the adjacent ankyrin repeat and
kinase domain containing 1 (ANKK]) gene [74,75]. The molecular mechanisms underlying the effects of
ANKKI1 TaqlA on striatal DRD2 availability have not been conclusively established. Multiple
mechanisms have been proposed, including linkage disequilibrium [49,67,76-78] or a potential direct
interaction of ANKKI1 with the D2 receptor at protein level, potentially modulated by the TaqlA
polymorphism [79-81] (for a review, see [82]; see Supplementary Discussion for details). Similarly, for
the COMT Vall08/158Met polymorphism, it remains to be determined how COMT-dependent DA
inactivation in brain regions with low DAT expression is realized. There is only limited evidence for
extracellular activity of membrane-bound COMT [83], and the predominant evidence points to
intracellular orientation and activity, requiring a DAT-independent uptake mechanism [44,84] (see
Supplementary Discussion).

A further limitation lies in our modeling approach, which failed to reflect the very robust and replictad
effect of the DRD2 TaqlA SNP on learning gain throughout the experiment in the no-go to win condition
and on the time-dependent valence effect on individual go/no-go responses. One explanation could be
that the model space does not include the computational mechanism to differentiate, for example,

instrumental from Pavlovian contributions. This should be addressed in future studies.

Conclusion

It is not clear how differential effects of striatal and prefrontal DA function contribute to motivational
learning biases. With our study, we demonstrate by assesing the contributions of two well-studied genetic
polymorphisms that DRD2/ANKKI1 TaqlA Al carriers with presumably fewer striatal D2 receptors and
less limitation of striatal dopaminergic signaling after negative prediction errors in the indirect pathway
showed a shift to a more action-oriented and biased behavioral pattern. COMT Vall108/158Met Met
homozygotes, who presumably exhibit higher prefrontal DA activity, showed less biased learning,

possibly reflecting more efficient frontal control.
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Figure legends

Fig. 1. Experimental paradigm and participant performance. (A) Probabilistic monetary go/no-go
task. Fractal cues indicate the condition - a combination of action (go or no-go) and valence (reward or
punishment). On go trials, subjects press a button for the side of a circle. On no-go trials they withhold a
response. Arrows indicate rewards (green) or punishments (red). Horizontal bars (yellow) symbolize the
absence of a reward or punishment. ITI, intertrial interval. (B) The schematics represent for each
condition the nomenclature (left), the possible outcomes and their probabilities after a go response
(middle), and the possible outcomes and their probability after a no-go response (right). gw: go to win,
gal: go to avoid losing, ngw: no-go to win, ngal: no-go to avoid losing. (C) Simulated choice data
according to the model parameters of the winning model. Colored lines represent the simulated group
mean probability of performing a go on each trial (green for go conditions, where go is the correct
response; red for no-go conditions, where no-go is the correct response). Black lines indicate the group
mean for participants’ actual go responses on each trial. In the plot area, each row represents one
participant’s choice behavior for each trial (281 x 60 pixels). A white pixel reflects that a participant
chose go on that trial; a gray pixel represents no-go. Participants made more go responses to win vs. avoid
losing cues, reflecting the motivational bias. Overall, they successfully learned whether to make a go
response or not (proportion of go responses increases for go cues and decreases for no-go cues). Figures

(A) and (B) adapted from Richter et al. [5].

Fig. 2. Effects of DRD2/ANKKI1 TaqlA genotype on choice performance. (A) and (B) Effects of
DRD2 TaqlA genotype on choice performance in the third cohort (N = 99) and in the entire sample (N =
281). Compared to the A2 homozygotes, Al carriers showed a diminished learning to withhold an action
to receive a reward. Left panels: Bar plots show mean differences between correct response rates (+SEM)
during second half versus the first half of trials for each condition. This score represents the observed

four-fold interaction of action x valence x time x genotype. Right panels: Line charts show mean values
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of correct responses (tSEM) in the first and the second half of trials for all four conditions. Post hoc
comparisons via t-tests: *p < 0.05, ***p < 0.001. (C) Trial-by-trial proportions of go responses (+SEM)
to go cues (solid lines) and no-go cues (dashed lines) across cue types. Win and avoid losing condition
seperately and colors depict TaqlA genotypes. TaqlA Al carriers showed an enhanced effect of cue
valence on go responding especially in the no-go to win condition with further progress of the experiment

(lines are mostly sperated). Adapted scripts of Swart et al. [9] were used to generate figures.

Fig. 3. Effects of COMT genotype on choice performance in the entire sample. Left panels: Bar plots
show mean differences between correct response rates (+SEM) during second half versus the first half of
trials for each condition. This score represents the observed four-fold interaction of action x valence x
time x genotype. Right panels: Line charts show mean values of correct responses (+SEM) in the first and
the second half of trials for all four conditions. Met homozygotes showed increased learning throughout
the experiment in the no-go to win and go avoid losing condition relative to heterozygotes. Post hoc

comparisons via t-tests: *p < 0.05.
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Table 1. Descriptive data of the entire sample regarding TaqIA and COMT genotypes

DRD2 TaqlA Al+ Al- Al+> Al-
Gender (N =346
44/55 102/80
Women/Men) p =.063
Age in years t279 = 1.30
25.1+/-3.1 24.64/-2.6
(M +/- SD) p =.195
Non-Smokers/ =216
70/29 143/39
Smokers (N) p =.141
COMT (N 7 =0.06
30/45/24 53/83/46

MM/VM/VV) p=.971
COMT MM VM \'AY MM>VV VM>VV MM>VM
Gender (N

43/40 64/64 39/31 =059, p=.743
Women/Men)
Age in years t15s1=1.36 t196 =1.37 1209 = 0.09

25.0+/-2.7 249+4/-28 243 +/-3.0

(M +/- SD) p=.176 p=.174 p =.931
Non-Smokers/

63/20 93/35 57/13 ¥ =1.90,p =387
Smokers (N)
TaqlA (N

30/53 45/83 24/46 ¥ =0.06,p =971
Al+/A1-)

Demograhic data are pooled across all three cohorts (cohort 1 and 2 from Richter et al. [5], and the newly

investigated cohort 3). N = number, M = mean, SD = standard deviation, VM: Val/Met heterozygotes,

VV: Val homozygotes, Al+: carriers of the Al allele, Al1-: A2 homozygotes.
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Table 2. Integrated Bayesian Information Criteria (iBIC) for tested models
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Model no. Model parameters No. of parameters  Likelihood  Pseudo-R? iBIC
1 & p 2 -23463 0.498 46970
2 g p, ¢ 3 -23314 0.501 46695
3 ep, &b 4 -21798 0.534 43685
4 &, Pwin, Plose, &, b 5 -21334 0.544 42779
5 &, Pwin, Plose, &, b, Tvariable 6 -21137 0.548 42406
6 & Pwiny Ploses & b, Teonstant 6 -21106 0.549 42346

Boldface type: winning model statistics, €: learning rate, pwin: Weighting of reward on win trials, piose:

weighting of punishments on lose trials. &: irreducible noise, b: go bias, m: Pavlovian bias, iBIC:

integrated Bayesian information criterion (smaller iBIC values indicate a better model fit). Descriptives

for the parameters in the winning model (M +/ - SD): € = 0.26 +/- 0.15, pwin = 15.32 +/- 13.30, piose = 7.51

+/-4.03, £=0.96 +/- 0.06, b = 1.10 +/- 0.74, Tconstant = 0.65 +/- 0.57.
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