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Abstract 23 

 24 

Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, 25 

including humans. Notably, action and valence are not independent in motivated tasks, and it is 26 

particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have 27 

previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with 28 

reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when 29 

required to learn response inhibition to obtain rewards, a finding that was replicated in two independent 30 

cohorts. In the present study, we first report a replication of this finding in a third independent cohort of 31 

99 participants. Interestingly, after combining all three cohorts (total N = 281), exploratory analyses 32 

regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which 33 

has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results 34 

corroborate the importance of genetic variability of the dopaminergic system in individual learning 35 

differences of action-valence interaction and, furthermore, suggest that motivational learning biases are 36 

differentially modulated by genetic determinants of striatal and prefrontal dopamine function.  37 
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Introduction 38 

 39 

The impact of motivation on cognitive functions has been subject to intense investigation over the past 40 

two decades. While the influence of motivational salience on cognitive processes and goal-directed 41 

behavior is common knowledge nowadays, theories of instrumental learning have until recently neglected 42 

the influence of outcome valence on action initiation. However, when action and valence are 43 

experimentally orthogonalized, signals that predict reward are prepotently associated with behavioral 44 

activation, whereas signals that predict punishment are intrinsically coupled to behavioral inhibition. This 45 

finding has been robustly replicated in multiple studies [1-15]. Understanding the neurocognitive 46 

mechanisms underlying this behavioral bias is thus important for developing more comprehensive 47 

theories of instrumental learning. 48 

Numerous studies in a multitude of species, including humans, indicate the importance of dopamine (DA) 49 

in the neural manifestation of motivated behavior and the human dopaminergic system is subject to 50 

considerable genetic variability. According to a prevalent view in reinforcement learning and decision 51 

making, DA neurons signal reward prediction errors [16-18], in the form of phasic bursts for positive 52 

prediction errors and dips below baseline firing rate for negative prediction errors [19], resulting in 53 

corresponding peaks and dips of DA availability in target structures, most prominently the striatum [20-54 

23]. In the striatum, increased DA release in response to an unexpected reward reinforces the direct 55 

pathway via activation of D1 receptors and thereby facilitates the future generation of go choices under 56 

similar circumstances, while dips in DA levels in response to an unexpected punishment reinforce the 57 

indirect pathway via reduced activation of D2 receptors, thereby facilitating the subsequent generation of 58 

no-go choices in comparable situations [24-27]. 59 

In line with those assumptions, we observed in a previous study [5] that the coupling of action and 60 

valence during learning was modulated by a genetic variant linked to striatal DA D2 receptor expression. 61 

We argued that A1 carriers with presumably less D2 receptors would be assumed to have less limitation 62 

of dopaminergic signaling after negative prediction errors in the indirect pathway and a shift to a more 63 
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action-oriented behavioral pattern mediated by the direct pathway. In line with that framework, in a 64 

recent study, de Boer et al. [10] found a positive correlation between the strength of the action by valence 65 

interaction and dorsal striatal D1 receptor availability measured using positron emission tomography 66 

(PET). Therefore, striatal dopaminergic effects may be sufficient to explain biased motivational learning 67 

[9,10]. On the other hand, Guitart-Masip et al. [4] observed that levodopa administration led to a reduced 68 

coupling of action and valence that cannot be explained by striatal action of DA. The authors attributed 69 

their observation to an effect on prefrontal cortex (PFC) functioning, where DA plays a role in facilitating 70 

working memory and attentional processes [28-30] that may help to overcome the biased behavior. This 71 

effect of levodopa administration was recently replicated in patients with non-tremor Parkinson's disease 72 

[14], and studies investigating frontal network dynamics using electroencephalography further 73 

demonstrate that prefrontal control processes (as indexed by higher mid-frontal theta power) are 74 

important to overcome biased behavior [1,8]. Therefore, DA may influence these learning biases in a 75 

regionally specific manner. 76 

Numerous previous studies have investigated the influence of candidate single nucleotide polymorphisms 77 

(SNPs) of DA on instrumental learning [25,31-34]. As the expression of several key molecules of the 78 

dopaminergic system shows a characteristic regional distribution in the brain, genetically mediated 79 

differences may also provide some information about the contributions of different brain regions to DA-80 

dependent learning and memory processes [34-36]. In the current study, we aimed to examine differential 81 

contributions of two prominent dopaminergic SNPs: the DRD2/ANKK1 TaqIA SNP (rs1800497) that has 82 

been implicated in striatal DA metabolism and the COMT Val108/158Met SNP (rs4680) which has been 83 

shown to influence prefrontal DA availability.  84 

The TaqIA polymorphism has repeatedly been linked to lower striatal D2 binding availability using PET 85 

in carriers of the less common A1 allele [37-40]. With respect to motivated behavior, Stice et al. [41] 86 

found stronger midbrain activation in A1 carriers compared with A2 homozygotes on reward expectancy, 87 

and Stelzel et al. [42] reported generally increased striatal BOLD signaling in A1 carriers. In addition, 88 
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relative to A2 homozygotes, A1 carriers showed poorer performance in avoiding actions associated with 89 

punishment and lower activations of PFC and striatum during processing of negative feedback [31-33]. 90 

Catechol-O-methyltransferase (COMT) plays a key role in the breakdown of DA in the PFC [43,44]. The 91 

frequent Val108/158Met SNP in the COMT gene (chromosome 22) leads to an amino acid exchange from 92 

valine (Val) to methionine (Met). In Met carriers reduced enzymatic activity and increased prefrontal DA 93 

availability have been observed, presumably due to lower thermostability of the enzyme [45].. This SNP 94 

has mainly been investigated with respect to PFC-dependent executive functions (for reviews, see 95 

[46,47]), and a meta-analysis of functional magnetic resonance imaging (fMRI) studies confirmed that 96 

Met-carriers show more efficient performance in executive functions and higher neural activations during 97 

emotion processing [36]. In the context of motivated behavior, the Met allele has been associated with 98 

more successful reward learning (for a meta-analysis see [34]). Moreover, Met allele carriers adapt 99 

behavior more rapidly on a trial-to-trial basis during reinforcement learning [25,31].  100 

We have previously shown in two independent cohorts that carriers of the A1 allele of the 101 

DRD2/ANKK1 TaqIA polymorphism show a rather selective deficit in learning to inhibit an action to 102 

receive a reward [5]. With our present study we followed two aims: Firstly, we aimed to replicate our 103 

finding on the TaqIA polymorphism in a third independent cohort and to investigate the nature of the 104 

genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the 105 

combined dataset (N=281). Secondly, we aimed to assess a potentially modulatory role of prefrontal DA 106 

availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. Regarding the 107 

TaqIA SNP, we hypothesized that, in line with our previous observations [5], A1 carriers would show a 108 

higher coupling of action and valence. With respect to the COMT polymorphism, we hypothesized that, 109 

given the preferential role of COMT in PFC versus striatal DA availability, carriers of the low-activity 110 

Met allele would more readily overcome the learning bias and show less coupling of valence with action.  111 
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Materials and methods 112 

 113 

Participants 114 

In addition to our previously described two cohorts of 87 and 95 participants [5], 99 newly recruited 115 

participants were tested (55 females and 44 males; age: range 20–34 years, mean 25.2 years, SD = 2.6 116 

years; demopgraphic description of all three samples in Supplementary Table S1). According to self-117 

report all participants were of European ethnicity, right-handed, had obtained at least a university 118 

entrance diploma (Abitur) as educational certificate, had no present or past neurological or mental 119 

disorder, alcohol or drug abuse, did not use centrally acting medication, and had no history of psychosis 120 

or bipolar disorder in a first-degree relative. Additionally, given the design of the experiment, regularly 121 

gambling was defined as an exclusion criterion for participation.  122 

All participants gave written informed consent in accordance with the Declaration of Helsinki and 123 

received financial compensation for participation. The study was approved by the Ethics Committee of 124 

the Faculty of Medicine at the Otto von Guericke University of Magdeburg. 125 

 126 

Genotyping 127 

Genomic DNA was extracted from blood leukocytes using the KingFisher™ Duo Prime Purification 128 

System (Thermo Scientific™) according to the manufacturer’s protocol. Genotyping of the SNPs 129 

DRD2/ANKK1 TaqIA (NCBI accession number: rs1800497) and COMT Val108/158Met (rs4680) was 130 

performed using PCR-based restriction fragment length analysis according to previously described 131 

protocols [5,35,48-50]. A1 carriers of the TaqIA SNP were grouped together (A1+: A1/A1 and A1/A2; 132 

A1-: A2/A2) as in previous studies [5,31-33,41,42,48,49].  133 

 134 

Paradigm 135 

We used a previously employed go/no-go learning task with orthogonalized action requirements and 136 

outcome valence [3]. Detailed descriptions of the task have been presented previously [5,6]. Figure 1A 137 
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displays the trial timeline. Briefly, each trial consisted of the presentation of a fractal cue, a target 138 

detection task, and a probabilistic outcome. First, one out of four abstract fractal cues was displayed. 139 

Prior to the beginning of the task, participants were informed that a fractal indicated i) whether they 140 

would subsequently be required to perform a target detection task by pressing a button (go) or not (no-go) 141 

and ii) the possible valence of the outcome of the subjects’ behavior (reward/no reward or punishment/no 142 

punishment). Importantly, subjects were not instructed with respect to the contingencies of each fractal 143 

image and had to learn them by trial and error. There were four trial types: press the correct button in the 144 

target detection task to gain a reward of 0.50 € [<go to win= (gw)]; press the correct button to avoid a 145 

punishment of -0.50 € [<go to avoid losing= (gal)]; do not press a button to gain a reward [<no-go to win= 146 

(ngw)]; do not press a button to avoid punishment [<no-go to avoid losing= (ngal)]. The outcome was 147 

probabilistic (see figure 1B). To avoid incidental effects of specific cue images, the association of the 148 

fractal images with the specific conditions (go vs. no-go * reward vs. punishment) was randomized across 149 

participants. The task included 240 trials (60 trials per condition) and was divided into four sessions. 150 

Subjects were told that they would be paid their earnings of the task up to a total of 25 € and a minimum 151 

of 7 €. Before starting the actual learning task, subjects performed 10 trials of the target detection task in 152 

order to familiarize themselves with the speed requirements. 153 

 154 

Statistical analysis of accuracy 155 

Accuracy was analyzed using IBM® SPSS® Statistices version 21. The percentage of correct choices in 156 

the target detection task (button press in go trials and omission of responses in no-go trials) was collapsed 157 

across time bins of 30 trials per condition. To assess the learning enhancement, the slope was calculated 158 

by substracting the mean values in the first half of the experiment from the mean values of the second 159 

half of the experiment (slope = mean[2nd half] - mean[1st half]). 160 

For the replication of our previous study [5] in the new cohort (N=99) we compared TaqIA genotype 161 

groups with a t-test for independent samples and investigated task effects with a mixed analysis of 162 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.08.438916doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.438916
http://creativecommons.org/licenses/by-nc/4.0/


variance (ANOVA) with time (1st/2nd half), action (go/no-go), and valence (win/avoid losing) as within-163 

subject factors. 164 

Then, by combining all three datasets (N=281), we included the two genotypes as between-subject factors 165 

in the analysis and added cohort (three cohorts represented in two dichotomous dummy coded variables 166 

for cohort 2 and 3), age and gender as covariates (analysis of covariance, ANCOVA). The increased 167 

number of participants allowed us to run a logistic regression on the trial-by-trial go responses as in Swart 168 

et al. [9] which more accurately analyzes the data, as it is closer to the actual behavior of each participant 169 

by including inter- and intraindividual variability (see supplementary methods for details). 170 

Unless stated otherwise, independent samples t-tests were used as post hoc tests, and the significance 171 

threshold was set to .05, two-tailed. Whenever Levene’s test was significant, statistics were adjusted, but 172 

for better readability, uncorrected degrees of freedom are reported.  173 

 174 

Computational Modeling of task performance  175 

Computational Modeling of task performance was employed using MATLAB® R2016B (Mathworks®). 176 

We used a previously published modeling procedure [3,51]. Detailed descriptions of the reinforcement 177 

learning models as well as the model fitting procedure and comparison have been described in a recent 178 

study of age effects in the same task [6]. Briefly, we constructed six nested reinforcement learning models 179 

to fit participants’ behavior (Table 2). The base model was a Q-learning algorithm [52] that used a 180 

Rescorla-Wagner update rule to independently track the action value of each choice (go; no go), given 181 

each fractal image, with a learning rate ( ) as a free parameter. In this model, the probability of choosing 182 

one action on a trial was a sigmoid function of the difference between the action values scaled by a slope 183 

parameter that was parameterized as sensitivity to reward (ρ). This basic model was augmented with an 184 

irreducible noise parameter (  and then further expanded by adding a static bias parameter to the value 185 

of the go action (b). Further, we allowed for separate sensitivities to rewards (ρwin) and punishments 186 

(ρlose). As in our recent study of age effects [6], the model was then extended by adding a constant 187 

Pavlovian value of 1 or -1 to the value of the go action as soon as the first reward for win cues or the first 188 
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punishment for avoid losing cues, respectively, was encountered. This fixed Pavlovian value was 189 

weighted by a further free parameter (Pavlovian parameter) into the value of the go action (). Model 190 

comparisons demonstrated a better fit compared to a variable Pavlovian value used in previous studies 191 

[1,3,10] (see Table 2). As in previous reports [3,51], we employed a hierarchical Type II Bayesian 192 

procedure using maximum likelihood to fit simple parameterized distributions for higher-level statistics 193 

of the parameters. All six computational models were fit to the data using a single distribution for all 194 

participants. This fitting procedure was, therefore, blind to the existence of different genotype groups 195 

with putatively different parameter values. Models were compared using the integrated Bayesian 196 

Information Criterion (iBIC) with small iBIC values indicating a model that fits the data better after 197 

penalizing for the number of data points associated with each parameter. Finally, we assessed genotype-198 

related effects on all modeling parameters using IBM® SPSS® Statistices version 21. To test for 199 

differences regarding specific model parameters we calculated t-tests for independent samples. As one 200 

could not exclude that not one specific parameter but a combination of them differed between genotypes, 201 

we performed a multivariate test of differences – a linear discriminant analysis (LDA). The purpose of 202 

LDA was to find a linear combination of the six model parameters that gives the best possible separation 203 

between the genotype groups. This method simultaneously accounts for differences in combinations of 204 

variables between groups over and beyond differences across single multiple variables [53]. 205 
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Results 206 

 207 

Reduced learning performance in DRD2/ANKK1 TaqIA A1 carriers 208 

In our previous study [5] we observed that in the no-go to win condition TaqIA A1 carriers showed a 209 

significantly diminished improvement from the first to the second half of the experiment compared to A2 210 

homozygotes (cohort 1: t85 = -2.78, p = 0.007; cohort 2: t93 = -2.16, p = 0.033). As expected, we 211 

replicated this finding in our current sample (cohort 3: t97 = 2.05, p = .043; Figure 2A). In all other 212 

conditions A1 carriers and A2 homozygotes did not significantly differ (all p > .100), nor in gender 213 

(p = .621), age (p = .749), the number of smokers and nonsmokers (p = .084) or in the COMT 214 

Val108/158Met genotype distribution (p = .901). 215 

Furthermore, we also analyzed task effects and replicated previous results showing an action by valence 216 

interaction on overall task performance [1-15] (see supplementary results and Table S2 for details). 217 

 218 

DRD2/ANKK1 TaqIA and COMT genotypes differentially modulate motivational learning biases 219 

Our further analyses of genetically driven effects were performed in the entire sample comprising all 220 

three cohorts (N = 281 participants). Genotype frequencies were in Hardy–Weinberg equilibrium (all 221 

p > .145), and there was no linkage between the two polymorphisms (p = .971; for detailed demographics 222 

see Table 1).  223 

In line with our previous work [5], we observed for the TaqIA SNP a significant genotype x time x action 224 

x valence interaction (F1,271 = 11.18, p = .001; see Figure 2B), as well as significant interactions of 225 

genotype x time (F1,271 = 11.08, p =.001) and genotype x time x action (F1,271 = 11.94, p = .001). Post-hoc 226 

comparisons revealed that A1 carriers exhibited an overall significantly worse learning performance 227 

throughout the experiment compared to A2 homozygotes (overall slope: t279 = -3.72, p < .001, Cohen's 228 

d = 0.47). This effect was solely carried by the no-go conditions (no-go slope: t279 = -4.56, p < .001, 229 

Cohen's d = 0.58; go slope: p = .748), and specifically by the no-go to win condition (ngw slope: t279 = -230 

4.41, p < .001, Cohen's d = 0.54; all other conditions: all p > .087). As displayed in Figure 2B and 2C, the 231 
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TaqIA A1 carriers reached their learning asymptote earlier and to a lower level. They significantly 232 

differed in performance from the A2 homozygotes only during the second half of the experiment, 233 

pointing to different learning capacities (overall 2nd half: t279 = -2.21, p = .028, Cohen's d = 0.35; no-go 234 

2nd half: t279 = -2.28, p = .024, Cohen's d = 0.29; ngw 2nd half: t279 = -2.06, p = .041, Cohen's d = 0.26; 235 

equivalent 1st half comparisons: all p > .340). A summary of the statistics is displayed in Supplementary 236 

Tables S3 and S4.  237 

The combined datasets allowed for a logistic regression on the trial-by-trial go responses. This analysis 238 

confirmed the ANCOVA results with A1 carriers showing significantly diminished no-go to win 239 

performance in the course of the experiment (see Figure 2C and supplementary results for details).  240 

For the COMT Val108/158Met polymorphism, we observed a trend towards a significant four-way 241 

interaction genotype x time x action x valence (F2,271 = 2.96, p = .053). Met homozygotes showed 242 

significantly increased learning throughout the experiment in the no-go to win (ngw slope: t209 = 2.02, 243 

p = .045; Figure 3) and the go to avoid losing conditions (gl slope: t209 = 2.48, p = .014) compared to 244 

heterozygotes (other conditions: all p > .922). The logistic regression did not show an effect of COMT 245 

genotype (p = .381; see supplementary results and Figure S2 for details). 246 

In light of previous evidence that Met homozygotes have a higher response bias relative to Val carriers 247 

[34,54-56], in an additional analysis participants were separated into Met homozygotes (Met/Met) and 248 

Val allele carriers (Val/Val and Val/Met). The ANCOVA revealed a significant genotype x time x action 249 

x valence interaction (F1,273 = 4.30, p = .039) as well as a significant main effect of COMT genotype 250 

(F1,273 = 4.55, p = .034) and interestingly also a significant interaction of the COMT with the TaqIA 251 

genotype (F1,273 = 3.88, p = .050). The latter finding indicates a benefical effect of Met homozygosity on 252 

overall performance in A1 carriers (t97 = 2.31, p = .024) but not in A2 homozygotes (p = .971). 253 

We controlled for potential effects in reaction times (participants were explicitly instructed to respond 254 

accurately) and false responses in the target detection task (i.e., left when the target was on the right side 255 

of the display or vice versa) and found no significant differences between genotype groups (p > .187; see 256 

supplement for details).  257 
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Computational Modeling of Task Performance 258 

To identify components of the observed asymmetry during learning, we constructed six nested 259 

reinforcement learning models to fit participants’ behavior (Table 2). Our computational modeling 260 

approach demonstrated that the marked asymmetry in learning could be best accounted for by the model 261 

including separate parameters for sensitivity to rewards and punishments as well as a learning rate, an 262 

irreducible noise parameter, a constant go bias parameter, and a constant Pavlovian bias parameter (see 263 

Table 2), which is consistent with our recently published lifetime study on motivational learning [6]. The 264 

simulations of the winning model are presented in Figure 1C. Neither one specific model parameter 265 

(independent samples t-tests: all p > .119), nor a linear combination of the parameters (LDA: all p > .636) 266 

showed significant genotype-related differences. 267 

   268 
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Discussion 269 

 270 

In the present study, we investigated how genetic determinants of striatal and prefrontal DA function 271 

modulate learning biases when action and valence are experimentally orthogonalized. Using the 272 

previously established valenced go/no-go task [3], we provide independent confirmation for a selective 273 

deficit of DRD2 TaqIA A1 carriers in learning to inhibit an action in order to obtain a reward. Moreover, 274 

our exploratory analysis yielded preliminary evidence that COMT Met homozygotes show superior 275 

learning during trials with incongruent coupling of action and valence.  276 

 277 

Genetically driven contributions to the coupling of action and valence during learning 278 

For the TaqIA polymorphism, we replicated our previous observation [5] that A1 carriers show a stronger 279 

coupling of action and valence in a third independent cohort. As in our previous study, A1 carriers 280 

exhibited a specific impairment in learning to withhold actions in reward contexts. When combining all 281 

three datasets (N = 281), we could more closely investigate the nature of this effect. Moreover, the larger 282 

sample size of our three combined samples made it possible to investigate the effects of and potential 283 

interactions with the COMT Val108/158Met polymorphism.  284 

Due to previous knowledge about their neurophysiological consequences, the genetic polymorphisms 285 

studied here allow conclusions about differential contributions of striatal and prefrontal DA function to 286 

instrumental control mechanisms [34-36]. D2-type DA receptors are primarily expressed in the striatum 287 

(post mortem autoradiography: [57-59]; in vivo PET: [60,61]). They function as both postsynaptic 288 

inhibitory receptors and as presynaptic autoreceptors that regulate neurotransmission via negative 289 

feedback ([62], for reviews, see [63,64]). While DRD2 is, albeit sparsely, expressed in extrastriatal 290 

regions (2-8% of the expression level in the striatum [65]) and cortically mediated effects can thus not be 291 

excluded, differences for the ANKK1 TaqIA genotypes have thus far only been observed for the striatum 292 

- with lower DRD2 expression resp. binding availability in A1 carriers (post mortem autoradiography: 293 

[66-68]; in vivo PET: [37-40]). 294 
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In contrast, the decreased enzymatic activity of COMT in 108/158Met homozygotes primarily affects DA 295 

availability in the PFC, which has been attributed to the sparse cortical expression of the DA transporter 296 

(DAT) [45,69]. Therefore, the COMT polymorphism has mostly been studied in relation to PFC-297 

dependent executive functions (for reviews, see [46,47]; for a meta-analysis see [36]). With respect to 298 

motivated behavior, homozygosity for the Met allele has been associated with relatively increased reward 299 

learning (for a meta-analysis see [34]). In our study, Met homozygosity was associated with stronger 300 

learning enhancement during Pavlovian conflict (i.e., incongruent coupling of action and valence) 301 

throughout the experiment. Our data suggest that higher prefrontal DA levels may improve performance 302 

when motivational biases are involved. Guitart-Masip et al. [4] hypothesized this mechanism to explain 303 

their unexpected finding that levodopa administration led to a reduced coupling of action and valence. 304 

These surprising effects of levodopa were replicated in a recent study [14]. Moreover, 305 

electrophysiological studies [1,8] point to the involvement of the same prefrontal control mechanism, 306 

when subjects learn to overcome Pavlovian conflicts. 307 

Although COMT activity is of negligible importance to striatal DA availability [70], a potential indirect 308 

effect of COMT on striatal DA function cannot be excluded. Animal studies suggest that transgenic mice 309 

with increased COMT activity, equivalent to the relative increase in activity observed with the human 310 

COMT Val allele, do not only show deficits in PFC-dependent tasks (e.g., stimulus–response learning 311 

and working memory), but also increased DA release capacity in the striatum [71]. This finding 312 

corroborates earlier human neuroimaging studies that reported higher midbrain DA synthesis capacity in 313 

Val compared to Met homozygotes [72,73]. Thus, the effects of the COMT polymorphism on 314 

motivational learning may not only be explained by increased DA signaling in the cortex, but also contain 315 

a minor component of presynaptic DA availability in the striatum.  316 

 317 

Limitations 318 

A limitation in the interpretation of our data that is also common in other studies on this topic lies in the 319 

fact that the molecular mechanisms underlying the observed effects are still under debate. It is well 320 
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known that the TaqIA polymorphism is not located within the DRD2 gene but 10kb downstream of its 321 

termination codon on chromosome 11q23.1, within the coding region of the adjacent ankyrin repeat and 322 

kinase domain containing 1 (ANKK1) gene [74,75]. The molecular mechanisms underlying the effects of 323 

ANKK1 TaqIA on striatal DRD2 availability have not been conclusively established. Multiple 324 

mechanisms have been proposed, including linkage disequilibrium [49,67,76-78] or a potential direct 325 

interaction of ANKK1 with the D2 receptor at protein level, potentially modulated by the TaqIA 326 

polymorphism [79-81] (for a review, see [82]; see Supplementary Discussion for details). Similarly, for 327 

the COMT Val108/158Met polymorphism, it remains to be determined how COMT-dependent DA 328 

inactivation in brain regions with low DAT expression is realized. There is only limited evidence for 329 

extracellular activity of membrane-bound COMT [83], and the predominant evidence points to 330 

intracellular orientation and activity, requiring a DAT-independent uptake mechanism [44,84] (see 331 

Supplementary Discussion).   332 

A further limitation lies in our modeling approach, which failed to reflect the very robust and replictad 333 

effect of the DRD2 TaqIA SNP on learning gain throughout the experiment in the no-go to win condition 334 

and on the time-dependent valence effect on individual go/no-go responses. One explanation could be 335 

that the model space does not include the computational mechanism to differentiate, for example, 336 

instrumental from Pavlovian contributions. This should be addressed in future studies. 337 

 338 

Conclusion 339 

It is not clear how differential effects of striatal and prefrontal DA function contribute to motivational 340 

learning biases. With our study, we demonstrate by assesing the contributions of two well-studied genetic 341 

polymorphisms that DRD2/ANKK1 TaqIA A1 carriers with presumably fewer striatal D2 receptors and 342 

less limitation of striatal dopaminergic signaling after negative prediction errors in the indirect pathway 343 

showed a shift to a more action-oriented and biased behavioral pattern. COMT Val108/158Met Met 344 

homozygotes, who presumably exhibit higher prefrontal DA activity, showed less biased learning, 345 

possibly reflecting more efficient frontal control. 346 

 347 
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Figure legends 578 

 579 

Fig. 1. Experimental paradigm and participant performance. (A) Probabilistic monetary go/no-go 580 

task. Fractal cues indicate the condition - a combination of action (go or no-go) and valence (reward or 581 

punishment). On go trials, subjects press a button for the side of a circle. On no-go trials they withhold a 582 

response. Arrows indicate rewards (green) or punishments (red). Horizontal bars (yellow) symbolize the 583 

absence of a reward or punishment. ITI, intertrial interval. (B) The schematics represent for each 584 

condition the nomenclature (left), the possible outcomes and their probabilities after a go response 585 

(middle), and the possible outcomes and their probability after a no-go response (right). gw: go to win, 586 

gal: go to avoid losing, ngw: no-go to win, ngal: no-go to avoid losing. (C) Simulated choice data 587 

according to the model parameters of the winning model. Colored lines represent the simulated group 588 

mean probability of performing a go on each trial (green for go conditions, where go is the correct 589 

response; red for no-go conditions, where no-go is the correct response). Black lines indicate the group 590 

mean for participants’ actual go responses on each trial. In the plot area, each row represents one 591 

participant’s choice behavior for each trial (281 x 60 pixels). A white pixel reflects that a participant 592 

chose go on that trial; a gray pixel represents no-go. Participants made more go responses to win vs. avoid 593 

losing cues, reflecting the motivational bias. Overall, they successfully learned whether to make a go 594 

response or not (proportion of go responses increases for go cues and decreases for no-go cues). Figures 595 

(A) and (B) adapted from Richter et al. [5]. 596 

 597 

Fig. 2. Effects of DRD2/ANKK1 TaqIA genotype on choice performance. (A) and (B) Effects of 598 

DRD2 TaqIA genotype on choice performance in the third cohort (N = 99) and in the entire sample (N = 599 

281). Compared to the A2 homozygotes, A1 carriers showed a diminished learning to withhold an action 600 

to receive a reward. Left panels: Bar plots show mean differences between correct response rates (±SEM) 601 

during second half versus the first half of trials for each condition. This score represents the observed 602 

four-fold interaction of action x valence x time x genotype. Right panels: Line charts show mean values 603 
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of correct responses (±SEM) in the first and the second half of trials for all four conditions. Post hoc 604 

comparisons via t-tests: *p < 0.05, ***p < 0.001. (C) Trial-by-trial proportions of go responses (±SEM) 605 

to go cues (solid lines) and no-go cues (dashed lines) across cue types. Win and avoid losing condition 606 

seperately and colors depict TaqIA genotypes. TaqIA A1 carriers showed an enhanced effect of cue 607 

valence on go responding especially in the no-go to win condition with further progress of the experiment 608 

(lines are mostly sperated). Adapted scripts of Swart et al. [9] were used to generate figures. 609 

 610 

Fig. 3. Effects of COMT genotype on choice performance in the entire sample. Left panels: Bar plots 611 

show mean differences between correct response rates (±SEM) during second half versus the first half of 612 

trials for each condition. This score represents the observed four-fold interaction of action x valence x 613 

time x genotype. Right panels: Line charts show mean values of correct responses (±SEM) in the first and 614 

the second half of trials for all four conditions. Met homozygotes showed increased learning throughout 615 

the experiment in the no-go to win and go avoid losing condition relative to heterozygotes. Post hoc 616 

comparisons via t-tests: *p < 0.05.   617 
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Table 1. Descriptive data of the entire sample regarding TaqIA and COMT genotypes 618 

DRD2 TaqIA  A1+ A1- A1+ > A1-   

Gender (N 

Women/Men) 

 44/55 102/80 

χ2 = 3.46 

p = .063 

  

Age in years 

(M +/- SD) 

 25.1 +/- 3.1 24.6 +/- 2.6 

t279 = 1.30 

p = .195 

  

Non-Smokers/ 

Smokers (N) 

 70/29 143/39 

χ2 = 2.16 

p = .141 

  

COMT (N 

MM/VM/VV) 

 30/45/24 53/83/46 

χ2 = 0.06 

p = .971 

  

COMT MM VM VV MM > VV VM > VV MM > VM 

Gender (N 

Women/Men) 

43/40 64/64 39/31 χ2 = 0.59, p = .743 

Age in years 

(M +/- SD) 

25.0 +/- 2.7 24.9 +/- 2.8 24.3 +/- 3.0 

t151 = 1.36 

p = .176 

t196 = 1.37 

p = .174 

t209 = 0.09 

p = .931 

Non-Smokers/ 

Smokers (N) 

63/20 93/35 57/13 χ2 = 1.90, p = .387 

TaqIA (N 

A1+/A1-) 

30/53 45/83 24/46 χ2 = 0.06, p = .971 

Demograhic data are pooled across all three cohorts (cohort 1 and 2 from Richter et al. [5], and the newly 619 

investigated cohort 3). N = number, M = mean, SD = standard deviation, VM: Val/Met heterozygotes, 620 

VV: Val homozygotes, A1+: carriers of the A1 allele, A1-: A2 homozygotes. 621 

  622 
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Table 2. Integrated Bayesian Information Criteria (iBIC) for tested models 623 

Model no. Model parameters No. of parameters Likelihood Pseudo-R2 iBIC 

1 ε, ρ 2 -23463 0.498 46970 

2 ε, ρ, ξ 3 -23314 0.501 46695 

3 ε, ρ, ξ, b 4 -21798 0.534 43685 

4 ε, ρwin, ρlose, ξ, b 5 -21334 0.544 42779 

5 ε, ρwin, ρlose, ξ, b, πvariable 6 -21137 0.548 42406 

6 ε, ρwin, ρlose, ξ, b, πconstant 6 -21106 0.549 42346 

Boldface type: winning model statistics, ε: learning rate, ρwin: weighting of reward on win trials, ρlose: 624 

weighting of punishments on lose trials. ξ: irreducible noise, b: go bias, π: Pavlovian bias, iBIC: 625 

integrated Bayesian information criterion (smaller iBIC values indicate a better model fit). Descriptives 626 

for the parameters in the winning model (M +/ - SD): ε = 0.26 +/- 0.15, ρwin = 15.32 +/- 13.30, ρlose = 7.51 627 

+/- 4.03, ξ = 0.96 +/- 0.06, b = 1.10 +/- 0.74, πconstant = 0.65 +/- 0.57. 628 

 629 
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