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Abstract

The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is
particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its
relationship to the layout and strength of functional networks is poorly understood. In this study we disentangled
the variability of two key aspects of functional connectivity: strength and topography. We then compared the
genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed
across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the
topography of networks, while their connectivity strength is shaped primarily by random environmental influence
such as learning. We identified peak areas of genetic control of topography overlapping with parts of the processing
stream from primary areas to network hubs in the default mode network, suggesting the coordination of spatial
configurations across those processing pathways. These findings provide a detailed map of the diverse contribution

of heritability and individual experience to the strength and topography of functional brain architecture.
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1. Introduction

Evolution has shaped the cortical layout of the human brain through both scaling and reorganization '. The typical
globular shape of the brain evolved gradually within Homo sapiens in the last 300,000 years * and has been linked

to genes associated with neurogenesis and myelination *

. This is related to the evolution of a developmental
globularization of the brain in the first year of life, which does not occur in our closest living relatives, the
chimpanzees *, nor in our closest extinct relatives, the Neanderthals °. It is during this developmental period that the

human brain is more susceptible to environmental influence. Modern humans have more neurocranial shape

variation than Neanderthals and other archaic Homo groups ¢ . A remarkable feature of the brain is that
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evolutionary selection and adaptation result not in a static organ, but in the capability to adapt to the environment
during the life-long process of development and learning ’. The increased variability of functional brain architecture

across individuals is associated with both differences in genetic programming and individual experience.

This variability is not evenly distributed across the brain. For instance, areas in the prefrontal cortex and association
areas exhibit particularly high inter-individual differences in functional architecture *°. These areas are notable for
exhibiting a predominance of long-range connectivity '° as well as evolutionarily recent expansion ®. The link
between these observations is subject to different hypotheses ®!'. Inter-subject variability might point at the local
potential for architectural alternatives retaining comparable capacity, as it appears to be associated with plasticity
and corresponding recovery of patients suffering from focal brain damage '>. Differences in individual experience
may contribute to measurable diversity as well. Inter-subject variability in preterm neonates and healthy adults
exhibit overall similar patterns ", but variability increases for parts of the fronto-parietal and dorsal attention

14,15
175,

network during maturation. At the same time, genes contribute significantly to the variability of functiona and

structural '¢!7

cortical networks. Despite the evidence for both genetic and environmental influences on brain
variability, their specific contributions to the two key features of functional organization — strength and

topography — remain poorly understood.

In this study, we disentangled variability of the connectivity strength between components of functional networks
and the spatial cortical layout of these nodes - their topography - to study independent contributions of genetics and
environment (e.g., learning, experience) to these two features. We analysed resting state functional magnetic
resonance imaging (rs-fMRI) data of twins. To disentangle strength and topography, we first performed cortical
registration based on anatomical features, and then identified variability of topography by subsequent functional
registration. We found that the cortical landscapes of genetic influence on these two features diverge along an axis
from primary to higher order association areas. In primary areas connectivity strength exhibits high heritability
compared to topography, while this relationship is reversed in association areas. Distinguishing the role of
individual experience in shaping connectivity strength from the role of heritability in shaping its topography may
provide crucial insights into the mechanisms enabling the flexible, yet stable nature of brain organization

supporting the human cognitive repertoire.
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2. Material & Methods

2.1 Dataset and preprocessing

We use the data of 231 participants labeled either as monozygotic or dizygotic twin taken from the HCP S1200
ICA-FIX denoised dataset. Only twins with 4 rsfMRI runs available are chosen. Further details on exclusion
criteria and data acquisition are described elsewhere '*2'. 112 subjects out of 231 are labeled as monozygotic twin.
The mean age in this group is 30.02 years and 74% are female. The group of monozygotic twins consists of 2
subjects denoted as “Asian/Nat. Hawaiian/Other Pacific”, 12 denoted as “Black or African Am”, 1 as “Unknown or
Not Reported and 97 as “White”. The other 119 subjects labeled as dizygotic are 62% female an the mean age in
this group is 29.82 years. 4 are denoted as “Asian/Nat. Hawaiian/Other Pacific”, 21 as “Black or African Am”, 1 as
“Unknown or Not Reported and 93 as “White”. Participants provided verbal consent in accordance with guidelines

set by the Wu-Minn HCP Consortium.

The preprocessing consists of the HCP-pipelines *, which include processing of the volume data and bringing the
participant’s surface into a standard space (fs_LR). For the ICA-FIX dataset independent component analysis is
used to decompose the data set into “good” and “bad” components based on the volume data. Bad components are
then removed from the surface data **. Global signal regression and band-pass filtering (range 0.01 Hz-0.08 Hz)
are applied in addition to the HCP-pipelines. Furthermore, the fMRI time-series are mapped to Freesurfer’s *°

fsaverage4 (version 5.3) surface using Connectome Workbench v1.3 %,

2.2 Decoupling function from anatomy

In order to separate function from topography, diffusion maps are used ** °. For each twin a correlation matrix
including all vertices of the left and right hemisphere is calculated. The cosine similarity metric is applied to each
pair of rows of an individual’s correlation matrix and based on the obtained values, a new symmetric similarity W
is constructed for the participant in which the entries correspond to the row pairs of the individual’s correlation

matrix. Since the cosine similarity gives values between -1 and 1, the range of the entries of W is shifted so that the
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largest value is 2 and all entries are larger than 0. The matrix W of each individual then represents the edge
weights of a connectivity graph.

The next step is obtaining a spectral representation of the connectivity structure via eigendecomposition of the
matrix L=C(D""WD™), where D is the diagonal matrix of node degrees d=sum(W;;) and C is the diagonal matrix
of node degrees ¢=sum;(D""*WD™),;. Embedding coordinates ‘¥, of vertex i are derived from the right eigenvectors

of L multiplied with A/(1- ,), where ), denotes the eigenvalue of the i eigenvector v;, as

¥ = (w1 @), wa(), -own(D)'
v,(1) is the i" entry of the first eigenvector.

In order to reach functional correspondence across participants the embedding of each twin ¥5= (y,5, v,°, ...,y
is aligned to the embedding ¥*= (y %, W%, ...,y\\*) of a reference participant (ID: 101915) not part of the twin

dataset by calculating a rotation matrix Qgy, that has the form
QS,R:VUT,
with V and U constructed via singular value decomposition,

USV'= (PR)T S,

A publically available implementation is used to obtain and align diffusion maps (mapalign:

https://github.com/satra/mapalign). After having obtained the embedding coordinates the first three are used as

features for surface registration with MSM v2 7| where each twin’s surface is aligned to the reference surface.
Deformation fields for discovery and replicability analysis are shown in Supplementary Figure 1. After the third
embedding coordinate the eigenvalues of the remaining coordinates decreased more continuously, indicating a
worse separation from each other. Therefore only the first 3 coordinates were used for alignment. After alignment a
vertex of the twin is assigned to each vertex of the reference participant, using nearest neighbour to reach

functional correspondence of vertices across all individuals in the twin dataset.
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After functional alignment, the estimation of genetic and environmental contributions to connectivity strength is
repeated on the functionally aligned individuals. Additionally, the contributions to variability in spatial layout of
functionally corresponding vertices are estimated. Calculations in this manuscript are performed with Python 3.6, if

not stated otherwise.

2.3 Parcellation and connectivity matrices

After preprocessing the cortex is parceled into 600 parts, 300 per hemisphere, using the Schaefer — 600 parcellation
scheme *°. The advantage of this scheme is the possibility to assign each region of interest (ROI) to one of the 7
Yeo-networks *'. In this study the networks are split into a left and a right part yielding 14 networks. For each of the
14 networks a representative ROI is chosen by correlating first each ROI time series of a network with all the other
time series of the same network. The ROI with the highest mean correlation value is then chosen as the
representative ROI for each of the 14 networks. For this purpose the concatenated LR-Runs 1 and 2 are used. The

choice of the representative ROIs is done based on the reference subject and then taken over for all participants.

Those representative ROIs are used to describe the phenotype of the twins, which will be input of a twin model to
estimate genetic and environmental influences on connectivity after anatomical and after functional alignment.
Using the representative ROIs we construct connectivity matrices of size 13x13 for each vertex of the cortex by
calculating the Pearson correlation coefficients between the time series of the current vertex under investigation and
the 13 representative ROIs of the networks to which the current vertex does not belong. A Fisher’s z transformation
is applied afterwards and gender as well as the mean relative root mean squared motion difference of Run 1 and 2
are regressed out. The regression is done using R version 3.4. To describe the phenotype of spatial layout, each
functionally corresponding vertex of each participant is described by its original position in 3-dimensional space
before functional alignment. Then the twin model used is the same as for connectivity strength, the only difference

is that the phenotype of each participant is described by 3 traits instead of 13.

2.4 ACE twin model

To obtain estimates for the genetic and environmental influences on the connectivity strength of each vertex, we use

a multivariate twin model *?. In this model the phenotype of each vertex and individual is described by 13 character
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traits, namely the correlation with the representative ROIs. The model is applied to each vertex separately and the
relation between these character traits is summarized in the expected population covariance matrix V, It can be
split into three covariances representing the additive genetic influence A, the common environmental influence C

and the random environmental influence E, i.e.
V,=A+C+E.

Additive genetic control refers to the additive effects of the two variants of a gene (allele) present in a human being.
The two alleles can interact with each other leading to non-additive interaction effects. The typically larger additive
genetic contribution together with non-additive interaction effects comprise the total genetic contribution **. The
common environment C makes members of the same family more similar to each other than to members of
different families. The random environment E causes the differences between members of the same family. To
ensure that the estimated matrices A, C and E are symmetric and positive definite, they are written as a Cholesky

decomposition, A=T,T,", C=T.T.", E=T;T;", with lower triangular matrices T, ,T and Tr.

To obtain estimates for T, ,T. and T} the expected trait covariance structure of monozygotic and dizygotic twin
pairs is used. It can be shown that the covariance matrices for monozygotic V\;, and dizygotic twins V,, are given
by the block matrices,

A+C+E

0.
Viz = Voipz = [[],.GA—C A+C+E

A+C+E A+C
A+C A+C+E|

This means that the trait covariance of a twin (monozygotic, as well as dizygotic) with himself is A+C+E=V . The
trait covariance of monozygotic Twin 1 with Twin 2 is A+C, whereas for dizygotic twin pairs it is 0.5A+C, since
they share on average only half of their genes, whereas the genes of monozygotic twins are identical. For parameter
estimation the expected trait population covariance matrix V,, as well as the expected covariances of Twin 1 with
Twin 2 (mono- and dizygotic) are then equated with the corresponding values calculated from the dataset. The twin

model is implemented using R’s package OpenMx version 2.11.5 3 %,
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2.5 Analysis

After estimation, genetic, common environmental and random environmental contribution maps are available for
connectivity strength after anatomical and functional alignment and for the spatial layout. Note that values for A, C
and E are only considered for vertices with corresponding fMRI signal and which can be assigned to one of the
600 ROIs (2339/2562 vertices on the left and 2341/2562 on the right hemisphere). This excludes mainly vertices
from the medial wall. Several comparisons are made. First, the genetic contributions to variability in connectivity
strength after anatomical and functional alignment are compared to each other by comparing the mean genetic
contribution on the surface using a paired t-test. The normality assumption for the differences of paired values is
verified using a histogram (Supplementary Figure 2). Additionally, the genetic contributions to connectivity
strength before and after functional alignment and to spatial layout are correlated with each other using Pearson’s
correlation coefficient. Furthermore, the genetic contributions to spatial layout are correlated with variability in
spatial layout, distance to primary area and cortex expansion. Uncorrected and corrected confidence intervals are
provided for the correlation coefficients, whereas the uncorrected confidence intervals are calculated with
bootstrapping. For the t-test a corrected p-value is provided. The level of significance is set to 0.05 and obtained
p-values or confidence intervals are adjusted through Bonferroni-correction. Bonferroni correction is done for each

hemisphere separately.

We also performed replicability analysis using 2 RL fMRI runs, which have also been available for each participant
additionally to the 2 LR runs used for the discovery analysis. In addition to performing the same steps as described
in the paragraph above, we also correlated maps based on the discovery dataset with maps obtained based on the
RL runs. Note that for each category either aFC, FC or SP there were some vertices for which an optimal solution
for the estimates of the twin model could not be found. This holds for the replicability as well as the discovery
analysis. However there were never more than 12 vertices per category for which a solution was not found. Vertices
were only excluded from analyses in situations where they clearly appeared as outliers, i.e. their presence changed

the appearance of the contribution maps visualized on the surface. This was only the case for maps of the
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variability explained by the twin model. One vertex each was removed from the discovery SP and aFC variability

map as well as from the FC variability map of the replicability analysis.

2.6 Data and code availability

Third party code used in this study included Connectome Workbench ~ v1.3%

(https://github.com/Washington-University/workbench/releases/tag/v1.3.2) and Freesurfer v5.3%
(https://surfernmr.mgh.harvar fswiki/DownloadAndInstall5.3) for preprocessing and MSM v2¥%

(https://www.doc.ic.ac.uk/~ecrt05/MSM_HOCR _v2/) and mapalign (https:/github.com/satra/mapalign) for

functional alignment. Own code was developed in R 3.4 for setting up the twin model using R’s package OpenMx
version 2.11.5 ** % (https://openmx.ssri.psu.edu/), as well as in Python 3.6 for calculation of connectivity matrices.
Matlab 2018 was used for generation of figures. Code and data generated during this study will be made publicly

available after acceptance.

3. Results

To independently investigate the genetic- and environmental contribution to functional connectivity and its spatial
topography across the cortex, we first disentangled these two components (Figure 1a). After anatomical alignment
of cortical surfaces of all individuals *, we embedded the cortical functional connectivity structure into a
representational space, and aligned functional networks in this space *’**. Based on these matched representations
we performed diffeomorphic registration of the cortical surfaces to align regions with similar connectivity profiles
. This functional alignment allowed us to observe variability in the spatial position - topography - of
corresponding functional regions (SP) and variability of functional connectivity strength of these corresponding
functional regions (FC) independently (Figure 1b). We then analysed additive genetic (A), common environmental
(C), and random environmental (E) factors on these two types of variability. To enable comparison of results with

prior work, we also analysed these factors for functional connectivity before disentanglement (aFC). This reflects

the combined variability of topography and connectivity strength at any cortical position.
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Additive genetic contribution
to entangled variability

Entangled variability (aFC) of functional networks is a mixture

. . . . Additive genetic contributions to
of differences in connectivity strength and spatial topography

disentangled spatial and functional variability

Different FC, same SP - Disentangled variability of functional Different SP, same FC - Disentangled variability of spatial
connectivity strength (FC) between © and other vertices @ . topgraphy (SP) of the vertices in the same functional network.

Figure 1: Overview. (a) Disentangling functional connectivity and topography of functionally
corresponding units on the cortex enables the independent analysis of genetic contributions to these
different features of variability. (b) After disentanglement, FC captures variability of connectivity strength
of corresponding network nodes regardless of their spatial variability. In each of the four exemplary
brains, the strength of connections is represented by the thickness of connecting lines. (c) SP is the
variability of the spatial position (topography) of functionally corresponding vertices. When subjects are
anatomically aligned, functional corresponding units or vertices (the blue vertex in the bottom right panel)
differ in spatial position (coordinates). To know which units are functionally corresponding across
subjects we perform functional alignment.

3.1 Divergent roles of genes and random environment in shaping strength and topography of networks

Genetic and common environmental contributions to aFC were consistent with previous findings '°. For aFC, areas
with high non-random contributions include the rostral middle frontal cortex, the pericalcarine cortex and the

boundaries between temporal middle frontal inferior parietal cortex and superior temporal banks on both
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hemispheres, as well as some spots in the superior frontal cortex. The transverse temporal cortex, isthmus and
several region boundary areas on the medial surface exhibit highest values of random contribution (Figure 2).
Surface maps for both hemispheres are provided in Supplementary Figure 3. Genetic contribution ranges from

5.25% to 45.3% of the variance explained by the twin model.

0.244 0.289 0.199

Additive genetic Random environment
/ Additive
genetic
‘: Random
o environment
aFC =)
)
o
0575 0.613 0.682
SP 0.296 0.366 0.187
0.2
; Additive
m genetic
e 00 —
-g, & Random
él - environment
0.2
FC

b 0573 0.549 0.674

Figure 2: Additive genetic and random environmental contribution to functional variability of the cortex.
(a) After disentangling variability of spatial topography (SP) and connectivity strength (FC), SP exhibits
pronounced peaks of genetic contribution of at least 30%, whereas the genetic contribution to FC mainly
decreases compared to entangled functional variability (aFC). (b) For two regions of interest indicated in
the aFC map, quantitative values are shown. Compared to aFC, genetic contribution is lower for FC and

higher for SP. The contribution of random environment is highest for disentangled connectivity strength
FC.

After disentangling variability of function and spatial topography, genetic contributions to SP and FC diverge, and
reveal a heterogeneous landscape across the cortex. In Figure 2 two example regions at peaks of A, illustrate this

divergence. On average, genetic contribution to FC is lower compared to aFC (left hem: 19.3% (A,zc) vs 16.5 %
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(Apc) of variance explained by genes, corrected p-value < 0.0001; right hem: 19% (A,rc) vs 16.1% (Agc) of
variance explained by genes, corrected p-value < 0.0001, Figure 3a). This decrease of genetic control is also
apparent in Regions A and B in Figure 2. The central sulcus is one of the few areas where local estimates of genetic
contribution increased from A,z to Apc. Random environment is the strongest influence on FC throughout the
cortex with a lowest value of 45%, while genetic contribution ranges from 2.92% to 42%. In contrast to that, Agp
exhibits pronounced regional heterogeneity with genetic contribution accounting from 0% to 67% of the variance
explained by the twin model, giving a mean genetic contribution of 15.53% of the variance explained on the left
and 14.78% on the right hemisphere. In Region A and B in Figure 2 the decrease from A g to Agc is mirrored by an

increase from A z- to Agp.

3.2 Two opposing gradients of genetic- and environmental influence on network strength and topography

We observed two opposing gradients in the genetic contribution to connectivity strength (Agc) and topography (Agp)
along an axis from primary areas to heteromodal networks. Figure 3b shows the difference between Ag, and Apc
across the cortex. In primary areas, including visual- and somatomotor networks genetic contribution to functional
connectivity strength Ap- dominates, while its contribution to topography Agp is comparably low. The opposite is
the case in higher-order areas, such as in frontoparietal areas, attention- and default mode networks *' where genetic
contribution to topography Agp is higher than A . This coincides with a particularly high divergence between Agp
and Agc and Ag, being at its peaks higher than Eg, (Supplementary Figure 4). Those areas include parts of the
rostral middle frontal, middle temporal and inferior parietal cortex on the left hemisphere, as well as at the
boundary between the superior frontal and the precentral cortex. On the right hemisphere those areas include a part
of the middle temporal cortex and an area along the boundary between superior frontal and caudal middle frontal
cortex, reaching in the rostral middle frontal cortex. For 7 Yeo networks, visual- and somatomotor cortex exhibit
predominantly areas with high Ay /low Agp paired with low Eg¢ / high Egp (Figure 3¢). This divergence is reduced
in dorsal- and ventral attention networks, and vanishes in fronto-parietal- and default mode networks. A replication

experiment shows that this observation is highly stable (Supplementary Figure 5).
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Eigure 3: Divergent roles of heritability for disentangled connectivity strength (FC) and spatial topography
(SP) of function along a gradient from primary- to heteromodal areas. (a) Global distribution of additive
genetic influence A for aFC, FC and SP. Compared to aFC, genetic contribution is smaller for FC, and
exhibits a more heterogeneous landscape for SP. (b) Comparing genetic contribution to FC and SP
across the cortex reveals areas of dominant influence on FC (visual- and somatomotor cortex) and
areas of dominant influence on SP (attention-, fronto-parietal-, and default mode network) in 7 networks
(Yeo et al. 2011). (c) Heritability of connectivity strength is most dominant in primary areas (visual,
somatomotor) decreasing to a minimum in integration areas (frontoparietal, default mode). On the right,
for each network, the distribution of location variability and genetic contribution is plotted.

3.3 High genetic contribution to topography in more variable, and phylogenetically modern areas

We investigated the relationship of Agp to network position variability °, the distance to primary areas and the

amount of cortical expansion between macaque and human *. Ag, correlates with variability (left hemi: r = 0.3,
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corrected confidence interval CI=(0.24,0.35); right hemi: r=0.41, corrected CI=(0.36,0.46)) and cortical expansion
from macaque to human (left: r = 0.18, corrected CI=(0.11,0.24); right: r=0.099, corrected CI=(0.03,0.15)). The
relationship between Agp and the distance to primary area follows an inverted U shape. It increases with distance to
primary areas in somatomotor-, somatosensory- , visual cortex, dorsal and lateral attention network (left: r =
0.206, corrected CI=(0.13,0.27); right: r=0.286, corrected CI=(0.21,0.35)), then decreases in limbic, fronto-parietal
and default mode network (left: r = -0.275, corrected CI=(-0.35,-0.22); right: r=-0.01, corrected CI=(-0.09, 0.06)).
This decrease is only significant for the left hemisphere. Supplementary Table 1 summarizes the values, and
confidence intervals. Figure 4a shows the dominant high (red) or low (blue) Agp in the space of location variance
and the distance to the primary areas. This analysis reveals two bands: In low to medium areas there is a band of
cortical regions exhibiting predominantly low Agp. At the same time a diagonal band from areas with low variance
close to the primary areas, to higher variance, and intermediate distance to primary areas exhibits predominantly
high Agp. Those areas include the middle temporal and the rostral middle frontal cortex on both hemispheres as

well as parts of the superior frontal and inferior parietal cortex.
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Figure 4: Relationship of spatial variability and functional gradients to genetic contribution to spatial
layout. (a) Areas where high- (top 20%) and low- (bottom 20%) Asr dominate are plotted in a coordinate
frame spanned by the variance of the spatial position of network areas and the distance to primary
areas. (b) Analogously, Age dominance maps are visualized in the functional gradient space for gradients
1, 2, and 3 (Margulies et al. 2016).
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3.4 High genetic contribution to topography in areas in-between primary cortex and brain hubs

To further examine Agp in the space of functional gradients spanning uni- to heteromodal, and task negative- to task
positive networks, we plot high (red) or low (blue) Agp dominance in the space spanned by the first, second and
third functional gradients *’ (Figure 4b). In regions corresponding to association areas (high gradient 1), around
visual processing (high gradient 2), and task positive activity (low gradient 3) high Ag, dominates locally, while in
somatosensory and somatomotor areas (low gradient 1 and 2) low Ag, dominates. Task negative areas exhibit a
mixed composition without a clear dominant behavior with regard to Agp. A stream of high (red) Agp is situated
along the edge from somatosensory/somatomotor to association areas through task positive regions. High genetic

contributions modestly dominate the sparse central area of intermediate gradient 1 and 2.

3.5 Distinct strength and topography both contribute to overall variability.

The overall variability as measured by the variance of aFC and FC estimated by the twin model is similar in
magnitude (range aFC: 0.102 to 0.8, range FC: 0.105 to 0.76), and the genetic contributions A,z and Agc
moderately correlated on both hemispheres (left: r=0.298, corrected CI=(0.24,0.35); right: r=0.273, corrected
CI=(0.21,0.32)). The correlation between A,z and Ag, was 0.128 on the left and 0.198 on the right hemisphere
(corrected CI=(0.06,0.18) and corrected CI=(0.13,0.25)), suggesting that part of the variability of aFC and the
corresponding additive genetic contribution is actually due to variability of the spatial layout of functional units on
the cortex. Disentanglement of functional connectivity and topography reduces the correlation of genetic
contributions to 0.05 (Apc to Agp) on the left- and 0.091 on the right hemisphere (corrected CI=(-0.006,0.098) and
CI=(0.03,0.15)). The variability explained by the twin model for SP ranges from 7.98 mm? to 137 mm?’ when
described as variance. This corresponds to a standard deviation ranging from 2.82 mm to 11.7 mm. Supplementary

Table 2 summarizes correlations and their confidence intervals. The hemispheres show similar patterns.

To gain a more detailed picture of the influence of FC and SP, we related their genetic contribution maps to
cognitive functions, using a 12 component task activation model *. (Figure 5). We were especially interested in

comparing Agp and Ay in regions and corresponding functions, where both are high. Regions with high A
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especially dominating over high Ag, are associated with visual processing and hand movements, whereas Agp

strongly dominates over Ay in regions associated with inhibition and auditory processing.
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Figure 5: Relation of genetic contribution and cognitive function. Values of Arc and Apg are divided into
10 bins based on percentiles (x-axis). Within each bin normalized activation probabilities are summed
given one of 12 components *°. The 12 components (rows) are ordered based on the difference of
activation probabilities between Agc and Aps summed over bins and weighted by the log of percentile.
The sequence visualizes the gradient from high Age and low Ag; on top, towards low Agr and high Agc on
the bottom.

3.6 Replicability analysis

We performed replicability analysis using 2 RL fMRI runs, available for each participant in addition to the 2 LR
runs used for the main discovery analysis. In contrast to the LR runs, the phase encoding direction for the RL runs

is from right to left *', which might be a source of variance between runs of the same subject, in addition to the
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¥ 42 Disentangling resulted in comparable deformation fields of function and

general intra-subject variance
topography (Supplementary Figure 1). The variability of SP, FC and aFC estimated by the twin model at each
vertex correlate in the discovery- and replicability analysis (Supplementary Figure 6). (aFC: left hemisphere: 0.98,
right hemisphere: 0.98; FC: left: 0.93, right: 0.91; SP: left: 0.57, right: 0.65). The relationship between genetic and
environmental influence, variability, and distance to primary areas, as well as their distribution in the functional

gradient space is highly replicable (Supplementary Figure 7). Their respective dominance in 7 Yeo networks on the

replication data, reflects those observed in the discovery data (Supplementary Figures 5).

4. Discussion

In this study we disentangled strength and topography of functional networks across the cortex. We applied a novel
method to study the role of heritability and individual experience shaping these two key features independently.
Disentanglement revealed that their influence on strength and topography diverges across the cortex. While in
primary areas, strength is more heritable compared to topography, the opposite is the case in intermediate and
higher order association areas. There, genetic factors primarily shape topography, while connectivity strength is
predominantly determined by individual experience. Our results may inform our understanding of the mechanisms

of emergence and continued adaptation of brain areas unique to humans.

4.1 Variable and heritable topography in intermediate and higher order association areas

In evolutionary older parts of the cortex, functional connectivity is related to proximity '°. The modern human
association cortex does not follow this rule anymore. The tethering hypothesis "' posits that regions that form
modern association cortex became untethered from strong patterning signals of thalamic input in the past due to
cortical expansion. This fostered a less hierarchical connectivity landscape in these regions. Together with an
increase in cortico-cortical connectivity and their position between signal gradients from distributed primary areas,
this may have paved the way for being subsequently co-opted for high-level integrative cognitive capabilities. In

light of this, the rapid evolutionary expansion of association cortex may also have led to a dissociation between the
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roles of functional components and their spatial layout, contributing to the high variability these networks exhibit

compared to primary areas *'*'". The precise role of this variability is, however, not clear.

We did observe dissociation of genetic influences on the variability of strength and topography in association
cortex. While here, topography and connectivity strength are highly variable, the first is heritable to a much higher
degree than the latter. Therefore the development of a less hierarchical connectivity landscape may have gone
along with an increase in genetic variability encoding topographical variability. Since the genetic variability is still
present today, different genotypes may have formed the basis of equally fit phenotypes in the past. At the same
time, genetic influence may enable improving a coordinated - and eventually possibly even canonical - layout of
processing pathways in the future, as heritability renders topographic variability visible to selection and adaptation,
enabling the emergence of replicable organization. At the same time, the strength of the interconnectedness among
the components anchored in a diverse, but heritable landscape is shaped by individual experience and the

environment.

The observation that highly variable, and heritable topography overlaps in association cortex, is initially
counter-intuitive, but may have benefits on the individual-, and the population level. It may afford connectivity
strength’s variability and susceptibility to random environmental influence on top of an underlying coordinated
framework of network topography, necessary for the acquisition of higher-order human cognitive abilities. At the
same time, on the population level, simultaneous variability and heritability of topography may not only be a
transient state while organization is optimising, but instead a means to sustain population level diversity and fitness
. For either point, the separation of variability explained by heritable traits versus random environmental influence

and their independent link to topography and connectivity strength are important.

4.2 Coordinated processing pathways from primary to heteromodal areas

An increase of heritable topography from visual and somatomotor cortex to default and fronto-pariental networks
(Figure 3c) supports the two hypotheses regarding different but coordinated heritable integration pathways. Task
positive areas of high genetic contribution are in close proximity of early to intermediate processing areas found in

a study of pathways from primary areas to network hubs **. When taking into account areas influenced by common
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environment, high non-random contribution areas are next to the dorsolateral prefrontal cortex (DLPFC), the
frontal eye fields (FEF) and a stream following the borders of the visual cortex to the lateral occipitotemporal
junction (LOTJ) and then reaching into task-negative areas of the temporal lobe. Early integration areas of the
visual processing stream form a cluster of high genetic contribution to SP present in the visual cortex in Figure 4b.
The visual cortex’ connectivity follows three pathways * , a feature not present for the other primary cortices.
Genetic coding of network position in the visual cortex may be needed to robustly sustain a more intricate pathway
structure. Low to intermediate integration areas exhibit comparably high heritability of functional connectivity
strength (FC), though to a lesser extent. Peak areas are close to LOTJ and DLPFC, two regions belonging to
integration areas not directly adjacent to the somatomotor and somatosensory cortex, and in case of the DLPFC not
adjacent to the visual cortex **. The stronger genetic encoding of connectivity strength in these areas might be

necessary to effectively bridge the larger distance compared to areas located directly next to primary areas.

4.3 Disentanglement sheds new light on heritability of entangled functional connectivity strength

The entire cortex shows moderate genetic influence on connectivity strength before disentanglement (aFC).
Disentangling FC and SP reveals a predominantly decreased FC compared to aFC and a location dependent
increase of SP. This suggests that genetic influence on aFC to a relevant extent actually reflects Agp. Further
evidence on that is provided in a recent study distinguishing connectivity profiles of sibling pairs from pairs of
unrelated individuals **. Although the study did not investigate heritability of topography directly, the authors used
a parcellation to obtain regions of interest (ROIs) and described the time series of each ROI by the time series of all
other ROIs through regression. They then used the obtained coefficients as a connectivity profile of a ROI. Most
areas of low random environmental contribution to spatial topography overlap with cortical regions among the top

20 to distinguish sibling pairs from pairs of unrelated individuals ** (Supplementary Figure 8).

This complements our emerging understanding of the role of variability of brain networks. As found in a recent
study, variability in overall functional connectivity is actually reflected in the variability of topographical
organisation and the spatial arrangement of functional regions strongly predicts behaviour *. In another recent

study ¥’ the entire cortical parcellation based on network topography was able to predict measures of cognition,
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personality and emotion. Together with our findings this suggests that different behavioral traits might be
genetically determined through topography and have been either equally advantageous under similar conditions or

alternatingly advantageous under changing conditions during human evolution.

Even though Ag, seems to determine A, for some parts of the cortex, Apc also has its role when looking at
specific cognitive functions. Whereas genetic influence on most cognitive functions can be attributed to a mixture
of Agp and A without a clear dominance of one of the two, there are also some exceptions as indicated by
differences in ranking in Figure 5. Dorsal attention and language seem to be influenced genetically mainly through
SP, since those functions are ranked at the bottom. Visual and hand movement related processing, on the other

hand, are influenced genetically mainly through FC.

4.4 Related work

48, 49 1 16,17

A range of papers has investigated genetic determination of morphology as well as structura and
functional features of the brain °* '> '* % In a study of White et al. ** cerebral brain volumes of twins, including
whole brain volume as well as divisions into lobes and tissue types, showed correlations above 0.90, except the
frontal white matter and occipital gray matter volume. Genetic correlations for surface area with different seed

* and showed an anterior-posterior division and a lack of long distance

locations have been explored in
correlations. Similar to surface area, cortical thickness exhibited local genetic correlation with additional strong
genetic correlation to homologs on the opposite hemisphere in another study '. Glahn et al ** explored heritability
of anatomical morphology and functional aspects of the default mode network, revealing an independent genetic
influence on anatomical morphology and functional variability. Some other previous studies based on fMRI data
used a univariate twin model to investigate the connectivity of single edges between regions distributed across the
cortex ' . Observed genetic contributions are higher than common environmental influences in both papers. A
multivariate machine learning based approach was used in * to distinguish sibling pairs from pairs of unrelated

individuals. Useful regions for pair classification belonged to higher order systems, such as the fronto-parietal,

dorsal attention and default mode network. Measures of structural connectivity were found to be especially
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heritable for connections within the default mode network, visual circuits and connections between default mode

and fronto-parietal or ventral attention network '®!.
4.5 Limitations

This study has several limitations. One limitation is the way how the genetic, common environmental and random
environmental contributions to connectivity strength at each vertex are estimated. Since the brain is a network,
describing the connectivity strength or profile of each vertex should preferably be done by including the
connections to all nodes in the brain. However, due to the large number of parameters which had to be estimated for
the twin model, this option is computationally infeasible. Therefore we describe the connectivity profile of each
vertex by its connectivity to predefined regions of interest, an approach consistent with prior work *'. A limitation
of the twin model used is that it only models contributions that act additively on the inter-subject variability.
Including interactions of genetic and environmental influences in the model could give additional insights. Further
limitations are that the power to separate A form C is lower than for separating A from E, which can lead to the
partial attribution of common environmental influence to genetic influence or vice-versa. These concerns have been
addressed through replicability analysis, which showed that the main findings are stable across runs and suggests
that the processing stream from unimodal to heteromodal areas shows an interplay of rather genetically determined
topography and functional connectivity strength determined rather by random environment, which deserves more

investigation in the future.
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