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 Abstract  Land-use history is the template upon which contemporary plant and tree 18 

populations establish and interact with one another and exerts a legacy on the structure and 19 

dynamics of species assemblages and ecosystems. We use the first census (201032014) of a 35-20 

ha forest-dynamics plot at the Harvard Forest in central Massachusetts to explore such legacies. 21 

The plot includes 108,632 live stems g 1 cm in diameter (2215 individuals/ha) and 7,595 dead 22 

stems g 5 cm in diameter. Fifty-one woody plant species were recorded in the plot, but two tree 23 

species4 Tsuga canadensis (eastern hemlock) and Acer rubrum (red maple)4and one shrub4 24 

Ilex verticillata (winterberry)4comprised 56% of all stems. Live tree basal area averaged 42.25 25 

m2/ha, of which 84% was represented by T. canadensis (14.0 m2/ ha), Quercus rubra (northern 26 

red oak; 9.6 m2/ ha), A. rubrum (7.2 m2/ ha) and Pinus strobus (eastern white pine; 4.4 m2/ ha). 27 

These same four species also comprised 78% of the live aboveground biomass, which averaged 28 

245.2 Mg/ ha, and were significantly clumped at distances up to 50 m within the plot. Spatial 29 

distributions of A. rubrum and Q. rubra showed negative intraspecific correlations in diameters 30 

up to at least a 150-m spatial lag, likely indicative of competition for light in dense forest 31 

patches. Bivariate marked point-pattern analysis showed that T. canadensis and Q. rubra 32 

diameters were negatively associated with one another, indicating resource competition for light. 33 

Distribution and abundance of the common overstory species are predicted best by soil type, tree 34 

neighborhood effects, and two aspects of land-use history: when fields were abandoned in the 35 

late 19th century and the succeeding forest types recorded in 1908. In contrast, a history of 36 

intensive logging prior to 1950 and a damaging hurricane in 1938 appear to have had little effect 37 

on the distribution and abundance of present-day tree species. 38 

 Keywords: ForestGEO, Harvard Forest, land-use history, spatial point-pattern analysis, 39 

temperate forest, Tsuga canadensis 40 
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Introduction 41 

 In forested landscapes around the world, legacies of human activities have shaped the 42 

composition, size structure, and spatial patterns of trees, understory vegetation, and associated 43 

ecosystem processes (Birks et al. 1988, Turner et al. 1990, Russell 1997, Foster and Aber 2004, 44 

Ellison et al. 2014). The extent of the interactions between anthropogenic effects and abiotic 45 

factors such as climate, soils, and episodic disturbances in shaping vegetation patterns depends 46 

on the intensity of the effects and the spatial scale of analysis (Rackham 1986, Glitzenstein et al. 47 

1990, Zimmerman et al. 1995). A complex interplay of succession, competition, disturbance, 48 

environment, and land use shape dynamics and patterns of forests at local-to-regional scales 49 

(Condit et al. 2000, Thompson et al. 2002, Chazdon 2003, Van Gemerden et al. 2003). 50 

 The forests of New England, USA have been shaped by a variety of natural and 51 

anthropogenic factors. As in other forests, the geology and climate of New England define the 52 

broad patterns of current forest composition (Foster et al. 1992, Hall et al. 2002), but the shifts in 53 

species abundance and distribution patterns that have occurred since Europeans colonized New 54 

England more than 400 years ago have resulted in a relatively homogenous assemblage of 55 

young, even-aged stands with fewer late-successional species (Thompson et al. 2013). In 56 

Massachusetts, modern vegetation exhibits only weak relationships to broad climatic gradients 57 

because of the overwhelming influence of past land use (Foster et al. 1998). An increasing 58 

emphasis in ecological studies is evaluating the relative importance of historic land-clearing, 59 

agriculture, intensive harvesting (Foster 1992, Thompson et al. 2002, Hogan et al. 2016), and 60 

natural episodic storms (Foster and Boose 1992, Zimmerman et al. 1995) on current-day 61 

structure and species composition of forest stands (Motzkin et al. 1996, Motzkin et al. 1999). 62 

Harvard Forest is an ideal location to investigate how spatial patterns and composition of woody 63 
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plant are influenced by land-use history impacts. For more than a century, HF researchers have 64 

investigated impacts of land-use on forests and how New England9s forests are continuing to 65 

change as the regional climate changes, populations of large herbivores wax and wane, and 66 

nonnative insects and pathogens establish, irrupt, and kill tree species (Foster and Aber 2004). 67 

 Here, we describe the results of the first census of a 35-ha forest-dynamics plot at the 68 

Harvard Forest and examine how its structure and composition relates to interactions between 69 

land-use history and ecological processes. We first describe the composition and structure of the 70 

woody plants in this plot and assess spatial associations within and among the dominant species 71 

using univariate and bivariate spatial point-pattern analysis. Second, we uncover the influence of 72 

historical land-use and natural disturbances on the current-day structure and composition of this 73 

forest plot. We pay particular attention to patterns of distribution and abundance of Tsuga 74 

canadensis (eastern hemlock) and its relationship to other species in the plot because previous 75 

work has shown it to be a foundation species in this forest (sensu (Ellison 2019)). Tsuga 76 

canadensis is currently threatened and declining throughout much of its range due to a nonnative 77 

insect, Adelges tsugae (hemlock woolly adelgid; HWA) and its decline and loss are likely to 78 

have profound impacts on forest structure and composition (Orwig et al. 2013, Foster 2014).  79 

 80 

Methods 81 

Site description  82 

 The 35-ha (500 × 700 m) forest-dynamics plot at Harvard Forest (HF), is part of a global 83 

network of Forest Global Earth Observatory (ForestGEO) plots established to monitor, 84 

understand, and predict forest dynamics and responses to global change (Anderson‐Teixeira et al. 85 
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2015). The HF ForestGEO plot (southwest corner at 42.5386 °N, 72.1798 °W) is located within 86 

the 380-ha HF Prospect Hill tract in Petersham, Massachusetts, USA within the 87 

Worcester/Monadnock Plateau ecoregion (Griffith et al. 1994) of Transition Hardwoods-White 88 

Pine-Hemlock forests (Westveld 1956) (Fig. 1). Elevations in the plot range from 340.2 to 367.8 89 

m a.s.l. Soils include Gloucester stony loam, Acton stony loam and Whitman very stony silt 90 

loams, all of which are gravelly and fine sandy loam soils that developed in glacial tills overlying 91 

gneiss and schist bedrock (Simmons 1941). The north-central portion of the plot contains a 3-ha 92 

peat swamp with muck soils that has been colonized at intervals by Castor canadensis (beaver). 93 

Average (1964-2019) annual temperature at the site is 7.9 °C and the annual precipitation of 94 

1090 mm is distributed evenly throughout the year (Boose and Gould 2019).  95 

Land-use history 96 

We examined the influence of past land-use history (derived from forest stand 97 

descriptions of dates of field abandonment, areas used as woodlot, pasture, or cultivation; 98 

presence of distinct plow horizon; silviculture treatments; and salvage operations), historical 99 

events (e.g., insect outbreaks, storms and associated degree of forest damage (Rowlands 1941)), 100 

and biophysical attributes (roads, soil type, slope, aspect, elevation, and distance to streams) on 101 

current forest composition and species distribution within the plot by using data from the 102 

document archives at HF (http://harvardforest.fas.harvard.edu/document-archive). Original maps 103 

of activity were manually transcribed to standardized base maps and then scanned and digitized 104 

as shapefiles in ArcView GIS 3.2. The shapefiles were then transformed to Massachusetts State 105 

Plane Meters (NAD83 projection) in ArcGIS to align better with aerial photographs and linear 106 

features (trails, stonewalls, etc.) downloaded from MassGIS (Hall 2005) and used in spatial 107 

analyses (see below).  108 
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Pollen evidence suggests that prior to European settlement, Prospect Hill was a mixture 109 

of old-growth northern hardwoods, T. canadensis, and Pinus strobus (eastern white pine) (Foster 110 

1992, Foster et al. 1992). Following European arrival, the site then experienced complex 111 

ownership and intensive land-use over the next few centuries, both of which are largely 112 

representative of the New England region (Ellison et al. 2014). Forest clearing began in 1750 and 113 

reached a maximum in the 1840s, by which time close to 80% of the original forests had been 114 

cleared for agriculture (Fisher 1933, Raup and Carlson 1941). Field abandonment began in 1850 115 

and continued through 1905 in the southern half of the plot (Fig. 2a). Reforestation of those 116 

fields continued through the 20th century (Foster 1992). The western, northern, and northeastern 117 

areas of the plot remained permanently wooded, but experienced various types of selective 118 

cutting in the 1790s and 1870s (Foster 1992). The first maps characterizing forest types of 119 

individual stands were completed in 1908 and classified the permanent woodlots in the western 120 

third of the plot as being comprised of hardwoods, white pine-hardwoods, hemlock, and red 121 

maple (Fig 2b). Many Castanea dentata (American chestnut) died in 191231914 from infection 122 

by Endothia parasitica (chestnut blight) (McLachlan et al. 2000) and forests were damaged by 123 

natural disturbances including an ice storm in 1921 and one of the most damaging hurricanes to 124 

hit New England in 1938. The hurricane and subsequent salvage logging resulted in the loss of as 125 

much as 70% of the standing timber on HF properties (Foster and Boose 1992). 126 

The central sections of the plot, containing mostly stony loam soils and no visible signs 127 

of a plow layer, were unimproved pastures abandoned in the mid-19th century (Motzkin et al. 128 

1999)(Fig 2c). These areas reforested and were classified as cordwood (poor hardwood) in 1908 129 

(Fig 2b), except for an area classified as open, which is the beaver swamp. Much of the 130 

cordwood section was subsequently clear-cut in the 1920s and then thinned or salvaged in the 131 
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late 1940s following the 1938 hurricane. Pinus resinosa (red pine) and Picea abies (Norway 132 

spruce) plantations were established in portions of these abandoned pastures in the mid-1920s 133 

and early 1930s. The southcentral area of the plot contained areas of improved pasture and 134 

cultivation (Motzkin et al. 1999) and was classified as containing white pine in 1908. This area 135 

was clear-cut in the 1920s and a portion of it was clear-cut again in 1980, resulting in many 136 

small diameter, multi-stemmed trees. Additional biotic changes that impacted the plot included 137 

the exotic Lymantria dispar (gypsy moth), which lead to widespread defoliation of hardwoods 138 

during 1944345 and 1981; Cryptococcus fagisuga (beech scale insect) combined with 139 

Neonectria fungal spp. (beech-bark disease), which has led to the decline and death of larger 140 

Fagus grandifolia (American beech); and Adelges tsugae, which was first observed in the plot in 141 

2008,  rapidly spread throughout the plot, subsequently killing hundreds of  T. canadensis stems 142 

and threatening the rest (Orwig et al. 2018).  143 

Plot establishment and woody stem census 144 

 During March 2010, professional surveyors delineated the plot boundaries, established a 145 

continuous grid of 20 × 20-m quadrats, and measured the elevation at each post using a Sokkia 146 

SET600 Total Station (Olathe, Kansas, USA). During the summers of 2010 and 2011, all woody 147 

stems g 1 cm in diameter at breast height (DBH; 1.3 m above the ground level) were uniquely 148 

tagged, identified (nomenclature follows (Haines 2011)), and measured to the nearest 0.1 cm 149 

(Condit 1998). All dead stems g 5 cm diameter that were standing and > 45 degrees from 150 

horizontal also were tagged, identified, and measured. The swamp located in the center of the 151 

plot was sampled when the ground was frozen during the winter months of 201232014. Each 152 

tagged stem was mapped within one of four 10 × 10 m subquadrats within each quadrat on a 153 

scale-drawn map data sheet. Each map was then scanned and individual stems were digitized 154 
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using the Image J processing program (Rasband 2012), and converted to local (x, y) coordinates 155 

within a quadrat using R (v.3.6.1) (R Core Team 2013) and the CTFS R package (Condit 2014).  156 

Forest species composition and stand structure 157 

 Estimates of stem densities were derived from total counts in which multi-stemmed 158 

individuals were considered as a single stem, whereas estimates of basal area and biomass were 159 

derived from the sum of all stems g 1 cm DBH (Gilbert et al. 2010). Biomass of living woody 160 

stems was estimated from DBH using allometric equations (Table S1).  161 

Spatial analysis 162 

 We assessed the spatial patterns of the seven most abundant tree species across the entire 163 

plot using the pair-correlation function (g(r);(Wiegand and Moloney 2014)), for which the value 164 

of the function represents the degree of clustering (g(r) > 1) or overdispersion (g(r) < 1) at a 165 

given spatial lag (distance between neighboring trees). We compared the observed pair-166 

correlation statistic to that expected if trees were distributed randomly (g(r) = 1) within the plot 167 

using 199 Monte Carlo CSR (complete spatial randomness) simulations of the tree map for each 168 

species.  169 

To test for the effects of intraspecific competition we used the univariate mark-170 

correlation function (kmm(r); (Wiegand and Moloney 2004, Wiegand and Moloney 2014)) to test 171 

whether the size of each of the seven most abundant tree species depended on its proximity to 172 

neighbors of its own species. The value of kmm(r) represents the relative sizes of trees at a given 173 

spatial lag and indicates if trees are larger or smaller than expected at a given spatial lag. We 174 

compared the observed univariate mark-correlation function statistic to that expected if the sizes 175 

of trees were randomly assigned across individuals using 199 Monte Carlo simulations for each 176 
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species, i.e., the spatial pattern of the trees remained the same, but their sizes were shuffled 177 

(Jacquemyn et al. 2010). Spatial analyses were not conducted on shrub species as many only 178 

occurred in the central swamp area.  179 

Prior work has shown that the shade-tolerant T. canadensis is an important foundation 180 

tree species, creating and strongly controlling the microenvironment, understory vegetation, and 181 

ecosystem dynamics (Ellison et al. 2005, Orwig et al. 2013). Thus, we assessed the potential 182 

influence of T. canadensis on the sizes of each of the other most common tree species in the plot 183 

using a bivariate marked point pattern analysis (Schlather9s version of Moran9s I mark-184 

correlation function (Im1m2(r); (Wiegand and Moloney 2014)). This statistic determines if tree 185 

sizes are spatially correlated: individuals are smaller or larger than expected at various distances 186 

from a neighbor. We compared the observed Im1m2(r) to that expected if the sizes of trees were 187 

randomly assigned across individuals using 199 Monte Carlo simulations for each species 188 

(Jacquemyn et al. 2010). All spatial pattern analyses were performed using the 2018 version of 189 

the software Programita (Wiegand and Moloney 2004, Wiegand and Moloney 2014).  190 

 GIS overlays of past land use, historical events, and biophysical attributes were used as 191 

covariates in a conditional inference regression-tree model to predict diameter and abundance of 192 

the most common overstory species in the plot (Table 1). Using the 8cforest9 function in the R 193 

package 8party9 (Version 1.3-5) (Hothorn et al. 2013) the outcomes of 500 conditional inference 194 

tree models (Hothorn et al. 2006) were compiled and the relative importance of explanatory 195 

variables  were ranked across all models. The conditional inference algorithm is based on a 196 

random forest machine-learning algorithm (Breiman 2001) used in many ecological modeling 197 

contexts (e.g., (Fox et al. 2017, Mi et al. 2017, Mohapatra et al. 2019, Shearman et al. 2019)). 198 

The conditional inference method improves on the variable ranking methodology by applying a 199 
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permutation importance algorithm that corrects for variable selection bias resulting from a mix of 200 

categorical and continuous explanatory variables that are correlated to varying degrees or that 201 

have complex interactions (Strobl et al. 2007). Variable importance scores are calculated by 202 

determining the marginal loss of prediction accuracy from any given model iteration after 203 

removing each explanatory variable. Overall variable importance is determined by averaging the 204 

variable-wise decrease in accuracy scores over all 500 model iterations and using this to rank the 205 

overall importance of each variable across all models. Species-specific abundances or sizes were 206 

predicted for each of the seven most abundant overstory species conditional on their observed 207 

locations. A moving-window focal analysis of the count of trees for each species in a 20-m 208 

rectangle around each tree9s location generated relative abundance (stems/ha). Then, given the 209 

location of a tree, relative abundance was sampled from the species-specific raster using an 210 

interpolation function to compute the average relative abundance around that location. 211 

 212 

Data availability 213 

 Data associated with this study are publicly available from the HF data archive (Orwig et 214 

al. 2015): HF253. http://harvardforest.fas.harvard.edu.  215 

 216 

Results 217 

Composition and stand structure 218 

 Within the 35-ha HF ForestGEO plot, we identified 108,632 live stems g 1cm DBH, 219 

representing 77,536 individuals (2215 ha-1) of 51 woody species in 17 families (Table S2). 220 
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Common families were Betulaceae, Rosaceae, and Pinaceae (six species each), and Fagaceae and 221 

Adoxaceae (five species each). Four tree species (T. canadensis, Acer rubrum [red maple], Q. 222 

rubra, and P. strobus) and one shrub, Ilex verticillata (winterberry), accounted for 63% of all 223 

stems (Table 2). Live tree basal area was 42.25 m2/ha and live aboveground biomass was 245.2 224 

Mg/ha. Eighty-four percent of the basal area and 78% of the biomass was represented by T. 225 

canadensis (14.0 m2/ha; 61.1 Mg/ha), Q. rubra (9.6 m2/ha; 75.1 Mg/ha), A. rubrum (7.2 m2/ha; 226 

33.8 Mg/ha) and P. strobus (4.4 m2/ha; 20.7 Mg/ha). The live tree diameter distributions of T. 227 

canadensis and F. grandifolia were strongly right-skewed (reverse-J shaped), whereas those of 228 

A. rubrum, Q. rubra, P. strobus, Betula lenta (black birch), and B. alleghaniensis (yellow birch) 229 

were less right-skewed (Fig. 3). Seventy-seven live stems of Betula, Picea, and Quercus could 230 

not be identified to species, mostly due to difficulties of differentiating between young Betula 231 

saplings and between Quercus rubra (northern red oak) and Q. velutina (black oak).  232 

In contrast, 73% of tagged stems and 69% of live individuals within the plot were < 10 233 

cm DBH (Fig. 4). These same stems comprised only 5% of the total live plot basal area and 3% of 234 

the total live plot biomass (Table 2). Shrub species made up many of these stems and included I. 235 

verticillata, Vaccinium corymbosum (highbush blueberry), and Kalmia latifolia (mountain 236 

laurel). Nonnative species in the plot included 1687 stems of Picea abies (Norway spruce) and 237 

Pinus resinosa (red pine) that remained from early 20th-century conifer plantings and three stems 238 

of Frangula alnus (glossy false buckthorn). Ten species had only one or two stems within the 239 

plot (Table 2). Finally, there were 7595 dead stems g 5 cm DBH within the plot, > 50% of which 240 

were T. canadensis, P. strobus, or A. rubrum. Dead tree basal area was 4.18 m2/ha and dead 241 

aboveground biomass was 17.53 Mg/ha.  242 

Spatial structure related to past land-use impacts 243 
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 The spatial distributions of the seven most common species varied across the plot (Fig. 244 

5). Pinus strobus was common throughout the plot. Tsuga canadensis was most abundant in the 245 

western, northern and eastern portions of the plot, whereas Q. rubra and A. rubrum dominated 246 

the central and southern areas. Both Betula species were most abundant in the central and eastern 247 

sections, and F. grandifolia was most common in the southeastern section.  248 

 Shrubs were often found in aggregations related to hydrology and topography. Ilex 249 

verticillata V. corymbosum, Viburnum nudum (withe-rod), and Lyonia ligustrina (maleberry) 250 

dominated the poorly drained beaver swamp (Fig. 6). Hamamelis virginiana (witch-hazel) was 251 

found in a narrow elevational band (342-346 m) just above the swamp and a dense patch of K. 252 

latifolia was in the northwest corner of the plot.  253 

The seven most abundant canopy tree species were significantly clustered in the plot at 254 

all spatial lags up to 50m relative to a CSR null expectation (Fig. 7). The effect of intraspecific 255 

competition also was apparent for these seven species. Spatial distributions of A. rubrum, Q. 256 

rubra, and F. grandifolia showed negative intraspecific correlations in diameters up to at least a 257 

150-m spatial lag, whereas the other species had intraspecific negative correlations at f 50-m 258 

spatial lags (Fig. 8). Tsuga canadensis, B. alleghaniensis, and P. strobus had positive spatial 259 

correlations among DBHs at spatial lags > 150 m. Interspecific correlations in diameters between 260 

species suggest that the impact of T. canadensis on Q. rubra was negative at intermediate spatial 261 

lags (25375 m) but positive between T. canadensis and the other five species at most spatial 262 

scales up to 150 m (Fig. 9).  263 

 The abundances and sizes of the most common overstory species were predicted best by a 264 

variety of historical factors and competitive interactions. Conditional inference random-forest 265 
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modeling revealed that the abundances of T. canadensis, P. strobus, Q. rubra, A. rubrum and F. 266 

grandifolia were strongly associated with neighborhood effects (size of neighboring trees within 267 

10 m; Fig. 10). The date of field abandonment was a strong predictor of Q. rubra, P. strobus, and 268 

B. lenta abundance, whereas the forest type in 1908 was the best predictor of B. alleghaniensis 269 

and A. rubrum abundance. Betula species also were strongly associated with Simmons soil type. 270 

Overstory species diameters were best predicted by neighborhood effects for T. canadensis, B. 271 

lenta, and F. grandifolia; date of field abandonment for P. strobus and B. alleghaniensis; and the 272 

1947 stand type for Q. rubra and A. rubrum (Fig. 11). The predictive power of the conditional 273 

inference forest model regressions was much higher (R2 = 0.79 3 0.95) for species abundance in 274 

the plot compared to species size (R2 = 0.11 3 0.53).  275 

 276 

Discussion 277 

We censused all woody stems g 1cm DBH within a 35-ha forest-dynamics plot in north-278 

central Massachusetts to examine the spatial patterns of trees and shrubs at a scale rarely 279 

attempted in temperate forests. We have shown that broad patterns in land use and historical 280 

disturbance that occurred up to a century ago remain the dominant controls on present-day 281 

spatial distribution and structure of overstory species. Tree species were significantly clumped 282 

within the plot and T. canadensis affected the distribution of other dominant canopy species in 283 

different ways. Topography and hydrology also affected the distribution and abundance of 284 

understory stems. Detailed abundance and species distribution data provided in this study will 285 

provide invaluable information on forest dynamics in the future as the currently most abundant 286 

species4Tsuga canadensis4is declining because of a non-native insect (Orwig et al. 2018).  287 

Forest structure is contingent on past land use 288 
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 The forest canopy within the HF ForestGEO plot, dominated by T. canadensis, Q. rubra, 289 

A. rubrum, and P. strobus, is representative of many central New England forests. Like other 290 

temperate ForestGEO plots, a relatively small number of species dominated the HF plot (13 291 

species were represented by over 1000 stems). However this number was higher than the 5310 292 

species that reached this abundance in other temperate ForestGEO plots (Wang et al. 2010, 293 

Wang et al. 2011, Lutz et al. 2012, Bourg et al. 2013, Lutz et al. 2013) and likely reflects the 294 

varied habitats, high intensity of prior land use, and early stages of stand development at HF. 295 

Although we have much historical knowledge regarding land-use change at HF, the conditional 296 

regression random-forest modeling enabled us to explore more quantitatively how patterns of 297 

tree size and stem density for the seven most abundant species have been affected by tradeoffs 298 

between legacy effects of past land uses, management interventions, disturbances, and local-299 

scale variation in stand structure and environmental conditions. This combination of quantitative 300 

modeling with historical knowledge contributes to a deeper understanding of historical human 301 

impacts on current forest structure.   302 

For example, our modeling results suggested that T. canadensis diameters and stem 303 

densities across the full plot are most strongly associated with local stand structural 304 

characteristics and neighborhood effects, while stem densities are only moderately associated 305 

with land-use history. This result is consistent with the appearance of the 35-ha HF plot as a 306 

relatively undisturbed old forest stand, its persistence through time, and the exclusion of other 307 

species under its canopy. T. canadensis is most abundant on land that was consistently used as a 308 

woodlot but never completely cleared for agriculture. The western portion of the plot was one of 309 

the few locations at HF that was mapped as T. canadensis forest in 1908 (Spurr 1956) and where 310 

T. canadensis currently is most prominent. It is also the location where the presence of Tsuga has 311 
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been documented for the last 8000 years (Foster and Zebryk 1993). The high abundance of T. 312 

canadensis is the result of its shade tolerance and deep crowns, which enable it to persist for 313 

decades, modify the understory environment by transmitting very little light, prevent other 314 

species from getting established (Canham et al. 1994), and gain dominance following partial 315 

cuttings, the death and subsequent salvage of C. dentata and F. grandifolia, and moderate 316 

damage from the 1938 hurricane (Foster et al. 1992, Motzkin et al. 1999, McLachlan et al. 2000). 317 

These same disturbances also likely led to growth increases and additional establishment of P. 318 

strobus (Hibbs 1982b); the largest pine stems also occur on the western edge of the HF plot.  319 

 In contrast, modeling revealed stronger effects of both land-use history and stand 320 

structural variables on the sizes and stem densities of the other six dominant species. Field 321 

abandonment date and stand types present in the early- and mid-20th century are particularly 322 

strong predictors of diameters and densities of these species. This is consistent with recorded 323 

historical knowledge. For example, Pinus strobus and Q. rubra are most abundant on areas that 324 

were formerly pasture or fields in the mid- to late-1800s and also experienced intensive past 325 

silvicultural cuts, thinning, and weeding in the 1920s31940s, and more severe damage from the 326 

1938 hurricane (Motzkin et al. 1999, Hall 2005). Quercus rubra trees had larger mean diameters 327 

and crown sizes than F. grandifolia or A. rubrum, consistent with past investigations that 328 

highlighted the ability of Q. rubra to overtop canopy associates and rapidly expand laterally into 329 

gaps (Oliver 1978, Hibbs 1982a). Acer rubrum and B. alleghaniensis are more closely associated 330 

with mesic locations such as swamp borders with silt loam soils and low-lying sites with peaty 331 

soils in the northeast corner of the plot; indeed, random-forest models supported the relatively 332 

strong importance of soil type for these species and B. lenta relative to the other species. The 333 

south-central portion of the plot experienced the most intensive land use. It was the only area that 334 
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experienced historical cultivation and multiple periods of subsequent clear-cutting, including a 335 

harvest in 1990. This area is dominated by smaller, multi-stemmed A. rubrum, Q. rubra, B. 336 

populifolia and B. papyrifera (grey and paper birch), and Prunus (cherry) species, which are 337 

much more common in forests that have experienced intense human impacts (Del Tredici 2001). 338 

The known relationships between current stem-density patterns for A. rubrum and the two Betula 339 

species and historical land-use activities are borne out by the random-forest modelling. These 340 

species sprout following cutting and take advantage of high-light environments (Burns and 341 

Honkala 1990).  342 

 Understory composition, dominated by woody shrubs, appears to be determined by soil 343 

drainage and the ability of individual species to tolerate standing water, poorly drained soils, or 344 

subtle topographic variation. Historically, the swamp contained pasture on its western edge and a 345 

woodlot in the remaining portion. Today, the wetland shrubs I. verticillata, Va. corymbosum, L. 346 

ligustrina, and Vi. nudum are found in high abundance in the central beaver swamp, which 347 

otherwise is devoid of trees. The northwest corner has the highest elevation and is dominated by 348 

K. latifolia. Hamamalis virginiana appears to be restricted to a narrow elevation west of the 349 

swamp and in the southeast corner of the plot. Previous work at HF related K. latifolia 350 

abundance to nitrogen-poor sites and H. virginiana to continuously forested sites (Motzkin et al. 351 

1999), which is consistent with our findings. 352 

 Across all species and size classes, the forest contains a preponderance (> 80,000) of 353 

small stems (< 10-cm DBH) that exhibit a reverse-J size distribution. The high abundance of 354 

stems in this size class (e.g., several shrub species, T. canadensis, and A. rubrum) is in contrast to 355 

several other temperate forest plots (Lutz et al. 2012, Bourg et al. 2013, Lutz et al. 2013), and is 356 

more similar to results from tropical evergreen (Memiaghe et al. 2016) or Mediterranean forests 357 
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(Gilbert et al. 2010). Most of the abundant overstory and all the abundant shrub species also have 358 

reverse-J distributions, indicative of stable populations and adequate regeneration. For overstory 359 

species, this likely is a result of a mix of even-age and varying-aged cohorts and single trees 360 

establishing following anthropogenic disturbances and natural gap-phase dynamics that are 361 

frequent in this region (Oliver and Stephens 1977, Hibbs 1982a, Pederson 2005). The greater 362 

ages of the shade-tolerant T. canadensis that occur on primary woodland are approaching a 363 

structure and diameter distribution that resembles old-growth forest (D'Amato et al. 2008, 364 

Janowiak et al. 2008). In contrast, A. rubrum and Q. rubra had skewed unimodal size 365 

distributions more indicative of managed forests (Janowiak et al. 2008). 366 

Overstory spatial patterns 367 

 We observed significant spatial clustering among abundant overstory species at all spatial 368 

scales examined. Aggregated species distribution patterns are common in both temperate (Hou et 369 

al. 2004, Hao et al. 2007, Wang et al. 2011) and tropical forests (Condit et al. 2000, Plotkin et al. 370 

2000, Réjou‐Méchain et al. 2011, Nguyen et al. 2016). Both external factors (habitat 371 

heterogeneity) and internal factors (dispersal limitation, succession, gap dynamics) can lead to 372 

clumped distributions at various spatial scales (Getzin et al. 2008, Réjou‐Méchain et al. 2011). 373 

Within the HF ForestGEO plot, high habitat heterogeneity caused by complex past land use 374 

(Motzkin et al. 1999) has led to high densities of A. rubrum and Q. rubra stems in the central 375 

portion where the most intensive land use occurred in the past. These non-random patches of 376 

individuals with lower than average DBH (as seen in the mark correlation analysis) may reflect 377 

strong competition for light as seen elsewhere (Fibich et al. 2016). Similar patterns seen in B. 378 

alleghaniensis, B. lenta, P. strobus, and T. canadensis in close proximity to other conspecifics 379 

(0320-m scale) likely reflect crowding effects, and for T. canadensis, the ability of thousands of 380 
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small stems to persist in the understory for decades (Marshall 1927). These effects disappear at 381 

intermediate scales and even become positive at distances > 100 m, indicating that trees greater 382 

than the mean DBH are more broadly distributed. The negative correlation observed for F. 383 

grandifolia at most spatial lags f 150 m may be more reflective of its overall size distribution 384 

with most of its stems < 10 cm DBH. Beech-bark disease is present at HF, and has likely 385 

contributed, along with past cutting, to the absence of large F. grandifolia in the plot.  386 

Bivariate mark correlation functions have been underused in large, stem-mapped plots 387 

but hold great promise in ecological research (Velázquez et al. 2016). We used this method to 388 

examine the relationship between the size of individuals of T. canadensis, an important 389 

foundation species within the plot, with the size of six other important canopy species some 390 

distance away. Apart from Q. rubra, diameters of the other five species were positively 391 

correlated with the diameters of T. canadensis at all spatial scales. This pattern is consistent with 392 

T. canadensis being a foundation species in this forest (Buckley et al. 2016, Ellison et al. 2019), 393 

but it also simply could indicate a <habitat= effect: all these species are growing well everywhere 394 

and are found at a wide range of sizes. This effect was particularly strong for B. lenta and P. 395 

strobus. This effect was weaker for A. rubrum, B. alleghaniensis, and F. grandifolia and 396 

disappeared after 1003150 m. Diameter of Q. rubra was on average smaller than expected by 397 

chance when within 20380 m of T. canadensis. Historical factors play a role here, as the spatial 398 

distribution of these species highlight that oak abundance is the lowest within the T. canadensis-399 

dominated portions of the plot that were woodlots and suggest that T. canadensis and the dense 400 

shade cast by their crowns limited establishment of the more intolerant Q. rubra.  401 

 402 

Summary 403 
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 The HF ForestGEO plot is the largest mapped temperate-forest plot in North America 404 

and joins the growing array of temperate plots worldwide (Anderson‐Teixeira et al. 2015). The 405 

species composition and aggregated spatial patterns within the plot are still being influenced by 406 

anthropogenic and natural disturbances that occurred decades to over a century ago. Despite 407 

extensive 20th-century harvesting, silvicultural thinning, and salvage operations following the 408 

1938 hurricane, the most common overstory species in the HF ForestGEO plot today can best be 409 

predicted by longer-term land-use legacies represented by the 1908 forest type and the date of 410 

late 19th-century field abandonment, and tree neighborhood effects. At smaller scales, there is 411 

evidence of crowding effects of many common species, likely due to successional dynamics of 412 

these aggrading forests following intensive land use. The increasing importance of T. canadensis 413 

during the last century across the plot negatively affected the distribution of Q. rubra. Its 414 

location and five-year schedule of plot sampling highlight the plot as valuable long-term 415 

infrastructure that will complement Harvard Forest, LTER, NEON, and ForestGEO research 416 

efforts (Orwig et al. 2018). Because all woody stems g 1 cm DBH are mapped and measured, the 417 

data have been used in a variety of complementary ways including to examine species 418 

codispersion patterns and spatial patterns of species co-occurrence (Buckley et al. 2016, Case et 419 

al. 2016), help inform a simulation model of forest dynamics (SORTIE (Case et al. 2017)), assist 420 

with investigating crown allometry (Sullivan et al. 2017) and mapping (Hastings et al. 2020), and 421 

aid in identifying statistical fingerprints of foundation species (Ellison et al. 2019). In addition, 422 

the data enable us to document changing species distribution patterns at an uncommonly large 423 

scale, while focusing on elements of the landscape that are often ignored, like beaver swamps 424 

and shrub thickets, and examine their contribution to overall forest structure, composition, and 425 

related hydrology.  426 
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Table S1. Biomass equations of woody species within the HF ForestGEO plot. bm = biomass (kg), DBH = diameter 709 

at breast height (cm).  710 

Species Equation Reference 

Acer pensylvanicum bm = (exp(7.227+1.6478*log(DBH/2.54)))/1000 (Jenkins et al. 2004)  

Acer rubrum log(bm)=-2.2202 + 2.3922*log(DBH) (Finzi et al. 2020) 

Acer saccharum log(bm)=-1.291 + 2.219*log(DBH) (Finzi et al. 2020) 

Acer unknown log(bm)=-2.2202 + 2.3922*log(DBH) (Finzi et al. 2020) 

Alnus incana bm = (33.722*(DBH^2.712))/1000 (Connolly 1981) 

Amelanchier laevis bm = (71.534*(DBH^2.391))/1000 (Roussopoulos and Loomis 1979) 

Aronia melanocarpa log(bm) = -2.2118 + 2.4133*log(DBH) (Chojnacky et al. 2014); hardwoods, Rosaceae 

Betula alleghaniensis log(bm)=-1.542 + 2.260*log(DBH) (Finzi et al. 2020) 

Betula lenta bm = 0.0629*(DBH^2.6606) (Ter-Mikaelian and Korzukhin 1997)  

Betula papyrifera log(bm)=-3.082 + 2.683*log(DBH) (Finzi et al. 2020) 

Betula populifolia log(bm)=-1.835 + 2.309*log(DBH) (Finzi et al. 2020) 

Betula spp. bm = 0.0629*(DBH^2.6606) (Ter-Mikaelian and Korzukhin 1997)  

Castanea dentata log (bm) = -1.881 + 2.386*log(DBH) Finzi et al. 2020; equation for red oak 

Crataegus spp. ln(bm)=(3.6834+2.3405*ln(DBH))/1000 (Dickinson and Zenner 2010)  

unknown hardwood log(bm) = -2.48 + 2.4835*log(DBH) (Jenkins et al. 2004); General hardwood  

Fagus grandifolia log(bm)=-1.342 + 2.231*log(DBH) (Finzi et al. 2020) 

Frangula alnus bm = ((30.971*(DBH^2.764))/1000 (Grigal and Ohmann 1977) 

Fraxinus americana log(bm)=-1.381 + 2.208*log(DBH) (Finzi et al. 2020) 

Fraxinus nigra bm=0.1634*(DBH^2.3480) (Ter-Mikaelian and Korzukhin 1997)  

Hamamelis virginiana bm = (38.111*(DBH^2.900))/1000 (Smith and Brand 1983) after (Telfer 1969) 

Ilex laevigata bm = (53.497*(DBH^3.340))/1000 (Smith and Brand 1983) after (Telfer 1969) 

Ilex mucronata bm = (31.532*(DBH^2.819))/1000 (Smith and Brand 1983) after (Telfer 1969) 

Juniperus communis bm = (59.205*(DBH^2.202))/1000 (Brown 1976) 

Kalmia latifolia bm =.2036*(DBH^1.9162) (Brantley et al. 2016) 

Larix laricina bm = 0.1265*(DBH^2.2453) (Ter-Mikaelian and Korzukhin 1997)  

Lindera benzoin log(bm) = -2.2118 + 2.4133*log(DBH) Choznacky et al. 2014; equation Laurelaceae 

Lyonia ligustrina ln(bm)=(3.6685+1.8205*ln(DBH))/1000 (Dickinson and Zenner 2010) 

Nyssa sylvatica log(bm) = -2.48 + 2.4835*log(DBH) (Jenkins et al. 2004); General hardwood  

Ostrya virginiana log(bm) = -2.48 + 2.4835*log(DBH) (Jenkins et al. 2004); General hardwood  

Picea abies log(bm)=-2.621 + 2.456*log(DBH) (Finzi et al. 2020) 

Picea rubens log(bm)=-2.621 + 2.456*log(DBH) (Finzi et al. 2020) 

Picea spp. log(bm)=-2.621 + 2.456*log(DBH) (Finzi et al. 2020) 

Pinus resinosa log(bm)=-2.076 + 2.317*log(DBH) (Finzi et al. 2020) 

Pinus strobus log(bm)=-3.293 + 2.603*log(DBH) (Finzi et al. 2020) 

Pinus unknown log(bm)=-2.076 + 2.317*log(DBH) (Finzi et al. 2020) 

Populus grandidentata bm = 0.0785*(DBH^2.4981) (Ter-Mikaelian and Korzukhin 1997)  

Populus tremuloides bm = 0.0637*(DBH^2.6087) (Ter-Mikaelian and Korzukhin 1997)  

Prunus pensylvanica bm = 0.9758*(DBH^2.1948) (Young et al. 1980) 
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Prunus serotina bm = 0.0716*(DBH^2.6174) (Ter-Mikaelian and Korzukhin 1997)  

Quercus alba log(bm)=-2.520 + 2.590*log(DBH) (Finzi et al. 2020) 

Quercus rubra log(bm)=-1.881 + 2.386*log(DBH) (Finzi et al. 2020) 

Quercus velutina log(bm)=-2.821 + 2.659*log(DBH) (Finzi et al. 2020) 

Quercus unknown log(bm)=-1.881 + 2.386*log(DBH) (Finzi et al. 2020) 

Rhododendron prinophyllum ln(bm)=(3.8799+2.3936*ln(DBH))/1000 (Dickinson and Zenner 2010); Viburnum spp. 

Salix species bm = (60.153*(DBH^2.202))/1000 (Connolly 1981) 

Sambucus racemosa ln(bm)=(3.8799+2.3936*ln(DBH))/1000 (Dickinson and Zenner 2010);Viburnum spp. 

Sorbus americana bm = (44.394*(DBH^3.253))/1000 (Roussopoulos and Loomis 1979) 

Toxicodendron radicans bm = (62.134*(DBH^2.460))/1000 (Roussopoulos and Loomis 1979);avg. shrub  

Toxicodendron vernix bm = (62.134*(DBH^2.460))/1000 (Roussopoulos and Loomis 1979);avg. shrub  

Tsuga canadensis log(bm)=-2.2712 + 2.3444*log(DBH) (Finzi et al. 2020) 

Ulmus americana bm = 0.0825*(DBH^2.468) (Perala and Alban 1994) 

Unidentified unknown bm = 0.45*(exp(0.955+2.426*log(DBH/2.54))) (Wartluft 1977) 

Vaccinium corymbosum ln(bm)=(3.6685+1.8205*ln(DBH))/1000 (Dickinson and Zenner 2010) 

Viburnum acerfolium ln(bm)=(3.8799+2.3936*ln(DBH))/1000 (Dickinson and Zenner 2010) 

Viburnum alnifolium bm = (29.615*(DBH^3.243))/1000 (Smith and Brand 1983) after (Telfer 1969) 

Viburnum cassinoides ln(bm)=(3.8799+2.3936*ln(DBH))/1000 (Dickinson and Zenner 2010) 

Viburnum dentatum ln(bm)=(3.8799+2.3936*ln(DBH))/1000 (Dickinson and Zenner 2010) 
 711 
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Table S2. List of woody plant species g 1 cm DBH within the HF ForestGEO plot in 2014. 723 

Scientific name Common name Vegetation type Family 

Acer pensylvanicum striped maple tree Sapindaceae 

Acer rubrum red maple tree Sapindaceae 

Acer saccharum sugar maple tree Sapindaceae 

Alnus incana speckled alder shrub Betulaceae 

Amelanchier laevis smooth shadbush tree Rosaceae 

Aronia melanocarpa black chokeberry shrub Rosaceae 

Betula alleghaniensis yellow birch tree Betulaceae 

Betula lenta black birch tree Betulaceae 

Betula papyrifera paper birch tree Betulaceae 

Betula populifolia grey birch tree Betulaceae 

Castanea dentata American chestnut tree Fagaceae 

Crataegus spp. hawthorn shrub Rosaceae 

Fagus grandifolia American beech tree Fagaceae 

Frangula alnus glossy false buckthorn shrub Rhamnaceae 

Fraxinus americana white ash tree Oleaceae 

Fraxinus nigra black ash tree Oleaceae 

Hamamelis virginiana witch-hazel shrub Hamamelidaceae 

Ilex laevigata smooth winterberry shrub Aquafoliaceae 

Ilex mucronata mountain holly shrub Aquafoliaceae 

Ilex verticillata winterberry shrub Aquafoliaceae 

Juniperus communis common juniper shrub Cupressaceae 

Kalmia latifolia mountain laurel shrub Ericaceae 

Larix spp. larch tree Pinaceae 

Lindera benzoin spicebush shrub Lauraceae 

Lyonia ligustrina maleberry shrub Ericaceae 

Nyssa sylvatica black gum tree Cornaceae 
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Ostrya virginiana  hop-hornbeam tree Betulaceae 

Picea abies Norway spruce tree Pinaceae 

Picea rubens red spruce tree Pinaceae 

Pinus resinosa red pine tree Pinaceae 

Pinus strobus eastern white pine tree Pinaceae 

Populus grandidentata big-toothed aspen tree Salicaceae 

Populus tremuloides quaking aspen tree Salicaceae 

Prunus pensylvanica pin cherry tree Rosaceae 

Prunus serotina black cherry tree Rosaceae 

Quercus alba white oak tree Fagaceae 

Quercus rubra northern red oak tree Fagaceae 

Quercus velutina black oak tree Fagaceae 

Rhododendron prinophyllum early azalea shrub Ericaceae 

Salix spp.  willow species shrub Salicaceae 

Sambucus racemosa red elderberry shrub Adoxaceae 

Sorbus Americana American mountain-ash tree Rosaceae 

Toxicodendron radicans poison ivy liana Anacardaceae 

Toxicodendron vernix poison sumac shrub Anacardaceae 

Tsuga canadensis eastern hemlock tree Pinaceae 

Ulmus Americana American elm tree Ulmaceae 

Vaccinium corymbosum highbush blueberry shrub Ericaceae 

Viburnum acerifolium maple-leaved viburnum shrub Adoxaceae 

Viburnum dentatum arrowwood shrub Adoxaceae 

Viburnum lantanoides hobblebush shrub Adoxaceae 

Viburnum nudum withe-rod shrub Adoxaceae 

 724 
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Table 1. Description of land-use history, disturbance, stand, and biophysical variables converted to GIS shapefiles 725 

and used to predict current tree species abundance and DBH values across the Harvard Forest ForestGEO plot. 726 

 727 

Predictor Description 

Land use 

Stand type 3 1908, 1947, 1986 

 

Early forest stand descriptions in plot recorded by forest type and 

year 

Allen Land Use  

 

Land-use descriptions derived from degree of soil disturbance, 

including plow (Ap) horizon presence and depth, recorded by 

previous HF soil scientist, Arthur Allen.  

Field abandonment Years since the date of field abandonment 

20th C. Salvage cutting Areas that experienced cutting following wind damage or other 

natural disturbance in the early to mid-1900s 

20th C. intensive cutting 

 

Areas that experienced clearcut, shelterwood or reproduction cuts 

during the early to mid-1900s 

 

Natural disturbance 

Hurricane damage  

 

 

Data collected between 1939-1941 on degree of overstory trees 

uprooted, leaning or broken after 1938 hurricane (Rowlands 1941). 

  

Stand features  

Mean DBH of trees within 10m Mean DBH of trees within 10m of individual tree stem 

CV DBH of trees within 10m Coefficient of variation of DBH of trees within 10m 

Number of trees within 10m Number of trees within 10m of individual tree stem  

Mean distance to trees within 10m Mean distance to trees within 10m of individual tree stem 

CV distance to trees within 10m 

 

Biophysical features 

Coefficient of variation in distance to trees within 10m of 

individual tree stem 

 

 

Elevation  Elevation of quadrat as determined from NASA Goddard9s Lidar, 

hyperspectral and thermal (G-LiHT) airborne imager. 

Distance to streams (m) Distance from individual tree stem to streams as identified by the 

National Hydrography Dataset 

Soil drainage class USDA Natural Resources Conservation Service Soil Survey 

Geographic (SSURGO) database soil attribute 

Simmons soil type  Soil Classification from 1:24000 scale surveys Simmons (1941) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438791
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

Table 2. List of total live woody plant density, basal area, and biomass within the 35 ha HF ForestGEO plot in 2014. 728 

Scientific name Total live tree Density 

(35 ha-1) 

Total live Basal 

area (m2) 

Total live Biomass 

(Mg ) 

    

Acer pensylvanicum 339 0.59 1.13 

Acer rubrum 9,723 253.54 1182.86 

Acer saccharum 1 3.12e-03 0.02 

Alnus incana 479 0.68 0.60 

Amelanchier laevis 572 0.35 0.61 

Aronia melanocarpa 413 0.07       0.10 

Betula alleghaniensis 4,059 36.96 207.73 

Betula lenta 1,430 21.14 124.04 

Betula papyrifera 537 14.80 72.76 

Betula populifolia 108 1.49 7.18 

Castanea dentata 732 1.12 4.35 

Crataegus spp. 180 0.14 0.27 

Fagus grandifolia 3,802 20.93 138.58 

Frangula alnus 3 7.42e-04 4.90e-04 

Fraxinus americana 186 3.84 23.73 

Fraxinus nigra 34 0.17 0.82 

Hamamelis virginiana 1,931 3.10 5.77 

Ilex laevigata 2 1.39e-03 2.76e-03 
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Ilex mucronata 598 0.64 0.58 

Ilex verticillata 9,874 3.62 6.15 

Juniperus communis 1 4.52e-04 4.20e-04 

Kalmia latifolia 3,914 3.27 7.64 

Lindera benzoin 66 0.02       0.04 

Lyonia ligustrina 1,178 0.41 2.04 

Nyssa sylvatica 180 2.63 11.25 

Ostrya virginiana 24 0.06    0.19  

Picea abies 900 24.43 93.11 

Picea rubens 101 3.61 15.15 

Pinus resinosa 790 67.23 330.28 

Pinus strobus 2,126 155.68 724.64 

Populus grandidentata 2 0.03 0.14 

Populus tremuloides 1 0.01 0.05 

Prunus pensylvanica 11 0.05 0.98 

Prunus serotina 250 5.48 34.85 

Quercus alba 38 1.89 14.53 

Quercus rubra 3,896 334.99 2,627.07 

Quercus velutina 206 19.28 164.46 

Rhododendron prinophyllum 127 0.05      0.25 

Salix spp.  2 1.59e-04 1.50e-03 

Sambucus racemosa 2 5.65e-04 4.03e-03 
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Sorbus Americana 66 0.26 2.78 

Toxicodendron radicans 1 1.13e-04 1.05e-04 

Toxicodendron vernix 521 0.32      0.38 

Tsuga canadensis 22,880 491.07 2138.00 

Ulmus Americana 1 2.84e-04 3.85e-04 

Vaccinium corymbosum 3,531 2.39 9.58 

Viburnum acerifolium 39 0.01 0.07 

Viburnum dentatum 325 0.08 0.52 

Viburnum lantanoides 75 0.01 0.01 

Viburnum nudum 1,182 0.44 2.27 

 

 
 

 729 

  730 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438791
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

Figure Legends 731 

Figure 1. The 500 x 700 m ForestGEO plot located in the town of Petersham, MA on the 732 

Prospect Hill tract of HF (upper right panel), showing locations of three eddy-flux towers (that 733 

measure net ecosystem exchange of carbon and water between the atmosphere and the 734 

ecosystem), old forest roads, stone walls (denoted by dotted lines), and the central swamp area, 735 

superimposed on topographic contour lines (lower panel). 736 

Figure 2. Location of a) historical fields and their agricultural date of abandonment, b) forest 737 

stands as described in 1908, and c) soil type within the HF ForestGEO plot. GIS layers obtained 738 

from Harvard Forest Document Archive HF 110.  739 

Figure 3. Diameter distribution of the seven most common overstory species within the HF 740 

ForestGEO plot.  741 

Figure 4. Diameter distribution of the six most common understory species within the HF 742 

ForestGEO plot. 743 

Figure 5. Spatial distribution of stems g1 cm DBH of the seven most common overstory species 744 

within the HF ForestGEO plot with 3 m elevation contour lines.  745 

Figure 6. Spatial distribution of stems g1 cm DBH of the six most common understory species 746 

within the HF ForestGEO plot with 3 m elevation contour lines. 747 

Figure 7. Observed (blue line) and expected (black dashed line) values of the pair correlation 748 

function, g(r), showing the degree of spatial clustering (values >1) of the seven most dominant 749 

tree species in the Harvard Forest plot. Expected values were obtained from 199 Monte Carlo 750 
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simulations to completely randomize the spatial position of trees (complete spatial randomness; 751 

CSR). 752 

Figure 8. Univariate mark correlation function analysis results showing the effects of the 753 

underlying spatial pattern of trees on the size of conspecific individuals for seven dominant 754 

species in the Harvard Forest plot across a range of scales. The significance of this effect was 755 

evaluated by comparing the calculated kmm(r) against values simulated under a null expectation, 756 

where tree sizes were randomly shuffled over all trees for each of the 199 simulations. The blue 757 

line indicates calculated kmm(r) values, while the black lines demark the 95% confidence 758 

envelope around simulated kmm(r) values under the null model. A blue line falling below, 759 

within, or above the upper confidence limit, indicates significant negative, independent, or 760 

positive correlations among DBH marks for the given species, respectively.   761 

Figure 9. Bivariate marked point pattern analysis results showing the effects of the size of focal 762 

Tsuga canadensis individuals on the size of six other non-focal species in the HF ForestGEO 763 

plot across a range of scales. The significance of this effect was evaluated by comparing the 764 

calculated Schlather9s I (Im1m2(r)) bivariate correlation statistic against values simulated under 765 

a null expectation, where non-focal species9 tree sizes were randomly shuffled over trees for 766 

each of 199 simulations. The blue line indicates calculated Im1m2(r) values, while the black 767 

lines demark the 95% confidence envelope around simulated Im1m2(r) values under the null 768 

model. A blue line falling below, within, or above the upper confidence limit, indicates 769 

significant negative, independent, or positive correlations of DBH marks of the given species with 770 

the DBH of T. canadensis individuals found at a range of distances, respectively. 771 
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Figure 10. Variable importance scores, based on the mean decrease in prediction accuracy, from 772 

a conditional inference random-forest model predicting tree species abundance values (stems/ha) 773 

for the seven most common trees as a function of possible predictors (Table 1). Variable 774 

importance scores were calculated across 400 random forest iterations and the range of values is 775 

from 0-100,000, reflecting the range of the response variable, abundance. 776 

Figure 11. Variable importance scores, based on the mean decrease in prediction accuracy, from 777 

a conditional inference random-forest model predicting tree species diameter at breast height 778 

(DBH) for the seven most common trees as a function of possible predictors (Table 1). Variable 779 

importance scores were calculated across 400 random forest iterations and the range of values is 780 

from 0 - 40, reflecting the range of the response variable, diameter. 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 
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 791 

Figure 1 792 

 793 
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 794 

Figure 2. 795 
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 796 

Figure 3. 797 
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Figure 4. 799 
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Figure 5. 801 
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Figure 6.  804 
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Figure 7. 807 
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Figure 8. 809 
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Figure 9. 811 
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Figure 10. 815 
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Figure 11. 817 
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