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Abstract

Recent studies have shown that neuronal stability over time can be estimated by the structure of the
spike-count autocorrelation of neuronal populations. This estimation, called the intrinsic timescale, has
been computed for several cortical areas and can be used to propose a cortical hierarchy reflecting a scale
of temporal receptive windows between areas. In this study, we performed an autocorrelation analysis
on neuronal populations of three basal ganglia (BG) nuclei, including the striatum and the subthalamic
nucleus (STN), the input structures of the BG, and the external globus pallidus (GPe). The analysis was
performed during the baseline period of a motivational visuomotor task in which monkeys had to apply
different amounts of force to receive a different amount of reward. We found that the striatum and the
STN have longer intrinsic timescales than the GPe. Moreover, our results allow for the placement of these
subcortical structures within the already-defined scale of cortical temporal receptive windows. Estimates
of intrinsic timescales are important in adding further constraints in the development of computational
models of the complex dynamics among these nuclei and throughout cortico-BG-thalamo-cortical loops.
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Introduction

Organization of the brain has been described following different principles. For example, areas can be
organized based on the laminar pattern of origins and terminations of cortico-cortical projections (Barbas
and Rempel-Clower, 1997; Felleman and Van Essen, 1999) or based on topological projection sequences
(Petroni et al., 2001). Following a proposed anatomical hierarchy of the visual, somatosensory, and motor
cortices (Felleman and Van Essen, 1999), and considering the laminar structure of the prefrontal cortico-
cortical projections, prefrontal areas are at the top of this hierarchy (Murray et al., 2014). Interestingly,
this anatomical hierarchy is mirrored by the intrinsic fluctuations in spiking activity across these areas at
rest (Murray et al., 2014; Ogawa and Komatsu, 2010). Computed from their spike-count autocorrelation,
these intrinsic timescales are considered to be a measure of neuronal stability. By comparing different
cortical areas, past studies (Cirillo, Fascianelli et al., 2018; Ogawa and Komatsu, 2010) have shown that
prefrontal areas have the longest timescales, the posterior parietal and the dorsal premotor cortex have
intermediate timescales, and the somatosensory cortex has the shortest timescale. The proposed cortical
hierarchy (Chen et al., 2015; Ogawa and Komatsu, 2010) is intended to reflect a scale detailing temporal
receptive windows with higher-level areas with the longest timescales representing the progressive
accumulation of neuronal inputs and supporting high-level cognitive decision-making processes.

All cortical areas except for the primary visual and auditory areas project to the basal ganglia (BG), which
serve as the substrate of several cognitive processes such as context- and value-based decision-making,
reinforcement learning, inhibition control, and working memory (Mink, 1996). Here, we analyzed the
intrinsic timescales of neuronal populations in the striatum (phasically active neurons, PANs, or putative
projection neurons), the subthalamic nucleus (STN), and the external globus pallidus (GPe) of macaque
monkeys during the baseline period of a visuomotor task (Nougaret and Ravel, 2015, 2018). We found
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that the input structures of the BG, the striatum and the STN, exhibited longer timescales than the GPe.
Describing the differences between the timescales of these populations can help lead to a better
understanding of the functional specialization of these structures and validate computational models of
action selection.

Results

We analyzed neuronal activity during the baseline period of a visuomotor task as described by Nougaret
and Ravel (2015, 2018). During the 1 s baseline period, monkeys maintained a basal pressing force on a
lever while waiting for the presentation of a pair of visual stimuli that informed them of the amount of
force required and the amount of reward they would receive upon completion of the trial. We computed
the spike-count autocorrelation structure for each neuron as a function of time lag, and estimated its
decay constant (intrinsic timescale t) with an exponential fit. We assigned the intrinsic timescale to the
whole neuronal population and to single neurons as described in Materials and Methods. The database
we analyzed consisted of 78 neurons recorded in the STN (30 and 48 from monkey M and monkey Y,
respectively); 158 PANs (96 and 62 from monkey M and monkey Y, respectively) recorded in the striatum,
presumed to be medium spiny projection neurons (Inokawa et al.,, 2010); and 92 irregular neurons,
corresponding to high-frequency discharge neurons (HFD; DeLong, 1971), from the GPe (41 and 51 from
monkey M and monkey Y, respectively). Only neurons from the GPe were analyzed in a previous study
(Nougaret and Ravel, 2018). Localizations of PANs in the striatum and STN neurons were assessed as in
previous studies (Nougaret and Ravel, 2015, 2018) using MRI scans with electrodes for locating
trajectories, from which the neurons were recorded.

Intrinsic timescales of STN neurons, PANs, and GPe neurons

To assess the spike-count autocorrelation values as a function of time lags, a non-zero mean activity for
each neuron in each 50 ms bin during the baseline period was required. In particular, 77/78 neurons in
the STN, 103/158 PANs in the striatum, and 92/92 neurons in the GPe fulfilled this requirement (see
Materials and Methods). Figure 1 (left) shows the autocorrelation values as a function of time lags
averaged across neurons for each brain structure, with the exponential fit superimposed along with the
estimated timescale t. In particular, the GPe showed a shorter timescale (t_GPe + sem_GPe = (120 + 3)
ms, Figure 1C) than both the striatum (t_PANs + sem_PANs = (258 + 35) ms; Figure 1B) within the error
(t_PANs - t_GPe + A(t_PANs - t_GPe) = (138 + 35) ms) and the STN (t_STN + sem_STN = (230 £ 86) ms;
Figure 1A) within the error (t_STN - t_GPe * A(t_STN - t_GPe) = (110 + 86) ms). Moreover, the intrinsic
timescale of the STN is compatible with the timescale of the striatum within the error (t_PANs - tT_STN
A (t_PANs - t_STN) = (28 £ 93) ms).
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Figure 1: Mean autocorrelation values and single timescale distribution. A) Left Panel: mean
autocorrelation averaged across all neurons (n = 77) recorded in the subthalamic nucleus (STN) using 50
ms time bins in a 900 ms time window during the baseline period (mean + SEM). The solid red line is the
exponential fit. The autocorrelation at 50 ms has been excluded from the fit procedure. The intrinsic
timescale T is shown in the top right corner, with the R? value as a goodness of fit estimator. Right panel:
single neuron timescale distribution (n = 23) computed in the same baseline period as in the population
timescale shown on the left panel. The solid and dashed lines are the mean(log(t)) + SD (log(t)). The mean
of the timescale distribution is shown in the top right corner. B) Left Panel: mean autocorrelation averaged
across neurons (n = 103) recorded in phasically active neurons (PANs) of the striatum in the same baseline
period as A). The autocorrelation value at 50 ms has been excluded from the fit procedure as in A). Right
panel: single neuron timescale distribution (n = 53). C) Left Panel: mean autocorrelation averaged across
neurons (n = 92) recorded in the external globus pallidus (GPe) in the same baseline period as A) and B).
The autocorrelation values at all time lags have been included in the fit procedure. Right panel: single
neuron timescale distribution (n = 77).
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Comparing the timescales of the BG structures, we found that the estimated GPe timescale was more
accurate than the timescale estimates for the other two BG structures. This result could be explained by
less heterogeneity in the autocorrelation structures of single neurons compared to the other two BG
structures. We then wanted to confirm the results found at the population level at the single-cell level.
For this, we computed the timescale for each neuron (Figure 1, right) satisfying the requirements detailed
in (1) and (4) in Materials and Methods. Following this selection process, we kept 23/78 neurons from the
STN, 53/158 neurons from the striatum, and 77/92 neurons from the GPe. Even when selecting a subset
of neurons, the results at the single-cell level were similar to the previous population analysis. The
distribution of the timescale values of GPe neurons was significantly lower than the timescale distributions
of STN neurons (Mann-Whitney test, p =0.0074) and PANs (Mann-Whitney test, p =4 x 10°). No significant
difference was found between STN and PAN timescale distributions (Mann-Whitney test, p = 0.9369).

To investigate the degree of heterogeneity in the single timescale distributions for each BG structure, we
computed the coefficient of variation (CV) of the timescale distribution using formula (5) in Materials and
Methods. We found a higher degree of heterogeneity in STN neuron (CV = 23%) and PAN (CV = 19%) t
distributions than in the GPe neuron t distribution (CV = 8%), in line with previous population analysis
results.

Discussion

To our knowledge, our study is the first to report estimations of intrinsic timescales of neuronal
populations at the subcortical level, and reveals timescale differences between the input structures of the
BG, the striatum and the STN, and the GPe. Earlier studies have used the autocorrelation function to
understand the firing pattern properties of single cells within the BG (Bar-Gad et al., 2002; Magill et al.,
2000, 2001) and midbrain dopaminergic neurons (Paladini and Tepper, 2016). Specifically,
autocorrelograms of single cells have been used to classify these cells into different subpopulations, for
example into GPe neurons (Bugaysen et al., 2010) or different types of dopaminergic neurons (Paladini
and Tepper, 2016), and to assess firing rate rhythmicity of single neurons from BG nuclei in healthy and
diseased conditions (Heimer et al., 2002; Magill et al., 2000, 2001; Raz et al., 2000). In this study, we used
the autocorrelation function to characterize the properties of neuronal populations in the BG and place
them in the context of already-known intrinsic timescales throughout the cortex.

We found that the striatum and the STN exhibited longer timescales (258 and 230 ms respectively)
compared to the GPe (120 ms). A cortical hierarchy has already been described (Murray et al., 2014) based
on values from seven cortical areas (Figure 2, light gray circles), placing the prefrontal areas, anterior
cingulate cortex (ACC; average value = 303 ms), orbitofrontal cortex (OFC; average value = 182 ms), and
lateral prefrontal cortex (LPFC; average value = 166 ms) at the top of this hierarchy with the longest
timescale values. The same study then reported intermediate timescales in the lateral intraparietal cortex
(LIP; average value = 114.5 ms) and the secondary somatosensory cortex (S2), and the shortest timescales
in the medio-temporal area (MT) of the visual cortex and the primary somatosensory cortex (S1). Other
studies (Cavanagh et al.,, 2016, medium gray circles; Fascianelli et al., 2019, dark gray circles) later
confirmed the previous results overall, reporting comparable LPFC (231/248 ms), OFC (241/190 ms), and
ACC (332 ms) timescale values. Genovesio and colleagues (Cirillo, Fascianelli et al., 2018; Fascianelli et al.,
2019) then extended the hierarchy previously described by assigning intrinsic timescales to the
frontopolar cortex (PFp; 242 ms) and the dorsal premotor cortex (PMd; 131 ms).
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Figure 2: Hierarchical organization of intrinsic timescales of cortical and subcortical structures. Left
Panel: Intrinsic timescales of nine cortical areas reported by Murray et al. (2014) in light gray, by Cavanagh
et al. (2016) in medium gray, and by Genovesio and collegues (Cirillo, Fascianelli, 2018; Fascianelli et al.,
2019) in dark gray. The seven areas on the left (MT, LIP, PMd, LPFC, OFC, FP, and ACC) are part of the
visual and prefrontal cortices. The two areas on the right are part of the somatosensory cortex (51, S2).
Each circle represents the average t for each cortical area reported in each study. Each bar represents the
average T among the studies. Right Panel: Same representation for the three subcortical structures (GPe,
STN, and striatum) analyzed in the present study. Abbreviations: ACC, anterior cingulate cortex; FP,
frontopolar cortex; GPe, external globus pallidus; LIP, lateral intraparietal cortex; LPFC, lateral prefrontal
cortex; MT, medio-temporal area (of visual cortex); OFC, orbitofrontal cortex; PMd, dorsal premotor
cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; STN, subthalamic
nucleus.
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The striatum and STN intrinsic timescales reported here place these structures on a comparable level as
the timescales assigned to prefrontal areas. Importantly, in both of these BG structures recordings were
mainly from their associative parts, known for receiving their major inputs from the prefrontal cortex
(Alexander et al., 1986; Haber and Knutson, 2010; Haynes and Haber, 2013; Nougaret et al., 2013). In
contrast, the GPe exhibited an intrinsic timescale of only 120 ms, which places it at the same intermediate
level as the PMd, LIP, and S2. One possibility is that this lower timescale could reflect lower temporal
information integration ability of the GPe among BG structures. Our study shows a gradient of receptive
time windows within BG circuitry (Figure 2, red circles). As suggested for areas of the visual system (Ogawa
and Komatsu, 2010), the differences found among the BG nuclei could reflect a broader window of
temporal information storage in the striatum and the STN compared to in the GPe. Indeed, intrinsic
timescales could be described as “a temporal counterpart of the spatial hierarchy” (Chen et al., 2015).
Previous studies (Chaudhuri et al., 2015; Murray et al., 2014) shed light on the existence of a parallel
between the anatomical hierarchy of cortical areas and their intrinsic timescales. Drawing a parallel with
the cortex, the interpretation of a functional hierarchy based on timescales described for cortical areas
might apply to the BG. This would suggest a greater need for information accumulation within the BG
input nuclei rather than in the GPe. The convergence of information from multiple cortical areas could
explain the necessity for longer timescales in both input structures because of the need of striatal
projection neurons and subthalamic neurons to gate and maintain information from prefrontal neurons
(Frank et al., 2006; O’Reilly and Frank, 2006).

A large body of work in primate neurophysiology has shown that, at the neural level, choosing corresponds
to crossing a firing rate threshold in the cortex. Depending on the environment and on the decision being
made, the threshold level can be regulated. A computational study (Lo and Wang, 2006) implemented a
biophysically-based network model of decision thresholds of the cortical-BG-superior colliculus (SC)
pathway. After comparing the different nodes of these networks, the authors concluded that the all-or-
none activity of SC neurons is triggered by a threshold crossed by cortical neurons that can be optimally
tuned by the strength of cortico-striatal synapses. Indeed, through this pathway, the output structures of
the BG inhibit cortex and SC activity to preclude inappropriate motor outputs (Jahanshahi et al., 2015).
Ding and Gold (2013) have hypothesized that “the BG may convert cortical representations of sensory
evidence into evaluative quantities”, allowing generation and adjustment of decisions. They suggest that
the BG can modify the decision rules by modifying the decision threshold, but also modify the “value of a
developing decision variable”. Different BG models hypothesize that the main role of the BG nuclei is to
act as a central selection device (Redgrave et al., 1999) that examines each action requested based on its
urgency and salience (Bogacz and Gurney, 2007) and that, with their unique anatomical properties, allows
the allocation of motor resources to the appropriate actions. The striatum and the STN have distinct roles
in these processes. According to Frank and colleagues, the former has a crucial role in gating sensory input
for updating working memory in the prefrontal cortex and then in maintaining it, preventing the influence
of distracting information (O’Reilly and Frank, 2006), especially when adaptive gating is necessary for the
processing of multiple goal demands. The STN is supposed to act as a brake, particularly during high-
conflict decisions, reducing premature responses and refining the selection process that takes place via
cortico-striatal pathways (Cavanagh et al., 2011; Frank, 2006, 2007). Both functions reflect the need to
accumulate information over time, and support the long intrinsic timescales exhibited by the input
structures of the BG.
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On the other hand, models of BG action selection assign another role to GPe neurons. Gurney and
colleagues (Bogacz and Gurney, 2007; Gurney et al., 2001) have proposed that the GPe, mainly through
its massive projections into the STN, automatically limits the activity of BG output structures and allow
the network to make a selection. The control that the GPe exerts on other BG nuclei is supported by in
vitro electrophysiological studies showing that the firing rate of GPe neurons can be approximated by a
linear function of the injected current (Namu and Llinas, 1994). In contrast, the firing of the STN neurons
fit better with an exponential function of their inputs (Bogacz and Gurney, 2007). This understanding is
also consistent with in vivo electrophysiological studies in primates that report independent encoding of
task variables by GPe neurons (Arkadir et al. 2004; Nougaret and Ravel, 2018), suggesting more of a
parallel processing of information by GPe neurons rather than an integration of different variables
(Nougaret and Ravel, 2018). Taken together, these results are in line with the intermediate intrinsic
timescale exhibited by the GPe in the present study. However, a recent computational study (Chaudhuri
et al., 2015) suggests caution around assigning timescales to brain areas too rigidly, because processing
different sensory inputs may lead to different timescales based on their model. Moreover, the three BG
nuclei studied here exhibited different degrees of heterogeneity in their single unit timescales (Figure 1,
left panel). In particular, the input structures displayed a higher degree of heterogeneity than the GPe.
Some studies have shown that within each cortical area, the individual intrinsic timescale computed
during a baseline period predicted the strength of response modulation during following task periods in
the LIP (Nishida et al., 2014), PMd (Cirillo, Fascianelli et al., 2018), and dIPFC (Fascianelli et al., 2019),
suggesting that neurons with longer timescales are more involved in the encoding of task-related
information. We could hypothesize that the high degree of heterogeneity found in the input structures of
the BG could serve to support the heterogeneity of information that these structures have to process with
different temporal integration requirements, although further study is necessary to reach conclusions
about these functions.

Our study is the first to quantify intrinsic timescales of BG nuclei, and some limitations should be
considered. First, our datasets are relatively small compared to others used for the cortex and have high
variability at the population level. This is mainly true for the input structures, which showed a higher
degree of heterogeneity at the single-cell timescale level. Second, the BG nuclei are known to be partially
specialized in sensorimotor, associative, and limbic territories, and our datasets cover mainly the
associative and the limbic parts of these structures. For future studies, it remains to be investigated how
our BG nuclei timescale estimates could be generalized at the whole-structure level, and whether our
estimates are consistent with the timescales of other BG nuclei not studied here. It is also important to
investigate the relationships within each structure at the single-cell level between timescales and show
persistent representations of task-relevant signals, as has been done in the cortex (Cavanagh et al., 2016;
Cirillo, Fascianelli et al., 2018; Fascianelli et al., 2019; Nishida et al., 2014). We believe that
notwithstanding these limitations, the timescales reported here could be useful as a first approximation
for the validation of computational models of action selection based on evidence accumulated through
cortico-striatal/subthalamic synapses and architecture of cortico-BG-cortical loops, as has been done for
the cortex (Chaudhuri et al., 2015).
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Experimental model and subject details

Two male rhesus monkeys (Macaca mulatta) were used in this study. Relevant details about the animals
have already been reported in Nougaret and Ravel (2015, 2018).

Method details
Dataset

The experimental procedures followed French laws on animal experimentation, the European directive
on animal protection, and the National Institute of Health’s Guide for the Care and Use of Laboratory
Animals. The experimental details of the datasets used in the current study have already been reported
(Nougaret and Ravel, 2015, 2018). The single-unit activity of two male rhesus monkeys (Macaca mulatta),
recorded from three populations of neurons within the (BG), were analyzed during a foreperiod,
considered as a baseline period in which no cognitive process was engaged. During this 1 s period, both
monkeys needed to maintain a basal pressing force on a lever and wait for the presentation of a pair of
visual stimuli indicating the amount of force needed and the amount of reward to be expected at the end
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of the trial. The data set consisted of 1) a population of 158 putative projection neurons recorded in the
striatum, also called phasically active neurons (PANs); 2) a population of 78 neurons from the subthalamic
nucleus (STN); and 3) a population of 92 irregular neurons from the external globus pallidus (GPe).

Quantification and statistical analysis

Spike-count autocorrelation structure

We analyzed the recorded activity of neurons in the STN, GPe, and striatum (PANs) from 100 ms after the
beginning of the trial until the end of the baseline period for a total of 900 ms of baseline activity. The
same baseline period had already been chosen (Nougaret and Ravel, 2015) for electrophysiological
analysis of neurons recorded for the same task. We included only correct trials in the following analyses.
For each structure, we selected neurons satisfying the following criterium:

1. each 50-ms time bin in the baseline period with non-zero mean activity across trials. (1)
We performed all analyses with MatLab (The MathWorks, Inc., Natick, MA, USA).

To assess the spike-count autocorrelation structure, we calculated the spike count during the baseline
period in 50 ms time bins. It is worth noting that the results did not change within a difference of 20% of
the bin length. Given a neuron, the spike-count autocorrelation value across trials between time bins k
and j (k, j as integer numbers) at a time lag equal to |k-j|x A (A = 50 ms), the Pearson’s correlation
coefficient r is defined as follows (Murray et al., 2014):

_ Cov(N(k),N(J)) _< (N =NF)DWN) =N > 2)
JVar(N(k))xVar(N(j)) Jvar(N(k))xVar(N(j))

where N(k) and N(j) are the spike counts computed in the k and j time bins, respectively, and N(k) and
N_(]) are the spike counts averaged across trials in k and j time bins, respectively. The covariance (Cov),
the variance (Var), and the autocorrelation value r were computed for each possible combination of pair-
bins (k, j). We calculated the autocorrelation values as a function of the time lags for each neuron
satisfying the criterion in (1). We subsequently computed the autocorrelation structure for the whole
neuronal population by averaging the coefficient r across neurons at a fixed time lag. We obtained the
autocorrelation values as a function of time lags for the entire population, and we performed an
exponential fit as defined below (Murray et al., 2014):

r(nA) = A[exp(— %) + B], (3)

where nA indicates the time lag between the time bins k and j, with n = |k-j | (n=1,2, ..., 18); r is the
autocorrelation value at time lag n4; A is the amplitude; t is the decay constant of the exponential
function, called intrinsic timescale; and B is the offset that mirrors the value of r in the limit of time lag
nA-><= (i.e., time lag values much larger than our 900 ms baseline length). Throughout this paper, we
refer to intrinsic timescale as simply timescale or t.
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Single-neuron intrinsic timescale

We also fit each single spike-count autocorrelation decay with the exponential function in (3) to estimate
the single-neuron intrinsic timescale. We further reduced the neuronal sample by selecting those neurons
satisfying both the criterion in (1) and the following requirements:

1. t>0ms; (4)
2. R*»> 50%,

where R? is the coefficient of determination obtained by the fit. The first requirement was introduced
because a negative or 0 ms t value is meaningless; the second requirement of an R? larger than 50% was
a trade-off between the need to keep as many neurons as possible and the importance of having a good
fit. We also excluded outliers, defined as neurons having an intrinsic timescale below the 5th percentile
and above the 95th percentile of the T distribution, from the sample. This last requirement was established
due to the heterogeneity of timescale values within each brain structure and to avoid having an estimate
of the mean of the intrinsic timescales biased towards the outlier values. We further investigated the
degree of heterogeneity of the single timescale distribution for each brain structure. To quantify this, we
used the coefficient of variation (CV), defined as follows:

CV = sigma/mean, (5)

where sigma and mean are the standard deviation and mean of the timescale distribution, respectively.
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