

Title

Seizures initiate in zones of relative hyperexcitation in a zebrafish epilepsy model

Short title: Seizures initiate in zones of hyperexcitation

Authors

James E. Niemeyer¹, Poornima Gadamsetty¹, Chanwoo Chun², Sherika Sylvester², Jacob P. Lucas¹, Hongtao Ma^{1,3,*}, Theodore H. Schwartz^{1,3,*}, Emre Aksay^{2*}

Affiliations

1. Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
2. Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
3. Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY

*. Correspondence may be addressed to

Hongtao Ma, PhD
Department of Neurological Surgery
Weill Cornell Medicine
New York, NY 10065
Email: hom2001@med.cornell.edu

Theodore H Schwartz, MD
Department of Neurological Surgery
Weill Cornell Medicine
New York, NY 10065
Email: schwarz@med.cornell.edu

Emre Aksay, PhD
Department of Physiology and Biophysics
Weill Cornell Medicine
New York, NY 10021
Email: ema2004@med.cornell.edu

1 **Abstract**

2 Seizures are thought to arise from an imbalance of excitatory and inhibitory neuronal activity.
3 While most classical studies suggest excessive excitatory neural activity plays a generative role,
4 some recent findings challenge this view and instead argue that excessive activity in inhibitory
5 neurons initiates seizures. We investigated this question of imbalance in a zebrafish seizure
6 model with multi-regional two-photon imaging of excitatory and inhibitory neuronal activity
7 using a nuclear-localized calcium sensor. We found that seizures consistently initiated in
8 circumscribed zones of the midbrain before propagating to other brain regions. Excitatory
9 neurons were both more prevalent and more likely to be recruited than inhibitory neurons in
10 initiation as compared with propagation zones. These findings support a mechanistic picture
11 whereby seizures initiate in a region of hyper-excitation, then propagate more broadly once
12 inhibitory restraint in the surround is overcome.

13
14 **Teaser**

15 We uncover the roles of excitation and inhibition during seizures, thus opening a path to more
16 targeted therapy of epilepsy.

17
18 **MAIN TEXT**

19
20 **Introduction**

21 Excitation and inhibition are countervailing forces of brain activity that, in normal brains,
22 operate in balance. However, in certain pathological brain states, such as epileptic seizures, this
23 excitation:inhibition (E:I) balance goes awry. While traditional doctrine held that seizures
24 resulted from hyperactive excitatory drive (1-4), recent studies in various models have suggested
25 a generative role for inhibitory neuronal subtypes in ictal onset. This revised picture has been
26 supported by observations of increased inhibitory activity in pre-seizure periods (5-8). For
27 example, low-voltage fast seizures in humans are marked by early inhibitory cell firing prior to
28 peak excitatory cell activity (7). Evidence for a direct causal role of inhibitory cells in seizure
29 onset is also reported (9-11). For example, blocking the effects of inhibitory activity with a
30 GABA antagonist (picrotoxin) can paradoxically prevent spontaneous seizures in a genetic
31 mouse model of human autosomal-dominant frontal lobe epilepsy (9). Another study showed
32 that optogenetic stimulation of a specific interneuron subtypes (parvalbumin- or somatostatin-
33 positive cells) can initiate seizures (11). Together, these finding challenge the traditional concept
34 of excitatory neuron hyperactivity as the primary driver of seizure initiation.

35 However, the role of inhibitory cells in seizure onset is still widely debated. Not only is
36 there data showing that inhibitory cell activation can inhibit seizure onset (12), but activation of
37 inhibitory cells has been clearly shown to shorten seizure duration (13, 14). While differences in
38 seizure models, experimental preparations, and recording techniques could explain these
39 disparate results, the explanations may be more subtle. While one recent study found that
40 inhibitory cells can exert either anti- or pro-seizure effects depending on the timing of activation
41 (15), another showed that the effects of excitatory and inhibitory cells may be spatially
42 dependent (16). These findings suggest that the role of E:I balance in seizures may not be as
43 simple as “more E” or “earlier I”, but rather that the effects of E:I balance on ictal onset and
44 evolution may be spatiotemporally contingent.

45 Understanding how E:I balance plays into ictogenesis has several experimental
46 requirements. First, a large region of brain, inclusive of various interconnected structures, must
47 be analyzed during seizure periods. Ideally, this areal sampling would include both the site of
48 seizure initiation as well as sites of later seizure propagation. Second, the neural activity
49 analyzed should simultaneously include both E and I information that can be separated with
50 single-cell resolution. Finally, the neural activity should be recorded in awake animals whose
51 activity can best recapitulate seizures lacking the confounding effects of anesthesia.

52 These criteria can be relatively easily met in the zebrafish preparation (17). These
53 vertebrates exhibit significant homology with humans at the genetic (18), neurochemical, and
54 brain structural (19) levels. Their transparency, rapid development, and small size in the first few
55 weeks after fertilization allows whole brain optical access at sub-cellular resolution throughout
56 the brain. Their genetic tractability permits tissue and cell-type specific experimentation. Further,
57 their ease-of-handling facilitates both high-throughput drug screening (20) and high-resolution
58 imaging and electrophysiological studies in the unanesthetized animal. Prior work on seizures
59 using this animal model has already shown similar electrographic profiles (21), glial involvement
60 (22), and responses to seizure treatments (23) as found in human epilepsy.

61 Here we used the zebrafish model to investigate spatiotemporal variations in E:I balance
62 during seizure initiation and propagation. We monitored seizure dynamics using both
63 electrophysiological recording and two-photon calcium imaging that enabled tracking of
64 neuronal dynamics across the brain at the single cell level. We found specific regions of the brain
65 consistently associated with seizure initiation, while others with seizure propagation. Using
66 transgenic specification to separate excitatory and putative inhibitory populations, we found that
67 the ratio of E:I activation at ictal onset was greatest in initiation zones. This finding demonstrates
68 the importance of early excitation at triggering ictal events in the zebrafish model and challenges
69 recent reports arguing that early inhibitory neuron activity is always the key driver in initiating
70 seizures.

71

72

73 **Results**

74 We present our investigation of the spatiotemporal dynamics of E:I balance during seizures as
75 follows. First, we introduce the experimental preparation and describe electrophysiological
76 characterization of inter-ictal and ictal events in this epilepsy model (**Fig. 1**). Next, we present a
77 pixel-based timing analysis (**Fig. 2**) that is used to create maps of the spatiotemporal dynamics in
78 the brain during seizures (**Fig. 3**). We then examine timing at a cellular level in excitatory and
79 inhibitory populations in regions designated as ‘initiation’ and ‘propagation’ zones (**Fig. 4**).
80 Finally, we confirm that findings from our single-cell analysis hold at the network level (**Fig. 5**)
81 and when examined with spatial specificity using correlation analysis (**Fig. 6**).

82

83 **Experimental paradigm for examining excitation and inhibition**

84 Experiments were performed using larval zebrafish with all neurons expressing GCaMP6f and
85 VGlut2 cells expressing DsRed (**Fig. 1A**). The first fluorophore, H2B-tethered GCaMP6f, is a
86 fast nuclear-localized calcium sensor that is localized to the nucleus to eliminate contamination
87 from neuropil signal and enable better separation of signals between cells (24). The second
88 fluorophore, DsRed, was used to help separate excitatory from inhibitory neurons. VGlut2 is a
89 vesicular glutamate transporter gene found in the vast majority of glutamatergic cells in the
90 larval zebrafish (25). The largest proportion of VGlut2- cells are inhibitory GABAergic neurons,

91 with non-trivial contribution from excitatory VGlut1 cells (primarily cerebellar granule neurons)
92 and inhibitory glycinergic neurons. Due to the purely excitatory nature of the VGlut2 population
93 and the primarily inhibitory nature of the VGlut2- populations, below we refer to the former as
94 ‘excitatory (E)’ neurons and the latter as ‘inhibitory (I)’ neurons.
95

96 **Seizure characterization by electrophysiology and calcium imaging**

97 Our first goal was to characterize seizures measured electrographically. Seizures were induced
98 using bath applied PTZ in larval zebrafish that were held in agar. While the definition of a
99 “seizure” can be flexible and the exact features of seizures likely vary between species and
100 models, our electrophysiology data below demonstrates separable ictal-like and interictal-like
101 events with electrographic signatures similar to those observed in other animal models and
102 humans. For simplicity, here we use the word “seizure” to refer to the longer ictal events as
103 others have done for PTZ-induced ictal activity in zebrafish (22, 26, 27). In initial two-electrode
104 experiments, we placed electrodes in different brain regions (telencephalon, optic tectum, or
105 hindbrain) and found that ictal events developed concurrently after ~15 minutes of PTZ
106 application. Electrodes placed in the optic tectum consistently captured the largest set of ictal
107 events (unpublished observations)—hence, in subsequent experiments, we used only one
108 electrode placed in the neuropil of the optic tectum. **Figure 1B** shows an example
109 electrophysiology recording, demonstrating ictal-like events lasting for several seconds (‘ictal’,
110 filled circle symbol), followed by quiescent periods and occasional brief interictal-like events
111 (‘interictal’, open symbol), as well as their corresponding power spectrograms (**Fig. 1B**). Ictal
112 events (left) were marked by an initial low frequency power increase (orange), a brief cross-
113 frequency spike with most power <20 Hz (red), a sustained phase with a more uniform cross-
114 frequency distribution (often up to 100 Hz) that lasted for several seconds (green), and a
115 recovery phase at lower frequency with gradual relaxation (blue). In contrast, interictal events
116 (right) only exhibited the short cross frequency event (red) before moving to a briefer recovery
117 phase than seen with ictal events (blue). Both forms of event then returned to baseline. While
118 more complicated classification schemes could be used, separation of ictal from interictal events
119 based on duration provided a robust method as ictal events typically lasted 4 times longer than
120 interictal ones (**Fig. 1C**; Wilcoxon signed-rank test, N=9 fish, 1685 events, p=0.003).

121 We next employed simultaneous cellular-resolution 2-photon imaging of larval zebrafish
122 along with the electrophysiological recordings. Ictal events were clearly observable in population
123 activity and within specific brain regions (**Fig. 1D**; **Fig. S1**). Interictal events, on the other hand,
124 did not lead to global changes in activity. Examining global activity spatially, we found that ictal
125 events did not typically initiate in or recruit the telencephalon (**Fig. 1E**). While activity in the
126 optic tectum (OT) and rhombomere 1 (R1) correlate strongly with the whole-brain average
127 calcium response, the telencephalon (Tel) does not. A correlation matrix built with average
128 calcium activity in different brain regions from multiple series of seizures from different fish
129 (N=5 fish, 22 seizures) indicates that activity in the telencephalon and habenula is largely
130 uncorrelated from the rest of the brain during ictal events.
131

132 **Lag maps identify regions of seizure initiation and illustrate seizure propagation**

133 To examine the involvement and timing of different brain areas in PTZ seizures we next
134 developed a method to extract seizure propagation maps within individual fish. We first used
135 correlation to global average ictal activity to create a mask that excluded pixels where there were
136 no changes in fluorescence related to the seizure (**Fig. 2A**). The activity in the retained pixels

137 was not monolithic, with some regions beginning to show elevations in fluorescence well before
138 other regions (**Fig. 2B**, red arrows). To examine these temporal variations more carefully, we
139 correlated pixel-level activity to that of a template of ictal activity initiation defined from a
140 segment of the global fluorescence event (**Fig. 2C, middle**), incrementally shifting the template
141 in time to identify when activity in particular pixel began to rise (see Methods). The template
142 shift times for each pixel defined a propagation map for each ictal event (**Fig. 2C, right**). This
143 template matching procedure allowed identification of the earliest portions of the ictal activity in
144 each pixel and was less susceptible to errors than procedures that relied upon threshold crossings
145 or features such as peak fluorescence.

146 We applied this algorithm to create a lag map for each individual ictal event (N=10 fish,
147 N=177 ictal events). **Figure 3A** shows the lag maps of 7 ictal events in one larval zebrafish (the
148 same animal as **Fig. 2**). This revealed a similarity between neighboring ictal events (e.g., Events
149 1-4 vs 5-7). In this animal the left cerebellum and the optic tectum showed consistent early
150 involvement in every ictal event. To quantify how similar ictal propagation appeared between
151 ictal events, we measured the correlation coefficient of the 2-D spatiotemporal lag maps of all
152 pairs of ictal events for this animal (**Fig. 3B**). This similarity was quantified for the entire data
153 set by pooling within-animal correlations, revealing a positively skewed distribution (**Fig. 3C**,
154 average Pearson's $r=0.42 +/- 0.25$, N=177 seizures).

155 We next developed a scheme to summarize these spatiotemporal patterns and identify
156 regions consistently involved in seizure initiation. Lag maps for individual ictal events were
157 binarized by assigning a value of 1 to all pixels where neuronal activity initiated at least 500 ms
158 in advance of the population event, and a value of 0 to all other pixels. Averaging these mask
159 arrays across all events within a single fish provided a 2-dimensional summary showing where
160 ictal events initiated most frequently within an individual animal (**Fig. 3D**). For the animal
161 whose seizures are displayed in **Figure 3A**, we see that the left cerebellum and portions of the
162 left tectum exhibit the highest probability of involvement in ictal initiation. Across all animals
163 (N=10), the most common initiation zones were the optic tectum, thalamus, pre-tectum, and
164 cerebellum/R1 (**Fig. 3E-F**). Propagation zones were defined as the remainder of the brain to
165 which the seizure spread outside the initiation zone.

166

Excitation and inhibition examined in seizure initiation and propagation zones

167 Having identified the ictal initiation and propagation zones, we next focused on the issue of E:I
168 balance in these different regions during seizures. We first asked if there were differences
169 between the initiation and propagation zones in the relative numbers of excitatory and inhibitory
170 cells. Taking advantage of the ease with which single neurons can be distinguished with nuclear-
171 localized GCaMP6f, we labelled individual soma using standard computer vision algorithms and
172 separated them into excitatory and inhibitory cells based on the intensity of the DsRed
173 fluorophore (total N=19,434 cells across 9 fish; example event and seizure-recruited cells shown
174 in **Fig. 4A**). An event-specific comparison of the differences between the initiation and
175 propagation regions in composition was performed by calculating for each ictal event a value for
176 an E:I composition index; the index was defined such that a region with only excitatory cells had
177 a composition index value of 1, all inhibitory cells an index of -1, and an equal number of
178 excitatory and inhibitory cells an index of 0. E:I composition in initiation regions was $-0.07 +/-$
179 0.29 (SEM), while E:I composition in propagation regions $-0.30 +/- 0.29$ (**Fig 4B**; at cutoff
180 requiring at least 10 E and 10 I cells per initiation site, N=49 seizures, Wilcoxon signed-rank test
181 $p<0.001$). This difference corresponds to a roughly 61% increase in the E:I ratio in the initiation
182

183 zone relative to the propagation zone calculated over all animals and all seizures. This finding
184 was robust to variation in the minimal number of cells of each type allowed in each region (**Fig.**
185 **S3**).

186 We next investigated if there were differences between the initiation and propagation
187 zones in the relative numbers of excitatory and inhibitory cells that were *recruited* into the ictal
188 event. Cells were deemed to be recruited into the seizure if they exhibited a correlation of 0.8 or
189 better with the global ictal event (**Fig. S3**). The locations of such cells during one seizure event
190 are shown in **Figure 4C**, revealing a much larger E:I ratio of recruited cells within the initiation
191 zone than in the propagation zone. To quantify this observation across, we calculated an E:I
192 recruitment index, defined as above but only for recruited cells. E:I recruitment in initiation
193 regions was 0.04 ± 0.25 (SEM), while E:I recruitment in propagation regions was -0.20 ± 0.28 , a
194 significant difference ($p < 0.0001$, $N=167$, Wilcoxon signed-rank test; **Fig. 4D** at cutoff
195 requiring 10 E and 10 I cells per initiation site). This corresponds to a roughly 64% increase in
196 E:I ratio in the initiation zone relative to the propagation zone across seizures, and was robust
197 across varying cutoffs of cell counts (**Fig. S3**). Thus, on average there is both a greater fraction
198 of excitatory cells in initiation zones relative to propagation zones, and these excitatory cells are
199 also recruited at a higher fraction within the initiation zone.

200 We next examined how E:I recruitment during the ictal event varied over time in the
201 initiation and propagation zones. We observed asynchronous single cell onsets during ictal
202 events: **Figure 4E** shows smoothed and interpolated single cell fluorescence traces for one ictal
203 event, colored by initiation time, demonstrating the temporal spread of single cell activity that
204 these seizures typically displayed. As expected, across our data set we observed significantly
205 earlier onsets in the initiation zones compared to propagation zones (**Fig. 4G**, **Fig. S3C**).
206 Interestingly, in the propagation region, the number of newly recruited excitatory cells was
207 always less than the number of newly recruited inhibitory cells (**Fig. 4G, left**, solid lines, $N=167$
208 seizures). In contrast, in the initiation zone, the number of newly recruited excitatory cells was
209 comparable to the number of newly recruited inhibitory cells at the beginning and end of the ictal
210 event, but was notably higher at a time approximately 1 second ahead of the ictal onset. To see
211 this difference more clearly, we normalized these recruitment curves to the peak of the number
212 of newly recruited inhibitory cells (**Fig. 4G, right**), revealing 1) that the number of newly
213 recruited cells peaked earlier in the initiation zone, and 2) a difference of over 50% at peak in the
214 ratios of newly activated excitatory vs inhibitory cells between the initiation and propagation
215 sites (white arrow, **Fig. 4G**). Quantifying these observations using the E:I recruitment index
216 introduced above, we see that significant differences in the pattern of recruitment between the
217 initiation and propagation regions are present in the period -1.5 to 0 seconds before ictal onset
218 ($N=36$ seizures with at least 10 E and 10 I cells in initiation zone, Wilcoxon signed-rank test
219 $p < 0.0001$, **Fig. 4H**).

220
221 **Network-level analyses reaffirm a privileged role for excitation at seizure initiation sites**
222 We next examined if this privileged position for excitatory neurons during the initiation of
223 seizures was also apparent in higher order relationships between excitatory and inhibitory cells.
224 We began by using Principal Components Analysis to look at the overall degree of coordination
225 in excitatory versus inhibitory populations during the seizure initiation process. For both groups,
226 the number of dimensions needed to explain population dynamics dropped dramatically at the
227 time of ictal onset (**Fig. 5A-B**). This collapse to lower dimensionality, an indication of greater
228 coordination within a population, was most pronounced for the excitatory population (**Fig. 5C**;

229 pre-PTZ N=2781, post-PTZ N=167, right: I-E dimensionality differences, Wilcoxon signed-rank
230 test, *** p<0.001, **p<0.01, n.s. not significant).

231 To examine this increased coordination of E cells vs I cells with greater temporal
232 specificity and regional context, we next analyzed correlation structure within these cell types by
233 calculating a correlation metric (C) in a rolling time window (Fig. 6A). We focused on
234 correlations between excitatory-excitatory (E-E) and inhibitory-inhibitory (I-I) cell pairs.
235 Average correlation was generally low for both pairings during baseline conditions and inter-
236 ictal periods (Fig. 6B, top). Correlation increased dramatically for both pairings around the time
237 of ictal initiation, with correlation change in the initiation zone on average larger and more
238 advanced in time than that in the propagation zone. We found that E-E correlation was slightly
239 elevated relative to I-I correlation during ictal onset in both regions (Fig. 6B, insets); this
240 elevation was clearer when looking at the correlation difference, which was largest around the
241 time of ictal onset in the initiation zone (Fig. 6B-C, Wilcoxon signed-rank test, N=36 seizures
242 with 10 E and 10 I cells in initiation zones, *** p<0.001, ** p<0.01, n.s. not significant; Fig. 6D,
243 within-seizure correlation differences in initiation and propagation sites in events with 10 E and
244 10 I cells). Thus, these correlation patterns further suggest that the coordinated activation of
245 excitatory neurons in the initiation zone plays an important role in triggering ictal events.
246

247 **Discussion**

248 In this study, we addressed the question of E:I balance in seizure initiation and propagation using
249 the zebrafish model. The main technical limitation afflicting prior studies of this topic has
250 generally been the need for broad, cell-specific sampling of the widespread neuronal substrate
251 inclusive of the ictal onset zone and all areas of potential propagation. We overcame these
252 challenges using a global imaging strategy in the larval zebrafish, an optically transparent
253 vertebrate preparation allowing for simultaneous imaging of multiple cell types. We
254 demonstrated a privileged role for excitation over inhibition in the seizure initiation zone, while
255 regions that were invaded later were biased towards stronger inhibitory cell recruitment.
256

257 **Seizure dynamics in the larval zebrafish**

258 One specific relevance of our findings will be to aid efforts to identify seizure medications with
259 high-throughput screening. Zebrafish are increasingly used to test potential drug treatments for
260 diseases such as epilepsy (23, 28). High-throughput drug screening is a primary method of
261 therapeutic discovery (29), and the zebrafish offers significant advantages in this regard due to
262 the ease with which drugs can be delivered uniformly to the brain while behavioral changes are
263 monitored *en masse*. However, while such high-throughput studies can be quite useful in
264 identifying promising classes of drugs, optimization of both the therapeutic and its dosing will
265 benefit greatly from a mechanistic understanding of the pathophysiology being addressed. The
266 larval zebrafish affords several advantages for understanding the cellular and circuit mechanisms
267 that have been used to study the normal brain, including high-resolution optical access globally,
268 a suite of genetic tools for monitoring and manipulating specific cell types, and the capacity to
269 study all constitutive elements of an intact circuit. Here we have harnessed some of this power to
270 begin understanding the pathophysiology of seizures. The preponderance of excitatory activity in
271 the initiation zone points towards exploiting this model to screen, with greater granularity,
272 classes of drugs that can preferentially regulate the activity of glutamatergic neurons in midbrain
273 structures.

274 We triggered seizure events in the zebrafish model using PTZ, a chemoconvulsant
275 commonly used in therapeutic screening. PTZ is the only pharmacological seizure-inducing drug
276 employed at the initial identification stage by the NINDS Epilepsy Therapy Screening Program
277 (30). PTZ is known to induce seizures in humans (31, 32) and lower seizure threshold in
278 epileptic patients (33). PTZ-induced seizures in the zebrafish occurred spontaneously,
279 repeatedly, and throughout the brain, consistent with earlier reports (22, 26, 34, 35).
280 Furthermore, the ictal LFP had spectral features (36) similar to those observed in rodent models
281 (37) and human patients (38): at initiation, ictal events displayed an abrupt broad-frequency
282 power increase, followed by a longer period where power was restricted to a slightly lower
283 frequency range, concluding with a return to baseline power at the time of termination. This
284 commonality supports the idea that the PTZ model of ictogenesis in the zebrafish is of general
285 relevance for the study of seizures in other species.

286

287 **Spatio-temporal consistency of seizure initiation and propagation**

288 Regions of ictal onset and propagation were generally conserved within fish, but somewhat
289 varied between animals. Rodent slice experiments have shown that the seizure foci can change
290 slowly over time: one focus can dominate for several minutes before being replaced by another
291 region (39). However, such studies have also found that certain brain regions (e.g., hippocampal
292 CA2-3) and cell layers (neocortical layer 5 pyramidal cells) are predisposed to act as pacemakers
293 in seizure-generating activity (40, 41). Our findings extend these results to an awake, whole-
294 brain model. We found a significant level of consistency in initiation and propagation patterns
295 within fish, although correlations weakened over tens of minutes. While there was some
296 variation between animals, we found that midbrain structures had a quite high propensity to
297 serve as initiation zones. We also confirmed the surprising finding that the telencephalon
298 (homologous with human cortex) was one of the last regions to be recruited in the seizing
299 zebrafish brain (22). Thus, our results provide further evidence that certain subcortical sites may
300 serve a prominent role in generalized seizure initiation (42-45) though these results do not negate
301 a role for cortical contributions.

302

303 **E:I balance differs in initiation and propagation zones**

304 Synchronous excitation has long been thought to drive epileptic seizures (3), while recent cell-
305 specific studies have suggested a role for inhibitory neurons in both seizure initiation (6, 7) and
306 termination (12, 14). Our finding adds to the modern E:I discussion by reaffirming the classic
307 distinction between ictal initiation and propagation. Specifically, we observed a higher ratio of
308 recruited excitatory:inhibitory cells near the seizure initiation site compared to locations that
309 were recruited later by the same seizure. A recent study in anesthetized mice reported a similar
310 finding: the E:I activity ratio, calculated on averaged parvalbumin-positive (PV) and non-PV
311 interneuron activity, was higher in the initiation zone compared to propagation zones during the
312 pre-seizure period (16). However, the experiment involved focal injection of 4-AP, where the
313 assumption that the injection and onset sites are superimposed may not always be correct. Our
314 experiments circumvent this ambiguity by allowing seizures to develop spontaneously in
315 anatomic regions with lower threshold in a model that permits whole-brain imaging so that we
316 could identify distinct initiation zones on an event-by-event basis.

317 Some studies in rodents (6, 13) and humans (7) have reported earlier activity from
318 inhibitory cell populations before recruitment to seizure events. We did not observe significantly
319 different onset timing between E and I cell types. We speculate that this could be due to

320 differences in recording location (initiation vs propagation zones), or possibly due to variations
321 in technique. For example, Khoshkoo et al. used an optogenetic kindling model (13), and the
322 firing rate changes between inhibitory and excitatory cells observed by Miri et al. were on the
323 order of just ~2 Hz (6), which our calcium imaging may not have been sufficiently sensitive to
324 detect. Our findings therefore do not rule out the possibility of earlier inhibitory cell activation,
325 but do support a model of ictogenesis that depends on higher-weighted excitatory cell
326 recruitment at initiation sites.

327 Numerous studies have shown that surround inhibition, present outside of an ictal focus,
328 can play a role in restraining seizures (16, 46-50). This restraining penumbra is a region
329 characterized by massive synaptic barrages, but little neuronal firing, until a temporal point at
330 which the seizure annexes this region (16, 47, 49-51). In our study using a nuclear-localized
331 GCaMP to focus purely on somatic activity, we did not observe significant differences in E and I
332 cell timing, but did observe that seizure initiation zones were heavily weighted towards
333 excitation (higher E:I) while later propagation regions were weighted towards inhibition (lower
334 E:I). In this drug-bathed model, initiation zones are selected based on inherent increased E:I
335 whereas propagation zones transiently resist rapid spread, presumably through a mechanism
336 based on higher relative local inhibition. Future work in this model may shed further light on this
337 inhibitory restraint by combining imaging and intracellular recording (50), allowing
338 simultaneous measurement of synaptic barrages, spiking, and whole-brain activity during seizure
339 dynamics.

340

341 **Limitations**

342 The larval zebrafish model is increasingly being employed to test pharmacological drugs and as a
343 model organism of various neurological disorders. However, the direct correspondence of
344 seizure mechanisms in the zebrafish and humans is difficult to determine. Thus, while our
345 finding that seizure initiation is associated with hyperexcitation does align with many previous
346 studies in mammals and humans, our data cannot state certainly that human seizures follow this
347 principle. Similarly, our use of PTZ to induce seizures may also create difficulty in comparing
348 results with human epilepsy patients whose seizures initiate spontaneously without any
349 pharmacological induction. We note, however, that our findings using PTZ will be directly
350 applicable to drug screening experiments, which typically use PTZ to induce seizures. Future
351 experiments using human brain organoids will be enlightening for both of these limitations.

352 Finally, our data is also limited in cell-type resolution: we separated excitatory and
353 inhibitory cell classes based on the presence of VGlut2a (also called VGlut2.1), a vesicular
354 glutamate transporter. VGlut2b is co-expressed with VGlut2a, but it should be noted that VGlut1
355 cells also exist in the zebrafish brain, though to a vastly smaller degree (25). Because we infer
356 inhibitory cell identity by lack of VGlut2 expression, some cells marked as inhibitory in our data
357 could be glutamatergic. However, our primary finding is that E:I balance is higher at seizure
358 initiation sites, and if a subset of inhibitory cells were mislabeled across the brain this finding is
359 not likely to be affected.

360

361 The goal of epilepsy research is to understand how normal brain activity transitions to an ictal
362 state and how the event spreads across adjacent normal brain regions. In our model we found that
363 midbrain and diencephalic regions were the most common sites of seizure initiation. Further,
364 during individual seizures we observed significantly higher E:I ratios in initiation compared with
365 propagation zones, supporting a model of seizures in which excitatory activity overruns

366 inhibitory restraint to initiate the seizure while distal regions remain more protected by an
367 inhibitory veto (47, 48, 51). The differential E:I balance we report across brain regions provides
368 a framework for designing and interpreting drug screening studies. Further, our finding of
369 hyperexcitation in initiation zones could be leveraged to perturb neural activity in a cell-specific
370 manner to attenuate seizure initiation or even arrest ongoing seizures.

371

372 **Materials and Methods**

373

374 **Experimental Design**

375 We performed cellular resolution imaging and electrophysiology experiments in awake larval
376 zebrafish undergoing seizures induced by bath application of pentylenetetrazol (PTZ). Animals
377 expressed fluorescent proteins to allow dissociation of excitatory and inhibitory neuron subtypes.
378 We examined regions throughout the brain simultaneously, measuring where seizures in these
379 animals initiated and how excitatory and inhibitory neurons were recruited to seizure events.

380 **Data collection**

381 All experiments were performed in accordance to the guidelines and approval of Weill Cornell
382 Medicine's Institutional Animal Care and Use Committee.

383

384 **Zebrafish Preparation:**

385 Mutant zebrafish larva (*Tg(HuC:h2b-GCaMP6f) x Tg(Vglut2a:dsRed)*) (24, 25, 52) were used
386 at 5 - 8 days after fertilization - the h2b-tag localizes GCaMP to the nucleus to disambiguate the
387 site of origin of the signal by eliminating contamination from axonal and dendritic sources. After
388 anesthetizing for 1 min in 0.1 g/L tricaine-methanesulfonate (MS222, VWR TCT0941- 025G),
389 zebrafish were mounted dorsal up in a 35 mm petri dish (35-1008, BD Falcon) lid containing a
390 bed of 1.5 ml hardened 1% agarose (Invitrogen 15510-027) by embedding with droplets of 1.7%
391 low temperature agarose (Sigma A0701-100G). Once the agarose hardened, a small incision in
392 the skin was made (typically) above the neuropil in the right optic tectum for electrophysiology
393 (see below). The agarose around the tail of the zebrafish was removed to monitor tail movement.
394 The larva was then paralyzed by point incubation in droplets of 300 μ M pancuronium bromide
395 (Sigma P1918-10MG) and covered in 2.5-3 ml of glucose-free 10% (vol/vol) Evans medium (2.9
396 mM KCl, 1.2 mM MgCl₂, 2.1 mM CaCl₂, 134 mM NaCl, and 10mM HEPES, pH 7.8) once tail
397 movement ceased. Epileptiform activity was induced with bath application of 15 mM
398 pentylenetetrazol (PTZ) (Sigma P6500-50G), which is more common and effective than
399 alternatives such as pilocarpine (22) and 4-Aminopyridine (26). Recordings were performed
400 within 2 hours after embedding zebrafish in agarose.

401

402 **Electrophysiology**

403 Local-Field Potential (LFP) recordings were acquired with metal microelectrodes during initial
404 seizure characterization. One ~2-3 M Ω tungsten microelectrode (WE30013.0F3, Microprobes)
405 was inserted in the optic tectum record LFP and a silver wire was placed in the Evans medium to
406 serve as a reference. In some experiments, a second tungsten microelectrode was placed in
407 either telencephalon or hindbrain region to confirm the global synchronous of ictal events.
408 Electrophysiological recordings were amplified 1000x with a microelectrode amplifier (Model
409 1800, A-M Systems, Carlsborg, WA), digitized at 10K Hz using CED Power 1401, and stored
410 with a computer running Spike2 software (Cambridge Electronic Design).

411 During calcium imaging, the LFP was recorded using a glass microcapillary to avoid
412 obstructing fluorescence excitation and light collection. Capillaries (1B120F-4, WPI) were
413 pulled to a fine tip with vertical puller (P30, Sutter Instruments) to a tip diameter of 2-3 μm . The
414 capillaries were filled with 4M NaCl after front-loading molten agarose (1.7% Ultrapure
415 Agarose, Thermo) to the tip to prevent diffusion of the electrode solution once inserted into the
416 brain. When tested in Evans medium, these electrodes had a resistance of 1-3 $\text{M}\Omega$. The electrode
417 was inserted through incision in the skin into the neuropil of the right optic tectum. Recordings
418 were made with a microelectrode amplifier (Model 1800, A-M Systems, Carlsborg, WA) using
419 bandpass filtering (between 0.1 Hz and 1 kHz) at 10 kHz sampling rate and digitized using
420 custom MATLAB code.

421

422 **Two-photon Imaging**

423 A custom-built two photon microscope was used for imaging calcium activity and fluorescence
424 in the embedded zebrafish. A MaiTai HP laser (Newport) was used to focus a 915 nm light beam
425 through a water immersion 40x/0.8 NA objective (OBJ1; LUMPlanFl40XW/IR2, Olympus) onto
426 the fish. Multiple separate horizontal planes of the fish were acquired sequentially in the dark at
427 2 Hz (256 \times 256 pixels, 550 \times 550 μm). The emitted light from the zebrafish larva was collected by
428 the objective and directed towards two dichroic mirrors (DM1, 720dcxruv; DM2, 565dcxr;
429 Chroma Technology) which reflected this light into two separate channels of green (F3;
430 ET525 \backslash 50m-2p; Chroma) and red (F2; ET605 \backslash 70m-2p, Chroma) to be then amplified by the
431 photomultiplier tubes (PMTs, R3896; Hamamatsu). A substage photodetector (PD, PDA36A,
432 Thorlabs) detected light scattered from the focal plane and together with signal from the PMTs
433 was processed by MATLAB based software ScanImage (53) to generate fluorescence images.

434

435 **Analysis**

436 **Electrophysiology**

437 Electrographic data was used to validate and examine ictal events during 2-photon imaging. The
438 spectrogram of the LFP was calculated using short-time Fourier transform (*spectrogram* in
439 MATLAB), with a window width of 0.1 s. Time of onset in the epileptiform events was
440 determined using a statistical method based on the mean and 3 times the standard deviation (SD)
441 of the power between 1-60 Hz during a 5 s interictal window. For electrographic analyses
442 (**Fig.1**, **Fig. S1**), the first increase in power > 3 SD above the baseline was established as the
443 onset of the event. The termination was set at the moment the LFP power returned within 3 SD
444 of baseline.

445

446 **Image analysis**

447

448 **Preprocessing**

449 Images were collected by ScanImage and stored in tiff format. These data files were
450 subsequently de-interleaved in Fiji (54) to extract the green (GCaMP) and red (DsRed) channels.
451 Rigid motion correction was applied in MATLAB 2018a using the NoRMCorre algorithm and
452 toolbox (55) on the red channel images, which did not contain activity-dependent fluorescence.
453 The transformation matrix calculated on the red channel in each fish imaging series was then
454 applied to the green GCaMP6f channel, yielding two motion-corrected tiff image series.

455 We used these data sets to examine ictal event activity across brain regions with two
456 overarching analysis methods: First, we used pixelwise methods to characterize ictal event

457 initiation, spread, and involvement across brain regions. Second, we performed single-cell
458 analyses to observe ictal event development simultaneously in VGAT2a excitatory neurons and
459 putative inhibitory interneurons, paying particular attention to E:I ratio and differential
460 involvement of these two cell classes as well as network-level differences between them.

461

462 **Correlation Coefficient Masks**

463 During ictal events, GCaMP6f fluorescence in the image increases as the ictal event initiates and
464 propagates through the brain. We first extracted relevant brain areas by using the preprocessed
465 GCaMP6f data to calculate pixelwise Pearson's correlation with the whole image average
466 activity in the green GCaMP6f channel. To achieve this, we initially performed 2-dimensional
467 Gaussian filtering on the imaging data ($\sigma=2$ pixels, ~4 micrometers) in MATLAB (*imgaussfilt*)
468 and then smoothed individual pixels over time using a lowpass Butterworth filter (1st order,
469 cutoff frequency of .2 Hz). These data are hereafter referred to as "smoothed images".

470 The individual pixel traces were then compared with the average of all pixel values in the
471 image and a cutoff of .6 correlation (Pearson's r) was used to remove any pixels not sufficiently
472 correlated with the average image activity. To remove any remaining noise, any smoothed pixels
473 not connected in groups of at least 80 smoothed pixels were removed. The resulting image mask,
474 called the correlation coefficient mask, simply represents the extent of brain that was involved in
475 seizure events over individual files. This mask was applied in subsequent analyses of ictal event
476 development.

477

478 **Lag analyses for individual ictal events**

479 Individual ictal events were next detected in smoothed image series with a semi-automated
480 method. First, general ictal event identification was performed: GCaMP6f fluorescence change
481 was calculated as the frame-by-frame difference in average fluorescence, and peaks were
482 extracted with a minimum peak height of average plus 2 SD. A minimum peak-to-peak distance
483 of 8 seconds was also included. Due to slight variations in noise or atypically spreading ictal
484 events in some data sets the standard deviation cutoff was adjusted or performed on the average
485 fluorescence activity instead of the difference. When average activity was used to find peaks, we
486 then used 10 sec windows around those extracted times to find the peak first derivative activity.
487 We note that these adjustments to the automated process are only included to produce accurate
488 windows for finding ictal onsets and would not change the onset times. This general
489 identification produced the time at which the ictal event was increasing most rapidly in the
490 fluorescence data. All individual ictal events were verified by visual examination of both the
491 average GCaMP6f activity and the GCaMP6f image series videos.

492 Next, we used these ictal event times to create a window of whole-image ictal event
493 activity of 6 seconds prior to this point, called the global template. This ictal event onset template
494 was then compared with all individual pixels from the correlation coefficient mask in time
495 windows around the individual ictal events: a 16 s window was used, starting at 10 s prior to
496 peak and lasting 6 s past peak, a large time window that always captured the ictal event onset.

497 Then, the time of maximum correlation between the pixel trace and global template was
498 found for each pixel from the mask yielding a matrix, for each ictal event, of the time when each
499 pixel was most correlated to the global ictal event template. Pixels not significantly correlated
500 (Pearson's r , $p < .05$) with the ictal event average or with a peak correlation below $r = .6$ were
501 excluded. When visualized as a heatmap this matrix provides a "lag map" of where the ictal
502 event activity began and spread across the imaging field of view. To remove any remaining

503 noise, these lag maps were subsequently smoothed by a 2-D Gaussian kernel ($\sigma=6$ pixels, ~11
504 micrometers). To account for the line-scanning nature of our 2-photon images, a temporal
505 transformation matrix was applied to shift every pixel by its true time in milliseconds (e.g., the
506 first pixel of a single tiff image was scanned 256 ms prior to the pixel in the middle of the
507 image). Finally, when displayed, heat color indicates time relative to the average onset time
508 calculated across pixels, negative values indicating pixels that were active earlier, positive values
509 indicating pixels that were active later. A total of 10 separate animals produced N=177 ictal
510 events.

511 From these lag maps, we used MATLAB's edge detection functions to extract the regions
512 of the fish brain that were ictal event-active at the earliest 500 ms. We also applied an area
513 requirement of 300 connected pixels (~.5% of the 256x256 images) to exclude noise. These
514 regions were used to measure which anatomical brain areas were most commonly invaded first
515 by the ictal events. These regions were labelled the "initiation sites" in later single cell analyses.
516 Other regions of the brain that were invaded later by the seizure are referred to as "propagation
517 sites".

518 To examine brain region involvement over different data sets, we compared the edges of
519 initiation sites, per event, with the anatomical fish images (average fluorescence) and recorded
520 the amount of times that an initiation site contained a particular brain region, given that the brain
521 region was present (e.g., if the habenula was not visible in a specific ictal series then it was not
522 included in the analyses of early onsets).

523 Correlations of these maps within fish were calculated as Pearson's r (across seizures
524 within the same FOV) to measure similarity of seizure propagation within individual animals.
525 These correlations were thus only calculated when more than one event occurred in a particular
526 FOV within a fish.

527 A summary map (**Fig. 3D**) was created within an individual fish by setting a temporal
528 cutoff (500 ms) for early activity in the lag map, creating a binary mask from this cutoff, and
529 then averaging these binary masks over different ictal events. Thus, if a pixel is involved in
530 100% of the ictal events of one fish then it will receive a 1, if a pixel is involved in half of the
531 ictal events it will receive a .5, etc. The correlation matrix (**Fig. 3E**) was calculated on ictal series
532 with multiple seizures in FOVs containing all listed brain regions.

533

534 **Single cell analysis**

535 Single cells were extracted from the unsmoothed GCaMP6f images using an automated custom
536 MATLAB algorithm with an added optional step that allowed for manually marking any single
537 cells missed by our algorithm. First, within a single data set, the lowest quartile of GCaMP6f
538 activity frames were used to create an average GCaMP6f image. Background subtraction was
539 performed using structural element disks in MATLAB (with *imadjust*) and then an algorithm
540 was used to iteratively step through all pixel luminance values (0 to 255) down to the lowest
541 20% and extract all connected regions containing at least 4 pixels (~2 microns/pixel), but
542 removing any cells containing more than 40 pixels. All images were visually examined and any
543 missed cells that could be visually determined were added manually in MATLAB with a custom
544 script (using *imfreehand*), but typically fewer than 5 cells were added at this step. Finally, we
545 applied a correlation threshold cutoff to remove any single cells whose activity was not at least
546 $r=.3$ correlated with the average activity of all the extracted cells. On average, our analyses
547 extracted 351 seizure-active cells per image following these steps.

548 In separate cellular composition analyses, where we were interested in examining any
549 detectable cells without requiring that they be seizure-active, we followed the above methods but
550 used a lower Pearson's cutoff of $r=.$ 1, which was low enough to include more cells than the $r=.$ 3
551 cutoff but high enough to exclude artifacts (such as occur on skin edges and near the animal's
552 eyes).

553 To separate putative inhibitory (expressing only GCaMP) and excitatory cell types (co-
554 expressing DsRed and GCaMP in VGlut2.1+ cells) we took the red intensity values from
555 individual cells and plotted their histogram. These histograms are characterized by two peaks:
556 the first peak, lower red values, denotes the GCaMP-positive cells that do not co-express DsRed
557 (putative inhibitory interneurons); the second peak, higher red intensity values, denotes the
558 GCaMP-positive cells that also co-express DsRed (putative excitatory neurons). These
559 histograms were fit by a dual gaussian mixture model, and the mean and standard deviation of
560 both component gaussians were extracted (*fitgmdist* in MATLAB). The cutoff used in our study
561 for labeling a cell as excitatory was two standard deviations past the first gaussian's mean. In
562 some cases, artifacts from the zebrafish skin, eyes, or a tilt in the animal's body could affect
563 these histograms. In those cases, the histogram fitting was performed regionally by manually
564 selecting anatomical regions (applying MATLAB's *imfreehand*) and then performing the dual
565 gaussian fit. All images were visually examined after cell type dissociation by plotting cell types
566 on composite red/green images of the larval zebrafish to verify appropriate labelling by the
567 algorithm. In two data sets we could not extract E vs I cell type differences (due to either
568 imaging or fluorophore labelling technical difficulties), so the 10 ictal events in those data series
569 were not included in our E:I single cell analyses leaving N=167 ictal events.

570

571 *Seizure onsets*

572 In order to compare results across animals and seizure events, we extracted ictal onset times from
573 each ictal event for all single cells. General ictal events were found above (see Lag Analyses),
574 but for single cell analyses we sought to determine the exact time of cell onsets relative to a
575 population onset. Thus, we applied a similar correlation method as the pixelwise lag analyses
576 above but with global templates that were centered around the peak second derivative of single
577 cell population activity, the time of fastest recruitment of individual neurons to a seizure event.

578 Single cell involvement in seizures was determined by identifying the times at which
579 individual cells became significantly involved in the ictal events (**Fig. S4**). To find these times in
580 single neurons we filtered the cell GCaMP6f profiles by temporally smoothing in 2 s windows
581 (boxcar average) and then compared these traces in time windows around ictal event onsets that
582 were found in the lag analyses above.

583 Global response templates in this analysis were created by taking the average cell
584 response from a period of equal length between the first and second peak derivative of the
585 average single cell fluorescence traces. This created a template centered on the peak acceleration
586 point of the ictal event, a time that more accurately represents true ictal event onset compared to
587 other methods of cutoffs such as half-height or 2-standard deviations above the mean. We refer
588 to this peak acceleration time of the population activity as the ictal onset.

589 Next, we found the peak linear correlation (Pearson's r) between this template and
590 individual cell fluorescence traces in a window from 8 s before and 3 s after the period of the
591 global template. This wide temporal window was important because our method of global
592 template creation depends on the rise time of the ictal event: slowly evolving ictal events will
593 have longer templates than faster events. (Note: the correlation window used for single cell

594 onsets was 11 seconds plus the length of the global template, making it a window approximately
595 equal to the 16 sec window used in lag analyses above). Our algorithm required that a single cell
596 be at least $r=.8$ correlated with the global template to be included as having an onset in the ictal
597 event, a strict requirement to reduce the chance of erroneous single cell onset classifications. The
598 onset time for a single cell was classified as the time where it reached 5% of peak correlation
599 (above the .8 cutoff) with the global template. This 5% requirement was included because many
600 cells displayed wide peaks of correlation with the global template: taking the earliest peak
601 correlation most accurately represented the onset of a single cell in the ictal event. Because some
602 cells displayed small fluctuations in fluorescence that coincided with ictal onsets, when cells
603 exhibited more than one $r=.8$ peak during the time window analyzed, we took the later $r=.8$ peak
604 to prevent erroneous early-onset classifications. Finally, all individual cell onsets were
605 temporally adjusted for the 2-photon system's scanning (as done for the pixelwise lag analysis,
606 shifting by the pixel scan time from the cell centroid), and the population activity was temporally
607 corrected by 256 ms (the midpoint time of the frame scan). This method was applied to all data
608 sets and all cells regardless of E or I classification.

609 When temporally aligning data we used the average ictal onset time calculated across all
610 cells significantly recruited to each individual seizure, a procedure analogous to the relative
611 times calculated in our lag analyses above. Thus, data are displayed relative to this time zero
612 point.

613 Inter-ictal periods were defined as all times outside of ictal events (after PTZ
614 application). We classified the termination of ictal events as the point at which the average
615 fluorescence activity returned to its value at the second derivative onset, which was used to
616 separate ictal vs interictal time periods for later analyses.

618 *Excitation:Inhibition (E:I) balance*

619 We examined E:I relationships by calculating an E:I ratio index. We use this method instead of
620 simple E/I ratio because in some cases we observed low numbers of cells in our initiation sites.
621 E:I index values in initiation regions were calculated by summing these cell types within the
622 earliest active brain areas (see above, Lag analyses). E:I ratios in propagation zones were
623 calculated the same way, using remaining areas of the brain that were significantly involved in
624 seizures (propagation zones). The index value was calculated as

$$626 EI_{index} = \frac{E-I}{E+I} ,$$

627 where E and I are counts of E and I cells. The E:I ratio index provides a measure of the relative
628 differences in amounts of E and I cells located in the initiation and propagation regions.

630 We measured excitatory and inhibitory cell recruitment throughout ictal events by
631 temporally aligning all events and then calculating the fraction of E and I cells significantly
632 involved in the ictal events before and after the onset.

634 **Ictal vs interictal brain state and network analyses**

635 *Dimensionality metric*

636 A population of N neurons makes an activity trajectory in the N dimensional space over some
637 time points (T). The effective dimensionality of the trajectory can be quantified with the
638 uniformity of the singular values (λ_i) of the trajectory matrix (NxT, mean-subtracted).

639

640
$$q = \frac{(\sum_{i=1}^{\min(N,T)} \lambda_i)^2}{\sum_{i=1}^{\min(N,T)} \lambda_i^2}$$

641
642 If the singular values are perfectly uniform, all principal components explain equal amount of
643 variance, and therefore the effective dimensionality should maximal. If only one singular value is
644 non-zero, then the effective dimensionality should be 1. For our dimensionality analysis, the
645 number of cells (N) was variable but always greater than the number of time points
646 (T=10s*2Hz=20 samples) of our time window, so the upper limit of the dimensionality was fixed
647 at T. This allowed us to compare the effective dimensionality across trials with different number
648 of cells without further adjustments. A dimensionality at an instantaneous time-point t is
649 estimated by calculating the dimensionality over the time window centered around t. The
650 instantaneous estimation was used to construct a time-series from which we could visualize the
651 time evolution of dimensionality.

652
653 *Excitatory & inhibitory correlations*
654 Populations of excitatory cell pairs (e-e) and inhibitory cell pairs (i-i) were analyzed for their
655 correlations around ictal events. The correlation metric (C) is an average pairwise correlation
656 value of the calcium traces over a time window (1.5 s),

657
658
$$C_{J,K} = \frac{1}{|J||K|} \sum_{j \in J} \sum_{k \in K} \text{corr}(X)_{j,k},$$

659
660 where X is a matrix whose rows are a time series of a single cell within the rolling time window,
661 and J and K are sets of indices for excitatory or inhibitory cells. $\text{corr}(X)$ returns a correlation
662 matrix. Self-correlations (diagonal elements) are ignored. A correlation at an instantaneous time-
663 point t is estimated by calculating the correlation over the time window centered around t. The
664 instantaneous estimation was used to construct a time-series from which we could visualize the
665 time evolution of correlation.

666
667 **Statistical Analysis**
668 We applied different statistical tests on our data as appropriate: paired comparisons were
669 performed with the Wilcoxon signed-rank test, and unpaired comparisons were measured with
670 the Wilcoxon rank-sum test, both of which are non-parametric tests. The significance levels and
671 N values are described whenever the tests are applied in the Results.

672
673
674 **References**
675 1. Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA. Genesis of Epileptic
676 Interictal Spikes - New Knowledge of Cortical Feedback-Systems Suggests a
677 Neurophysiological Explanation of Brief Paroxysms. *Brain Res.* 1973;52(Mar30):1-17.
678 2. Dichter MA, Ayala GF. Cellular Mechanisms of Epilepsy - a Status-Report. *Science*.
679 1987;237(4811):157-64.
680 3. Matsumoto H, Marsan CA. Cortical Cellular Phenomena in Experimental Epilepsy - Ictal
681 Manifestations. *Exp Neurol.* 1964;9(4):305-&.
682 4. Treiman DM. GABAergic mechanisms in epilepsy. *Epilepsia.* 2001;42:8-12.

683 5. Lillis KP, Kramer MA, Mertz J, Staley KJ, White JA. Pyramidal cells accumulate
684 chloride at seizure onset. *Neurobiol Dis.* 2012;47(3):358-66.

685 6. Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity
686 precedes ictal onset. *Elife.* 2018;7.

687 7. Elahian B, Lado NE, Mankin E, Vangala S, Misra A, Moxon K, et al. Low-voltage fast
688 seizures in humans begin with increased interneuron firing. *Ann Neurol.* 2018;84(4):588-600.

689 8. Toyoda I, Fujita S, Thamattoor AK, Buckmaster PS. Unit Activity of Hippocampal
690 Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy. *J*
691 *Neurosci.* 2015;35(16):6600-18.

692 9. Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J. Seizures and enhanced
693 cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal
694 frontal lobe epilepsy. *P Natl Acad Sci USA.* 2006;103(50):19152-7.

695 10. Yekhlef L, Breschi GL, Lagostena L, Russo G, Taverna S. Selective activation of
696 parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in
697 mouse medial entorhinal cortex. *J Neurophysiol.* 2015;113(5):1616-30.

698 11. Shiri Z, Manseau F, Levesque M, Williams S, Avoli M. Interneuron Activity Leads to
699 Initiation of Low-Voltage Fast-Onset Seizures. *Ann Neurol.* 2015;77(3):541-6.

700 12. Calin A, Stancu M, Zagrean AM, Jefferys JGR, Ilie AS, Akerman CJ. Chemogenetic
701 Recruitment of Specific Interneurons Suppresses Seizure Activity. *Front Cell Neurosci.* 2018;12.

702 13. Khoshkhoo S, Vogt D, Sohal VS. Dynamic, Cell-Type-Specific Roles for GABAergic
703 Interneurons in a Mouse Model of Optogenetically Inducible Seizures. *Neuron.* 2017;93(2):291-
704 8.

705 14. Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control
706 of spontaneous seizures in temporal lobe epilepsy. *Nat Commun.* 2013;4.

707 15. Magloire V, Cornford J, Lieb A, Kullmann DM, Pavlov I. KCC2 overexpression prevents
708 the paradoxical seizure-promoting action of somatic inhibition. *Nat Commun.* 2019;10.

709 16. Wenzel M, Hamm JP, Peterka DS, Yuste R. Acute Focal Seizures Start As Local
710 Synchronizations of Neuronal Ensembles. *J Neurosci.* 2019;39(43):8562-75.

711 17. Kalueff AV, Echevarria DJ, Stewart AM. Gaining translational momentum: More
712 zebrafish models for neuroscience research Preface. *Prog Neuro-Psychoph.* 2014;55:1-6.

713 18. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish
714 reference genome sequence and its relationship to the human genome. *Nature.*
715 2013;496(7446):498-503.

716 19. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying
717 complex brain disorders. *Trends Pharmacol Sci.* 2014;35(2):63-75.

718 20. Steenbergen PJ, Richardson MK, Champagne DL. The use of the zebrafish model in
719 stress research. *Prog Neuro-Psychoph.* 2011;35(6):1432-51.

720 21. Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in
721 zebrafish behavior, neural activity and c-FoS expression. *Neuroscience.* 2005;131(3):759-68.

722 22. Verdugo CD, Myren-Svelstad S, Aydin E, Van Hoeymissen E, Deneubourg C,
723 Vanderhaeghe S, et al. Glia-neuron interactions underlie state transitions to generalized seizures.
724 *Nat Commun.* 2019;10.

725 23. Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant
726 identifies clemizole as a potential Dravet syndrome treatment. *Nat Commun.* 2013;4.

727 24. Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang CT, et al. Brain-wide
728 mapping of neural activity controlling zebrafish exploratory locomotion. *Elife.* 2016;5.

729 25. Higashijima S, Mandel G, Fethcho JR. Distribution of prospective glutamatergic,
730 glycinergic, and GABAergic neurons in embryonic and larval zebrafish. *J Comp Neurol.*
731 2004;480(1):1-18.

732 26. Liu J, Baraban SC. Network Properties Revealed during Multi-Scale Calcium Imaging of
733 Seizure Activity in Zebrafish. *Eneuro.* 2019;6(1).

734 27. Turrini L, Fornetto C, Marchetto G, Mullenbroich MC, Tiso N, Vettori A, et al. Optical
735 mapping of neuronal activity during seizures in zebrafish. *Sci Rep-Uk.* 2017;7.

736 28. Eimon PM, Ghannad-Rezaie M, De Rienzo G, Allalou A, Wu YL, Gao M, et al. Brain
737 activity patterns in high-throughput electrophysiology screen predict both drug efficacies and
738 side effects. *Nat Commun.* 2018;9.

739 29. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, et al. Impact of
740 high-throughput screening in biomedical research. *Nat Rev Drug Discov.* 2011;10(3):188-95.

741 30. Pitkanen A, Buckmaster PS, Galanopoulou AS, Moshe SL. Models of Seizures and
742 Epilepsy Second edition Preface. *Models of Seizures and Epilepsy*, 2nd Edition. 2017:Xxv-Xxvi.

743 31. Cooper K, Fink M. The Chemical Induction of Seizures in Psychiatric Therapy Were
744 Flurothyl (Indoklon) and Pentylenetetrazol (Metrazol) Abandoned Prematurely? *J Clin
745 Psychopharm.* 2014;34(5):602-7.

746 32. de Meduna L. New methods of medical treatment of schizophrenia. *Arch Neuro
747 Psychiatr.* 1936;35(2):361-3.

748 33. Friedlander WJ. Relation of Metrazol Eeg-Convulsant Threshold and Alpha Index.
749 *Electroen Clin Neuro.* 1962;14(2):291-&.

750 34. Rosch RE, Hunter PR, Baldeweg T, Friston KJ, Meyer MP. Calcium imaging and
751 dynamic causal modelling reveal brain-wide changes in effective connectivity and synaptic
752 dynamics during epileptic seizures. *Plos Comput Biol.* 2018;14(8).

753 35. Hadjiabadi D, Lovett-Barron M, Raikov I, Sparks F, Liao Z, Baraban SC, et al.
754 Maximally selective single cell target for circuit control in epilepsy. *bioRxiv.*
755 2020:2020.10.20.340364.

756 36. Hunyadi B, Siekierska A, Sourbron J, Copmans D, de Witte PAM. Automated analysis of
757 brain activity for seizure detection in zebrafish models of epilepsy. *J Neurosci Meth.*
758 2017;287:13-24.

759 37. Li YH, Li JJ, Lu QC, Gong HQ, Liang PJ, Zhang PM. Involvement of Thalamus in
760 Initiation of Epileptic Seizures Induced by Pilocarpine in Mice. *Neural Plast.* 2014;2014.

761 38. Bin Altaf MA, Yoo J. A 1.83 mu J/Classification, 8-Channel, Patient-Specific Epileptic
762 Seizure Classification SoC Using a Non-Linear Support Vector Machine. *Ieee T Biomed Circ S.*
763 2016;10(1):49-60.

764 39. Tsau Y, Guan L, Wu JY. Initiation of spontaneous epileptiform activity in the neocortical
765 slice. *J Neurophysiol.* 1998;80(2):978-82.

766 40. Pinto DJ, Patrick SL, Huang WC, Connors BW. Initiation, propagation, and termination
767 of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. *J Neurosci.*
768 2005;25(36):8131-40.

769 41. Prince DA, Connors BW. Mechanisms of Epileptogenesis in Cortical Structures. *Ann
770 Neurol.* 1984;16:S59-S64.

771 42. Bernasconi A, Bernasconi N, Natsume J, Antel SB, Andermann F, Arnold DL. Magnetic
772 resonance spectroscopy and imaging of the thalamus in idiopathic generalized epilepsy. *Brain.*
773 2003;126:2447-54.

774 43. Avoli M, Gloor P. Role of the Thalamus in Generalized Penicillin Epilepsy -
775 Observations on Decorticated Cats. *Exp Neurol.* 1982;77(2):386-402.

776 44. Avoli M, Rogawski MA, Avanzini G. Generalized epileptic disorders: An update.
777 *Epilepsia.* 2001;42(4):445-57.

778 45. Yaksi E, Jamali A, Verdugo CD, Jurisch-Yaksi N. Past, present and future of zebrafish in
779 epilepsy research. *Febs J.* 2021.

780 46. Prince DA, Wilder BJ. Control Mechanisms in Cortical Epileptogenic Foci - Surround
781 Inhibition. *Arch Neurol-Chicago.* 1967;16(2):194-+.

782 47. Trevelyan AJ, Schevon CA. How inhibition influences seizure propagation.
783 *Neuropharmacology.* 2013;69:45-54.

784 48. Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform
785 activity: Evidence for an inhibitory veto in neocortex. *J Neurosci.* 2006;26(48):12447-55.

786 49. Liou JY, Ma HT, Wenzel M, Zhao MR, Baird-Daniel E, Smith EH, et al. Role of
787 inhibitory control in modulating focal seizure spread. *Brain.* 2018;141:2083-97.

788 50. Jayant K, Wenzel M, Bando Y, Hamm JP, Mandriota N, Rabinowitz JH, et al. Flexible
789 Nanopipettes for Minimally Invasive Intracellular Electrophysiology In Vivo. *Cell Rep.*
790 2019;26(1):266-+.

791 51. Schevon CA, Weiss SA, McKhann G, Goodman RR, Yuste R, Emerson RG, et al.
792 Evidence of an inhibitory restraint of seizure activity in humans. *Nat Commun.* 2012;3.

793 52. Satou C, Kimura Y, Hirata H, Suster ML, Kawakami K, Higashijima S. Transgenic tools
794 to characterize neuronal properties of discrete populations of zebrafish neurons. *Development.*
795 2013;140(18):3927-31.

796 53. Pologruto TA, Sabatini BL, Svoboda K. ScanImage: flexible software for operating laser
797 scanning microscopes. *Biomed Eng Online.* 2003;2:13.

798 54. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
799 open-source platform for biological-image analysis. *Nat Methods.* 2012;9(7):676-82.

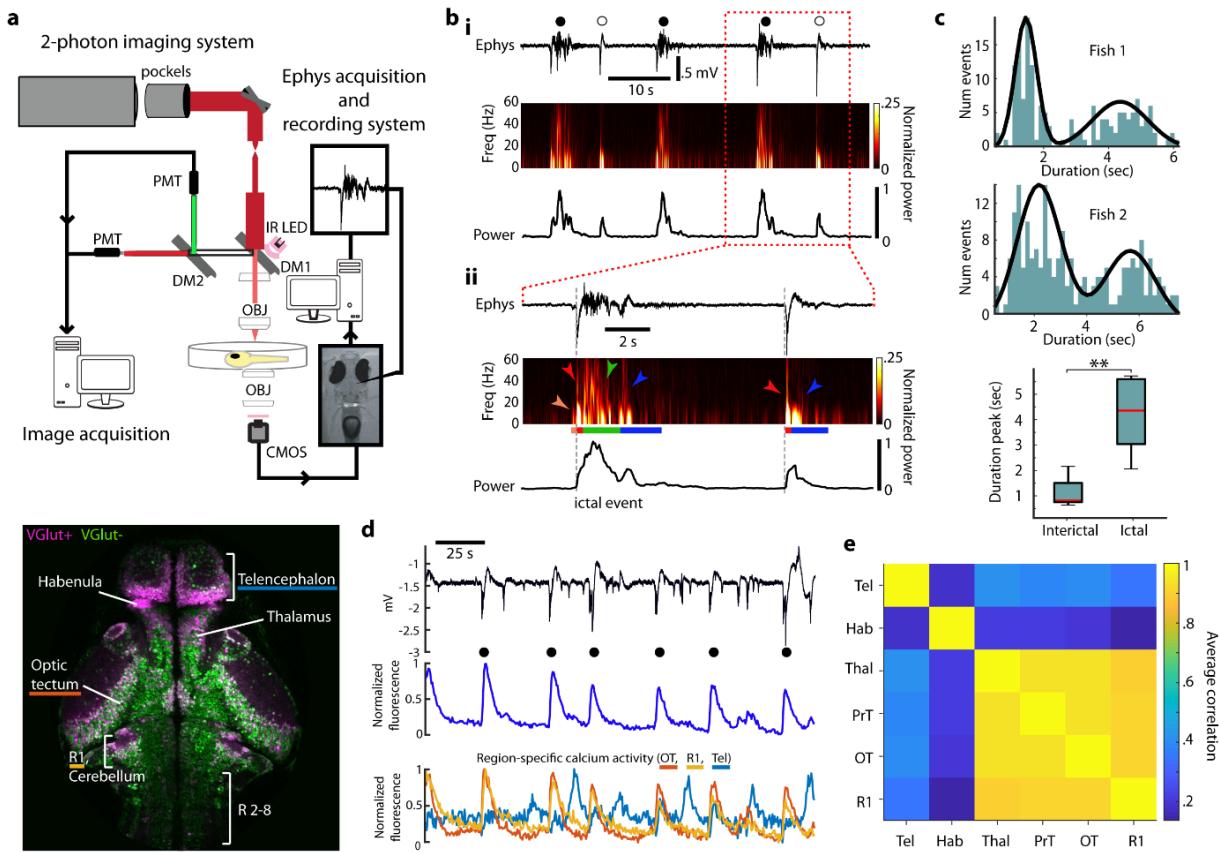
800 55. Pnevmatikakis EA, Giovannucci A. NoRMCorre: An online algorithm for piecewise rigid
801 motion correction of calcium imaging data. *J Neurosci Methods.* 2017;291:83-94.

802 **803 Acknowledgments**

804 The authors thank Catherine Schevon, Michael Wenzel, Jyun-you Liou, and Jonathon Victor as
805 well as members of the Aksay and Schwartz labs for constructive discussion of this manuscript.
806

807 **808 Author contributions**

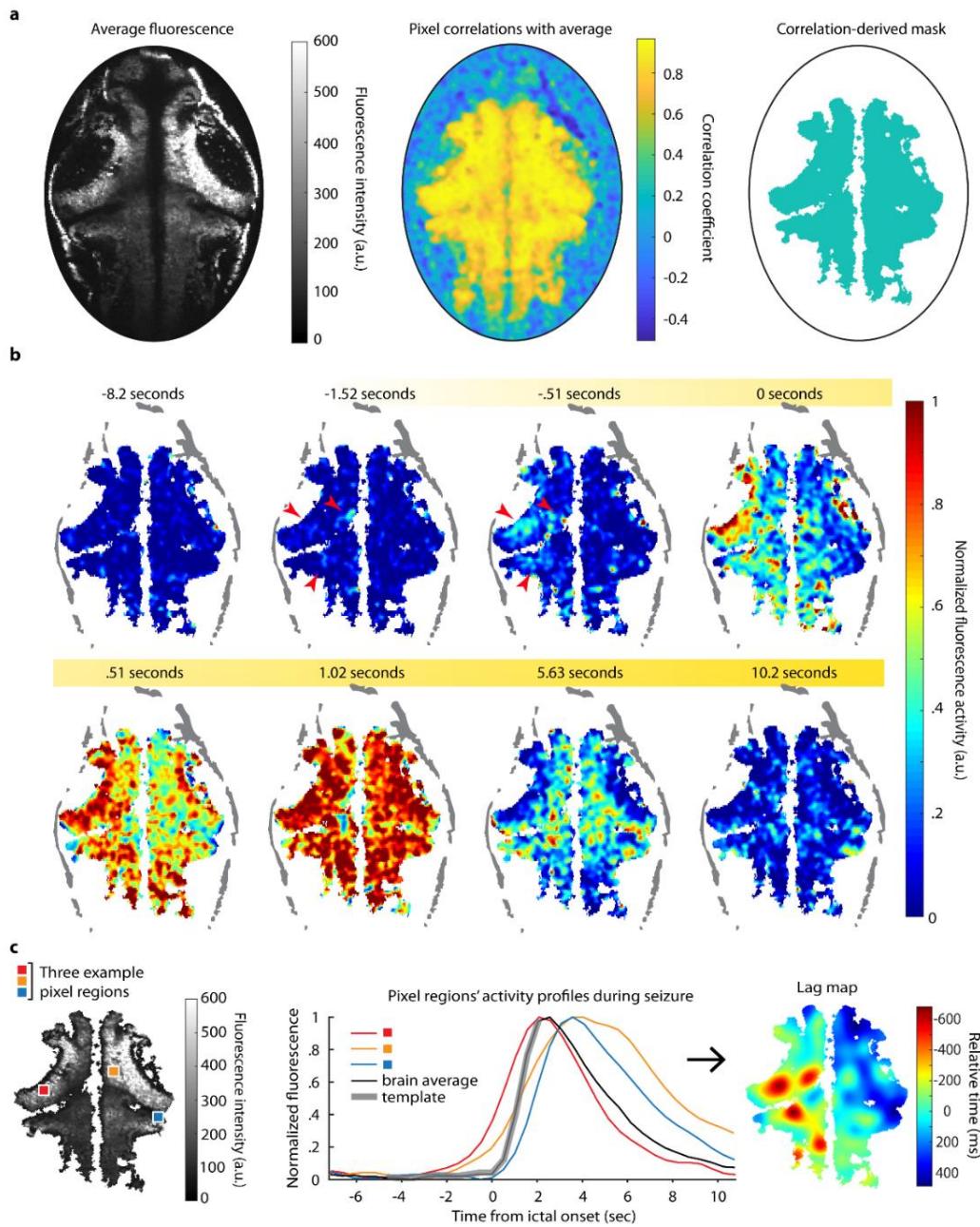
809 Conceptualization: H.M., E.A., and T.H.S. Methodology: P.G., S.S., and H.M. performed data
810 acquisition and J.E.N., C.C., and H.M. performed data analysis. Investigation: P.G., S.S., and
811 H.M. performed data acquisition and J.E.N., C.C., and H.M. performed analysis. Visualization:
812 J.E.N., C.C., J.L. Supervision: H.M., E.A., T.H.S. Writing: J.E.N. and E.A. wrote the original
813 draft and J.E.N., E.A., and T.H.S performed review and editing.


814 **815 Competing interests**

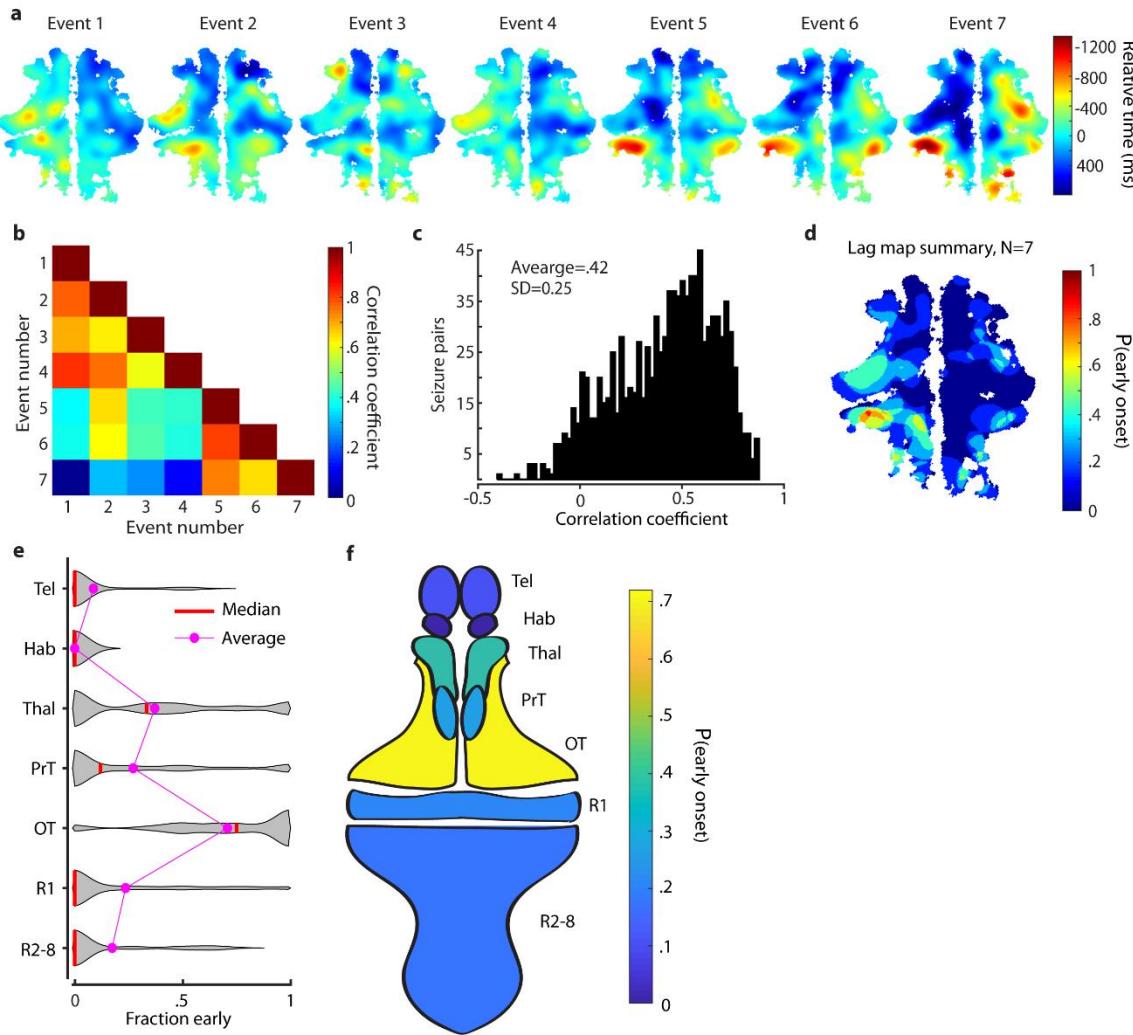
816 The authors declare that they have no competing interests.

817 **Data availability**

818 Data and code needed to evaluate conclusions of this paper will be uploaded to the Zenodo data
819 repository.


820

821
822


Figure 1: Ictal and interictal activity in the larval zebrafish. (A) Top: experimental setup for 2-photon imaging and electrophysiology in larval zebrafish during seizures. Bottom: single imaging plane revealing distribution of VGlut+ (magenta) and VGlut- (green) cells in a variety of brain regions (R: rhombomere). (B) Electrophysiological signatures of ictal- and interictal-like events in the zebrafish. (i) Top: Local Field Potential (LFP, top); Middle: spectrogram; Bottom: total power during a period of ictal (closed circle) and interictal (open circle) events; (ii) Similar organization as above but at finer time resolution, with indication of distinct sections (orange, red, green, blue) characterizing the time-course of the two types of events. (C) Top, Middle: histogram of event duration times for two fish (green) and best fit (black) with a gaussian mixture model; Bottom: for all fish, duration time for ictal and interictal events. (D) Top: LFP, Middle: global change in GCaMP6f fluorescence; Bottom: regional change in fluorescence during a series of ictal (closed circle) and interictal events (OT, optic tectum; R1, rhombomere 1; Tel, telencephalon). (E) Matrix of correlations in the activity among various brain regions (Tel: telencephalon, Hab: habenula, Thal: thalamus, PrT: pretectum, OT: optic tectum, R1 rhombomere 1).

837

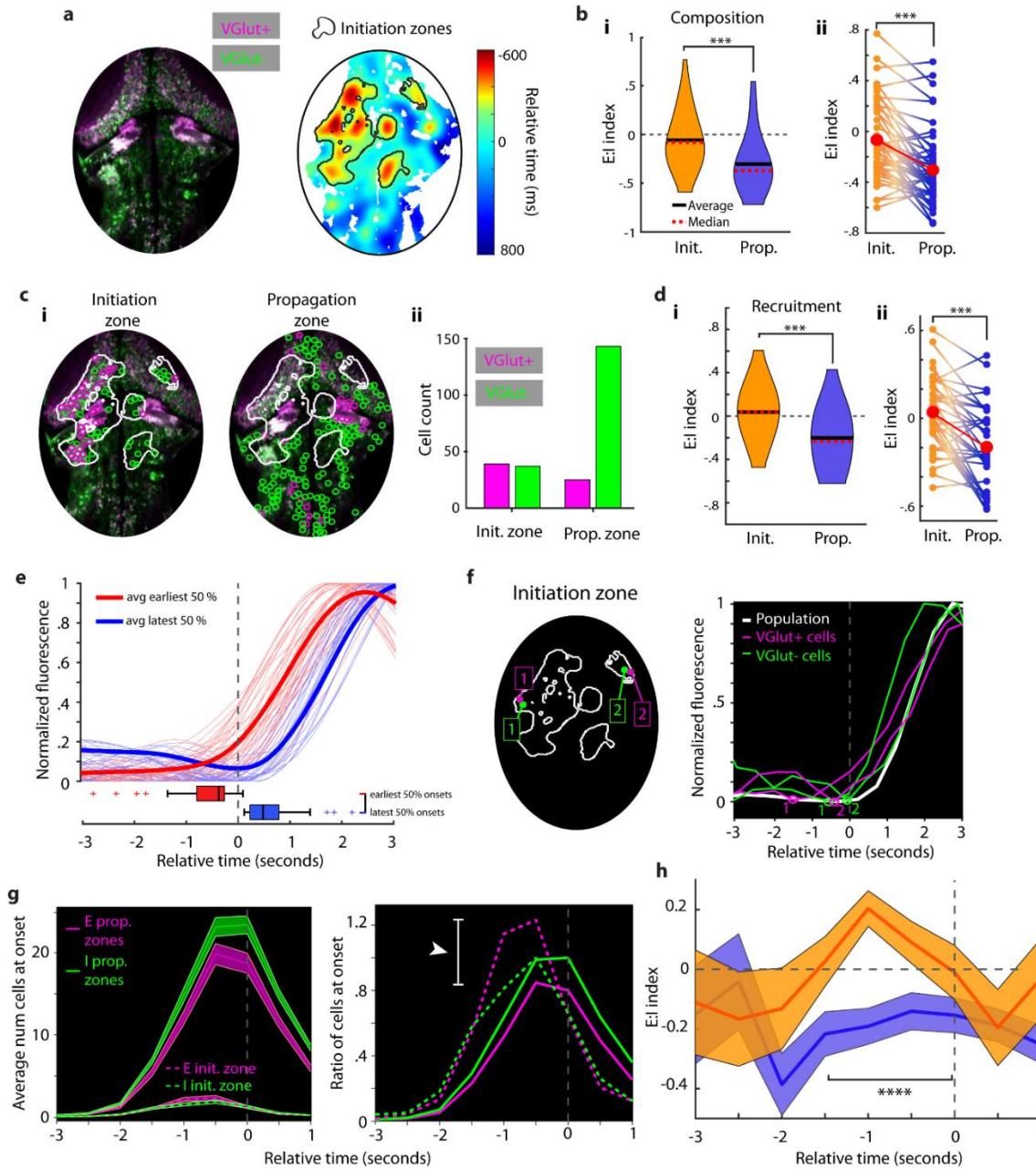

838
839
840
841
842
843
844

Figure 2. Ictal event mapping. (A) Left: average fluorescence over a series of ictal events in one brain; Middle: pixel-wise correlation with brain average; Right: the correlation mask. (B) A single seizure's fluorescence activity is shown over time; red arrows highlight early activity. (C) Left: sample pixels and their activity profiles (*middle*) over a single seizure are shown; Right: the corresponding smoothed lag map for this seizure shows the relative activation times for each pixel with respect to the brain average.

845
846

847 **Figure 3. Ictal events evolve similarly within fish, but initiate in different regions across fish.**
848 (A) Lag maps for seven seizures in one animal. (B) Correlations between the events in (A). (C)
849 correlations of all pairs of ictal events recorded. (D) A summary map of the ictal events in (A).
850 Violin plots (E) and a schematic fish brain map (F) of early-onset regions show where ictal events
851 initiated most commonly across different fish.

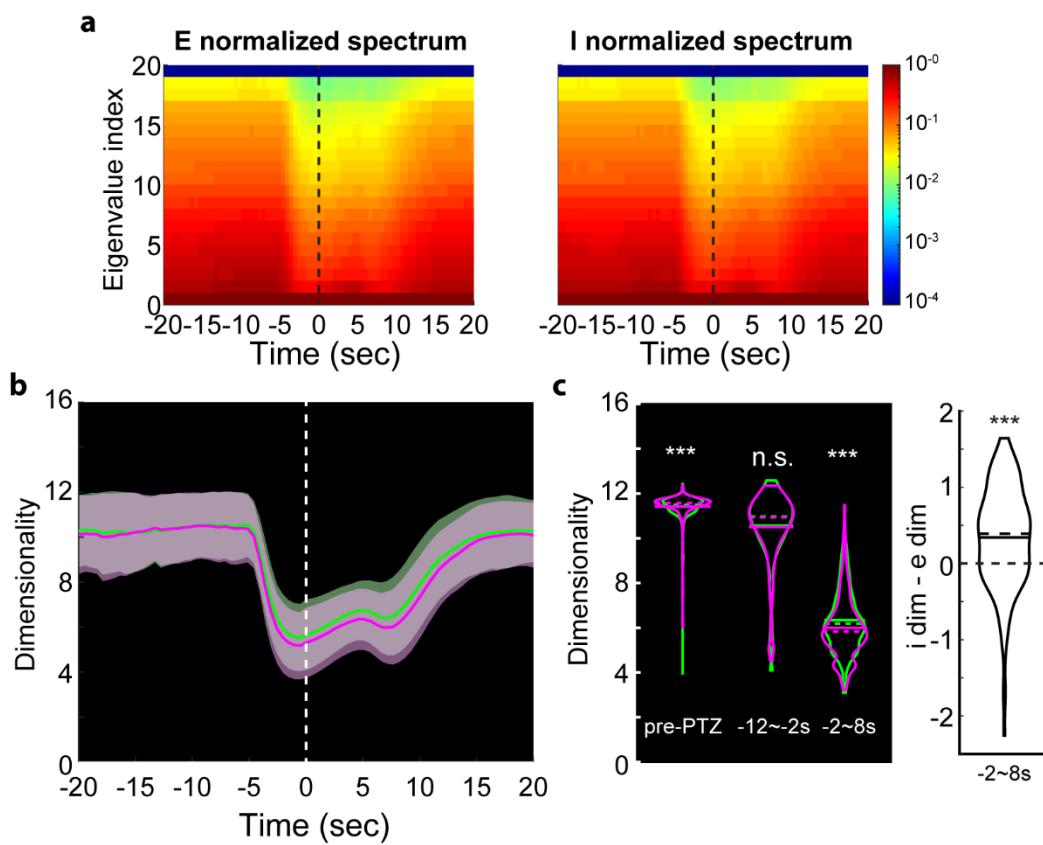
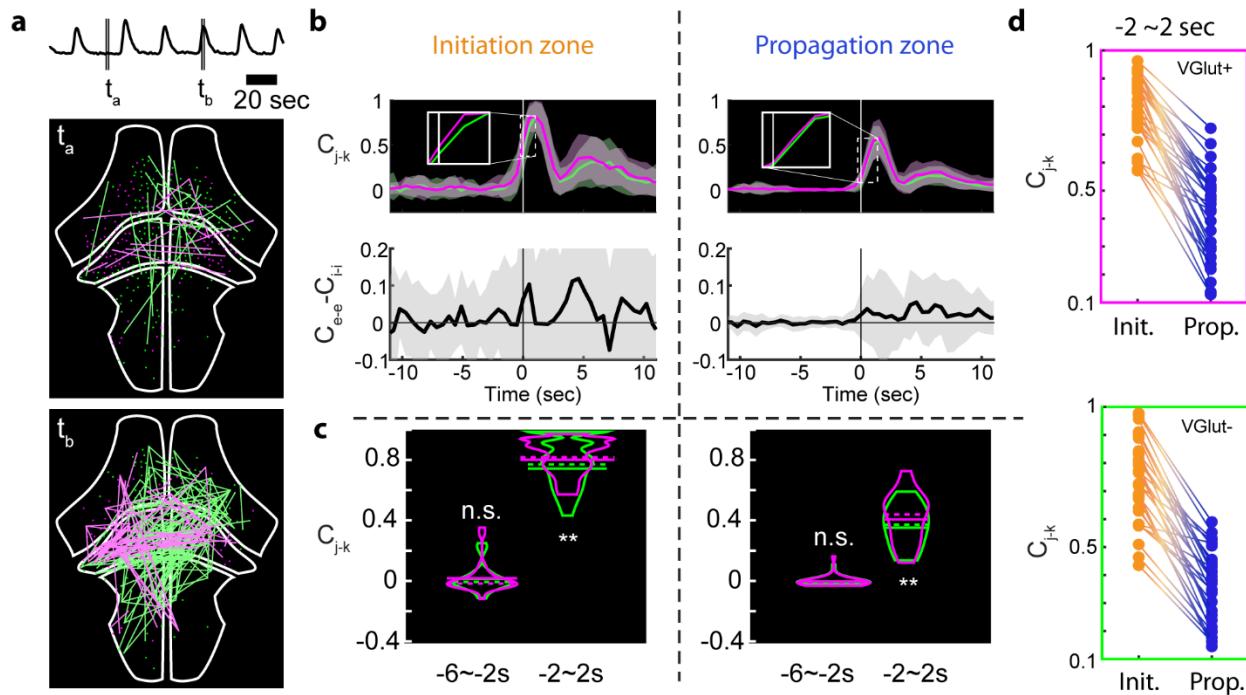

852
853

Figure 4. Ictal events preferentially initiate in excitatory cell-rich regions of the zebrafish brain.

(A) A sample fish image with E and I cells differentially labelled and its associated lag map and initiation zone for a single ictal event analyzed in this figure. (B) E:I index in initiation and propagation zones (i) and within-seizure E:I comparisons (ii). (C) Single cell locations in a seizure, split by initiation vs propagation zone location (i) and cell counts from initiation and propagation zones (ii). (D) E:I index of cells recruited to seizures in initiation and propagation zones (i) and within-seizure E:I index comparisons. (E) Individual cell activity traces (smoothed and interpolated for clarity) are shown for one ictal event. Color groups denote onset times from the earliest 50% (red) and latest 50% (blue) of onsets. Boxplots show distributions of onset times. (F) Left: sample excitatory and inhibitory cells from initiation zones; Right: their associated calcium

864 traces during this event. Detected onset times are plotted on traces. **(G)** Left: average number of
865 cells at onset across all ictal events grouped by initiation or propagation zone membership; Right:
866 the ratio of cells at onset (E:I) over time, normalized to by the number of inhibitory cells at onset.
867 **(H)** E:I ratio index calculated in initiation (orange) and propagation (blue) zones. All error bars
868 are mean +/- SEM.
869

870


871

872

873

Figure 5. Dimensionality of the excitatory and inhibitory cell population activities. (A) Left: Eigenspectrum of the excitatory population activity over 10 sec.-wide rolling window, normalized to the greatest eigenvalue per time point. Vertical line at time 0 is the ictal onset point. Right: same analysis done for inhibitory cell population. (B) Average trends of the dimensionality. Vertical line at time 0 is the average ictal onset point. Dimensionality over 10 sec moving window (magenta: e-e; green: i-i). (C) Left: Dimensionalities of i-i pairs and e-e pairs shown separately for pre-PTZ, -12~2 second and -2~8 second periods relative to the average ictal onset point. Right: differences in I-E dimensionalities at -2~8 seconds.

881

882
883
884 **Figure 6. Excitatory and inhibitory cell network correlations.** (A) Visualization of activity
885 correlations at the cross-section of the whole brain. Pairs with correlation values higher than 0.999
886 are shown. Top: average normalized fluorescence trace. Middle: correlations during interictal
887 period. Magenta: highly correlated e-e; Green: i-i. Bottom: correlations during ictal period. (B)
888 Average trends of interictal to ictal transition for the initiation and propagation zones. Top:
889 correlation metric calculated over 1.5 sec.-wide rolling window (magenta: e-e; green: i-i). Bottom:
890 difference of e-e and i-i correlations; (C) Correlation metric values of i-i pairs and e-e pairs shown
891 separately for -6~2 second and -2~2 second periods relative to the average ictal onset point. (D)
892 Within-seizure correlations of e-e cell pairs (top) and i-i cell pairs (bottom) between initiation and
893 propagation zones.
894

895
896

Supplementary Materials for

Seizures initiate in zones of relative hyperexcitation in a zebrafish epilepsy model

897

James E. Niemeyer¹, Poornima Gadamsetty¹, Chanwoo Chun², Sherika Sylvester², Jacob P. Lucas¹, Hongtao Ma^{1,3,*}, Theodore H. Schwartz^{1,3,*}, Emre Aksay^{2*}

898

899 *Corresponding author. Email: ema2004@med.cornell.edu

900

901

902

903

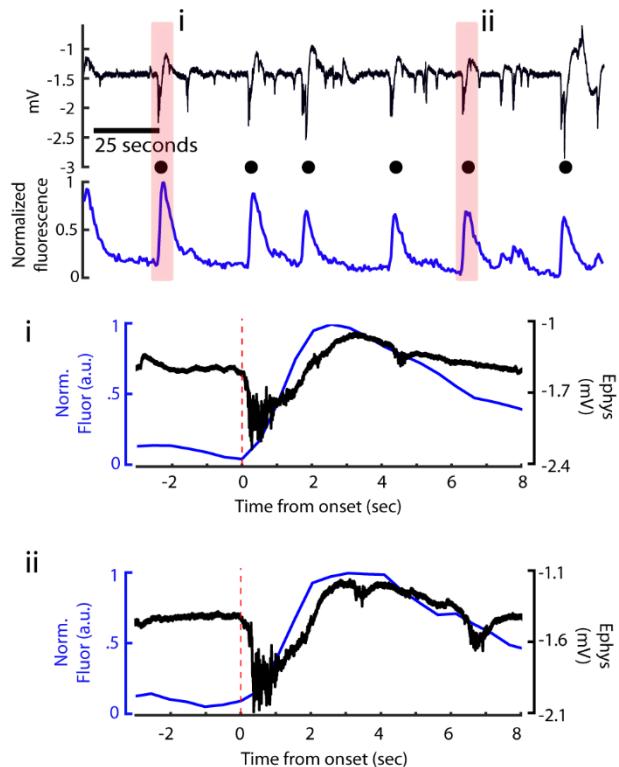
904

905 **This PDF file includes:**

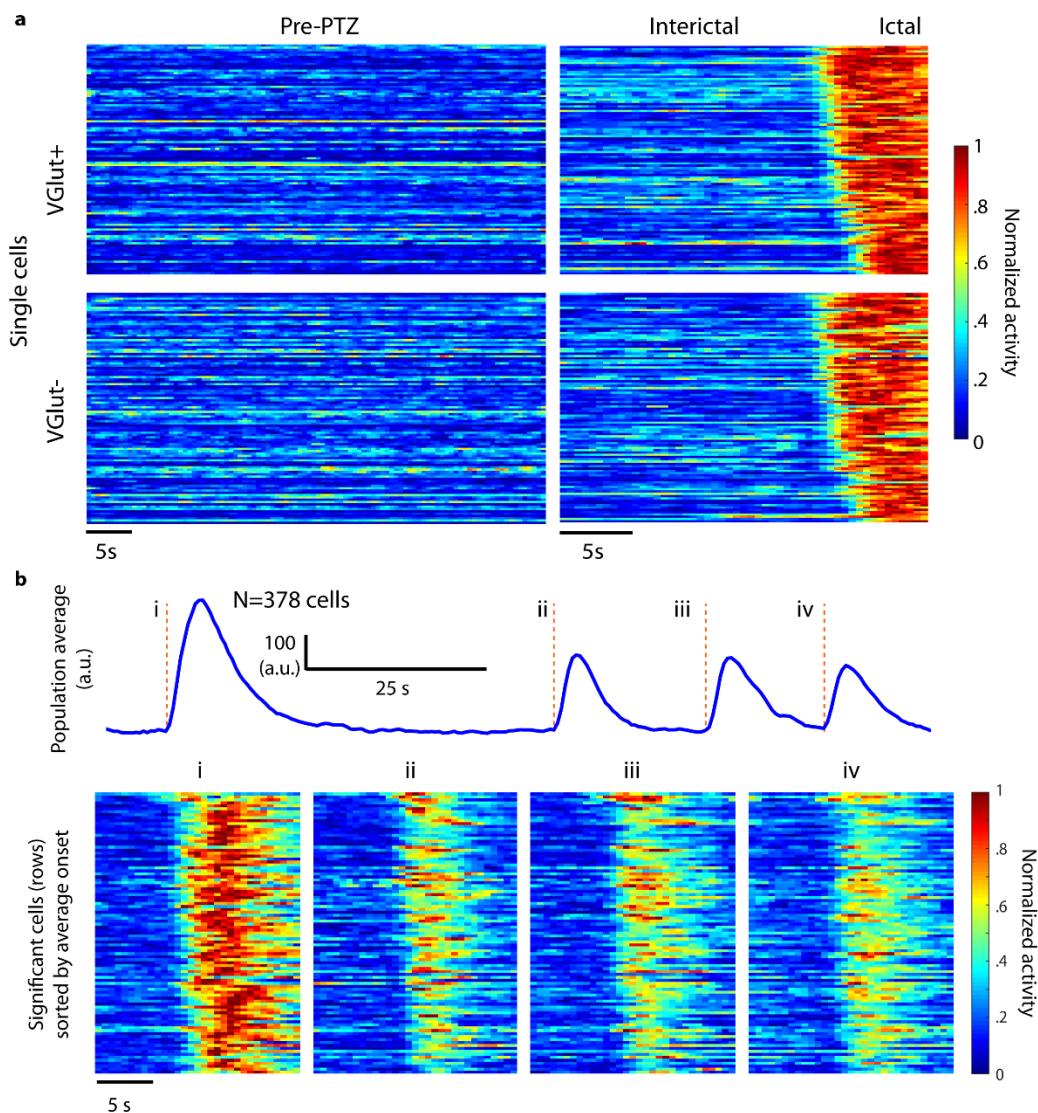
906

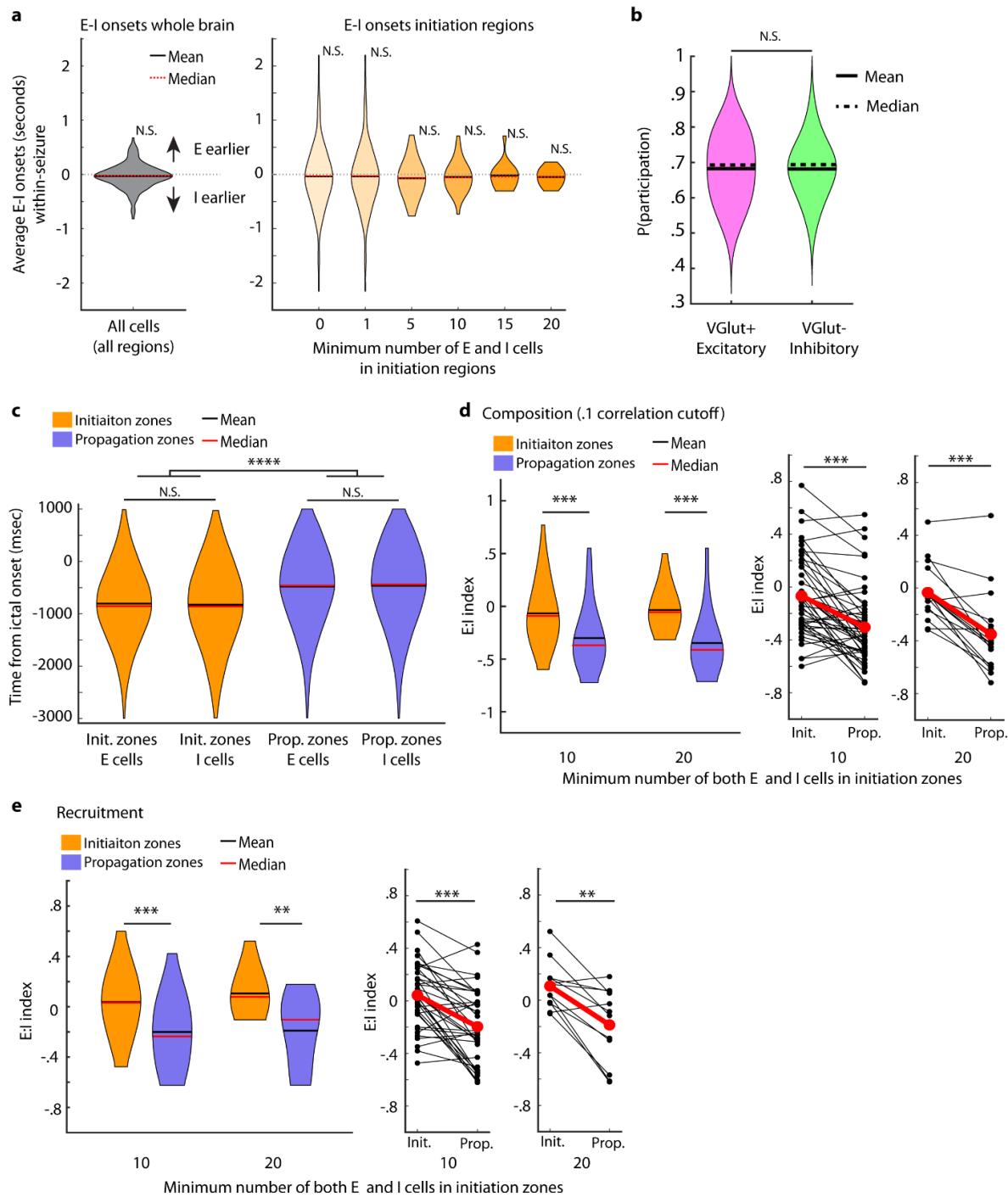
907 Figs. S1 to S4

908


909

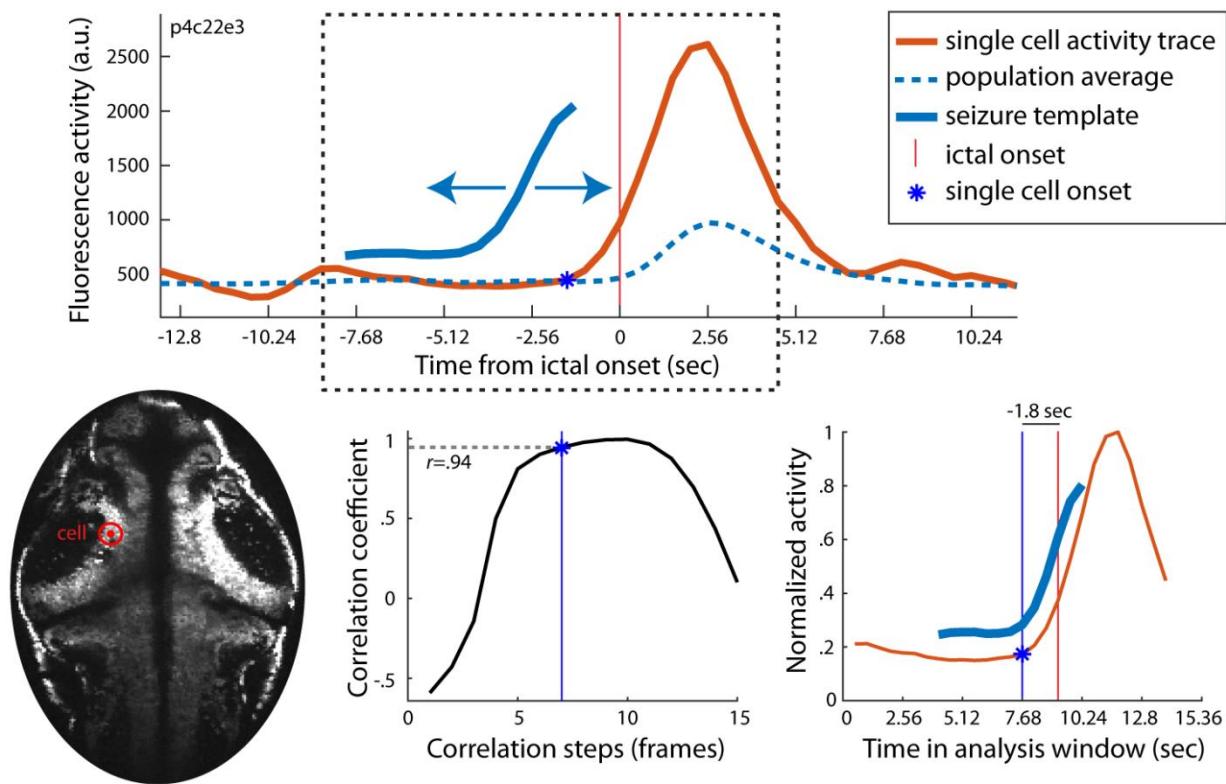
910


911


912

913
914

915
916
917 **Figure S1. Identical timing of ictal events in calcium and electrophysiological signals.** A sample
918 series of ictal events is shown from **Figure 1**, with two seizures highlighted (pink). The first event
919 is shown in higher temporal magnification (i), as well as the fifth event (ii). A 2 Hz notch filter
920 was applied to the electrophysiological signals in the bottom panels, and the calcium activity is
921 taken from the entire imaging frame. Our onset detection method was applied to all seizures (red
922 dashed line).
923


934

935

936
937
938
939
940
941
942

Figure S3. Associated with Figure 4 E:I and onset timing. (A) Left: the difference in average onset time between excitatory and inhibitory cell populations is shown (positive values indicate earlier excitatory cell onset) for whole brain Right: same analysis for initiation zones. Initiation zones are divided into varying sizes (All seven violins: N=167, N=167, N=101, N=62, N=36, N=18, N=12 ictal events; none were significant by $\alpha=0.05$, Wilcoxon signed-rank test). (B) Probability of participation was calculated across all E and I cells that participated in more than one seizure (N=40 data series with at least 2 seizures, 159 seizures total; N.S. $\alpha=0.05$, Wilcoxon

943 rank-sum test). **(C)** Recruitment times between E and I cell types (N=1264, N=1135, N=12143,
944 N=14992; N.S., $\alpha=.05$, Wilcoxon rank-sum test) and between initiation and propagation sites
945 (**** $p<.0001$, Wilcoxon signed-rank test). **(D)** Number of E and I cells detected in regions that
946 were determined to be initiation and propagation zones, regardless of whether these cells
947 participated in seizure events, shown across multiple size cutoffs (N=49, N=18, Wilcoxon signed-
948 rank test, *** $p<.001$). For all data (167 seizures), with no cell count cutoffs, E:I composition in
949 initiation regions was $-0.069 +/- 0.042$ (SEM), while E:I composition in propagation regions $-0.232 +/- 0.024$,
950 corresponding to a roughly 29% increase in E:I ratio in the initiation zone relative
951 to the propagation zone across all seizures. **(E)** Number of E and I cells recruited in initiation and
952 propagation zones shown across multiple size cutoffs (N=36, N=12, $p<.001$, Wilcoxon signed-
953 rank test, ** $p<.01$, *** $p<.001$). For all data (167 seizures), with no cell count cutoffs, E:I
954 recruitment in initiation regions was $0.034 +/- 0.043$ (SEM), while E:I recruitment in propagation
955 regions was $-0.162 +/- 0.022$, a significant difference corresponding to a roughly 40% increase in
956 E:I ratio in the initiation zone relative to the propagation zone across all seizures.
957

958
959 **Figure S4. Single cell onset detection.** Ictal events were detected from global (all cells) activity,
960 and a template of global activity was created around the peak second derivative of this trace. Top:
961 this template was slid along single cell activity traces to determine the estimated onset of the single
962 cell based on its correlation with the global template (see Methods). Bottom, left to right: the single
963 cell location in the fish, the correlation at each step of the analysis with the best fit location marked,
964 and the template aligned with the single cell onset estimate. This single cell's onset was ~1.8
965 seconds earlier than the population ictal onset.
966