

1 The protective effect of sickle cell haemoglobin against severe 2 malaria depends on parasite genotype

3 Gavin Band^{1,2}, Ellen M. Leffler^{2,3}, Muminatou Jallow⁴, Fatoumatta Sisay-Joof⁴,
4 Carolyne M. Ndila⁵, Alexander W. Macharia⁵, Christina Hubbart¹, Anna E. Jeffreys¹,
5 Kate Rowlands¹, Thuy Nguyen², Sonia M. Goncalves², Cristina V. Ariani², Jim
6 Stalker², Richard D. Pearson^{1,2}, Roberto Amato², Eleanor Drury², Giorgio Sirugo⁴,
7 Umberto D'Alessandro⁴, Kalifa A. Bojang⁴, Kevin Marsh^{5,6}, Norbert Peshu⁵, David J.
8 Conway^{4,7}, Thomas N. Williams^{5,8}, Kirk A. Rockett^{1,2}, Dominic P. Kwiatkowski^{1,2,8}

9
10 ¹ Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

11 ² Wellcome Sanger Institute, Hinxton, Cambridge, UK.

12 ³ Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330.

13 ⁴ Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard,
14 Fajara, The Gambia.

15 ⁵ KEMRI-Wellcome Trust Research Programme, CGMRC, PO Box 230-80108, Kenya

16 ⁶ Centre for Global Health Tropical Medicine, University of Oxford, Oxford, UK.

17 ⁷ London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.

18 ⁸ Department of Infectious Diseases, Imperial College Faculty of Medicine, London W21NY, United Kingdom

19 ⁹ MRC Centre for Genomics and Global Health, Big Data Institute, Old Road Campus, Oxford OX3 7LF, UK

20 Abstract

21 Host genetic factors can confer resistance against malaria, raising the question of
22 whether this has led to evolutionary adaptation of parasite populations. In this study
23 we investigated the correlation between host and parasite genetic variation in 4,171
24 Gambian and Kenya children ascertained with severe malaria due to *Plasmodium*
25 *falciparum*. We identified a strong association between sickle haemoglobin (HbS) in
26 the host and variation in three regions of the parasite genome, including
27 nonsynonymous variants in the acyl-CoA synthetase family member *PfACS8* on
28 chromosome 2, in a second region of chromosome 2, and in a region containing
29 structural variation on chromosome 11. The HbS-associated parasite alleles are in
30 strong linkage disequilibrium and have frequencies which covary with the frequency
31 of HbS across populations, in particular being much more common in Africa than
32 other parts of the world. The estimated protective effect of HbS against severe
33 malaria, as determined by comparison of cases with population controls, varies
34 greatly according to the parasite genotype at these three loci. These findings open up
35 a new avenue of enquiry into the biological and epidemiological significance of the
36 HbS-associated polymorphisms in the parasite genome, and the evolutionary forces
37 that have led to their high frequency and strong linkage disequilibrium in African *P.*
38 *falciparum* populations.

40 **Main text**

41 Malaria can be viewed as an evolutionary arms race between the host and parasite
42 populations. Human populations in Africa have acquired a high frequency of sickle
43 haemoglobin (HbS) and other erythrocyte polymorphisms that provide protection
44 against the severe symptoms of *Plasmodium falciparum*^{1,2} infection, while *P.*
45 *falciparum* populations have evolved a complex repertoire of genetic variation to
46 evade the human immune system and to resist antimalarial drugs^{3,4}. This raises the
47 basic question: are there genetic forms of *P. falciparum* that can overcome the human
48 variants that confer resistance to this parasite?

49

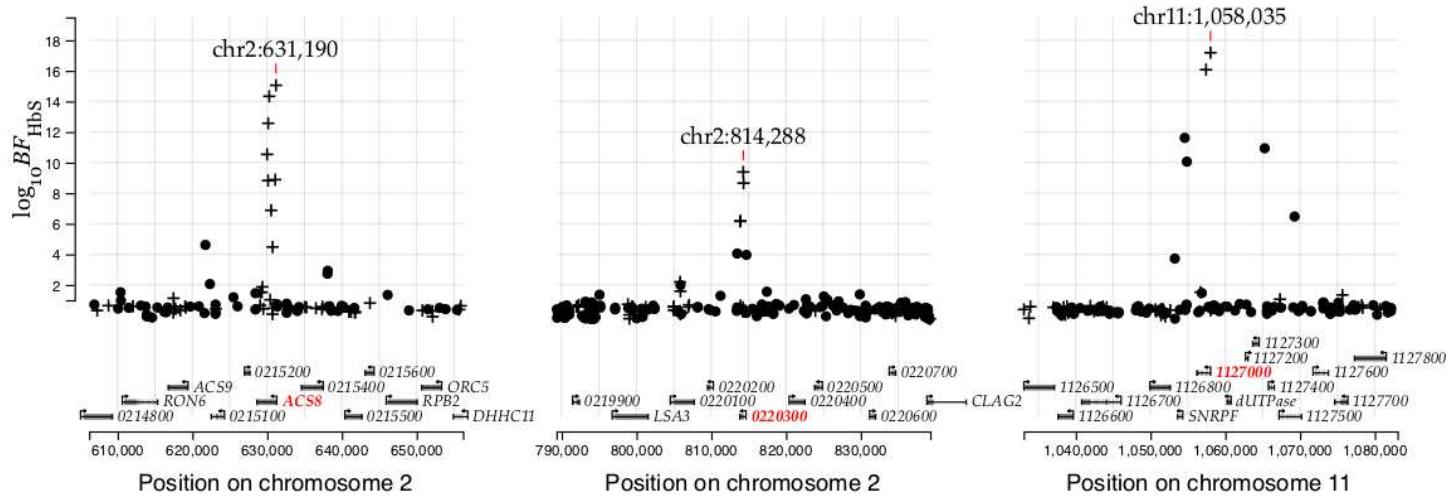
50 To address this question, we analysed both host and parasite genome variation in
51 samples from 5,096 Gambian and Kenyan children with severe malaria due to *P.*
52 *falciparum* (**Supplementary Figure 1-2** and **Methods**). All of the samples were
53 collected over the period 1995-2009 as part of a genome-wide association study
54 (GWAS) of human resistance to severe malaria that has been reported elsewhere^{2,5,6}.
55 In brief, we sequenced the *P. falciparum* genome using the Illumina X Ten platform
56 using two approaches based on sequencing whole DNA and selective whole genome
57 amplification⁷. We used an established pipeline⁸ to identify and call genotypes at
58 over 2 million single nucleotide polymorphisms (SNPs) and short insertion/deletion
59 variants across the Pf genome in these samples (**Methods**). The following analysis is
60 based on 4,171 samples that had high quality data for both parasite and human
61 genotypes and were not closely related, of which a subset of 3,346 had human
62 genome-wide genotyping available. We focussed on a set of 51,225 biallelic variants
63 in the *P. falciparum* genome that passed all quality control filters and were observed in
64 at least 25 infections in this subset. Our analyses exclude mixed genotype calls that
65 arise in malaria when a host is infected with multiple parasite lineages. Full details of
66 our sequencing and data processing can be found in **Supplementary Methods**.

67

68 We used a logistic regression approach to test for pairwise association between these
69 *P. falciparum* variants and human variants selected according to four criteria: i.
70 known autosomal protective mutations, including HbS (within *HBB*), the common
71 mutation that determines O blood group (within *ABO*), regulatory variation associated
72 with protection at *ATP2B4*^{2,5,9} and the structural variant DUP4, which encodes the

73 Dantu blood group phenotype¹⁰; ii. variants that showed suggestive but not
74 conclusive evidence of association with severe malaria in our previous GWAS⁵; iii.
75 HLA alleles and additional glycophorin structural variants that we previously imputed
76 in these samples; and iv. variants near genes that encode human blood group antigens,
77 which we tested against the subset of *P.falciparum* variants lying near genes which
78 encode proteins important for the merozoite stage^{11,12}, as these might conceivably
79 interact during host cell invasion by the parasite. Although several factors could
80 confound this analysis in principle – notably, if there were incidental association
81 between human and parasite population structure – the distribution of test statistics
82 suggested that our test was not affected by systematic confounding after including
83 only an indicator of country as a covariate (**Supplementary Figure 3**), and we used
84 this approach for our main analysis. A full list of results is summarised in

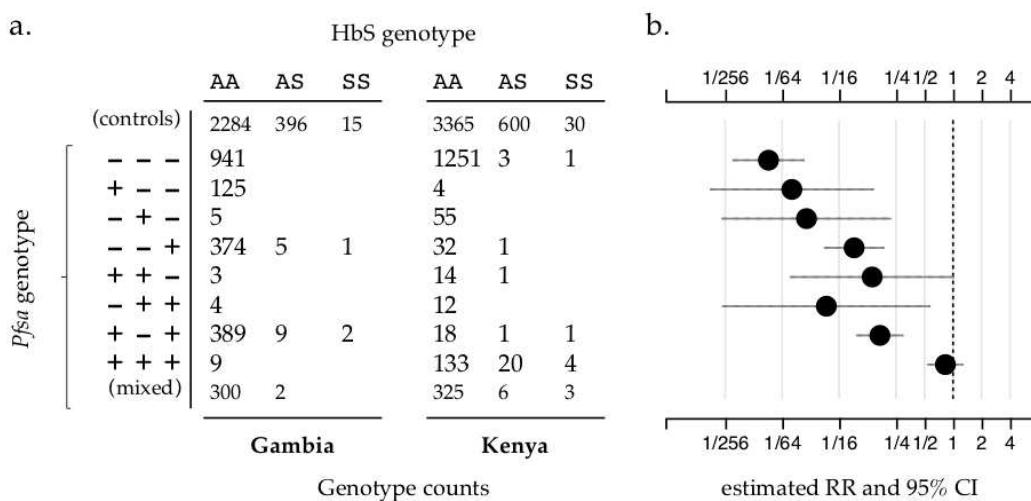
85 **Supplementary Figure 4 and Supplementary Table 1.**


86

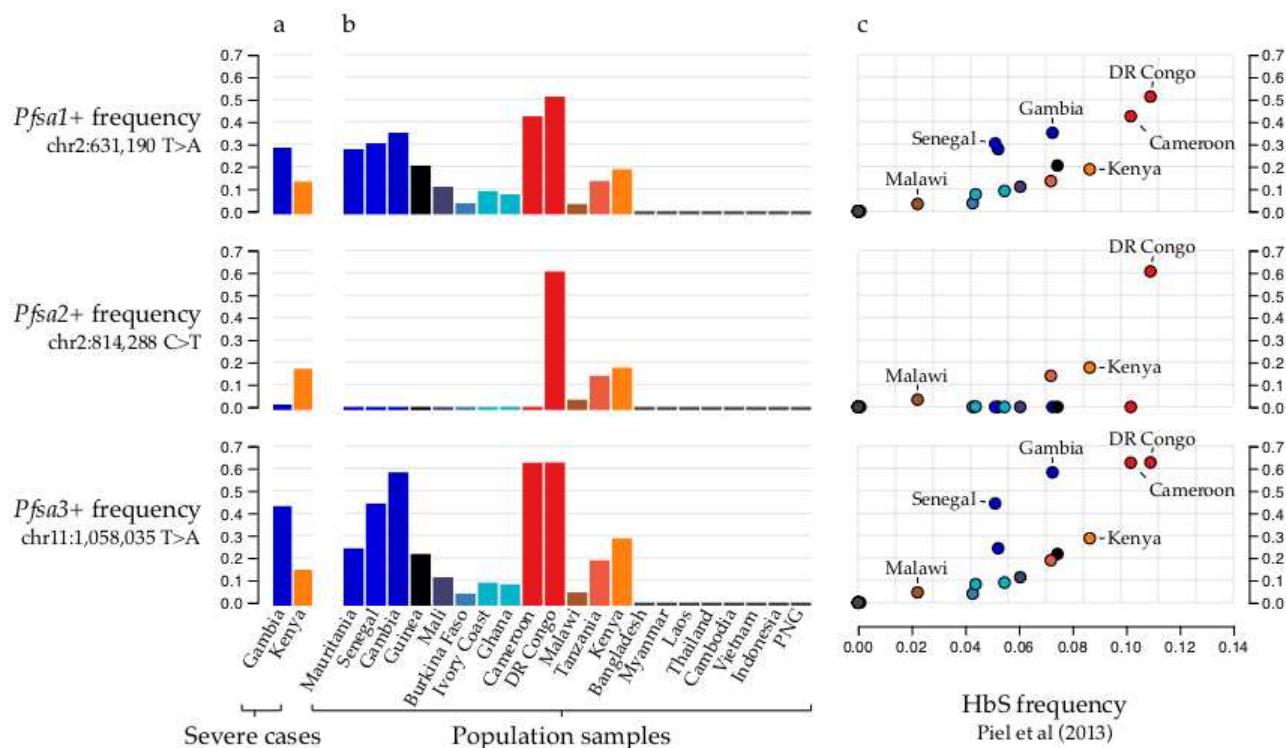
87 The most striking finding to arise from this joint analysis of host and parasite
88 variation was a strong association between the sickle haemoglobin allele HbS and
89 three separate regions in the *P. falciparum* genome (**Supplementary Figure 4 and**
90 **Figure 1**). Additional associations with marginal levels of evidence were observed at
91 a number of other loci, including a potential association between *GCNT1* in the host
92 and *PfMSP4* in the parasite and associations involving HLA alleles (detailed in
93 **Supplementary Methods and Supplementary Table 1**), but here we focus on the
94 association with HbS.

95

96 The statistical evidence for association at the HbS-associated loci can be described as
97 follows, focussing on the variant with the strongest association in each region and
98 assuming an additive model of effect of the host allele on parasite genotype
99 (**Supplementary Table 1**). The chr2: 631,190 T>A variant, which lies in *PfACS8*,
100 was associated with HbS with Bayes factor (BF_{HbS}) = 1.1×10^{15} (computed under a
101 log-F(2,2) prior; **Methods**) and $P = 4.8 \times 10^{-13}$ (computed using a Wald test;
102 **Supplementary Methods**). At a second region on chromosome 2, the chr2: 814,288
103 C>T variant, which lies in *Pf3D7_0220300*, was associated with $BF_{HbS} = 2.4 \times 10^9$
104 and $P = 1.6 \times 10^{-10}$. At the chromosome 11 locus, the chr11: 1,058,035 T>A variant,
105 which lies in *Pf3D7_1127000*, was associated with $BF_{HbS} = 1.5 \times 10^{17}$ and $P = 7.3 \times 10^{-12}$.
106 For brevity we shall refer to these HbS-associated loci as *Pfsa1*, *Pfsa2* and *Pfsa3*


107 respectively, and we shall use + and – signs to refer to the alleles that are positively
108 and negatively correlated with HbS, e.g. *Pfsa1*+ is the allele that is positively
109 correlated with HbS at the *Pfsa1* locus. All three of the lead variants are
110 nonsynonymous mutations of their respective genes, as are additional associated
111 variants in these regions (**Figure 1** and **Supplementary Table 1**).

112 **Figure 1: Evidence for association with HbS in three regions of the *Pf* genome.** Points show
113 evidence for association with HbS (\log_{10} Bayes Factor for test in $N=3,346$ samples, y axis) for
114 variants in the *Pfsa1*, *Pfsa2* and *Pfsa3* regions of the *Pf* genome (panels). Variants which alter
115 protein coding sequence are denoted by plusses, while other variants are denoted by circles.
116 Results are computed by logistic regression including an indicator of country as a covariate and
117 assuming an additive model of association, with HbS genotypes based on imputation from
118 genome-wide genotypes as previously described⁵; mixed and missing *Pf* genotype calls were
119 excluded from the computation. A corresponding plot using directly-typed HbS genotypes can be
120 found in **Supplementary Figure 5**. The variant with the strongest association in each region is
121 annotated and the panels show regions of length 50kb centred at this variant. Below, regional
122 genes are annotated, with gene symbols given where the gene has an ascribed name in the
123 PlasmoDB annotation (after removing 'PF3D7_' from the name where relevant); the three genes
124 containing the most-associated variants are shown in red.
125

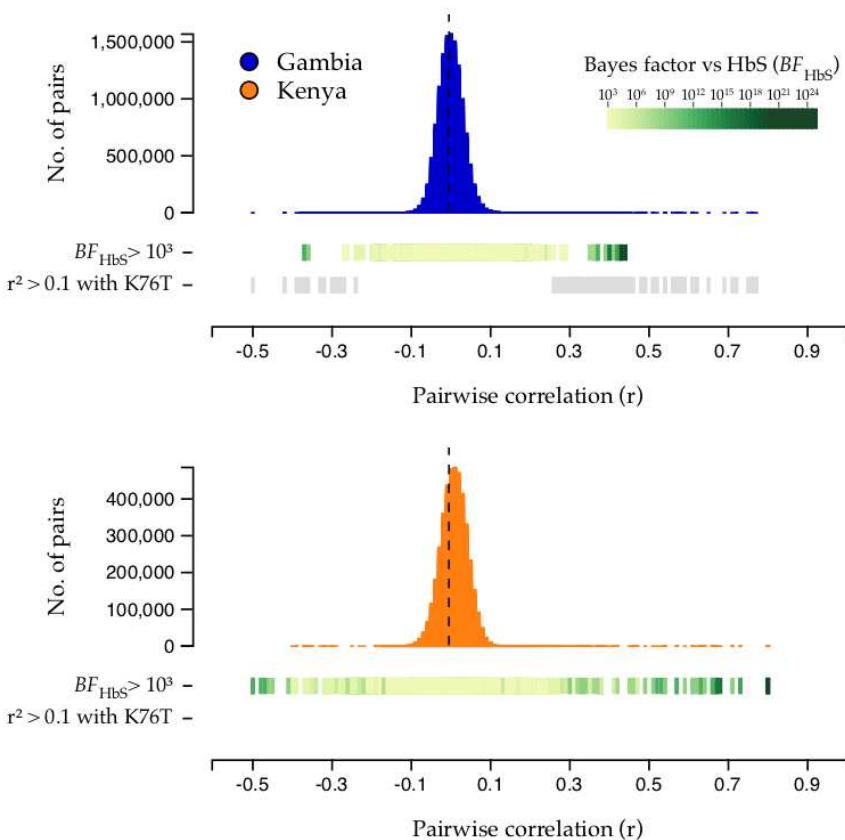

126 We attempted to replicate this finding in a separate set of 825 samples in which the
127 HbS genotypes have previously been assayed² (**Supplementary Table 2**). The *Pfsa3*
128 association replicated at nominal levels of evidence in the smaller Gambian sample
129 (one-tailed $P = 0.026$), and all three loci replicated convincingly in the larger set of
130 samples from Kenya ($P < 0.001$). Across the full dataset of 4,071 samples there is
131 thus very strong evidence of association with HbS at all three loci ($BF_{HbS} = 4.7 \times 10^{20}$)
132 for *Pfsa1*, 3.3×10^{12} for *Pfsa2*, and 2.5×10^{24} for *Pfsa3*; **Supplementary Figure 5**) with
133 corresponding large effect size estimates (estimated odds ratio (OR) = 11.8 for
134 *Pfsa1*+, 7.4 for *Pfsa2*+ and 21.7 for *Pfsa3*+). As described above, these estimates
135 assume an additive relationship between HbS and the *Pf* genotype at each locus, but

136 we also noted that genotype counts are most consistent with an overdominance effect
137 (**Supplementary Figure 6**). We further examined the effect of adjusting for
138 covariates including human and parasite principal components reflecting population
139 structure, year of sampling, clinical type of severe malaria and technical features
140 related to sequencing (**Supplementary Figure 7**). Inclusion of these covariates did
141 not substantially affect results with one exception: we found that parasite principal
142 components (PCs) computed across the whole *P.falciparum* genome in Kenya
143 included components that correlated with the *Pfsa* loci, and including these PCs
144 reduced the association signal. Altering the PCs by removing the *Pfsa* regions
145 restored the association, indicating that this is not due to a general population
146 structure effect that is reflected in genotypes across the *P.falciparum* genome, and we
147 further discuss the reasons for this finding below. Taken together, these data appear to
148 indicate genuine differences in the distribution of parasite genotypes between severe
149 infections of HbS- and non-HbS genotype individuals.

150 **Figure 2: The estimated relative risk for HbS varies by *Pfsa* genotype.** Panel a) shows the
151 count of severe malaria cases from The Gambia and Kenya with given HbS genotype (columns;
152 using $N = 4,071$ samples with directly-typed HbS genotype) and carrying the given alleles at the
153 *Pfsa1*, 2, and 3 loci (rows). *Pfsa* alleles are indicated by + for the allele positively associated with
154 HbS and - for the negatively associated allele at each locus. Samples with mixed *P.falciparum*
155 genotype calls for at least one of the loci are shown in the last row and further detailed in
156 **Supplementary Figure 8**. The first row indicates counts of HbS genotypes in population control
157 samples from the same populations⁵. Panel b) shows the estimated relative risk of HbS on severe
158 malaria with the given *Pfsa* genotypes (rows) using the data in panel a). Relative risks were
159 estimated using a multinomial logistic regression model with controls as the baseline outcome and
160 assuming complete dominance (i.e. that HbAS and HbSS genotypes have the same association
161 with parasite genotype) as described in **Supplementary Methods**. An indicator of country was
162 included as a covariate. To reduce overfitting we used Stan¹³ to fit the model assuming a mild
163 regularising Gaussian prior with mean zero and standard deviation of 2 on the log-odds scale (i.e.
164 with 95% of mass between 1/50 and 50 on the relative risk scale) for each parameter, and between-
165 parameter correlations set to 0.5. Solid horizontal lines denote the corresponding 95% credible
166 intervals.

167 The level of protection afforded by HbS can be estimated by comparing its frequency
168 between severe malaria cases and population controls. As shown in **Figure 2**, the vast
169 majority of children with HbS genotype in our data were infected with parasites that
170 carry *Pfsa*+ alleles. Corresponding to this, our data show little evidence of a
171 protective effect of HbS against severe malaria with parasites of *Pfsa1*+, *Pfsa2*+,
172 *Pfsa3*+ genotype (estimated relative risk (*RR*) = 0.83, 95% CI = 0.53-1.30). In
173 contrast, HbS is strongly associated with reduced risk of disease caused by parasites
174 of *Pfsa1*-, *Pfsa2*-, *Pfsa3*- genotype (*RR* = 0.01, 95% CI = 0.007-0.03). These
175 estimates should be interpreted with caution because they are based on just 49 cases
176 of severe malaria that had an HbS genotype, because many of these samples were
177 included in the initial discovery dataset, and because there is some variation evident
178 between populations; however it can be concluded that the protective effect of HbS is
179 dependent on parasite genotype at the *Pfsa* loci.

180 **Figure 3: The relationship between *Pfsa* and HbS allele frequencies across populations.** a)
181 bars show the estimated frequency (y axis) of each *Pfsa*+ allele (rows) in severe malaria cases
182 from each country (x axis and colours). Details of allele frequencies and sample counts across
183 years of ascertainment can be found in **Supplementary Figure 9**. b) bars show the estimated
184 frequency (y axis, as in panel a) of each *Pfsa*+ allele in worldwide populations from the
185 MalariaGEN Pf6 resource, which contains samples collected in the period 2008-2015⁸. Only
186 countries with at least 50 samples are shown (this excludes Columbia, Peru, Benin, Niger, Ethiopia,
187 Madagascar, Uganda, and Bangladesh). c) Points show *Pfsa*+ allele frequency (y axis,
188 as in panel a and b) against HbS allele frequency (x axis) in populations from MalariaGEN Pf6
189 (coloured as in panel b; selected populations are also labelled). HbS allele frequencies are
190 computed from frequency estimates previously published by the Malaria Atlas Project¹⁴ by taking


191 a weighted average over sampling sites within each country in MalariaGEN Pf6. All *Pfsa* allele
192 frequencies were estimated after excluding mixed or missing genotype calls.
193

194 The *Pfsa1+*, *Pfsa2+* and *Pfsa3+* alleles had similar frequencies in Kenya
195 (approximately 10-20%) whereas in Gambia *Pfsa2+* had a much lower allele
196 frequency than *Pfsa1+* or *Pfsa3+* (< 3% in all years studied, versus 25-60% for the
197 *Pfsa1+* or *Pfsa3+* alleles; **Figure 3a and Supplementary Figure 9**). To explore the
198 population genetic features of these loci in more detail, we analysed the MalariaGEN
199 Pf6 open resource which gives *P. falciparum* genome variation data for 7,000
200 worldwide samples ⁸ (**Figure 3b**). This showed considerable variation in the
201 frequency of these alleles across Africa, the maximum observed value being 61% for
202 *Pfsa3+* in the Democratic Republic of Congo, and indicated that these alleles are rare
203 outside Africa. Moreover, we found that within Africa, population frequencies of the
204 *Pfsa+* alleles are strongly correlated with the frequency of HbS (**Figure 3c**, estimated
205 using data from the Malaria Atlas Project ¹⁴).
206

207 This analysis also revealed a further feature of the *Pfsa+* alleles: although *Pfsa1* and
208 *Pfsa2* are separated by 180kb, and the *Pfsa3* locus is on a different chromosome, they
209 are in strong linkage disequilibrium (LD). This can be seen from the co-occurrence of
210 these alleles in severe cases (**Figure 2**), and from the fact that they covary over time
211 in our sample (**Supplementary Figure 9**) and geographically across populations
212 (**Figure 3b**). To investigate this we computed LD metrics between the *Pfsa+* alleles
213 in each population (**Supplementary Table 3**) after excluding HbS-carrying
214 individuals to avoid confounding with the association outlined above. *Pfsa1+* and
215 *Pfsa2+* were strongly correlated in Kenyan severe cases ($r = 0.75$) and *Pfsa1+* and
216 *Pfsa3+* were strongly correlated in both populations ($r = 0.80$ in Kenya; $r = 0.43$ in
217 severe cases from The Gambia). This high LD was also observed in multiple
218 populations in MalariaGEN Pf6 (e.g. $r = 0.20$ between *Pfsa1+* and *Pfsa3+* in The
219 Gambia; $r = 0.71$ in Kenya; $r > 0.5$ in all other African populations surveyed;
220 **Supplementary Table 3**), showing that the LD is not purely an artifact of our severe
221 malaria sample.
222

223 This observation of strong correlation between alleles at distant loci is unexpected,
224 because the *P. falciparum* genome undergoes recombination in the mosquito vector
225 and typically shows very low levels of LD in malaria endemic regions ¹⁵⁻¹⁷. To

226 confirm that this is unusual, we compared LD between the *Pfsa* loci to the distribution
227 computed from all common biallelic variants on different chromosomes (**Figure 4**
228 and **Table 1**). In Kenyan samples, the *Pfsa* loci have the highest between-
229 chromosome LD of any pair of variants in the genome. In Gambia, between-
230 chromosome LD at these SNPs is also extreme, but another pair of extensive regions
231 on chromosomes 6 and 7 also show strong LD (**Table 1**). These regions contain the
232 chloroquine resistance-linked genes *pfCRT* and *pfAAT1*^{18,19} and contain long
233 stretches of DNA sharing identical by descent (IBD) consistent with positive selection
234 of antimalarial-resistant haplotypes²⁰. Moreover, we noted that these signals are
235 among a larger set of HbS-associated and drug-resistance loci that appear to have
236 elevated between-chromosome LD in these data (**Supplementary Table 4**).

237
238 **Figure 4: HbS-associated variants show extreme between-chromosome correlation in severe**
239 ***P.falciparum* infections.** Histograms show the distribution of genotype correlation (r) between
240 variants on different *Pf* chromosomes in The Gambia (top panel; blue) and Kenya (bottom panel;
241 orange). To avoid capturing effects of the HbS association, correlation values are computed after
242 excluding HbS-carrying individuals. Correlation for each pair of variants is computed after
243 excluding samples with mixed genotype calls, across all biallelic variants with estimated minor
244 allele frequency at least 5% and at least 75% of samples having non-missing and non-mixed
245 genotype call. Coloured bars indicate the evidence for association with HbS (BF_{HbS}) for variants
246 in each comparison (shown for variants with $BF_{HbS} > 1,000$; colour reflects the minimum BF_{HbS}
247 across the two variants in the pair as shown in the legend). Grey bars indicate variants having r^2
248 > 0.1 with the *PfCRT* K76T mutation; as shown, no such variants were observed in Kenya.

Country	First region					Second region					Linkage disequilibrium	
	Region boundaries	Lead variant	Region / Gene	Allele frequency	BF_{HbS}	Region boundaries	Lead variant	Region / Gene	Allele frequency	BF_{HbS}	N	R
Gambia	chr6 1,174,040- 1,293,328	chr6 1,215,233 G > A	<i>PfAAT1</i>	80%	4.7	chr7 361,356- 481,853	chr7 403,618 A > AT	<i>PfCRT</i>	74%	68	1,967	0.77
Gambia	chr2 621,756- 640,163	chr2 631,092 T > C	<i>Pfsa1</i> (<i>PfACS8</i>)	28%	5.8×10^{12}	chr11 1,053,258- 1,065,275	chr11 1,057,437 T > C	<i>Pfsa3</i> (1127000)	46%	8.7×10^{21}	1,881	0.44
Kenya	chr2 621,756- 631,190	chr2 629,996 C > A	<i>Pfsa1</i> (<i>PfACS8</i>)	12%	2.4×10^{15}	chr11 1,053,258- 1,069,278	chr11 1,058,035 T > A	<i>Pfsa3</i> (1127000)	13%	2.5×10^{24}	1,625	0.81
Kenya	chr2 805,840- 825,357	chr2 814,329 A > G	<i>Pfsa2</i> (0220300)	16%	2.2×10^{12}	chr11 1,053,258- 1,065,275	chr11 1,057,437 T > C	<i>Pfsa3</i> (1127000)	14%	8.7×10^{21}	1,557	0.67

Table 1: Regions of highest correlation between *P.falciparum* chromosomes. Table shows all pairs of regions on different chromosomes containing pairs of SNPs with allele frequency at least 5% and squared correlation > 0.25 in each population. Region boundaries are defined to include all nearby pairs of correlated variants in either population with minor allele frequency $\geq 5\%$ and $r^2 > 0.05$, such that no other such pair of variants within 10kb of the given region boundaries is present. For each region in the pair, columns show the region boundaries, the lead variant, the region and/or gene containing the lead variant, the allele frequency, and the BF for association with HbS across populations. The rightmost columns give the sample size for the pairwise comparison after treating mixed genotype calls as missing, and the computed correlation. A longer list of regions showing between-chromosome LD can be found in **Supplementary Table 4**.

249 Taking together these new findings with other population genetic evidence from
250 multiple locations across Africa, including observations of frequency differentiation
251 within and across *P.falciparum* populations^{17,21,22} and other metrics at these loci
252 indicative of selection^{20,23,24}, it appears likely that the allele frequencies and strong
253 linkage disequilibrium between *Pfsa1*, *Pfsa2* and *Pfsa3* are maintained by natural
254 selection. However, the mechanism for this is unclear. Given our findings, an
255 obvious hypothesis is that the *Pfsa1*+, *Pfsa2*+ and *Pfsa3*+ alleles are positively
256 selected in hosts with HbS, but since the frequency of HbS carriers is typically <20%
257^{2,14} it is not clear whether this alone is a sufficient explanation to account for the high
258 population frequencies or the strong LD observed in non-HbS carriers. Thus it
259 remains entirely possible that there are other selective factors involved, such as
260 epistatic interactions between these loci, or effects on fitness in the host or vector in
261 addition to those observed here in relation to HbS.

262
263 The biological function of these parasite loci is a matter of considerable interest for
264 future investigation. At the *Pfsa1* locus, the signal of association includes non-
265 synonymous changes in the *PfACS8* gene, which encodes an acyl-CoA-synthetase²⁵.
266 It belongs to a gene family that has expanded in the Laverania relative to other
267 *Plasmodium* species²⁶, and lies close to a paralog *PfACS9* on chromosome 2. The
268 function of genes at the *Pfsa2* and *Pfsa3* loci are less well characterized. We analysed
269 available genome assemblies of *P. falciparum* isolates²⁷ and found evidence that
270 *Pfsa3*+ is linked to a neighbouring copy number variant that includes duplication of
271 the small nuclear ribonucleoprotein *SNRPF* (**Supplementary Figure 10**).

272 Understanding the functional role of these loci could provide important clues into
273 how HbS protects against malaria and help to distinguish between the various
274 proposed mechanisms including: enhanced macrophage clearance of infected
275 erythrocytes²⁸, inhibition of intraerythrocytic growth dependent on oxygen levels²⁹,
276 altered cytoadherence of infected erythrocytes³⁰ due to cytoskeleton remodelling³¹
277 and immune-mediated mechanisms³².

278
279 A fundamental question in the biology of host-parasite interactions is whether the
280 genetic makeup of parasites within an infection is determined by the genotype of the
281 host. While there is some previous evidence of this in malaria, e.g. allelic variants of
282 the *PfCSP* gene have been associated with HLA type³³ and HbS has itself previously

283 been associated with MSP-1 alleles³⁴, the present findings provide the clearest
284 evidence to date of an interaction between genetic variants in the parasite and the
285 host. Our central discovery is that, among African children with severe malaria, there
286 is a strong association between HbS in the host and three loci in different regions of
287 the parasite genome. Based on estimation of relative risk, HbS has no apparent
288 protective effect against severe malaria in the presence of the *Pfsa1*+, *Pfsa2*+ and
289 *Pfsa3*+ alleles. These alleles, which are much more common in Africa than
290 elsewhere, are positively correlated with HbS allele frequencies across populations.
291 However, they are found in substantial numbers of individuals without HbS as well,
292 reaching up to 60% allele frequency in some populations. The *Pfsa1*, *Pfsa2* and
293 *Pfsa3* loci also show remarkably high levels of long-range between-locus linkage
294 disequilibrium relative to other loci in the *P. falciparum* genome, which is equally
295 difficult to explain without postulating ongoing evolutionary selection. While it
296 seems clear that HbS plays a key role in this selective process, there is a need for
297 further population surveys (including asymptomatic and uncomplicated cases of
298 malaria) to gain a more detailed understanding of the genetic interaction between HbS
299 and these parasite loci, and how this affects the overall protective effect of HbS
300 against severe malaria.

301

302 **Methods**

303 **Ethics and consent**

304 Sample collection and design of our case-control study⁵ was approved by Oxford University Tropical Research Ethics committee
305 (OXTREC), Oxford, United Kingdom (OXTREC 020-006). Local approving bodies were the MRC/Gambia Government Ethics
306 Committee (SCC 1029v2 and SCC670/630) and the KEMRI Research Ethics Committee (SCC1192).

307

308 **Building a combined dataset of human and *P.falciparum* genotypes in severe cases**

309 We used Illumina sequencing to generate two datasets jointly reflecting human and *P.falciparum* (*Pf*) genetic variation, using a
310 sample of severe malaria cases from The Gambia and Kenya for which human genotypes have previously been reported^{2,5}. A
311 full description of our sequencing and data processing is given in **Supplementary Methods** and summarized in **Supplementary**
312 **Figure 1**. In brief, following a process of sequence data quality control and merging across platforms, we generated i. a dataset
313 of microarray and imputed human genotypes, and genome-wide *P.falciparum* genotypes, in 3,346 individuals previously
314 identified as without close relationships⁵; and ii. a dataset of HbS genotypes directly typed on the Sequenom iPLEX Mass-Array
315 platform (Agena Biosciences)², and genome-wide *P.falciparum* genotypes, in 4,071 individuals without close relationships⁵.
316 Parasite DNA was sequenced from whole DNA in samples with high parasitaemia, and using SWGA to amplify *Pf* DNA in all
317 samples. *Pf* genotypes were called using an established pipeline¹⁷ based on GATK, which calls single nucleotide polymorphisms
318 and short insertion/deletion variants relative to the Pf3D7 reference sequence. This pipeline deals with mixed infections by
319 calling parasite variants as if the samples were diploid; in practice this means that variants with substantial numbers of reads
320 covering reference and alternate alleles are called as heterozygous genotypes.
321

322 For the analyses presented in main text, we used the 3,346 samples with imputed human genotypes for our initial discovery
323 analysis, and the 4,071 individuals with directly-typed HbS genotypes for all other analysis. The individuals in these two datasets
324 substantially overlap (**Supplementary Figure 1**), but a subset of 825 individuals have directly-typed for HbS but were not in the
325 discovery data and we used these for replication.

326

327 **Inference of genetic interaction from severe malaria cases**

328 To describe our approach, we first consider a simplified model of infection in which parasites have a single definite (measurable)
329 genotype, acquired at time of biting, that is relevant to disease outcome - i.e. we neglect any effects of within-host mutation, co-
330 and super-infection at the relevant genetic variants. We consider the population of individuals who are susceptible to being bitten
331 by an infected mosquito, denoted A . A subset of infections go on to cause severe disease which we denote by D . Among
332 individuals in A who are bitten and infected with a particular parasite type $I = y$, the association of a human allele $E = e$ with
333 disease outcome can be measured by the relative risk,

334

$$(1) \quad RR_{E=e;I=y} = \frac{P(D|E=e, I=y, A)}{P(D|E=0, I=y, A)}$$

335

336 where we have used $E = 0$ to denote a chosen baseline human genotype against which risks are measured. If the strength of
337 association further varies between parasite types then these relative risks will vary, such that the ratio of relative risks will differ
338 from 1:

339

$$(2) \quad RRR_{E=e,I=y} = \frac{RR_{E=e,I=y}}{RR_{E=e,I=0}} \neq 1$$

340

341 where we have used $I = 0$ to denote a chosen baseline parasite genotype. If the host genotype e confers protection against severe
342 malaria, the ratio of relative risks will therefore capture variation in the level of protection compared between different parasite
343 types.

344

345 Although expressed above in terms of a relative risk for human genotypes, rearrangement of terms in formula (2) can be
346 equivalently expressed as a ratio of relative risks for a given parasite genotype compared between two human genotypes,

347

$$(3) \quad RRR_{E=e,I=y} = \frac{RR_{I=y;E=e}}{RR_{I=y;E=0}}$$

348

349 where $RR_{I=j;E=e}$ is defined by analogy with (1). The ratio of relative risks is thus conceptually symmetric with respect to human
350 and parasite alleles, and would equally well capture variation in the level of pathogenicity conferred by a particular parasite type
351 compared between different human genotypes.

352

353 The odds ratio for specific human and parasite alleles computed in severe malaria cases is formally similar to the ratio of relative
354 risks (2) but with the roles of the genotypes and D interchanged. Applying Bayes' theorem to each term shows that in fact

355

$$(4) \quad OR_{E=e,I=y} = RRR_{E=e,I=y} \times OR^{biting}$$

356

357 where OR^{biting} is a term that reflects possible non-independence of human and parasite genotypes at the time of mosquito biting
358 (**Supplementary Methods**). Thus, under this model, $OR_{E=e,I=y} \neq 1$ implies either that host and parasite genotypes are not
359 independent at time of biting, or that there is an interaction (on the risk scale; **Supplementary Methods**) between host and
360 parasite genotypes in determining disease risk. The former possibility may be considered less plausible because it would seem to
361 imply that relevant host and parasite genotypes can be detected by mosquitos prior to or during biting, but we stress that this
362 cannot be tested formally without data on mosquito-borne parasites. A further discussion of these assumptions can be found in
363 **Supplementary Methods**.

364

365 **Testing for genome-to-genome correlation**
366 We developed a C++ program (HPTEST) to efficiently estimate the odds ratio (4) across multiple human and parasite variants.
367 This program implements a logistic regression model in which genotypes from one file are included as the outcome variable and
368 genotypes from a second file on the same samples are included as predictors. Measured covariates may also be included, and the
369 model accounts for uncertainty in imputed predictor genotypes using the approach from SNPTTEST³⁵. The model is fit using a
370 modified Newton-Raphson with line search method. For our main analysis we applied HPTEST with the parasite genotype as
371 outcome and the host genotype as predictor, assuming an additive effect of the host genotype on the log-odds scale, and treating
372 parasite genotype as a binary outcome (after excluding mixed and missing genotype calls.)
373
374 To mitigate effects of finite sample bias, we implemented regression regularised by a weakly informative log-F(2,2) prior
375 distribution³⁶ on the effect of the host allele (similar to a Gaussian distribution with standard deviation 1.87; **Supplementary**
376 **Methods**). Covariate effects were assigned a log-F (0.08,0.08) prior, which has similar 95% coverage interval to a gaussian with
377 zero mean and standard deviation of 40. We summarised the strength of evidence using a Bayes factor against the null model
378 that the effect of the host allele is zero. A P-value can also be computed under an asymptotic approximation by comparing the
379 maximum posterior estimate of effect size to its expected distribution under the null model (**Supplementary Methods**). For
380 our main results we included only one covariate, an indicator of the country from which the case was ascertained (Gambia or
381 Kenya); additional exploration of covariates is described below.
382
383 **Choice of genetic variants for testing**
384 For our initial discovery analysis we concentrated on a set of 51,552 *Pf* variants that were observed in at least 25 individuals in
385 our discovery set, after excluding any mixed or missing genotype calls. These comprised: 51,453 variants that were called as
386 biallelic and passed quality filters (detailed in **Supplementary Methods**; including the requirement to lie in the core genome³⁷);
387 an additional 98 biallelic variants in the region of *PfEBL1* (which lies outside the core genome but otherwise appeared reliably
388 callable); and an indicator of the *PfEBA175* 'F' segment, which we called based on sequence coverage as described in
389 **Supplementary Methods and Supplementary Figure 11**. We included *PfEBL1* and *PfEBA175* variation because these genes
390 encode known or putative receptors for *P.falciparum* during invasion of erythrocytes¹².
391
392 We concentrated on a set of human variants chosen as follows: we included the 94 autosomal variants from our previously
393 reported list of variants with the most evidence for association with severe malaria⁵, which includes confirmed associations at
394 *HBB*, *ABO*, *ATP2B4* and the glycophorin locus. We also included three glycophorin structural variants¹⁰, and 132 HLA alleles
395 (62 at 2-digit and 70 at 4-digit resolution) that were imputed with reasonable accuracy (determined as having minor allele
396 frequency > 5% and IMPUTE info at least 0.8 in at least one of the two populations in our dataset). We tested these variants
397 against all 51,552 *P.falciparum* variants described above. We also included all common, well-imputed human variants within
398 2kb of a gene determining a blood group antigen (defined as variants within 2kb of a gene in the HUGO Blood Group Antigen
399 family³⁸ and having a minor allele frequency of 5% and an IMPUTE info score of at least 0.8 in at least one of the two
400 populations in our dataset; this includes 39 autosomal genes and 4,613 variants in total). We tested these against all variants
401 lying within 2kb of *P.falciparum* genes previously identified as associated or involved in erythrocyte invasion^{11,12} (60 genes,
402 1740 variants in total). In total we tested 19,830,288 distinct human-parasite variant pairs in the discovery dataset
403 (**Supplementary Figure 4**).
404
405 **Definition of regions of pairwise association**
406 We grouped all associated variant pairs (defined as pairs (v,w) having $BF(v,w) > 100$) into regions using an iterative algorithm as
407 follows. For each associated pair (v,w) , we found the smallest enclosing regions (R_v, R_w) such that any other associated pair
408 either lay with (R_v, R_w) or lay further than 10kb from (R_v, R_w) in the host or parasite genomes, repeating until all associated pairs
409 were assigned to regions. For each association region pair, we then recorded the region boundaries and the lead variants (defined
410 as the regional variant pair with the highest Bayes factor), and we identified genes intersecting the region and the gene nearest to
411 the lead variants using the NCBI refGene³⁹ and PlasmoDB v44⁴⁰ gene annotations. Due to our testing a selected list of variant
412 pairs as described above, in some cases these regions contain a single human or parasite variant. **Supplementary Table 1**
413 summarises these regions for variant pairs with $BF > 1,000$.
414

415 **Frequentist interpretation of association test results**

416 We compared association test P-values to the expectation under the null model of no association using a quantile-quantile plot,
417 either before or after removing comparisons with HbS (**Supplementary Figure 3**; HbS is encoded by the 'A' allele at rs334,
418 chr11:5,248,232 T -> A). A simple way to interpret individual points on the QQ-plot is to compare each P-value to its expected
419 distribution under the relevant order statistic (depicted by the grey area in **Supplementary Figure 3**); for the lowest P-value this
420 is similar to considering a Bonferroni correction.

421

422 **Bayesian interpretation of association test results**

423 For each human variant v , we summarised the evidence that v is associated with variation in the parasite genome using an
424 average Bayes factor computed across all the variants tested against v :

425

$$(5) \quad BF_{avg}(v) = \frac{1}{N_i} \sum_w BF(v, w)$$

426

427 Here $BF(v, w)$ is the Bayes factor computed by HPTEST for the comparison between v and w , and the sum is over variants w in
428 the parasite genome that were tested against v . Under the restrictive assumption that at most one parasite variant is associated
429 with w , $BF_{avg}(v)$ can be interpreted as a model-averaged Bayes factor reflecting the evidence for association; more generally
430 BF_{avg} provides a pragmatic way to combines evidence across all tested variants. We similar define $BF_{avg}(w)$ for each parasite
431 variant w averaged over all human variants tested against v . BF_{avg} is plotted for human and parasite variants in **Supplementary**
432 **Figure 4**.

433

434 A direct interpretation of these Bayes factors requires assuming relevant prior odds. We illustrate this using a possible
435 computation as follows. The 51,552 *Pf* variants represent around 20,000 1kb regions of the *Pf* genome, which might be thought
436 of as approximately independent given LD decay rates¹⁷. If we take the view that up to ten such regions might be associated
437 with human genetic variants among those tested, this would dictate prior odds of around one in 2,000. With these odds, an
438 average Bayes factor > 10,000 would be needed to indicate > 80% posterior odds of association. This calculation is illustrative;
439 where specific information is available (for example, if a variant were known to affect a molecular interaction) this should be
440 taken into account in the prior odds.

441

442 **Investigation of additional associations**

443 In addition to the HbS-*Pf* associations, we also observed moderate evidence for association at a number of other variant pairs.
444 These include associations between variation in the human gene *GCNT2* and *PfMSP4* with $BF = 2.8 \times 10^6$, and between HLA
445 variation and multiple parasite variants with BF in the range 10^5 - 10^6 (**Supplementary Figure 4** and **Supplementary Table 1**).
446 A fuller description of the context of these SNPs can be found in **Supplementary Methods**. Our interpretation is that the
447 statistical evidence for these associations is not sufficiently strong on its own to make these signals compelling without
448 additional evidence.

449

450 **Assessment of possible confounding factors**

451 To assess whether the observed association between HbS and *P.falciparum* alleles might be driven by confounding factors we
452 conducted additional pairwise association tests as follows using HPTEST, based on directly-typed HbS genotypes and working
453 separately in the two populations. Results are shown in **Supplementary Figure 7**. First, we repeated the pairwise association
454 test including only individuals overlapping the discovery dataset, and separately in the remaining set of 825 individuals. For
455 discovery samples a set of population-specific principal components (PCs) reflecting human population structure were previously
456 computed⁵ and we included these as covariates (including 20 PCs in total). Second, across all 4,071 individuals with directly-
457 typed HbS data, we repeated tests including measured covariates as additional predictors. Specifically we considered: i. the age
458 of individual at time of ascertainment (measured in years; range 0-12; treated as a categorical covariate), sex, reported ethnic
459 group, and year of admission (range 1995-2010, treated as a categorical covariate); ii. technical covariates including an indicator
460 of method of sequencing (SWGA or whole DNA), mean depth of coverage of the *Pf* genome, mean insert size computed from
461 aligned reads, and percentage of mixed calls; and iii. an indicator of the clinical form of severe malaria which which the sample
462 was ascertained ('SM subtype'; either cerebral malaria, severe malarial anaemia, or other).

463
464 To assess the possibility that parasite population structure might impact results, we also included PCs computed in parasite
465 populations as follows. Working in population separately, we started with the subset of biallelic SNPs with minor allele
466 frequency at least 1% from among the 51,552 analysed variants (50,547 SNPs in Gambia and 48,821 SNPs in Kenya
467 respectively). We thinned variants by iteratively picking variants at random from this list and excluding all others closer than
468 1kb (leaving 12,036 SNPs in Gambia and 11,902 SNPs in Kenya). We used QCTOOL to compute PCs using this list of SNPs.
469 Several of the top PCs had elevated loadings from SNPs in specific genomic regions. This was especially noticeable in Kenya
470 and included the widely-reported extensive regions of LD around the *AAT1* and *CRT* regions on chromosomes 6 and 7, and also
471 the HbS-associated chromosome 2 and 11 loci. We therefore also considered separate sets of PCs computed after excluding
472 SNPs in chromosomes 6 and 7 (leaving 9,933 and 9,812 SNPs respectively), after excluding chromosomes 2 and 11 (10,521 and
473 10,421 SNPs respectively) or after excluding 100kb regions centred on the lead HbS-associated SNPs (11,866 and 11,732 SNPs
474 respectively). For each set of PCs, we repeated association tests including 20 PCs as fixed covariates.
475

476 For each subset of individuals, each HbS-associated variant and each set of covariates described above, we plotted the estimated
477 effect size and 95% posterior interval, annotated with the total number of samples, the number carrying the non-reference allele
478 at the given variant, and the number carrying heterozygous or homozygous HbS genotypes (**Supplementary Figure 7**).
479 Corresponding genotype counts can be found in **Supplementary Figure 6**. To assess mixed genotypes calls, we also plotted the
480 ratio of reads with reference and nonreference alleles at each site; this can be found in **Supplementary Figure 8**.
481

482 **Interpretation in terms of causal relationships**

483 Observing $OR \neq 1$ implies nonindependence between host and parasite genotypes in individuals with severe disease, but does
484 not determine the mechanism by which this could occur. Assuming $OR^{\text{biting}} = 1$, we show in **Supplementary Methods** that
485 $OR = 1$ is equivalent to the following multiplicative model of host and parasite genotypes on disease risk ,
486

$$(6) \quad P(D|E = e, I = y) \propto \frac{P(D|I = y)}{P(D|I = 0)} \times \frac{P(D|E = e)}{P(D|E = 0)}$$

487 In general deviation from (6) could arise in several ways, including through within-host selection, interaction effects determining
488 disease tolerance, as well as potential non-genotype-specific effects relating to disease diagnosis (similar to Berkson's paradox
489 ⁴¹). Our study provides only limited data to distinguish these possible mechanisms. For the HbS association described in main
490 text, we note in **Supplementary Methods** that there is little evidence that the *Pfsa+* variants are themselves associated with
491 increased disease risk, and little evidence that the *Pfsa+* variants associate with other host protective variants, suggesting that the
492 observed interaction is specific to HbS.
493

494 **Comparison of severe cases to human population controls**

495 Using D_y to denote severe disease caused by infection type y , the relative risk of the host genotype $E = e$ on disease of type y can
496 be written
497

$$(7) \quad RR_{E=e}(y) = \frac{P(D_y|E = e, A)}{P(D_y|E = 0, A)}$$

498 where $E = 0$ represents the baseline host genotype as above. Under the simplified infection model considered above, comparison
499 with formula (1) relates this to the relative risk for host and parasite genotypes considered above,
500

$$(8) \quad RR_{E=e}(y) = RR_{E=e; I=y} \cdot \frac{P(I = y|E = e, A)}{P(I = y|E = 0, A)}$$

501 As in (4), the second term captures possible variation in infection rates for parasite type y between human genotypes, while the
502 first term captures possible within-host effects. Direct comparison with (4) shows
503

$$(9) \quad OR_{E=e, I=j} = \frac{RR_{E=e}(j)}{RR_{E=e}(0)}$$

507

508 We show in **Supplementary Methods** that $RR_{E=e}(y)$ can be estimated using multinomial logistic regression comparing severe
509 malaria cases to a sample of population controls, and we apply this approach in **Figure 2** to estimate $RR_{E=e}(y)$, where y ranges
510 over combined genotypes at the three *Pfsa* loci.

511

512 **Assessing sequencing performance in HbS-associated regions**

513 We assessed sequencing performance at the chr2:631,190, chr2:814,288 and chr11:1,058,035 loci by computing counts of reads
514 aligning to each position (“coverage”) and comparing this to the distribution of coverage across all biallelic sites in our dataset,
515 treating each sample separately (**Supplementary Figure 11**). In general coverage at the three sites was high; we noted
516 especially high coverage at chr2:814,288 in sWGA sequencing data (e.g. >90% of samples have coverage among the top 80% of
517 that at biallelic variants genome-wide) but somewhat lower coverage in WGS samples at the chr11:1,058,035 locus. Variation in
518 coverage between loci and samples is expected due to variation in DNA quantities, DNA amplification and sequencing
519 processes, but we did not observe systematic differences in coverage between the different *Pfsa* genotypes at these loci. To
520 further establish alignment accuracy, we also inspected alignment metrics and noted that across all analysis samples, over 99% of
521 reads at each location carried either the reference or the identified non-reference allele, and over 99% of these reads had mapping
522 quality at least 50 (representing confident read alignment). These results suggest sequencing reads provide generally accurate
523 genotype calls at these sites.

524

525 **Assessing the distribution of between-chromosome LD**

526 We developed a C++ program (LDBIRD) to efficiently compute LD between all pairs of *Pf* variants. LDBIRD computes the
527 frequency of each variant, and computes the correlation between genotypes at each pair of variants with sufficiently high
528 frequency. It then generates a histogram of correlation values and reports pairs of variants with squared correlation above a
529 specified level. We applied LDBIRD separately to *Pf* data from Gambian and Kenyan severe malaria cases. We restricted
530 attention to comparisons between biallelic variants that had frequency at least 5% in the given population and with at least 75%
531 of samples having non-missing genotypes at both variants in the pair, after treating mixed genotype calls as missing, and output
532 all pairs with r^2 at least 0.01 for further consideration. To avoid confounding of LD by the HbS association signal, we also
533 repeated this analysis after excluding individuals that carry the HbS allele (with the latter results presented in **Figure 4** and
534 **Supplementary Table 2**).

535

536 To summarise between-chromosome LD results we grouped signals into regions as follows. First, we observed that most variant
537 pairs have $|r| < 0.15$ and hence $r^2 > 0.05$ is typically a substantially outlying degree of inter-chromosomal LD (Figure 4). We
538 therefore focussed on variant pairs (v_1, v_2) with $r^2 > 0.05$. To each such pair (v_1, v_2) we assigned a pair of LD regions (R_1, R_2)
539 with the property that R_1 and R_2 capture all other nearby variants with high r^2 . Specifically, R_1 and R_2 are defined as the
540 smallest regions containing v_1 and v_2 respectively, such that for every other pair of variants (w_1, w_2) on the same chromosomes
541 with $r^2 > 0.05$,

542

$$(10) \quad \max_l \text{distance}(w_i, R_l) > 10kb$$

543

544 To compute R_1 and R_2 , we implemented an iterative algorithm that successively expands the initial pair until no additional
545 nearby pairs with high r^2 can be found.

546

547 For each LD region pair we recorded the region boundaries and the most-correlated pair of variants. For Table 1 we list the
548 region pairs with $r^2 > 0.25$, reporting the superset of the region boundaries defined in the Gambian and Kenyan data where
549 applicable. A full list of region pairs with $r^2 > 0.05$ is given in **Supplementary Table 3**.

550

551 **Assessing the structure of *Pfsa* regions in available genome assemblies**

552 We extracted 101bp and 1001bp flanking sequence centred at the chr2:631,190, chr2:814,288 and chr11:1,058,035 loci from the
553 Pf3D7 reference sequence. We then used minimap2⁴² to align these sequences to a previously generated set of genome

554 assemblies from *P.falciparum* isolates and laboratory strains²⁷ (**Supplementary Table 4**), allowing for multiple possible
555 mapping locations. Each flanking sequence aligned to a single location on the corresponding chromosome in all included
556 genomes, with the exception that sequence flanking the chromosome 11 locus aligned to two locations in the ML01 sample.
557 This sample was excluded from previous analysis²⁷ as it represents a multiple infection; we comment further on this below.
558

559 To further inspect sequence identity, we used MAFFT to generate a multiple sequence alignment (MSA) corresponding to the
560 1001bp sequence centred at each locus. Four isolates (GA01 from The Gabon, SN01 from Senegal, Congo CD01 and ML01
561 from Mali) carry the non-reference ‘A’ allele at the chr11:1,058,035 SNP; two of these (GA01 and CD01) also carry the non-
562 reference allele at the chr2:631,190 SNP and one (CD01) carries the non-reference allele at all three SNPs. However, expansion
563 of alignments to include a 10,001bp segment indicated that these four samples also carry a structural rearrangement at the chr11
564 locus. Specifically, GA01, SN01, CD01 and ML01 genomes include a ~1kb insertion present approximately 900bp to the right
565 of chr11:1,058,035, and also a ~400bp deletion approximately 2400bp to the left of chr11:1,058,035. To investigate this, we
566 generated kmer sharing ‘dot’ plots for k=50 across the region (**Supplementary Figure 10**), revealing a complex rearrangement
567 carrying both deleted and duplicated segments. The duplicated sequence includes a segment (approx. coordinates 1,054,000-
568 1,055,000 in Pf3D7) that contains the gene *SNRPF* (‘small nuclear ribonucleoprotein F, putative’) in the Pf3D7 reference.
569 Inspection of breakpoints did not reveal any other predicted gene copy number changes in this region, including for
570 *Pf3D7_1127000*.

571

572 As noted above, the chromosome 11 region aligns to a second contig in ML01 (contig chr0_142, **Supplementary Table 4**). This
573 contig appears to have a different tandem duplication of a ~4kb segment lying to the right of the associated SNP (approximately
574 corresponding to the range 11:1,060,100 – 1,064,000 in Pf3D7; Supplementary Figure 8). This segment contains a number of
575 genes including dUTPase, which has been under investigation as a potential drug target⁴³. We interpret this second contig as
576 arising due to the multiple infection in this sample²⁷, and given challenges inherent in genome assembly of mixed samples it is
577 unclear whether this duplication represents an assembly artefact or a second genuine regional structural variant.

578

579 **Data Availability**

580 A full list of data generated by this study and relevant accessions can be found at <http://www.malariagen.net/resource/32>.

581

582 **Code Availability**

583 Source code for HPTEST and LDBIRD is available at <https://code.enkre.net/qctool> under an open-source license.

584

585 **Author information**

586 **Author contributions:** Conceptualization: G.B., E.M.L., T.N.W., K.A.R., D.P.K.; Data Curation: G.B., E.M.L., T.N., M.J.,
587 C.M.N., R.D.P., R.A., K.A.R.; Formal Analysis: G.B., E.M.L., K.A.R.; Funding Acquisition: D.P.K; Investigation: C.H., A.E.J.,
588 K.R., E.D., K.A.R.; Methodology: G.B., K.A.R., D.P.K; Project Administration: S.M.G., E.D., K.A.R., D.P.K.; Resources:
589 S.M.G., E.D., J.S., C.V.A., R.A., R.D.P., M.J., F.S.J., K.A.B., G.S., C.M.N., A.W.M., N.P., C.H., A.E.J., K.R., E.D., K.A.R.;
590 Software and visualisation: G.B.; Supervision: D.J.C., U.d’A., K.M., T.N.W., S.M.G., K.A.R., D.P.K; Writing: G.B., E.M.L.,
591 T.N.W., K.A.R., D.P.K. in collaboration with all authors.

592

593 **Acknowledgements**

594 We thank the patients and staff of Kilifi County Hospital and the KEMRI-Wellcome Trust Research Programme, Kilifi for their
595 help with this study, and members of the Human Genetics Group in Kilifi for help with sample collection and processing. We
596 thank the patients and staff at the Paediatric Department of the Royal Victoria Hospital in Banjul, Gambia for their help with the
597 study. The human genetic data used in this study has previously been reported by the Malaria Genomic Epidemiology Network,
598 and we thank all our colleagues who contributed to this previous work as part of MalariaGEN Consortial Project 1. A full list of
599 consortium members is provided at <https://www.malariagen.net/projects/consortial-project-1/malariagen-consortium-members>.

600 The MalariaGEN Pf6 open resource¹⁷ was generated through the Malaria Genomic Epidemiology Network *Plasmodium*
601 *falciparum* Community Project (<https://www.malariagen.net/resource/26>).

602

603 The Malaria Genomic Epidemiology Network study of severe malaria was supported by Wellcome (<https://wellcome.ac.uk/>)
604 (WT077383/Z/05/Z [MalariaGEN]) and the Bill & Melinda Gates Foundation (<https://www.gatesfoundation.org/>) through the
605 Foundations of the National Institutes of Health (<https://fnih.org/>) (566 [MalariaGEN]) as part of the Grand Challenges in Global
606 Health Initiative. The Resource Centre for Genomic Epidemiology of Malaria is supported by Wellcome (090770/Z/09/Z);

607 204911/Z/16/Z [MalariaGEN]). This research was supported by the Medical Research Council (<https://mrc.ukri.org/>)
608 (G0600718; G0600230; MR/M006212/1 [MalariaGEN]). Wellcome also provides core awards to the Wellcome Centre for
609 Human Genetics (203141/Z/16/Z [WCHG]) and the Wellcome Sanger Institute (206194 [WSI]). Genome sequencing was
610 carried out at the Wellcome Sanger Institute and we thank the staff of the Wellcome Sanger Institute Sample Logistics,
611 Sequencing, and Informatics facilities for their contribution. TNW is supported through a Senior Fellowship from Wellcome
612 (202800/Z/16/Z). This paper is published with permission from the Director of the Kenya Medical Research Institute (KEMRI).
613 This research was funded in whole or in part by Wellcome as detailed above. For the purpose of Open Access, the author has
614 applied a CC-BY public copyright licence to any author accepted manuscript version arising from this submission. The funders
615 had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

616

617 **References**

618 1 Kariuki, S. N. & Williams, T. N. Human genetics and malaria resistance.
619 2 *Human Genetics* **139**, 801-811, doi:10.1007/s00439-020-02142-6 (2020).

620 2 Malaria Genomic Epidemiology Network. Reappraisal of known malaria
621 3 resistance loci in a large multicenter study. *Nat Genet* **46**, 1197-1204,
622 3 doi:10.1038/ng.3107 (2014).

623 3 Cowell, A. N. & Winzeler, E. A. The genomic architecture of antimalarial
624 4 drug resistance. *Brief Funct Genomics* **18**, 314-328, doi:10.1093/bfgp/elz008
625 4 (2019).

626 4 Gomes, P. S., Bhardwaj, J., Rivera-Correa, J., Freire-De-Lima, C. G. &
627 5 Morrot, A. Immune Escape Strategies of Malaria Parasites. *Front Microbiol* **7**,
628 5 1617, doi:10.3389/fmicb.2016.01617 (2016).

629 5 Band, G. *et al.* Insights into malaria susceptibility using genome-wide data on
630 6 17,000 individuals from Africa, Asia and Oceania. *Nature Communications*
631 6 **10**, 5732, doi:10.1038/s41467-019-13480-z (2019).

632 6 Band, G. *et al.* A novel locus of resistance to severe malaria in a region of
633 7 ancient balancing selection. *Nature* **526**, 253-257, doi:10.1038/nature15390
634 7 (2015).

635 7 Oyola, S. O. *et al.* Whole genome sequencing of *Plasmodium falciparum* from
636 8 dried blood spots using selective whole genome amplification. *Malaria*
637 8 *Journal* **15**, 597, doi:10.1186/s12936-016-1641-7 (2016).

638 8 Ahoudi, A. *et al.* An open dataset of *Plasmodium falciparum* genome
639 9 variation in 7,000 worldwide samples [version 1; peer review: awaiting peer
640 9 review]. *Wellcome Open Research* **6**, doi:10.12688/wellcomeopenres.16168.1
641 9 (2021).

642 9 Timmann, C. *et al.* Genome-wide association study indicates two novel
643 10 resistance loci for severe malaria. *Nature* **489**, 443-446,
644 10 doi:10.1038/nature11334 (2012).

645 10 Leffler, E. M. *et al.* Resistance to malaria through structural variation of red
646 11 blood cell invasion receptors. *Science* **356**, doi:10.1126/science.aam6393
647 11 (2017).

648 11 Cowman, A. F., Berry, D. & Baum, J. The cellular and molecular basis for
649 12 malaria parasite invasion of the human red blood cell. *J Cell Biol* **198**, 961-
650 12 971, doi:10.1083/jcb.201206112 (2012).

651 12 Cowman, A. F., Tonkin, C. J., Tham, W. H. & Duraisingh, M. T. The
652 13 Molecular Basis of Erythrocyte Invasion by Malaria Parasites. *Cell Host*
653 13 *Microbe* **22**, 232-245, doi:10.1016/j.chom.2017.07.003 (2017).

654 13 Stan Development Team. Stan Modeling Language Users Guide and
655 14 Reference Manual. doi:<https://mc-stan.org> (2021).

656 14 Piel, F. B. *et al.* Global epidemiology of sickle haemoglobin in neonates: a
657 15 contemporary geostatistical model-based map and population estimates.
658 15 *Lancet* **381**, 142-151, doi:10.1016/S0140-6736(12)61229-X (2013).

659 15 Mzilahowa, T., McCall, P. J. & Hastings, I. M. "Sexual" population structure
660 16 and genetics of the malaria agent *P. falciparum*. *PLoS One* **2**, e613-e613,
661 16 doi:10.1371/journal.pone.0000613 (2007).

662 16 Manske, M. *et al.* Analysis of *Plasmodium falciparum* diversity in natural
663 16 infections by deep sequencing. *Nature* **487**, 375-379, doi:10.1038/nature11174
664 16 (2012).

665

666 17 Pearson, R. D., Amato, R. & Kwiatkowski, D. P. An open dataset of
667 Plasmodium falciparum genome variation in 7,000 worldwide samples.
668 *bioRxiv*, 824730, doi:10.1101/824730 (2019).

669 18 Tindall, S. M. *et al.* Heterologous Expression of a Novel Drug Transporter
670 from the Malaria Parasite Alters Resistance to Quinoline Antimalarials. *Sci
671 Rep* **8**, 2464, doi:10.1038/s41598-018-20816-0 (2018).

672 19 Wang, Z. *et al.* Genome-wide association analysis identifies genetic loci
673 associated with resistance to multiple antimalarials in Plasmodium falciparum
674 from China-Myanmar border. *Sci Rep* **6**, 33891, doi:10.1038/srep33891
675 (2016).

676 20 Amambua-Ngwa, A. *et al.* Major subpopulations of Plasmodium falciparum in
677 sub-Saharan Africa. *Science* **365**, 813-816, doi:10.1126/science.aav5427
678 (2019).

679 21 Moser, K. A. *et al.* Describing the current status of Plasmodium falciparum
680 population structure and drug resistance within mainland Tanzania using
681 molecular inversion probes. *Molecular Ecology* **30**, 100-113,
682 doi:<https://doi.org/10.1111/mec.15706> (2021).

683 22 Verity, R. *et al.* The impact of antimalarial resistance on the genetic structure
684 of Plasmodium falciparum in the DRC. *Nature Communications* **11**, 2107,
685 doi:10.1038/s41467-020-15779-8 (2020).

686 23 Chang, H.-H. *et al.* Genomic Sequencing of Plasmodium falciparum Malaria
687 Parasites from Senegal Reveals the Demographic History of the Population.
688 *Molecular Biology and Evolution* **29**, 3427-3439, doi:10.1093/molbev/mss161
689 (2012).

690 24 Park, D. J. *et al.* Sequence-based association and selection scans identify drug
691 resistance loci in the Plasmodium falciparum malaria
692 parasite. *Proceedings of the National Academy of Sciences* **109**, 13052,
693 doi:10.1073/pnas.1210585109 (2012).

694 25 Matesanz, F., Téllez, M. a.-d.-M. & Alcina, A. The Plasmodium falciparum
695 fatty acyl-CoA synthetase family (PfACS) and differential stage-specific
696 expression in infected erythrocytes. *Molecular and Biochemical Parasitology*
697 **126**, 109-112, doi:[https://doi.org/10.1016/S0166-6851\(02\)00242-6](https://doi.org/10.1016/S0166-6851(02)00242-6) (2003).

698 26 Otto, T. D. *et al.* Genomes of all known members of a Plasmodium subgenus
699 reveal paths to virulent human malaria. *Nature Microbiology* **3**, 687-697,
700 doi:10.1038/s41564-018-0162-2 (2018).

701 27 Otto, T. D. *et al.* Long read assemblies of geographically dispersed
702 Plasmodium falciparum isolates reveal highly structured subtelomeres.
703 *Wellcome Open Res* **3**, 52, doi:10.12688/wellcomeopenres.14571.1 (2018).

704 28 Luzzatto, L. Sickle cell anaemia and malaria. *Mediterr J Hematol Infect Dis* **4**,
705 e2012065, doi:10.4084/MJHID.2012.065 (2012).

706 29 Archer, N. M. *et al.* Resistance to Plasmodium falciparum in
707 sickle cell trait erythrocytes is driven by oxygen-dependent growth inhibition.
708 *Proceedings of the National Academy of Sciences* **115**, 7350-7355,
709 doi:10.1073/pnas.1804388115 (2018).

710 30 Cholera, R. *et al.* Impaired cytoadherence of Plasmodium falciparum-infected
711 erythrocytes containing sickle hemoglobin. *Proc Natl Acad Sci U S A* **105**,
712 991-996, doi:10.1073/pnas.0711401105 (2008).

713 31 Cyrklaff, M. *et al.* Hemoglobins S and C Interfere with Actin Remodeling in
714 Plasmodium falciparum-Infected Erythrocytes. *Science* **334**,
715 1283-1286, doi:10.1126/science.1213775 (2011).

716 32 Williams, T. N. *et al.* An immune basis for malaria protection by the sickle
717 cell trait. *PLoS Med* **2**, e128, doi:10.1371/journal.pmed.0020128 (2005).

718 33 Gilbert, S. C. *et al.* Association of malaria parasite population structure, HLA,
719 and immunological antagonism. *Science* **279**, 1173-1177,
720 doi:10.1126/science.279.5354.1173 (1998).

721 34 Ntoumi, F. *et al.* Imbalanced distribution of *Plasmodium falciparum* MSP-1
722 genotypes related to sickle-cell trait. *Mol Med* **3**, 581-592 (1997).

723 35 Wellcome Trust Case Control Consortium. Genome-wide association study of
724 14,000 cases of seven common diseases and 3,000 shared controls. *Nature*
725 **447**, 661-678, doi:10.1038/nature05911 (2007).

726 36 Greenland, S. & Mansournia, M. A. Penalization, bias reduction, and default
727 priors in logistic and related categorical and survival regressions. *Statistics in*
728 *Medicine* **34**, 3133-3143, doi:10.1002/sim.6537 (2015).

729 37 Miles, A. *et al.* Indels, structural variation, and recombination drive genomic
730 diversity in *Plasmodium falciparum*. *Genome Res* **26**, 1288-1299,
731 doi:10.1101/gr.203711.115 (2016).

732 38 Braschi, B. *et al.* Genenames.org: the HGNC and VGNC resources in 2019.
733 *Nucleic Acids Res* **47**, D786-D792, doi:10.1093/nar/gky930 (2019).

734 39 O'Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI: current
735 status, taxonomic expansion, and functional annotation. *Nucleic Acids Res* **44**,
736 D733-745, doi:10.1093/nar/gkv1189 (2016).

737 40 Aurrecoechea, C. *et al.* PlasmoDB: a functional genomic database for malaria
738 parasites. *Nucleic Acids Res* **37**, D539-543, doi:10.1093/nar/gkn814 (2009).

739 41 Berkson, J. Limitations of the application of fourfold table analysis to hospital
740 data. *Int J Epidemiol* **43**, 511-515, doi:10.1093/ije/dyu022 (2014).

741 42 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*
742 **34**, 3094-3100, doi:10.1093/bioinformatics/bty191 (2018).

743 43 Pérez-Moreno, G. *et al.* Validation of *Plasmodium falciparum* dUTPase as the
744 target of 5' -tritylated deoxyuridine analogues with anti-malarial activity.
Malaria Journal **18**, 392, doi:10.1186/s12936-019-3025-2 (2019).

745

746