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 2 

 Development of myelin, a fatty sheath that insulates nerve fibers, is critical for brain 24 

function. Myelination during infancy has been studied with histology, but postmortem data 25 

cannot evaluate the longitudinal trajectory of white matter development. Here, we obtained 26 

longitudinal diffusion MRI and quantitative MRI measures of R1 in 0, 3 and 6 months-old 27 

human infants, and (ii) developed an automated method to identify white matter bundles and 28 

quantify their properties in each infant’s brain. We find that R1 increases from newborns to 6-29 

months-olds in all bundles. R1 development is nonuniform: there is faster development in 30 

white matter that is less mature in newborns, and along inferior-to-superior as well as anterior-31 

to-posterior spatial gradients. As R1 is linearly related to myelin fraction in white matter 32 

bundles, these findings open new avenues to elucidate typical and atypical white matter 33 

myelination in early infancy, which has important implications for early identification of 34 

neurodevelopmental disorders. 35 
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During the first year of life, the volume of the human brain9s white matter increases by 6 –47 

16%1. A key microstructural component of this white matter development is myelination2–6. That is, 48 

the formation of myelin, the fatty sheath that insulates axons that connect different brain regions. 49 

Myelin is essential for brain function, as it enables rapid and synchronized neural communication 50 

across the brain and abnormalities in myelination are linked to a plethora of developmental and 51 

cognitive disorders7. However, the principles and nature of white matter myelination of the human 52 

brain during early infancy are not well understood. 53 

Three main theories of white matter myelin development during infancy have been proposed: 54 

1) The starts-first/finishes-first hypothesis, which is based on data from classic histological studies2–4, 55 

proposes that postnatal myelination follows prenatal patterns. This hypothesis predicts that white 56 

matter that is more myelinated at birth will develop faster postnatally and will finish myelinating earlier. 57 

This, in turn, may allow for most important brain functions to mature the fastest. 2) The speed-up 58 

hypothesis, which is based on more recent imaging data8,9, suggests that white matter that is less 59 

myelinated at birth develops faster postnatally. This development may be experience-dependent10–13 60 

and may foster efficient and coordinated transmission of signals across the brain. Both of the above 61 

hypotheses build on the observation that myelin content is not homogenous in the newborn brain2–
62 

5,14. 3) The spatial-gradient hypothesis suggests that postnatal myelination progresses in a spatially 63 

organized manner5,15. Different spatial gradients of myelination have been proposed including that 64 

white matter myelination originates in neurons and follows the direction of information flow4 or that 65 

it occurs along a proximal to distal axis across the brain5. It is important to note that, while the starts-66 

first/finishes-first hypothesis and the speed-up hypothesis are mutually exclusive, spatial gradients 67 

may contribute to myelination during infancy in addition to the effects of myelin content at birth 68 

predicted by the former two hypotheses. 69 

Testing these developmental hypotheses requires in-vivo measurements of the typical, 70 

longitudinal development of myelin along the length of multiple white matter bundles of individual 71 

infants. However, classic histological studies compare postmortem brain samples across individuals, 72 
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often include pathologies, and use observer-dependent methods16. Thus, classic histology provides a 73 

cross-sectional and qualitative glimpse of white matter myelination during infancy. Up to recently17–22 74 

most in vivo investigations of white matter development leveraged diffusion metrics (e.g., mean 75 

diffusivity (MD)), that have a complex, non-linear relationship to myelin and are also affected by other 76 

properties of the white matter, including the diameter, spacing, and orientation of fibers18,23–25. Thus, 77 

diffusion metrics do not provide accurate measures of myelination. However, quantitative 78 

MRI9,14,15,18,26–30 (qMRI) measurements, such as the longitudinal relaxation rate, R1 [s-1], now offer 79 

metrics that are directly related to myelin content in the white matter. In fact, not only does the amount 80 

of myelin in a voxel (myelin fraction) explain 90% of the variance in R1 in white matter bundles29,31, 81 

but changes in R1 are also linearly related to changes in myelin fraction (Supplementary Fig 1). Thus, 82 

longitudinal measurements of R1 along white matter bundles enable the assessment of white matter 83 

myelin development during infancy. 84 

To test the predictions of the developmental hypotheses of white matter myelination during 85 

early infancy, we acquired longitudinal measurements of anatomical MRI, diffusion MRI (dMRI), and 86 

qMRI in infants during natural sleep at 3 timepoints: newborn (N=9; age: 8-37 days), 3 months (N=10; 87 

age: 79-106 days), and 6 months (N=10; age: 167-195 days) of age. We used anatomical MRI to 88 

segment the brain to gray and white matter, dMRI to determine the white matter bundles of the infant 89 

brain, and qMRI to measure R1 along each WM bundle (Supplemental Fig 2). All analyses were 90 

performed in infants9 native brain space. To relate our findings to prior developmental studies, we 91 

also used dMRI data to assess the development of mean diffusivity (MD) in white matter bundles. 92 

However, as the relationship between MD and myelin is complex and nonlinear, we cannot accurately 93 

estimate from the rate of MD development the rate of myelination9. 94 

As increases in myelin in the white matter generate linear increases in R1, the developmental 95 

hypotheses tested here make the following predictions: The starts-first/finishes-first hypothesis 96 

predicts that during the first 6 months of life, R1 will increase faster in white matter that is more 97 

myelinated at birth and hence has higher R1 values in newborns. The speed-up hypothesis predicts 98 
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the opposite, that during the first 6 months of life, R1 will increase faster in white matter that has 99 

lower R1 values in newborns. Finally, the spatial gradient hypothesis predicts spatial differences in the 100 

development of R1 across the white matter, that cannot be explained by differences in R1 values in 101 

newborns.  102 

 103 

Results 104 

A new method for automated fiber quantification in babies (babyAFQ) 105 

We first identified each individual infant9s white matter bundles in their native brain space in 106 

a systematic and automated way. A major challenge is that present automated tools for bundle 107 

identification in individuals (e.g. 32–34) have been developed for adults and school-aged children and 108 

therefore may not be suitable for infants due to substantial differences in brain size1 and organization20. 109 

Thus, we developed a new pipeline for analyzing infant dMRI data (Supplementary Fig 2) and a 110 

novel method, baby automated fiber quantification (babyAFQ), for automatically identifying 24 111 

bundles (11 in each hemisphere and 2 between-hemispheres, Supplementary Figs 2-4) in each 112 

individual infant9s brain and timepoint (Supplementary Fig 9). We optimized babyAFQ for infants 113 

by: (i) generating waypoints (anatomical regions of interest (ROIs) for defining bundles) on a newborn 114 

brain template (University of North Carolina (UNC) neonatal template35), (ii) decreasing the spatial 115 

extent of waypoints compared to adults36 to fit the more compact infant brain, and (iii) adding 116 

waypoints for curved bundles to improve their identification.  117 

BabyAFQ successfully identifies 24 bundles in each infant and timepoint (example infant: Fig. 118 

1, all infants: Supplementary Fig 9), including bundles that have not previously been identified in 119 

infants: the posterior arcuate fasciculus37, vertical occipital fasciculus37–39, and middle longitudinal 120 

fasciculus40. The 24 bundles have the expected shape and location in all infants even as their brains 121 

grow from 0 to 6 months. 3D interactive visualizations at 0 months 122 

(http://vpnl.stanford.edu/babyAFQ/bb11_mri0_interactive.html), 3 months 123 
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(http://vpnl.stanford.edu/babyAFQ/bb11_mri3_interactive.html) and 6 months of age 124 

(http://vpnl.stanford.edu/babyAFQ/bb11_mri6_interactive.html) show the 3D structure of bundles 125 

in an example infant.  126 

Figure 1. Baby automated fiber quantification (babyAFQ) identifies white matter bundles in 

individual infant brains across the first 6 months of life. 24 bundles (11 in each hemisphere and 2 

cross-hemispheric) were successfully identified in all individuals and ages (Supplementary Data 3-5). a. 

All bundles of an individual baby. Each row is a bundle, each column is a timepoint; left: newborn, middle: 

3 months, right: 6 months. b. Comparison of AFQ and babyAFQ performances in identifying each bundle 

in newborns relative to manually defined (gold-standard) bundles. Error bars indicate standard error across 

participants. The dice coefficient quantifies the overlap between the automatically and manually defined 

bundles, revealing significantly higher performance for babyAFQ than AFQ. Abbreviations: ATR: anterior 

thalamic radiation, CS: cortico-spinal tract, pAF: posterior arcuate fasciculus, VOF: vertical occipital 

fasciculus, FcMa: forceps major; FcMi: forceps minor, AF: arcuate fasciculus, UCI: uncinate fasciculus, 

SLF: superior longitudinal fasciculus, CC: cingulum cingulate, ILF: inferior longitudinal fasciculus, IFOF: 

inferior frontal occipital fasciculus, MLF: middle longitudinal fasciculus. 
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For quality assurance, we compared babyAFQ and AFQ32 (developed in adults and used in 127 

prior infant studies41–43) to manually identified bundles (8gold-standard9). In newborns, bundles 128 

identified by babyAFQ substantially overlapped the gold-standard (mean dice coefficient±standard 129 

error (SE): 0.61±0.02) and this overlap was significantly higher compared to AFQ (Fig 1b; 130 

Supplementary Fig 3; 2-way repeated measure analysis of variance (rmANOVA) with AFQ-type and 131 

bundle as factors: AFQ-type: F(1,08)=528.60, p<0.0001, bundle: F(19,152)=11.31, p<0.0001, AFQ-132 

types x bundle: F(19,152)=7.13, p<0.0001; additional 3-way rmANOVA on the 11 bilateral bundles, 133 

with AFQ-type, bundle, and hemisphere as factors revealed no effects of, or interaction with, 134 

hemisphere). Improvements from babyAFQ were also evident at the other timepoints in qualitative 135 

evaluations in individual infants. E.g., the Forceps Major was successfully identified by babyAFQ in 136 

29/29 brains, but identified by AFQ in only 13/29 brains.  137 

 138 

During infancy, R1 increases in all 24 evaluated white matter bundles 139 

We first measured the development of mean R1 in each bundle during the first 6 months of 140 

life. Measurements of mean R1 of the 24 bundles identified by babyAFQ at 0, 3, and 6 months reveal 141 

a substantial increase in R1 from 0 to 6 months of age (Fig. 2a). Mean R1 across bundles±SE [range]: 142 

0 months: 0.46s-1 ±0.007s-1 [0.42-0.55s-1], 3 months: 0.52s-1 ±0.008s-1 [0.46-0.63s-1], 6 months: 0.62s-1 143 

±0.009s-1 [0.54-0.73 s-1]. This is a profound change, as mean R1 increases on average by ~17% (0.16s-
144 

1) within just 6 months. We modeled mean R1 development in each bundle using linear mixed models 145 

(LMMs) with age as predictor and a random intercept (estimated R1 at birth) for each participant. 146 

Overall, LMMs explained ~90% of the R1 variance across development (adjusted Rs2>0.87, 147 

ps<0.0001). As R1 in white matte is linearly related to myelin fraction, these data are consistent with 148 

the idea that white matter bundles myelinate during early infancy.  149 

 150 
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To summarize the LMM results we plotted each bundle9s mean R1 measured in newborns 151 

(Fig 2b) and as its rate of development (Fig 2c) with 3 notable findings: (i) Mean R1 measured in 152 

newborns varies across bundles. At birth, projection bundles (CST and ATR) have the highest R1 and 153 

the forceps minor (FMi) and inferior frontal occipital fasciculus (IFOF) have the lowest R1 (Fig 2b). 154 

(ii) The rate of R1 development during infancy varies between bundles. Across these 24 bundles, the 155 

Forceps Major (FcMa) has the fastest rate of R1 development, while the Uncinate (UCI) and the 156 

anterior thalamic radiation (ATR) have the slowest rate of R1 development between 0 to 6 months. 157 

(iii) Relating the bundles9 rate of R1 development to their R1 measured in newborns reveals no 158 

Figure 2. Mean R1 of white matter bundles linearly increases from birth to 6 months of age. a. Mean 

R1 of each bundle as a function of age in days. Each point is a participant; markers indicate hemisphere; lines 

indicate LMM prediction; lines for both hemispheres fall on top of each other; gray shaded regions indicate 

95% confidence intervals. b. Mean R1 measured in newborns for 24 white matter bundles; Color: bundle; 

Darker shades: LH; Error bars: Standard error across participants. c. Rate of mean R1 development (slopes 

from LMMs) during the first 6 months of life for each white matter bundle; Bundles are sorted by R1 at birth 

and colored as in (b). Error bars: Standard error. Abbreviations: CS: cortico-spinal tract, ATR: anterior thalamic 

radiation, FcMa: forceps major; FcMi: forceps minor, VOF: vertical occipital fasciculus, pAF: posterior 

arcuate fasciculus, AF: arcuate fasciculus, UCI: uncinate fasciculus, SLF: superior longitudinal fasciculus, CC: 

cingulum cingulate, ILF: inferior longitudinal fasciculus, MLF: middle longitudinal fasciculus, IFOF: inferior 

frontal occipital fasciculus, RH: right hemisphere, LH: left hemisphere.  
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systematic relationship between mean R1 in newborns and rate of mean R1 development (Fig 2c). 159 

Indeed, there is no significant correlation between R1 in newborns and R1 slopes across bundles 160 

(R2=0.003, p=0.81). For example, both the cortical spinal tract (CST) and the forceps major (FcMa) 161 

have fast R1 development (steep slope) during early infancy, yet they have vastly different mean R1 in 162 

newborns. Together, these analyses suggest that mean R1 in newborns does not seem to explain mean 163 

R1 development rate during early infancy.  164 

To relate our findings to previous work that evaluated diffusion metrics, we also measured the 165 

development of mean diffusivity (MD) across bundles. Myelination of the white matter is expected to 166 

result in decreases in MD. Consistent with this, we found that mean MD systematically decreases in 167 

all 24 white matter bundles during the first 6 months of life (Supplementary Fig. 5a). Like R1, mean 168 

MD in newborns and the rate of mean MD development varied across bundles (Supplementary Fig. 169 

5b,c). Interestingly, while mean MD and R1 in newborns are correlated (R2=0.76, p<0.0001), the rates 170 

of MD and R1 development during early infancy are not correlated (R2=0.08, p=0.17). That is, the 171 

longitudinal developmental patterns observed using MD are different from those observed with R1. 172 

For example, the uncinate (UCI) has slow R1 development (shallow slope) but rapid MD development 173 

(steep slope). In contrast to R1, we find a negative correlation between the rate of MD development 174 

and the measured MD in newborns (R2=0.71, p<0.0001), such that bundles with higher mean MD in 175 

newborns have an accelerated decrease in MD during early infancy. The differential development of 176 

MD and R1 is consistent with prior reports across the lifespan44 and suggests that other changes to 177 

the white matter beyond myelination contribute to MD development in the first 6 months of life. 178 

 179 

R1 development during early infancy varies along the length of white matter bundles  180 

White matter bundles are large structures that span substantial distances across the brain and have 181 

variable white matter properties along their length32,34,44. Thus, mean measurements across the entire 182 
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bundle may not be representative and may even obscure differential development patterns along the 183 

length of the bundles. Thus, we next evaluated R1 development along the length of 24 bundles. 184 

We examined the development of R1 along each bundle using babyAFQ with two main 185 

observations: (i) At each timepoint, R1 exhibits spatial variations along the length of these 24 bundles 186 

(Fig 3), with the range of variations differing across bundles. For example, the cortico-spinal tract 187 

(CS, Fig 3a), exhibits substantial variations in R1 along its length, whereas the vertical occipital 188 

fasciculus (VOF, Fig 3d) shows only modest variations. (ii) Consistent with the analyses of mean R1, 189 

along the length of each of these 24 bundles, R1 systematically increases from newborns (Fig 3-dotted 190 

line), to 3-month-olds (Fig 3-dashed line), to 6-months-olds (Fig 3-solid line).  191 

 To quantify R1 development along white matter bundles during the first 6 months of life, we 192 

used LMMs applied independently at 100 equidistant locations (nodes) along each bundle (LMM 193 

Figure 3. Development of R1 along each bundle. R1 along the length of each bundle in newborns (0m, 
dotted line), 3-months-olds (3m, dashed line), and 6-months-olds (6m, solid line). Lines: average R1 at each 
node across participants. Lines per hemisphere largely overlap. Shaded regions: 95% confidence intervals. Left 
panels show the bundles in a representative newborn. Abbreviations: CS: cortico-spinal tract, ATR: anterior 
thalamic radiation, FcMa: forceps major; FcMi: forceps minor, VOF: vertical occipital fasciculus, pAF: 
posterior arcuate fasciculus, AF: arcuate fasciculus, UCI: uncinate fasciculus, SLF: superior longitudinal 
fasciculus, CC: cingulum cingulate, ILF: inferior longitudinal fasciculus, MLF: middle longitudinal 
fasciculus, IFOF: inferior frontal occipital fasciculus. 
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relating R1 to age; one LMM per node and bundle; random intercepts for individuals). The LMM 194 

slopes estimate the rate of R1 development at each node (Fig 4-dashed lines), and we compared the 195 

slope to the measured R1 in newborns at each node (Fig 4-solid lines). Results reveals two main 196 

findings: (i) LMM slopes are positive throughout, indicating that R1 increases from birth to 6 months 197 

of age. (ii) In all bundles, there is a nonuniform rate of R1 development along the length of the bundle. 198 

For example, the posterior ends of the inferior longitudinal fasciculus (ILF) and middle longitudinal 199 

fasciculus (MLF) show a larger change in R1 (more positive slope) than their anterior ends (Fig 4). As 200 

R1 is linearly related to myelin fraction, these data suggest that myelination occurs at different rates 201 

along the length of these 24 bundles. 202 

 By plotting the rate of R1 development (slopes from LMMs; Fig 4-dashed) along each bundle 203 

relative to the measured R1 in newborns (Fig 4-solid), we could also begin to assess the three 204 

developmental hypotheses. Results revealed that in some bundles (e.g., the cortico-spinal tract (CS) or 205 

forceps (FcMa/FcMi)) the rate of R1 increase is higher in locations along the bundle where R1 in 206 

newborns is lower. This suggests a negative relationship between R1 development and R1 at birth, 207 

Figure 4. R1 development rate varies along the length of each bundle. a. Each panel jointly shows 
measured R1 in newborns (left y-axis, solid line) and the slope of R1 development (right y-axis, dashed line) 
at each node along the bundle. Faster development (more positive slope) corresponds to higher values of 
dashed lines. Higher R1 in newborns correspond to higher values in solid lines. Lines from both hemispheres 
are presented separately but fall on top of each other. Shaded regions indicate 95% confidence intervals. 
Abbreviations: CS: cortico-spinal tract, ATR: anterior thalamic radiation, FcMa: forceps major; FcMi: forceps 
minor, VOF: vertical occipital fasciculus, pAF: posterior arcuate fasciculus, AF: arcuate fasciculus, UCI: 
uncinate fasciculus, SLF: superior longitudinal fasciculus, CC: cingulum cingulate, ILF: inferior longitudinal 
fasciculus, MLF: middle longitudinal fasciculus, IFOF: inferior frontal occipital fasciculus.  
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consistent with the predictions of the speed-up hypothesis. In other bundles (e.g., posterior acuate 208 

fasciculus (pAF) or acuate fasciculus (AF)), R1 development rate varies substantially along the length 209 

of the bundle, but not in a clear relation to R1 measured in newborns. This is consistent with the 210 

predictions of the spatial gradient hypothesis. These qualitative observations provide first evidence 211 

that multiple factors including spatial gradients and R1 at birth may contribute to the development of 212 

R1 along white matter bundles.  213 

 Like R1, MD shows (i) spatial variations along the length of each of these 24 bundles at all 214 

three time-points, and (ii) significant development along the length of each bundle (Supplementary 215 

Fig. 6). Different than R1, (i) MD decreases with age (Supplementary Fig. 6), and (ii) the rate of 216 

MD development along the bundles shows a spatially distinct pattern compared to R1 217 

(Supplementary Figure 7). This analysis provides additional evidence that development of MD in 218 

white matter bundles differs from R1 during early infancy.  219 

 220 

Spatial gradients and R1 at birth together explain R1 development 221 

The prior visualizations of R1 along white matter bundles suggest that both R1 at birth and 222 

the spatial location in the brain may contribute to the rate of R1 development during early infancy. To 223 

gain a global understanding of the spatial nature of R1 development across the white matter of the 224 

human brain, next, we visualized R1 measured in newborns and the rate of R1 development of white 225 

matter bundles in the 3D brain space of newborns (plotting every 10th node, Fig 5), rather than along 226 

each individual bundle (as in Figs 3,4). These 3D visualizations yield the following observations: (i) 227 

R1 in newborns varies spatially across the brain with overall highest values in central white matter and 228 

lowest values in frontal white matter (Fig 5b), and (ii) the rate of R1 development varies spatially 229 

across the brain with faster increases in occipital and parietal white matter (yellow in Fig 5c) and 230 

slower development in the temporal and frontal white matter (black in Fig 5c). Overall, these 231 

visualizations suggest that both R1 at birth and spatial gradients across the brain appear to contribute 232 

to the rate of R1 development during early infancy. Thus, we next quantitatively tested the significance 233 
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of each of these two factors separately, and then tested the viability of a model incorporating both 234 

factors. We applied a similar approach to MD (Supplementary Fig. 8).  235 

First, we tested if the rate of R1 development is related to R1 measured in newborns (LMM 236 

relating R1 slope to R1 measured in newborns at every 10th node, with a random intercept per bundle). 237 

The speed up hypothesis predicts a significant negative relationship but the starts-first/finishes-first 238 

hypothesis predicts a significant positive relationship. LMM results reveal a significant negative 239 

relationship between the rate of R1 development and R1 measured in newborns across the white 240 

matter (=-0.003, p<0.0001), that accounts for 40% of the variance in R1 slopes (R2=0.40). That is, 241 

nodes that have higher R1 in newborns develop more slowly than nodes that have lower R1 in 242 

newborns, which is consistent with the speed-up hypothesis.  243 

Second, we tested the spatial gradient hypothesis and evaluated if the rate of R1 development 244 

at each node is related to its spatial location in the brain (LMM relating R1 slope at every 10th node to 245 

the nodes average coordinates in newborns |x|, y, z, and their interactions |x|*y, |x|*z, and z*y; 246 

random intercept per bundle). Results show that there is a significant relationship between the rate of 247 

Figure 5. Spatial gradients and R1 at birth together explain R1 development. In all panels each point is 
a node. In all plots only every 10th node of a bundle is plotted to ensure spatial independence of tested nodes. 
The coordinate of each node is the average |x|,y,z coordinate across newborns. As all data was acpc-ed, the 
0,0,0 coordinate is the anterior commissure; |x|-axis is medial to lateral; y-axis is posterior to anterior; z-axis is 
inferior to superior. The axes are identical across panels. (a) 3D spatial layout of the 24 bundles in the average 
newborn brain volume. Nodes are color coded by bundle (see legend); approximate lobe annotations are 
included to clarify the spatial layout. (b) 3D spatial layout of measured R1 at each node in newborns [s-1]. Data 
are averaged across participants. Color indicates R1. (c) 3D spatial layout of R1 development rate [s-1/day] (i.e. 
the slope estimated from LMM) at each node. Abbreviations: CS: cortico-spinal tract, ATR: anterior thalamic 
radiation, FcMa: forceps major; FcMi: forceps minor, VOF: vertical occipital fasciculus, pAF: posterior arcuate 
fasciculus, AF: arcuate fasciculus, UCI: uncinate fasciculus, SLF: superior longitudinal fasciculus, CC: cingulum 
cingulate, ILF: inferior longitudinal fasciculus, MLF: middle longitudinal fasciculus, IFOF: inferior frontal 
occipital fasciculus. 
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R1 development and spatial location along the z and y axes and their combination (z: =1.68*10-4, 248 

p<0.0001, y: =-1.10*10-4, p<0.0001, y*z: =1.05*10-4, p<0.0001), and smaller but significant 249 

relationships along the |x| and |x|*y axes (x: =4.19*10-5, p=0.02, |x|*y: =-4.74*10-5, p=0.03), 250 

which together explain 65% of the variance (R2=0.65). These results support the spatial gradient 251 

hypothesis and suggest that the prominent spatial gradients of development during infancy are from 252 

inferior to superior, and from anterior to posterior, with additional gradients along medial to lateral 253 

directions. 254 

As both R1 measured in newborns and spatial gradients explain a considerable amount of 255 

variance, a question remains if they are independent factors contributing to the rate of R1 development 256 

or not. Thus, we tested if the rate of R1 development at a node depends both on its spatial location 257 

and its R1 measured in newborns (LMM relating R1 slope at every 10th node to measured R1 in 258 

newborns and spatial coordinate: |x|, y, z, |x|*y, |x|*z, and z*y; with a random intercept per bundle). 259 

This combined model showed a significant negative relationship between the rate of R1 development 260 

and R1 measured in newborns: ( =-0.001; p=0.002) and significant effects of spatial location along 261 

the z axis (=1.53x10-4, p<0.0001), y-axis (=-1.11x10-4, p<0.0001), y*z axis (=1.04*10-4, p<0.0001), 262 

and |x|*z axis (=3.50*10-5, p=0.03). Overall, this combined model explains 67% of the variance in 263 

the rate of R1 development (R2=0.67) and outperforms the best individual model, which was the 264 

spatial gradient model (likelihood ratio test, p=0.002). Similarly, we find that both MD measured in 265 

newborns and spatial gradients explain the rate of MD development in the white matter 266 

(Supplementary Fig. 8).  267 

These analyses suggest that the nonuniform rate of R1 development across the white matter 268 

during early infancy can be explained by two factors: initial R1 (measured in newborns) and spatial 269 

location in the brain (particularly along the inferior-to-superior and anterior-to-posterior axes). 270 

 271 

 272 
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Discussion 273 

By combining longitudinal measures of diffusion MRI and quantitative MRI with a novel 274 

approach for automatic bundle quantification (babyAFQ) in individual infant9s brains, we evaluated 275 

the longitudinal development of R1 and MD during early infancy along 24 white matter bundles, with 276 

three main findings: First, in accordance with previous work15, we find that across the white matter 277 

R1 systematically increases from newborns to 6-months-olds. Second, we find that the development 278 

of R1 is nonuniform across the white matter. Third, we discovered that the rate of R1 development 279 

during infancy is explained by both R1 at birth and spatial gradients. As R1 develops faster in sections 280 

of bundles that are less mature in newborns and it is linearly related to myelin, these data support the 281 

speed-up hypothesis of infant myelin development. Additionally, the rate of R1 development increases 282 

along the inferior-to-superior axis, the anterior-to-posterior axis as well as along diagonal axes. These 283 

data suggest that myelination of the white matter during early infancy depends both on the initial 284 

myelin content at birth and spatial gradients. 285 

Interestingly, the observed developmental pattern of MD showed both similarities and 286 

differences from developmental pattern of R1. Consistent with the notion that increases in myelin 287 

(and R1) would be associated with decreases in MD, we find that MD in the white matter decreases 288 

during infancy, as reported previously45–47. However, we also find that the rate and pattern of MD and 289 

R1 development across the white matter are not identical. As MD is impacted by structural 290 

components of the white matter beyond myelin (e.g., fiber diameter and packing18,23–25) these 291 

differences (i) highlight the importance of using measures such as R1 which are linearly related to 292 

myelin26,29–31 to assess myelin development specifically, and (ii) suggest that additional properties of 293 

white matter bundles beyond myelin are also developing during early infancy. Future histological 294 

measurements in postmortem pediatric samples may elucidate these mechanisms. 295 

Crucially, as quantitative R1 measures are comparable across MRI scanners of the same field 296 

strength9,15,26, we can compare our R1 measurements in infants to those of other populations. For 297 

example, we find that R1 in white matter bundles of full-term newborns ranges between 0.42-0.55[s-
298 
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1], which is higher than R1 in the white matter of preterm newborns, which ranges between 0.29-299 

0.36[s-1]48. This observation suggests that at birth there is some level of myelin in all 24 bundles 300 

investigated here, contrasting with classic histological studies which reported myelin only in a handful 301 

of white matter bundles in newborns (e.g., the cortical-spinal tract)2–5. As these classic studies used 302 

qualitative visual inspection of myelin stains, rather than quantitative metrics, our data underscore the 303 

utility of quantitative R1 measurements. Our measurements also reveal that R1 in 6-months-olds9 304 

bundles ranges between 0.54-0.73[s-1], which is lower than the average R1 measured in adults9 bundles, 305 

which ranges between 0.80-1.25[s-1]44,49. This comparison suggests that none of the 24 bundles 306 

investigated here are fully myelinated by 6 months of age. This is not surprising, as the average R1 307 

across the white matter develops roughly linearly during the first year of life, after which development 308 

slows down15, but continues until early adulthood44,50. It is interesting that the bundles9 R1 increases 309 

on average by ~17% (0.16[s-1]) within the first 6 months of life, as this change is larger than the increase 310 

of ~0.05[s-1] observed over 10 years of childhood development44 (from 8 to 18 years-old). This 311 

observation highlights the profound changes occurring in the white matter during early infancy. 312 

The finding that less mature white matter at birth myelinates faster during infancy is important 313 

for several reasons. First, our data not only provides empirical evidence against the classic view that 314 

white matter develops in a strictly hierarchically manner from early sensory to higher-level cognitive 315 

regions2,3, but also offers new insights regarding the nature of white matter development in infancy. 316 

As myelination is experience-dependent10–13, and we find that the rate of myelination after birth is 317 

negatively related to its initial (birth) level, one conjecture from our data is that the postnatal 318 

environment and experiences may produce a flurry of myelination during the first 6 months of life, 319 

overtaking earlier prenatal gradients. Second, as previous data has shown a link between cognitive 320 

development, processing speed and myelin development during infancy and early childhood51,52, we 321 

further hypothesize that the observed negative relationship between myelination at birth and the rate 322 

of myelin development is functionally relevant. For example, one consequence of this developmental 323 
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trajectory is that it generates a more uniform distribution of myelin across the white matter, which 324 

may allow more coordinated and efficient communication across the human brain.  325 

The rate of R1 development also varies spatially, with faster development occurring 326 

prominently in the inferior-to-superior and anterior-to-posterior directions. As a result of these spatial 327 

gradients, white matter that falls within the parietal and occipital lobes develops faster than central, 328 

frontal, and temporal white matter. This spatial pattern differs from observations made in preterm 329 

newborns before 40 weeks of gestation, that showed fastest development in the central white matter48. 330 

Instead, this pattern is more aligned with spatial gradients observed later in infancy and early 331 

childhood15. An open question is whether these spatial gradients are innate, or experience driven. One 332 

interesting avenue to answer this question in future research would be to compare the longitudinal 333 

development of spatial gradients across preterm newborns and full-term newborns. We hypothesize 334 

that the consequence of these spatial gradients may be to allow white matter that supports crucial 335 

functions such as vision (occipital lobe) and motor control (parietal lobe) to develop faster during 336 

infancy.  337 

Finally, our study has important societal implications. First, as R1 values are quantitative and 338 

have units that can be numerically compared across scanners, populations, and individuals26, our 339 

measurements in typically-developing infants provide a key foundation for large-scale studies of infant 340 

brain development in typical53,54 and clinical populations such as preterm infants55, infants with 341 

cerebral palsy56, or fetal alcohol spectrum disorders57. Second, our methodology is translatable to 342 

clinical settings as it is performed during natural sleep. Third, we developed an automated processing 343 

pipeline that simultaneously provides high throughput and high precision in individual infants. This 344 

level of precision may enable early identification of developmental impairments in at-risk infants, 345 

which in turn may improve the efficacy of interventions58. Further, the spatial precision awarded by 346 

our methods may facilitate future work on spatial dependency of both quantitative and diffusion 347 

metrics. For example, it would be interesting to formally assess if and how these measures change in 348 

spatial locations where multiple bundles cross each other.  349 
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In conclusion, we find that during early infancy myelin content at birth and spatial gradients 350 

of myelin development together explain the rate of myelin growth across the white matter of the 351 

human brain. This finding offers a new parsimonious model of white matter development during early 352 

infancy. We hypothesize that this pattern of myelination during infancy enables some level of myelin 353 

becoming quickly available throughout the brain, to promote efficient and coordinated 354 

communication across the brain, while at the same time prioritizing the development of most critical 355 

functions such as vision and motor coordination.  356 

 357 

Methods 358 

Participants 359 

16 full-term and healthy infants (7 female) were recruited to participate in this study. Three 360 

infants provided no usable data because they could not stay asleep once the MRI sequences started 361 

and hence, we report data from 13 infants (6 female) across three timepoints: newborn (N=9; age: 8-362 

37 days), 3 months (N=10; age: 79-106 days), and 6 months (N=10; age: 167-195 days). Two 363 

participants were re-invited to complete scans for their 6-months session that could not be completed 364 

during the first try. Both rescans were performed within 7 days and participants were still within age 365 

range for the 6-months timepoint. The participant population was racially and ethnically diverse 366 

reflecting the population of the Bay Area, including two Hispanic, nine Caucasian, two Asian, and 367 

three multiracial participants. Six out of the 13 infants participated in MRI in all three timepoints (0, 368 

3, 6 months). Due to the Covid-19 pandemic and restricted research guidelines, data acquisition was 369 

halted. Consequently, the remaining infants participated in either 1 or 2 sessions.  370 

Expectant mothers and their infants in our study were recruited from the San Francisco Bay 371 

Area using social media platforms. We performed a two-step screening process for expectant mothers. 372 

First, mothers were screened over the phone for eligibility based on exclusionary criteria designed to 373 

recruit a sample of typically developing infants and second, eligible expectant mothers were screened 374 
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once again after giving birth. Exclusionary criteria for expectant mothers were as follows: recreational 375 

drug use during pregnancy, significant alcohol use during pregnancy (more than 3 instances of alcohol 376 

consumption per trimester; more than 1 drink per occasion), lifetime diagnosis of autism spectrum 377 

disorder or a disorder involving psychosis or mania, taking prescription medications for any of these 378 

disorders during pregnancy, insufficient written and spoken English ability to understand the 379 

instructions of the study, or learning disabilities that would preclude participation in the study. 380 

Exclusionary criteria for infants were: preterm birth (<37 gestational weeks), low birthweight (<5 lbs 381 

8 oz), small height (<18 inches), any congenital, genetic, and neurological disorders, visual problems, 382 

complications during birth that involved the infant (e.g., NICU stay), history of head trauma, and 383 

contraindications for MRI (e.g., metal implants). Study protocols for these scans were approved by 384 

the Stanford University Internal Review Board on Human Subjects Research. Participants were 385 

compensated for their participation in the study. 386 

 387 

Data Acquisition Procedure 388 

Data collection procedure was developed in a recent study59. All included participants 389 

completed the multiple scanning protocols needed to obtain anatomical MRI, qMRI, and dMRI data. 390 

Data were acquired at two identical 3T GE Discovery MR750 Scanners (GE Healthcare) with Nova 391 

32-channel head coils (Nova Medical) located at Stanford University: (i) Center for Cognitive and 392 

Neurobiological Imaging (CNI) and (ii) Lucas Imaging Center. As infants have low weight, all imaging 393 

was done with first level SAR to ensure their safety. 394 

Scanning sessions were scheduled in the evenings close in time to the infants9 typical bedtime. 395 

Each session lasted between 2.5 – 5 hours including time to prepare the infant and waiting time for 396 

them to fall asleep. Upon arrival, caregivers provided written, informed consent for themselves and 397 

their infant to participate in the study. Before entering the MRI suite, both caregiver and infant were 398 

checked to ensure that they were metal-free, and caregivers changed the infant into MR safe cotton 399 

onesies and footed pants provided by the researchers. The infant was swaddled with a blanket with 400 
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their hands to their sides to avoid their hands creating a loop. During sessions involving newborn 401 

infants, an MR safe plastic immobilizer (MedVac, www.supertechx-ray.com) was used to stabilize the 402 

infant and their head position. Once the infant was ready for scanning, the caregiver and infant entered 403 

the MR suite. The caregiver was instructed to follow their child9s typical sleep routine. As the infant 404 

was falling asleep, researchers inserted soft wax earplugs into the infant9s ears. Once the infant was 405 

asleep, the caregiver was instructed to gently place the infant on a makeshift cradle on the scanner 406 

bed, created by weighted bags placed at the edges of the bed to prevent any side-to-side movement. 407 

Finally, to lower sound transmission, MRI compatible neonatal Noise Attenuators 408 

(https://newborncare.natus.com/products-services/newborn-care-products/nursery-409 

essentials/minimuffs-neonatal-noise-attenuators) were placed on the infant9s ears and additional pads 410 

were also placed around the infant9s head to stabilize head position.  411 

An experimenter stayed inside the MR suite with the infant during the entire scan. For 412 

additional monitoring of the infant9s safety and tracking of the infant9s head motion, an infrared 413 

camera was affixed to the head coil and positioned for viewing the infant9s face in the scanner. The 414 

researcher operating the scanner monitored the infant via the camera feed, which allowed for the scan 415 

to be stopped immediately if the infant showed signs of waking or distress. This setup also allowed 416 

tracking the infant9s motion; scans were stopped and repeated if there was excessive head motion. To 417 

ensure scan data quality, in addition to real-time monitoring of the infant9s motion via an infrared 418 

camera, MR brain image quality was also assessed immediately after acquisition of each sequence and 419 

sequences were repeated if necessary.  420 

 421 

Data Acquisition Parameters and Preprocessing 422 

Anatomical MRI: T2-weighted images were acquired and used for tissue segmentations. T2-423 

weighed image acquisition parameters: TE=124 ms; TR = 3650ms; echo train length = 120; voxel size 424 

= 0.8mm3; FOV=20.5cm; Scan time: 4 min and 5 sec.  425 
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We generated gray/white matter tissue segmentations of all infants and time-points and used 426 

these segmentations to optimize tractography (anatomically constrained tractography, ACT60). The 427 

T2-weighted anatomy, and a synthetic T1-weighted whole brain image generated from the SPGRs and 428 

IR-EPI scans using mrQ software (https://github.com/mezera/mrQ) were aligned and used for 429 

segmentations. Multiple steps were applied to generate accurate segmentations of each infant9s brain 430 

at each timepoint59. (1) An initial segmentation of gray and white matter was generated from the T1-431 

weighted brain volume using infant FreeSurfer9s automatic segmentation code (infant-recon-all; 432 

https://surfer.nmr.mgh.harvard.edu/fswiki/infantFS61). (2) A second segmentation was done using 433 

the T2-weighted anatomical images, which have a better contrast between gray and white matter in 434 

young infants, using the brain extraction toolbox (Brain Extraction and Analysis Toolbox, iBEAT, 435 

v:2.0 cloud processing, https://ibeat.wildapricot.org/62–64). (3) The iBEAT segmentation, that was 436 

more accurate, was manually corrected to fix segmentation errors (such as holes and handles) using 437 

ITK-SNAP (http://www.itksnap.org/). (4) The iBEAT segmentation was then reinstalled into 438 

FreeSurfer and the resulting segmentation in typical FreeSurfer format was used to optimize 439 

tractography. 440 

 441 

Quantitative MRI: An inversion-recovery EPI (IR-EPI) sequence was used to estimate 442 

relaxation time (R1) at each voxel. Spoiled‐gradient echo images (SPGRs) were used together with the 443 

EPI sequence to generate whole-brain synthetic T1-weighted images. We acquired 4 SPGRs whole 444 

brain images with different flip angles: α = 4, 10, 15, 20; TE=3ms; TR =14ms; voxel size=1mm3; 445 

number of slices=120; FOV=22.4cm; Scan time: 4 times ~5 minutes. We also acquired multiple 446 

inversion times (TI) in the IR-EPI using a slice-shuffling technique65: 20 TIs with the first TI=50ms 447 

and TI interval=150ms as well as a second IR-EPI with reverse phase encoding direction. Other 448 

acquisition parameters were: voxel size=2mm3; number of slices=60; FOV=20cm; in-plane/through-449 

plane acceleration=1/3; Scan time=two times 1:45 min. 450 
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IR-EPI data were used to estimate R1 (R1=1/T1) at each voxel. First, as part of the 451 

preprocessing, we performed susceptibility-induced distortion correction on the IR-EPI images using 452 

FSL9s top-up and the IR-EPI acquisition with reverse phase encoding direction. We then used the 453 

distortion corrected images to fit the T1 relaxation signal model using a multi-dimensional Levenberg-454 

Marquardt algorithm66. The signal equation of T1 relaxation of an inversion-recovery sequence is an 455 

exponential decay:  456 

ÿ(�) = ÿ(� − Ā�2� Ā�⁄ ),  457 

where t is the inversion time, a is proportional to the initial magnetization of the voxel, b is 458 

the effective inversion coefficient of the voxel (for perfect inversion b=2). We applied an absolute 459 

value operation on both sides of the equation and used the resulting equation as the fitting model. We 460 

use the absolute value of the signal equation because we use the magnitude images to fit the model. 461 

The magnitude images only keep the information about the strength of the signal but not the phase 462 

or the sign of the signal. The output of the algorithm is the estimated T1 in each voxel. From the T1 463 

estimate we calculated R1 (R1=1/T1) at each voxel. 464 

 465 

Diffusion MRI: We obtained dMRI data with the following parameters: multi-shell, #diffusion 466 

directions/b-value = 9/0, 30/700, 64/2000; TE = 75.7 ms; TR=2800ms; voxel size = 2mm3; number 467 

of slices=60; FOV=20cm; in-plane/through-plane acceleration = 1/3; scan time: 5:08 min. We also 468 

acquired a short dMRI scan with reverse phase encoding direction and only 6 b=0 images (scan time 469 

0:20 min).  470 

dMRI preprocessing was performed in accordance with recent work from the developing 471 

human connectome project67,68, using a combination of tools from MRtrix369,70 472 

(github.com/MRtrix3/mrtrix3) and mrDiffusion (http://github.com/vistalab/vistasoft). We (i) 473 

denoised the data using a principal component analysis71, (ii) used FSL9s top-up tool 474 

(https://fsl.fmrib.ox.ac.uk/) and one image collected in the opposite phase-encoding direction to 475 
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correct for susceptibility-induced distortions, (iii) used FSL9s eddy to perform eddy current and motion 476 

correction, whereby motion correction included outlier slice detection and replacement72, and (iv) 477 

performed bias correction using ANTs73. The preprocessed dMRI images were registered to the 478 

whole-brain T2-weighted anatomy using whole-brain rigid-body registration and alignment quality was 479 

checked for all images. dMRI quality assurance was also performed. Across all acquisitions, less than 480 

5% ± 0.72% of dMRI images were identified as outliers by FSL9s eddy tool. We found no significant 481 

effect of age across the outliers (no main effect of age: F(2,26)=1.97, p=0.16, newborn: 1.07+0.88%; 482 

3 months: 0.4+0.40%; 6 months: 0.67+0.85%), suggesting that the developmental data was well 483 

controlled across all time-points.  484 

Next, voxel-wise fiber orientation distributions (FODs) were calculated using constrained 485 

spherical deconvolution (CSD) in MRtrix369 (Supplementary Figure 2). We used the Dhollander 486 

algorithm74 to estimate the three-tissue response function, and we lowered the FA threshold to 0.1 to 487 

account for the generally lower FA in infant brains. We computed FODs with multi-shell multi-tissue 488 

CSD75 separately for the white matter and the CSF. As in previous work67, the gray matter was not 489 

modeled separately, as white and gray matter do not have sufficiently distinct b-value dependencies to 490 

allow for a clean separation of the signals. Finally, we performed multi-tissue informed log-domain 491 

intensity normalization. 492 

We used MRtrix369 to generate a whole brain white matter connectome for each infant and 493 

time point. Tractography was optimized using the tissue segmentation from the anatomical MRI data 494 

(anatomically-constrained tractography, ACT60). We argue that this approach is particularly useful for 495 

infant data, as gray and white matter cannot be separated in the FODs. For each connectome, we used 496 

probabilistic fiber tracking with the following parameters: algorithm: IFOD1, step size: 0.2 mm, 497 

minimum length: 4 mm, maximum length: 200 mm, FOD amplitude stopping criterion: 0.05, 498 

maximum angle: 15°. Seeds for tractography were randomly placed within the gray/white matter 499 

interface (from anatomical tissue segmentation), which enabled us to ensure that tracts reach the gray 500 
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matter. Each connectome consisted of 2 million streamlines. MRtrix3 software was also used to fit 501 

tensor kurtosis models from which we estimated mean diffusivity (MD) maps for each individual. 502 

 503 

Bundle delineation with baby automated fiber quantification (babyAFQ) 504 

Here we developed a new toolbox (babyAFQ) that identifies white matter bundles in 505 

individual infants. BabyAFQ is openly available as a novel component of AFQ32 506 

(https://github.com/yeatmanlab/AFQ/tree/master/babyAFQ) and identifies the following bundles 507 

in infants (Fig. 1): anterior thalamic radiation (ATR), cortico-spinal tract (CS), posterior arcuate 508 

fasciculus (pAF), vertical occipital fasciculus (VOF), forceps major (FcMa), forceps minor (FcMi), 509 

arcuate fasciculus (AF), uncinate fasciculus (UCI), superior longitudinal fasciculus (SLF), cingulum 510 

cingulate (CC), inferior longitudinal fasciculus (ILF), inferior frontal occipital fasciculus (IFOF) and 511 

the middle longitudinal fasciculus (MLF). 512 

BabyAFQ uses anatomical ROIs as waypoints for each bundle. That is, a given tract is 513 

considered a candidate for belonging to a bundle only if it passes through all waypoints associated 514 

with that bundle. The waypoint ROIs were adjusted from those commonly used in adults36 to better 515 

match the head size and white matter organization of infants (Supplementary Fig 3). Specifically, 516 

we: (i) spatially restricted some of the waypoint ROIs to account for the more compact infant brain, 517 

(ii) introduced a third waypoint for curvy bundles, (iii) as the VOF was the only bundle that used 518 

cortical-surface waypoint ROIs, we generated new volumetric waypoint ROIs for the VOF 519 

(Supplementary Figure 4), so that all waypoints for all bundles are volumetric, and (iv) added new 520 

waypoint ROIs for identifying the MLF, as the MLF was not included in prior AFQ versions. 521 

Critically, these waypoints were defined in a neonate infant template brain (UNC Neonatal template35) 522 

and are transformed from this template space to each individual infant9s brain space before bundle 523 

delineation. The use of an infant template brain is critical as commonly used adult templates, such as 524 

the MNI brain, are substantially larger and difficult to align to infants9 brains. In cases where a given 525 

tract is a candidate for multiple bundles, a probabilistic atlas, which is also transformed from the infant 526 
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template space to the individual infant brain space, is used to determine which bundle is the better 527 

match for the tract. Bundles are then cleaned by removing tracts that exceed a gaussian distance of 4 528 

standard deviations from the core of the bundle. Critically, babyAFQ was designed to seamlessly 529 

integrate with AFQ, so that additional tools for plotting, tract profile evaluation and statistical analysis 530 

can be applied after bundle delineation. 531 

 532 

BabyAFQ quality assurance 533 

To evaluate the quality of the bundle delineation by babyAFQ, we compared the automatically 534 

identified bundles to manually delineated <gold-standard= bundles. Manual bundle delineation was 535 

performed for the newborns in DSI Studio (http://dsi-studio.labsolver.org/) by 2 anatomical experts 536 

who were blind to the results of babyAFQ. As a benchmark, we also delineated bundles with AFQ, 537 

which was developed using adult data, and compared these bundles to the <gold-standard= bundles. 538 

For both babyAFQ and AFQ we quantified the spatial overlap between the automatically identified 539 

bundles and the manually identified bundles using the dice coefficient76 (DC): Āÿ = 2|ý∩þ||ý|+|þ| , where 540 

|A| are voxels of automatically-identified bundles, |B| are voxels of the manual bundles, and |A∩B| 541 

is the intersection between these two sets of voxels (Fig 1b). We compared dice coefficients between 542 

babyAFQ and AFQ in two repeated measures analyses of variance (rmANOVAs). First, a 2-way 543 

rmANOVA with AFQ-type and bundle as factors allowed us to evaluate the effect of AFQ type across 544 

all bundles. Second, a 3-way rmANOVA with AFQ-type, bundle, and hemisphere as factors, that only 545 

included bilateral bundles, enabled us to test for additional hemispheric differences. Finally, we also 546 

used the dice coefficients to test if tracts identified as belonging to the VOF were similar or different 547 

across methods – using volumetric way-point ROIs vs. surface ROIs (Supplementary Fig 4). 548 

In addition to the quantitative evaluation, we examined all bundles delineated using babyAFQ 549 

and AFQ qualitatively at all time-points (Supplementary Fig 9) to evaluate how well they match the 550 
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typical spatial extent and trajectory across the brain. We also created with pyAFQ34 an interactive 3D 551 

visualization of an example infant9s bundles at each time point: 0 months, 3 months, and 6 months.  552 

 553 

Modeling R1 development 554 

After identifying all bundles with babyAFQ, we modeled their R1 development using linear 555 

mixed models (LMMs). First, we modeled mean R1 development within each bundle using LMMs 556 

with age as predictor and a random intercept (estimated R1 at birth) for each individual (Fig 2a). We 557 

used model comparison (likelihood ratio tests) to determine that LMMs allowing different slopes for 558 

each individual do not better explain the data compared to LMMs using a single slope across 559 

individuals. To evaluate differences in developmental trajectories between bundles, we plotted the 560 

mean R1 measured in newborns (Fig 2b) and well as the mean R1 development rate (slopes of LMMs) 561 

for each bundle (Fig 2c).  562 

Next, we evaluated the development of R1 along the length of each bundle. For this, we 563 

divided each bundle into 100 equidistant nodes and evaluated R1 at each time-point in each node (Fig 564 

3). We then determined the rate of R1 development at each node (one LMM per node; random 565 

intercepts for each individual as above). For each bundle, we then plotted R1 measured in newborns 566 

and the rate of R1 development across nodes to visualize their relationship along each bundle (Fig 4). 567 

Finally, we evaluated the relationship between the rate of R1 development (LMM slope) and 568 

both the measured R1 in newborns as well as the spatial location in the brain (Fig 5). This analysis 569 

was done for every 10th node along each bundle to ensure independence across nodes within a bundle. 570 

All subplots in Fig 5 show the data at each node plotted at their average location in the newborn9s 571 

brain (average|x|, y and z coordinates in the newborn sample). For the x axis we used the |x| 572 

coordinates, as previous work suggests a medial to lateral spatial gradient of development across both 573 

hemispheres of the infant brain5. As all newborn data was acpc-ed, the (0,0,0) coordinate corresponds 574 

to the average coordinate of the anterior commissure across newborns. Fig 5a is included to orient 575 
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the reader to the spatial layout in these plots. Fig. 5b shows the spatial layout of measured R1 in 576 

newborns across the white matter, and Fig. 5c shows the spatial layout of R1 development rate across 577 

the white matter. 578 

We quantified the relationship between R1 development rate and initial R1 as well as spatial 579 

location via a series of LMMs. In these models we used every 10th node of each bundle to ensure 580 

independence. In the first LMM, we related R1 development rate to R1 measured in newborns, with 581 

a random intercept for each bundle: 582 

(1) R1Slope~ 1+ R1 in Newborns + (1|Bundle).  583 

In the second LMM, we related R1 development rate to location in the brain (|x|, y, z, |x|*y, 584 

y*z, and z*|x| coordinates, all coordinates were z-scored before including interaction terms), with a 585 

random intercept per bundle: 586 

(2) R1Slope~ 1 + |x| + y + z + |x|*y + |x|*z + y*z + (1|Bundle).  587 

In the third model, we related R1 development to both R1 measured in newborns as well as 588 

spatial location with a random intercept per bundle:  589 

(3) R1Slope~ 1 + R1 in Newborns + |x| + y + z + |x|*y + |x|*z + y*z + (1|Bundle). 590 

We used a likelihood ratio test to assess whether this third model outperforms the second 591 

model. Similar LMMs were also performed on mean diffusivity (MD) data, to relate our findings to 592 

previous work. MD results are presented in Supplementary Figs 5-8. 593 

 594 

Data and code availability 595 

The data were analyzed using open source software, including mrDiffusion and MRtrix369. We 596 

developed a new toolbox for automated fiber quantification in individual infants (babyAFQ) and make 597 

it openly available (https://github.com/yeatmanlab/AFQ/master/babyAFQ). Code for reproducing 598 
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all figures is made available in GitHub (https://github.com/VPNL/babyWmDev). The data 599 

generated in this study will be made available by the corresponding author upon reasonable request. 600 
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