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Abstract

The extraction of “fingerprints" from human brain connectivity data has become a new
frontier in neuroscience. However, the time scales of human brain identifiability have not
been addressed yet. In other words, what temporal features make our brains more
“‘identifiable”? We here explore the dynamics of brain fingerprints (or brainprints) along
two complementary axes: 1) what is the optimal time scale at which brainprints integrate
sufficient information, 2) when best identification happens. Using dynamic identifiability,
we show that the best identification emerges at longer time scales (~300s); however,
short transient “bursts of identifiability" persist even when looking at shorter functional
interactions. We find that these bursts of identifiability might be strongly associated with
neuronal activity. Furthermore, we report evidence that different parts of connectome
fingerprints relate to different time scales: i.e., more visual-somatomotor at short
temporal windows, more frontoparietal-DMN driven by increasing temporal windows.
Finally, using a meta-analytic approach, we show that there is a broad spectrum of
associations between brainprints and behavior. At faster time scales, human brain
fingerprints are linked to multisensory stimulation, eye movements, affective processing,
visuospatial attention. At slower time scales instead, we find higher-cognitive functions,
such as language and verbal semantics, awareness, declarative and working memory,
social cognition. We hope that this first investigation of the temporality of the human
brain fingerprint will pave the way towards a better understanding of what and when

makes our brains unique.
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Introduction

In the 17th century, physician Marcello Malpighi observed the existence of distinctive
patterns of ridges and sweat glands on fingertips . This was a major breakthrough, and
originated a long and continuing quest for ways to uniquely identify individuals based on
fingerprints, a technique massively used until today. In the modern era, the concept of
fingerprinting has expanded into other sources of data, such as voice recognition and
retinal scans, among many others 2. It is only in the past few years that technologies
and methodologies have achieved high-quality measures of an individual’s brain to the
extent that personality traits and behavior can be characterized. The most insightful
correlates emerged from the investigation of functional and structural connectivity that
can be modeled and analyzed using network science. This area of research is usually

referred to as Brain Connectomics®.

In Brain Connectomics, network organization of the brain is studied using either the
structural or functional connectome. For the former, strength of white-matter pathways
between pairs of brain regions is extracted from diffusion weighted imaging (DWI) data
and referred to as structural connectivity (SC). For the latter, temporal statistical
dependencies between pairs of activity time courses taken from functional magnetic
resonance imaging (fMRI) define functional connectivity (FC). The most common
paradigm for FC is resting-state fMRI during which subjects in the scanner are not

engaging in a particular task®.

The concept of “fingerprints of the brain” is very novel > and has been boosted thanks
to a seminal publication by Finn et al. ® in 2015. They were among the firsts to show
that, to a great extent, it is possible to robustly identify the functional connectome of a
“target” subject from a sample database of FCs, simply by computing the spatial
(Pearson) correlation of the target FC against the database ones. The success rate of
this identification procedure based on brain connectivity data was above 90% for
resting-state sessions, and ranged between 54% and 87% when including task-task and

task-rest sessions °. This seminal work demonstrated that an individual's functional
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brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it
is possible, with near-perfect accuracy in many cases, to identify an individual among a
large group of subjects solely on the basis of her or his connectivity profile. These
findings further incentivized human neuroimaging studies to move from inferences at
the population level to results that apply to the single-subject level; i.e., by examining
how individuals’ networks are functionally organized in unique ways "2, or by relating
this functional organization to behavioral phenotypes in both health and disease °, or

even by implementing ways for maximizing and denoising fingerprints in brain data ™.

Yet, the discovery of brain fingerprints opened up a plethora of new questions, in
particular, what exactly is the information encoded in brain connectomes that ultimately
leads to correctly differentiating someone’s connectome from anybody else’s? In other
words, what makes our brains unique? More specifically, related to the temporality of
FC-based fingerprinting, is the brain more unique at some moments, and what is the

temporal extent needed for a fingerprint to unfold?

Here we address these questions by tapping into the temporal dynamics of human brain
connectivity. We use dynamic functional connectivity techniques to explore the time
scales of brain identification; i.e., when and over which duration do these unique
fingerprints originate, and which brain areas are most responsible for this. We
demonstrate that optimal fingerprints manifest at a time scale of 300 sec based on
dynamic functional connectomes. Nonetheless, unique individual “snapshots” of brain
connectivity emerge at much shorter time scales already. In addition, snapshots at
different time scales reveal specific connectivity patterns in terms of regions and
functional networks, which shows how fMRI BOLD fluctuations relate to different types
of underlying neuronal events. Moreover, when looking at different areas in the brain
fingerprints, we noticed that subcortical regions are the fastest ones for individual
identification; visual and somatomotor regions appear right after; ultimately, at slower
time scales, frontoparietal and DMN emerge. Finally, a meta-analytical investigation
revealed that brain fingerprints can be associated with behaviorally-relevant

arrangement, revealing a complex gradient of relationship between the time scale of
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fingerprinting and digression from sensory behavioral traits to higher-order cognitive
functions. In sum, for the first time, dynamic FC methods allowed us to investigate the
temporality of brain fingerprints. We provide evidence that what makes our brains
unique is multifaceted, based on when and how long. That is, individual identification is

a temporally integrating and fluctuating feature of brain fingerprints.

Results

We introduce “dynamic brain fingerprints" (or brainprints) to investigate the temporality
of brain fingerprinting. The general scheme for dynamic identification can be divided in
three steps (Fig. 1): 1) the time scale is set by the choice of the temporal window length;
2) sliding-window dynamic functional connectome frames (dFCs) are computed for each
window position; 3) the similarity of frames within-subjects and between-subjects is
evaluated, with the aim to extract the best “identifiable” connectome frames, for each
subject (Fig. 1, see also Supplementary Fig. S1). In a nutshell, the temporal exploration
of human brainprints can be decomposed according to two complementary axes: the
time scale of brain identification or how long it takes for the information to optimally
integrate, and the best matching time of identification or when best information is
available (Fig. 1). This concept can be formally encoded into a “dynamic Identifiability
matrix” (Fig. S1), in which the blocks represent within-subject dFCs similarity, and off
block-diagonal elements contain the information on the between-subjects dFCs
similarity (Fig. S1, see also Methods for details).
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Fig. 1 Exploring dynamic brain fingerprints. Schematic of dynamic connectome identification, for one
subject. First, the time scale (window length) of the exploration, here depicted as a gradient cone, is set;
secondly, dynamic functional connectivity frames are computed at each window, for both test and retest

fMRI data; finally, the best matching frames across test and retest data are retrieved for identification.

We explored these temporality aspects of human brainprints across different time scales
(window lengths) on the 100 unrelated subjects of the Human Connectome Project
dataset. We started by selecting six different window lengths (7.2s, 36s, 72s, 144s,
288s, 576s, with a fixed sliding window step of 7.2 seconds), and explored dynamic
differential identifiability (dldiff) at every window (Fig. 2, see also Methods for details on

the implementation).

The dynamic differential identification increases steadily with longer window lengths
(Fig. 2). This is expected since we rely upon more time points for dFCs computation,
increasing the stability of the functional connectivity profiles across test-retest sessions.
However, clearly noticeable diagonal blocks respecting the subject boundaries start
appearing before the maximal dldiff window length (Fig. 2).


https://doi.org/10.1101/2021.03.24.436733
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436733; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dynamic Identification across temporal scales
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Fig. 2 Dynamic Identification across temporal scales. Dynamic Identifiability matrix evaluation at six
different window lengths: (7.2s, 36s, 72s, 144s, 288s, 576s). To ease its visualization, the dynamic
identifiability matrix in the figure was reduced to 10 sample subjects. The dynamic differential identifiability
on top of each matrix provides a score of the fingerprint level of the dataset across temporal scales. Black
squares indicate the self similarity of each subject’'s dFC frames.

This suggests that, even at shorter time scales, there exist specific brainprints able to

reliably link test-retest sessions.

We then explored if there were specific individual dFC frames that would be driving the
dynamic identification. We therefore ranked the frames based on how good they could
represent the subject (or dlself, see Methods for details) across test-retest, and
evaluated how good these dFC frames could also separate between subjects, via
dlothers. Fig. 3 shows that few FC frames can drive identifiability, especially at shorter
window length (steeper curves, Fig. 3A). Note that, even if the dlself behavior is
expected since we based our dFC frames ranking on it, the fact that dlothers (and
consequently dldiff) might follow the same trend is not trivial (Fig. 3A). Interestingly,
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when looking at the variability of the Top frame for identification across subjects, one
can notice the emergence of characteristic spatial patterns of connectivity becoming
more homogeneous in the population (Fig. 3B). Starting from visual and somatomotor
patterns of connectivity at shorter temporal windows, degrading towards fronto-parietal
network connectivity at slower time scales, finally including default mode network
connectivity (Fig. 3B).

To evaluate the contribution of BOLD fluctuations that are most likely driven by neuronal
activity-inducing signals, we repeated the same analysis using transient activity time
courses (as in ") obtained as the derivative of the deconvolved BOLD signals (Fig. S2).
This simultaneously removes the effect of the hemodynamic response function (HRF)
and detects transition moments in neural activity. The same finding as before is
confirmed across diself, dlothers and dldiff, with small fluctuations across temporal
scales (Fig. S2).
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Fig. 3 Brain fingerprint resides in few FC frames. A) Evaluation of brainprints across temporal scales
through diself (left), dlothers (middle) and d/diff scores (right), when ranking dFC frames based on
individual dlself, in descending order. The dldiff scores obtained with the ranking are compared with the
ones obtained when taking all frames (triangles), also depicted in Fig. 2. B) Edgewise standard deviation
across subjects of the best matching dFC frames, at each temporal scale. The matrices are ordered
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according to the seven resting state subnetwork organization proposed by Yeo and colleagues',
specifically: Visual (VIS), somatomotor (SM), dorsal attention (DA), ventral attention (VA), Limbic (L),
Frontoparietal (FP) and default mode network (DMN). For completeness, an eight subcortical subnetwork
(S) was added at the end (see Brain Atlas in Methods for details).

Given the observed spatial variation as a function of time scale, we investigated in more
details the spatial profiles of the fingerprints. Specifically, we used edgewise intra-class
correlation (ICC, see Methods) to explore the FC connections most contributing to brain
fingerprinting across time scales. Fig. 4 shows that, at fast time scales, the most reliable
(i.e., with ICC>0.4) FC edges are the ones related to the connectivity between
somatomotor and visual regions (Fig. 4A). As the time scale increases, “higher-order”
regions start to appear, such as default-mode network and fronto-parietal regions
(Fig.4A). Notably, no ICC patterns above 0.4 could be obtained from 100 instances of
surrogate data obtained by randomly shuffling subject labels in the dataset (Fig. S3, see

also Methods for details on the implementation).

These results reveal a specific time scale for fingerprinting of different functional
networks. Indeed, when refining the temporal exploration (see Methods for details), and
looking at the nodal counterpart of the ICC profiles across functional networks, one can
notice that the temporal fingerprint of each functional subsystem peaks at specific times
(Fig. 4B): shorter for subcortical and somatomotor connections, longer for
DMN/frontoparietal ones (Fig. 4B, Fig. 4C).
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Fig. 4 Time scales of brain fingerprints. A) Top: Edgewise intra-class correlation (ICC) for the most
identifiable frame as function of temporal scale. The ICC matrices are thresholded at 0.4, which is usually
a lower limit to define a “good” ICC score *'*. The ICC matrices are ordered according to the seven
resting state subnetwork organization proposed by Yeo and colleaguesi1, specifically: Visual (VIS),
somatomotor (SM), dorsal attention (DA), ventral attention (VA), Limbic (L), Frontoparietal (FP) and
default mode network (DMN). For completeness, an eight subcortical subnetwork (S) was added at the
end (see Brain Atlas in Methods for details). Bottom: the ICC edgewise scores on top are averaged
across Yeo functional networks, to better visualize patterns within and between functional subsystems. B)
The nodal ICC (sum across rows of the ICC matrices) per Yeo functional network is plotted across time,
for the un-thresholded (left) and thresholded (right) ICC matrices. C) The maximum value across temporal
profiles is overlaid onto a brain render, to obtain a brain map of the time scales of human brain
fingerprints.

Finally, we looked into temporality of brainprints and the link with behavior. We applied a
NeuroSynth meta-analysis based on 50 topic terms onto the brain fingerprint extracted
at a specific temporal window, similarly to previous work >'®. We found that brain
fingerprints at fast scales are associated with low-order multisensory processing, visual

perception, motor/eye movements, as well as affective processing and visuospatial

attention (Fig. 5). On the other hand, brain fingerprints at slower time scales are linked
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to reading comprehension, awareness, verbal semantics, language, social cognition, as

well as declarative and working memory (Fig. 5).
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Fig. 5 Brain fingerprints associates with behavior across time scales. The NeuroSynth
meta-analysis of the brain fingerprints maps across time scales (from 50 seconds to 770 seconds, in
steps of 15 seconds) shows a spectrum of association with low-sensory regions at fast time scales,
ending up into higher-order processing. The brain fingerprint maps were masked by selecting only the top
25% brain nodes at each time scale.

Discussion

The neuroscientific community is moving towards open'” and reproducible'® science, to
strengthen and deepen our understanding of the links between cognition'®, behavior®,
dysfunction®. In this respect, brain fingerprinting has the promise to play a key role
providing valuable insights due to its potential inherent to drawing single subject
inferences from functional connectivity profiles. Seminal work *' showed that brain
fingerprints derived from whole resting-state sessions contain uniqueness of each
individual functional connectome in the brain areas devoted to “higher-order” cognitive

functions, such as frontoparietal and default-mode networks. However, the temporality
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for identifiability of functional connectomes™ has not been addressed before. It relates
to the key question: when and at which time scale functional connectomes become

unique and thus “identifiable”?

In order to figure out what makes a human brain identifiable at the level of functional
neuroimaging correlates, we explored the temporality of brainprints along two
complementary directions: 1) what is the optimal time scale at which fingerprints
integrate sufficient information, 2) when does better identification of a fluctuating pattern
happen. Using dynamic identifiability (Fig. 1), we showed that the best identification
emerges at longer time scales (Fig. 2); however, short transient bursts of “Identifiability"
persists even when looking at shorter functional interactions. As a matter of fact, even at
faster time scales, very few frames suffice to identify an individual from the others (Fig.
3). These bursts of identifiability might be strongly associated with neuronal activity, as
the regularized deconvolution with the hemodynamic response function did not tamper
the identification rates obtained (Fig. S1). It is known that mammalian cortical neurons
interact in functionally relevant oscillating networks, which span across a broad
frequency range 2'. There is also recent evidence that episodic local field-potential
oscillations elicit whole-brain fMRI activity: for instance, hippocampal population burst
appears temporally bounded by massive activations of association and primary cortical
areas in monkeys #. Based on our findings on human brainprints, we conjecture that
this burst of neuronal activity might be one of the sources of this subject-specificity, and

therefore closely related to the transient burst in identifiability observed (Fig.3 , Fig. S1) .

Furthermore, previous studies >'° showed that the main drivers of the uniqueness of
each individual functional connectome reside in the brain areas devoted to
“higher-order” cognitive functions, such as frontoparietal and default-mode networks.
We found compelling evidence that different parts of connectome fingerprints are
optimal at different time scales (Fig. 4). Each region contributes differently to
fingerprinting at a specific time scale; i.e., more visual-somatomotor at short temporal
windows, more frontoparietal-DMN driven with increasing temporal windows. These

findings open up interesting speculation on the link between individual connectivity
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profiles and the information content associated with the windowed BOLD time series.
Maybe higher-order cortices fluctuations contain more slow-long range information that

is lost when looking at short windows within them?

As a matter of fact, human brain regions appear to be broadly differentiated into
different aspects of behavior and cognition, and the temporal dynamics of neuronal
populations across the cortex are thought to be reflective of this specialization 2. For
example, primary sensory neurons are tightly coupled to changes in the environment,
firing rapidly to the onset and removal of a stimulus, and showing characteristically short
intrinsic timescales. In contrast, neurons in cortical association (or transmodal) regions,
exhibit longer firing patterns when a person is engaged in higher-order cognitive tasks
2 We here hypothesized that the difference in the brain prints spatial patterns might be
tightly linked to the neuronal timescale of the different cognitive processes taking place

in a resting human brain (Fig. 4).

Intriguingly, the temporal scales of fingerprinting can be related to behavior in a
meaningful way (Fig. 5). Using a meta-analytic approach, we showed that there is a
broad spectrum of associations with behavior. At faster time scales, human brain
fingerprints are linked to multisensory stimulation, eye movements, affective processing,
visuospatial attention. At slower time scales instead, we find higher-cognitive functions,
such as language and verbal semantics, awareness, declarative and working memory,
social cognition (Fig. 5). This finding reveals for the first time the link between the
behavioral relevance of specific functional networks and the associated time scale at

which they are manifested.

Notably, these findings are also in line with recent evidence that neuronal timescales
follow cytoarchitectonic gradients across the human cortex and are relevant for
cognition in both short and long terms 2. Particularly, neuronal timescales increase
along the principal sensorimotor-to-association axis across the cortex and align with
macroscopic gradients of gray matter myelination (T1w/T2w ratio) and synaptic receptor

and ion channel gene expression #. Previous work also suggests that functional cortical
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networks are organized as two large ring-shaped networks (differentiated by their
preferred information processing mode) ?’. The first ring comprises visual, auditory,
somatosensory, and motor cortices that process real time world interactions; the second
ring, including parietal, temporal, and frontal regions with networks dedicated to
cognitive functions, emotions, biological needs, and internally driven rhythms. There is
evidence that the patterns of gene expression organize the cortex into two sets of
regions that match the two rings . Overall, the correspondence between the temporal
maps brainprints and genetic/cytoarchitectonic profiles, as well as behaviorally-relevant
gradients '®, opens up more fascinating questions on the relationships between these

gradients and human brain identifiability.

This work comes with some limitations. First, the impact of the choice of the brain atlas
should be further verified. Second, we examined temporality of brainprints here using
sliding window analysis. Future studies should also consider other approaches, such as
edgewise connectivity 2 or more advanced dynamic functional connectivity models %° .
Investigation on the relationship between transient activation and brainprints (Fig. S2)
suggests that identification is unlikely to be explained only as a byproduct of
hemodynamics. Hence, it would be also interesting to compare the findings from this
study, which are based on fMRI resting-state data, with data coming from fMRI task
analysis, or even other neuroimaging modalities, such as EEG or MEG. This would
allow us to extend the range of accessible time scales across modalities, for dynamic
identification. This work opens also the avenue of relating functional brainprints with
underlying structural architecture. Recent studies have shown that building FC matrices
from (very) long RS fMRI sessions leads to very good proxies for SC . Similarly, it has
been shown that longer fMRI sessions (up to a plateau '°) improve identification.
Furthermore, function-structure dependency was recently shown to follow a brain
pattern extremely consistent with the gradient found here for brainprints '°. Future work
on brainprints and their association with structural connectivity seems therefore worth

exploring.
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In sum, we have here explored for the first time the temporality of the human brain
fingerprint. We have shown that fingerprints are intertwined with the time scales of
functional brain connectivity, and possibly associated with transient bursts in brain
activity. This investigation is promising based on these first findings, and represents the

first step towards a better understanding of what and when makes our brains unique.

Materials and Methods

HCP data: functional preprocessing. The fMRI dataset used in this work is from the
Human Connectome Project (HCP, http://www.humanconnectome.org/), Release Q3.
We assessed the 100 unrelated subjects (54 females, 46 males, mean age = 29.1 £ 3.7
years) as provided from the HCP 900 subjects data release 3" . Per HCP protocol, all
subjects gave written informed consent to the Human Connectome Project consortium.
The fMRI resting-state runs (HCP filenames: rfMRI_REST1 and rfMRI_REST2) were
acquired in separate sessions on two different days, with two different acquisitions (left
to right or LR and right to left or RL) per day 223, For all sessions, data from both the
left-right (LR) and right-left (RL) phase-encoding runs were used to calculate
connectivity matrices, in order to have four functional connectomes (one LR test-retest
pair, one RL) per subject. For this study, we employed the minimally preprocessed HCP
resting-state data *?, with the following preprocessing steps. First, we applied a standard
general linear model (GLM) regression which included: detrending and removal of
quadratic trends; removal of motion regressors and their first derivatives; removal of
white matter (WM), cerebrospinal fluid (CSF) signals and their first derivatives; global
signal regression (and its derivative). Secondly, we bandpass filtered the time series in
the range [0.01 0.15] Hz. Finally, the voxelwise fMRI time series were averaged into
their corresponding brain nodes of the atlas (see next section, Brain Atlas) , and then
z-scored.

Brain atlas. We employed a cortical parcellation into 400 brain regions as recently
proposed by Schaefer and collaborators®* (freely available at
ZBhttps://github.com/ThomasYeolab/CBIG/tree/master/stable_projects/brain_parcellatio
n/Schaefer2018_LocalGlobal). For completeness, 16 subcortical regions and 3
cerebellar regions were also added, as provided by the HCP release (filename
“‘Atlas_ROI2.nii. gz”), resulting in a final brain atlas of 419 brain nodes.
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Dynamic Functional Connectivity estimation. To assess brain fingerprints across
time scales, we performed sliding window analysis ?°. The sliding window scheme is the
following: first a temporal window, parameterized by its length w, is chosen, and within
the temporal interval that it spans (i.e., from time t=1 to time t=w), connectivity is
computed between each pair of timecourses as Pearson correlation coefficient,
producing one instance of the “dynamic functional connectome” (Fig. 1A). Then, the
window is shifted by a step T, and the same calculations are repeated over the time
interval [t=1 + T , t=w + T ]. This process is iterated until the window spans the end part
of the time courses, to obtain a set of connectivity matrices (i.e., dynamic functional
connectomes), summarizing the temporal evolution of whole-brain functional
connectivity (Fig. 1A). In this work, we started by exploring six different window lengths
w, specifically of [7.2 36 72 144 288 576] seconds each, and the sets of dynamic
functional connectomes associated to them (the number of brain regions is equal to
419). The choice of the shortest window length did not consider the recommendation of
previous work?® based on stationarity assumptions, instead we opted to allow transient
non-stationary events at the level of edgewise FC? to be fully present in the dynamic
functional connectomes, at the risk of potential aliasing. The window step T was fixed to
7.2 seconds in this study (note that since the TR of HCP is 0.720 s, 7.2 s corresponds
to 10 fMRI data points). Specifically, we studied the evolution of brain fingerprinting
across different temporal windows, as detailed in the next section.

Dynamic Identification. The idea on dynamic identification was inspired by recent work
on maximization of connectivity fingerprints in human functional connectomes . In that
work, the authors defined a mathematical object known as “Identifiability matrix”, which
is a similarity matrix encoding the information about the self similarity (Iself, main
diagonal elements) of each subject with herself/himself, across the test/retest sessions,
and the similarity of each subject with the others (or lothers, off diagonal elements). The
similarity between two functional connectomes was quantified with the Pearson’s
correlation coefficient between the entries of the connectivity matrices. The difference
between Iself and lothers (denominated “Differential Identifiability” or “Differential
Identification” - Idiff) provides a robust score of the fingerprinting level of a specific
dataset '°. This idea needs to be extended in the case of dynamic functional
connectome evaluation, since in addition to the test/retest set, the set of dynamic
“frames" of connectivity are estimated (Fig. S1A, Fig. S1B). For a fixed window length
w, the resulting “Dynamic Identifiability matrix” (Fig. S1C) dl is then a block-diagonal
matrix, where each block represents the self-similarity within the dynamic functional
connectome frames of a specific subject. The off-diagonal blocks, in this representation,
encode instead the between-dFC frames similarity across different subjects (dynamic

lothers). Let Suyp ={dFCy,dFCy,....dFCN} pe the set of dFC frames in the test


https://doi.org/10.1101/2021.03.24.436733
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436733; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

session, for a specific subject M. Similarly, let S:mzr represent the set of dFC frames in
the retest session, for the same subject M. We can then define the dynamic Iself (dlself)
for subject M as:

dISGlf(M) — Z:":'E'S’J\/IT ZjESMHT COTT(dFCZ" dFCJ) o ZiESMT ZjESMRT dl@

|SMT| X |SMRT| N |SMT‘ X |SMRT|

Where |Suirl; [Sirez| define the cardinalities of the sets. Similarly, let SFr SFar define
the sets for a different subject F. We can define dynamic lothers as:

ZiES Z'es dl;; ZiES Z'ES dl;
1 M. J€ESE F JESN
dIOthGTS(M, F) N 5( |Sf‘:l;T|><|SFRTi |S§T|X|SMRT] )
And hence:
S
dlothers(M) = Z dlothers(M,F), I # M
F=1

Where the summation is over the total number of subjects S other than M. Finally,
dynamic differential identifiability for a subject M results in:

didiff(M) = dIself(M) — dlothers(M)

And the average dIdiff:

S
dIdiff = dIdif f(M)

M=1

We use dynamic differential Identifiability to explore connectivity fingerprints across
different window lengths. Note that we first evaluated dynamic identification of the LR
and RL connectome pairs separately, and then averaged the corresponding LR/RL
Dynamic ldentifiability matrices into one.

Maximum dynamic dFC frame selection. The dynamic identification framework
described above provides the average behavior of fingerprinting within and between
dynamic functional connectome frames. However, there might be dynamic FC frames
where identification is higher than others, which might not be captured by the average
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behavior depicted by dldiff. To cover the necessity of that, for each subject we sorted
the dFC frames in test retest according to their similarity, from highest to lowest, based
on their dlself; value (see dlself equation above). We then explored dlself, dlothers and
didiff when iteratively adding dFC frames one at the time, starting from the best
matching ones, and then proceeding based on their similarity values.

Transient (total activation) analysis. The TA framework' incorporates two main
features for fMRI data processing: (1) each voxel's BOLD time course is deconvolved
from the temporal blur introduced by the hemodynamic response, leading to the
activity-inducing signal that is supposed to show block-type activation patterns (without
any prior knowledge on the timing and duration of these blocks); (2) BOLD signals
should show a spatial smoothness, which is supposed to be stronger within anatomical
atlas regions than across. With that aim, TA solves a convex optimization problem that
consists of a least-squares data-fitting term combined with spatial and temporal
regularization terms. TA produces de-noised and well-behaving reconstructions of the
activity-related, activity-inducing signals, decoupled from the hemodynamics. We used
this framework to study dynamic identification properties of dFC obtained from transient
brain activity, and compare it to the results obtained with the original dFC frames.

Dynamic edgewise identification. We quantified the edgewise reliability of individual
dynamic FC frames across different temporal windows by evaluating the intraclass
correlation coefficient®®, similarly to previous work'. ICC is a widely used statistical
measure to assess the percent of agreement between units of different groups. It
describes how strongly units in the same group resemble each other. The stronger the
agreement, the higher its ICC value. We used ICC to quantify to which extent the
connectivity value of an edge in an FC frame (i.e., FC value between two brain regions)
was consistent across test/retest acquisitions and could separate within- and
between-subject data. In other words, the higher the ICC, the higher the “fingerprint” of
the edge connectivity. Note that we thresholded the resulting ICC matrices at 0.4, which
is usually a lower limit to define a “good” ICC score "*'. Finally, the nodal strength of the
ICC edgewise matrix (i.e., sum over columns, evaluated with and without thresholding
the ICC matrix, see also Fig. 4) was used as a “nodal fingerprinting score” of how
central each brain region is to connectome identification.

Significance of dynamic edgewise identification. In order to better characterize the
ICC results in dynamic functional connectomes presented in Figure 4, we performed a
permutation testing analysis. Concretely, we evaluated ICC scores in 100 surrogate
datasets where subject labels have been randomly shuffled (Fig. S3). Comparing these
ICC scores to the original ICC scores presented in Figure 4A allowed us to evaluate the
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extent to which the best matching connectivity patterns in test and retest datasets at
different time scales are unique to the subjects.

Brain fingerprints and behavior. A NeuroSynth meta-analysis [https://neurosynth.org/]
similar to the one implemented in previous studies '>'® was conducted to assess topic
terms associated with brainprints across time scales. 50 binary masks of brain
fingerprints at different time scales (from 50 s windows to 770 s, in steps of 15 s) were
obtained by selecting the top 25 percentile of ICC nodal strength of each brain map, and
served as input for the meta-analysis, based on 50 topic terms. Terms were ordered
according to the weighted mean of the resulting z-statistics for visualization.
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