
i

i

“output” — 2021/3/23 — 11:52 — page 1 — #1
i

i

i

i

i

i

PREPRINT

BubbleGun: Enumerating Bubbles and Superbubbles in Genome

Graphs
Fawaz Dabbaghie 1,2∗, Jana Ebler 2, Tobias Marschall2∗

1Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany, and 2Institute for

Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany.

∗To whom correspondence should be addressed.

Abstract

Motivation: With the fast development of third generation sequencing machines, de novo genome

assembly is becoming a routine even for larger genomes. Graph-based representations of genomes arise

both as part of the assembly process, but also in the context of pangenomes representing a population.

In both cases, polymorphic loci lead to bubble structures in such graphs. Detecting bubbles is hence an

important task when working with genomic variants in the context of genome graphs.

Results: Here, we present a fast general-purpose tool, called BubbleGun, for detecting bubbles

and superbubbles in genome graphs. Furthermore, BubbleGun detects and outputs runs of linearly

connected bubbles and superbubbles, which we call bubble chains. We showcase its utility on de Bruijn

graphs and compare our results to vg’s snarl detection. We show that BubbleGun is considerably faster

than vg especially in bigger graphs, where it reports all bubbles in less than 30 minutes on a human

sample de Bruijn graph of around 2 million nodes.

Availability: BubbleGun is available and documented at https://github.com/

fawaz-dabbaghieh/bubble_gun under MIT license.

Contact: fawaz@hhu.de or tobias.marschall@hhu.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Genome graphs represent collections of related sequences and have

a wide range of applications in various fields of bioinformatics.

In de novo genome assembly, for instance, graphs are used to

represent a universe of plausible genome reconstructions based

on a set of input sequencing reads (Miller et al., 2010). Recent

developments have enabled even phased assembly (Porubsky et al.,

2020), where the maternal and paternal copy of each pair of

homologous chromosomes are reconstructed separately. Facilitated

by GFA as an exchange data format, modern assembly tools

often offer the possibility to export the underlying graphs for

downstream applications. Working with graphs directly instead of

using “flattened” contigs has been shown to be beneficial, for

example for phased assembly (Garg et al., 2018), but a tool

ecosystem to work with these graphs is only slowly emerging.

As a second important application domain, graphs can facilitate

a comprehensive representation of genetic variation segregating in

a population, called a pangenome (Computational Pan-Genomics

Consortium, 2018). Such graph-based pangenome representations

might replace present reference genomes in the future, emphasizing

the need for corresponding tools.

In this work, we focus on bi-directed graphs, where sequences are

represented by nodes with a left and right side. Adjacencies are then

represented by edges that connect sides of two nodes and can either

be non-overlapping (“blunt”) or represent an overlap between the

sequences of the involved nodes. Bubbles are key structures within

these graphs and can, for example, represent heterozygous variants

in assembly graphs or polymorphisms in pangenome graphs. A

subgraph between a source node s and a sink node t is defined as

a superbubble (Onodera et al., 2013) if and only if this subgraph is

directed, acyclic, and the set of nodes reachable from the source s

is the same set of nodes from where t can be reached. Moreover,

no other node in the superbubble should satisfy these conditions

with either s or t. A bubble then can be defined as a special case

of a superbubble, with only two disjoint paths between the source

and the sink nodes (Figure 1). A linear sequence of bubbles is

called a bubble chain. The diploid genome assembly method by

Garg et al. (2018) highlights the importance of bubble chains. In

this approach, simple bubbles reflect heterozygous variants and long

reads mapped to these bubble chains in order to record which read

paths in consecutive bubbles are traversed by the same reads. This

gives rise to a matrix of (reads times variants) that can be used

to compute a bipartition of reads into their respective haplotypes

by solving the Minimum Error Correction (MEC) problem (Lippert

et al., 2002).

2 BUBBLEGUN

BubbleGun a fast general purpose tool to detect superbubbles in

a given input graph by implementing the algorithm by (Onodera

et al., 2013). In a nutshell, the algorithm iterates over all

nodes s and determines whether there is another node t that

satisfies the superbubble rules. BubbleGun can also compact

linear stretches of nodes, separate biggest component of a graph,

1

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.23.436631doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436631
http://creativecommons.org/licenses/by-nc/4.0/


i

i

“output” — 2021/3/23 — 11:52 — page 2 — #2
i

i

i

i

i

i

Dabbaghie et al.

0

0

0

1

1

1

(b)

Source Sink

Fig. 1. (a) A genome graphs resulting from constructing a de Bruijn graph with

k = 9 from 4 sequences and subsequently removing overlaps (bluntification).

The variances in the sequences give rise to different paths in the graph,

constructing a bubble chain of one simple bubble and one superbubble with

a simple bubble nested inside. (b) An example of a bubble chain with 3

bubbles, branches of bubble are randomly assigned to haplotypes 0 and 1, one

haplotype takes the path going from source to sink taking only the 0 marked

branches, the other haplotype takes the branches marked 1.

and separate user-specified neighborhood around a node for

visualization and investigation. BubbleGun is implemented in

Python and distributed as Open Source software under the terms

of the MIT license.

3 RESULTS

3.1 Runtime Comparison

Snarls are a generalized version of superbubbles and BubbleGun

was compared with the snarl detection algorithm (Paten et al., 2018)

part of the vg toolkit (Garrison et al., 2018). Both tools were

tested on two datasets: (1) A de Bruijn graph with a k-mer size of

41 representing the pangenome of 10 Myxococcus xanthus genomes

(Supplementary Table 1) with around 600,000 nodes. (2) A de

Bruijn graph with a k-mer size of 61 constructed from short reads

from the human sample HG00733 part of the 1000 Genomes Project

(1000 Genomes Project Consortium et al., 2015).

Time and memory consumption comparisons showed that for

M. xanthus graph, both tools performed relatively similar with

BubbleGun running in 20 seconds and using 0.56 Gb memory,

and VG running in 30 seconds and using 0.85 Gb memory. However,

for the HG00733 graph, BubbleGun took around 15 minutes and

used 22 Gb memory, where VG took 67 hours and 31 Gb memory.

3.2 Bubble Validation

To validate whether the bubbles detected correspond to true variants

instead of repeat collapses or sequencing errors, we used a de Bruijn

graph constructed from short reads data from the HG002 sample

from the Genome in a Bottle (GIAB) consortium (Zook et al.,

2016). We used a GIAB sample in order to take advantage of their

high confidence variants to use for the comparison. To generate

VCF files from bubble chains, we used a previously established

pipeline (Ebler et al., 2020) that detects variants on each path

separately and then merges them into a diploid VCF representation.

Next, using vcfeval (Cleary et al., 2015), we compared the

called variants against the high confidence variants from the HG002

sample, looking only at GIAB’s high confidence regions. This

resulted in a precision of 95%. As expected, false positive bubbles

are enriched in repetitive regions and when excluding regions in the

repeat masker track, we observed a precision of 99%.

4 DISCUSSION

We presented BubbleGun, a tool for detecting bubbles,

superbubbles, and bubble chains in genome graphs. We

demonstrated that BubbleGun dramatically reduces the runtime

of bubble detection in real world use cases, paving the way for a

more widespread adoption of graph-based workflows. We expect

pangenome graphs constructed from de novo assemblies to become

a broadly used concept where traditional variant detection will

be replaced by bubble detection. Diploid genome assembly (Garg

et al., 2018) constitutes another important application area. Taken

together, we envision BubbleGun to be of broad utility going

forward.

CONTRIBUTIONS

TM and FD designed the project. FD implemented BubbleGun. JE

validated the bubbles. TM and FD wrote the paper.

REFERENCES

1000 Genomes Project Consortium et al. (2015). A global reference

for human genetic variation. Nature, 526(7571), 68–74.

Cleary, J. G. et al. (2015). Comparing variant call files

for performance benchmarking of next-generation sequencing

variant calling pipelines. bioRxiv.

Computational Pan-Genomics Consortium (2018). Computational

pan-genomics: status, promises and challenges. Brief.

Bioinform., 19(1), 118–135.

Ebler, J. et al. (2020). Pangenome-based genome inference.

Garg, S. et al. (2018). A graph-based approach to diploid genome

assembly. Bioinformatics, 34(13), i105–i114.

Garrison, E. et al. (2018). Variation graph toolkit improves

read mapping by representing genetic variation in the reference.

Nature Biotechnology, 36(9), 875–879.

Lippert, R. et al. (2002). Algorithmic strategies for the single

nucleotide polymorphism haplotype assembly problem. Brief.

Bioinform., 3(1), 23–31.

Miller, J. R. et al. (2010). Assembly algorithms for next-generation

sequencing data. Genomics, 95(6), 315–327.

Onodera, T. et al. (2013). Detecting superbubbles in assembly

graphs. In Algorithms in Bioinformatics, pages 338–348.

Springer Berlin Heidelberg.

Paten, B. et al. (2018). Superbubbles, ultrabubbles, and cacti. J.

Comput. Biol., 25(7), 649–663.

Porubsky, D. et al. (2020). Fully phased human genome assembly

without parental data using single-cell strand sequencing and long

reads. Nat. Biotechnol.

Zook, J. M. et al. (2016). Extensive sequencing of seven human

genomes to characterize benchmark reference materials. Sci

Data, 3, 160025.

2

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.23.436631doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436631
http://creativecommons.org/licenses/by-nc/4.0/

