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Abstract

Motivation: With the fast development of third generation sequencing machines, de novo genome
assembly is becoming a routine even for larger genomes. Graph-based representations of genomes arise
both as part of the assembly process, but also in the context of pangenomes representing a population.
In both cases, polymorphic loci lead to bubble structures in such graphs. Detecting bubbles is hence an
important task when working with genomic variants in the context of genome graphs.

Results: Here, we present a fast general-purpose tool, called BubbleGun, for detecting bubbles
and superbubbles in genome graphs. Furthermore, BubbleGun detects and outputs runs of linearly
connected bubbles and superbubbles, which we call bubble chains. We showcase its utility on de Bruijn
graphs and compare our results to vg’s snarl detection. We show that BubbleGun is considerably faster
than vg especially in bigger graphs, where it reports all bubbles in less than 30 minutes on a human

sample de Bruijn graph of around 2 million nodes.
Availability: BubbleGun is available and
fawaz—-dabbaghieh/bubble_gun under MIT license.
Contact: fawaz@hhu.de or tobias.marschall@hhu.de

documented at

https://github.com/

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Genome graphs represent collections of related sequences and have
a wide range of applications in various fields of bioinformatics.
In de novo genome assembly, for instance, graphs are used to
represent a universe of plausible genome reconstructions based
on a set of input sequencing reads (Miller ez al., 2010). Recent
developments have enabled even phased assembly (Porubsky et al.,
2020), where the maternal and paternal copy of each pair of
homologous chromosomes are reconstructed separately. Facilitated
by GFA as an exchange data format, modern assembly tools
often offer the possibility to export the underlying graphs for
downstream applications. Working with graphs directly instead of
using “flattened” contigs has been shown to be beneficial, for
example for phased assembly (Garg et al., 2018), but a tool
ecosystem to work with these graphs is only slowly emerging.

As a second important application domain, graphs can facilitate
a comprehensive representation of genetic variation segregating in
a population, called a pangenome (Computational Pan-Genomics
Consortium, 2018). Such graph-based pangenome representations
might replace present reference genomes in the future, emphasizing
the need for corresponding tools.

In this work, we focus on bi-directed graphs, where sequences are
represented by nodes with a left and right side. Adjacencies are then
represented by edges that connect sides of two nodes and can either
be non-overlapping (“blunt”) or represent an overlap between the
sequences of the involved nodes. Bubbles are key structures within

these graphs and can, for example, represent heterozygous variants
in assembly graphs or polymorphisms in pangenome graphs. A
subgraph between a source node s and a sink node ¢ is defined as
a superbubble (Onodera et al., 2013) if and only if this subgraph is
directed, acyclic, and the set of nodes reachable from the source s
is the same set of nodes from where ¢ can be reached. Moreover,
no other node in the superbubble should satisfy these conditions
with either s or t. A bubble then can be defined as a special case
of a superbubble, with only two disjoint paths between the source
and the sink nodes (Figure 1). A linear sequence of bubbles is
called a bubble chain. The diploid genome assembly method by
Garg et al. (2018) highlights the importance of bubble chains. In
this approach, simple bubbles reflect heterozygous variants and long
reads mapped to these bubble chains in order to record which read
paths in consecutive bubbles are traversed by the same reads. This
gives rise to a matrix of (reads times variants) that can be used
to compute a bipartition of reads into their respective haplotypes
by solving the Minimum Error Correction (MEC) problem (Lippert
etal., 2002).

2 BUBBLEGUN

BubbleGun a fast general purpose tool to detect superbubbles in
a given input graph by implementing the algorithm by (Onodera
et al., 2013). In a nutshell, the algorithm iterates over all
nodes s and determines whether there is another node t that
satisfies the superbubble rules. BubbleGun can also compact
linear stretches of nodes, separate biggest component of a graph,
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Fig. 1. (a) A genome graphs resulting from constructing a de Bruijn graph with
k = 9 from 4 sequences and subsequently removing overlaps (bluntification).
The variances in the sequences give rise to different paths in the graph,
constructing a bubble chain of one simple bubble and one superbubble with
a simple bubble nested inside. (b) An example of a bubble chain with 3
bubbles, branches of bubble are randomly assigned to haplotypes 0 and 1, one
haplotype takes the path going from source to sink taking only the 0 marked
branches, the other haplotype takes the branches marked 1.

and separate user-specified neighborhood around a node for
visualization and investigation. BubbleGun is implemented in
Python and distributed as Open Source software under the terms
of the MIT license.

3 RESULTS
3.1 Runtime Comparison

Snarls are a generalized version of superbubbles and BubbleGun
was compared with the snarl detection algorithm (Paten et al., 2018)
part of the vg toolkit (Garrison et al., 2018). Both tools were
tested on two datasets: (1) A de Bruijn graph with a k-mer size of
41 representing the pangenome of 10 Myxococcus xanthus genomes
(Supplementary Table 1) with around 600,000 nodes. (2) A de
Bruijn graph with a k-mer size of 61 constructed from short reads
from the human sample HG00733 part of the 1000 Genomes Project
(1000 Genomes Project Consortium et al., 2015).

Time and memory consumption comparisons showed that for
M. xanthus graph, both tools performed relatively similar with
BubbleGun running in 20 seconds and using 0.56 Gb memory,
and VG running in 30 seconds and using 0.85 Gb memory. However,
for the HG00733 graph, BubbleGun took around 15 minutes and
used 22 Gb memory, where VG took 67 hours and 31 Gb memory.

3.2 Bubble Validation

To validate whether the bubbles detected correspond to true variants
instead of repeat collapses or sequencing errors, we used a de Bruijn
graph constructed from short reads data from the HG002 sample
from the Genome in a Bottle (GIAB) consortium (Zook et al.,
2016). We used a GIAB sample in order to take advantage of their
high confidence variants to use for the comparison. To generate
VCF files from bubble chains, we used a previously established
pipeline (Ebler et al., 2020) that detects variants on each path

separately and then merges them into a diploid VCF representation.
Next, using vcfeval (Cleary et al., 2015), we compared the
called variants against the high confidence variants from the HG002
sample, looking only at GIAB’s high confidence regions. This
resulted in a precision of 95%. As expected, false positive bubbles
are enriched in repetitive regions and when excluding regions in the
repeat masker track, we observed a precision of 99%.

4 DISCUSSION

We presented BubbleGun, a tool for detecting bubbles,
superbubbles, and bubble chains in genome graphs. We
demonstrated that BubbleGun dramatically reduces the runtime
of bubble detection in real world use cases, paving the way for a
more widespread adoption of graph-based workflows. We expect
pangenome graphs constructed from de novo assemblies to become
a broadly used concept where traditional variant detection will
be replaced by bubble detection. Diploid genome assembly (Garg
et al., 2018) constitutes another important application area. Taken
together, we envision BubbleGun to be of broad utility going
forward.
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