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Abstract

Cancer cells’ ability to inhibit apoptosis is key to malignant transformation and limits response to
therapy. Here, we performed multiplexed immunofluorescence analysis on tissue microarrays with
373 cores from 168 patients, segmentation of 2.4 million individual cells and quantification of 20 cell
lineage and apoptosis proteins. Ordinary differential equation-based modelling of apoptosis
sensitivity at single cell resolution was conducted and an atlas of inter- and intra-tumor heterogeneity
in apoptosis susceptibility generated. We identified an enrichment for BCL2 in immune, and BAK,
SMAC and XIAP in cancer cells. ODE-based modelling at single cell resolution identified an enhanced
sensitivity of cancer cells to mitochondrial permeabilization and executioner caspase activation
compared to immune and stromal cells, with significant inter- and intra-tumor heterogeneity.
However, we did not find increased spatial heterogeneity of apoptosis signaling in cancer cells,
suggesting that such heterogeneity is an intrinsic, non-genomic property not increased by the process

of malignant transformation.
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Introduction

Alterations in apoptosis signaling is key step in tumorigenesis(Hanahan and Weinberg, 2011). In many
cases, cancer epithelial cells over time acquire alterations in their genome or epigenome that either
result in an up-regulation of anti-apoptotic or a down regulation of pro-apoptotic proteins. Examples
for such (epi)genomic alterations include promoter methylation and copy number alterations
(Berdasco and Esteller, 2010; Mauro et al., 2015), while single point mutations in apoptosis-regulating
genes are relatively rarely observed. Previous quantitative studies in solid tumor tissues found
significant, but often complex differences in levels of individual anti- or pro-apoptotic proteins
between different patients (Lindner et al., 2013; Lindner et al., 2017; Salvucci et al., 2017; Salvucci et
al., 2019b). Predictions of individual patient’s apoptosis susceptibility is further complicated by the
signaling redundancies in key apoptosis pathways, in particular the mitochondrial apoptosis pathway.
Here, activation of either BAK or BAX is sufficient to induce mitochondrial outer membrane
permeabilization (MOMP) (Kalkavan and Green, 2018), and this process is inhibited by a variety of
different anti-apoptotic Bcl-2 family proteins including BCL2 itself, BCL(X)L and MCL1(Certo et al.,
2006; Kalkavan and Green, 2018). Research into Bcl-2 family proteins and other apoptosis signaling
proteins have resulted in the development and subsequent clinical approval of apoptosis sensitizers
as anti-cancer agents. For example, Venetoclax is a selective BCL2 antagonist now used for the
treatment of chronic lymphocytic leukemia, small lymphocytic lymphoma and acute myeloid leukemia
which are characterized by strong BCL2 overexpression and dependency (Roberts et al., 2016). In
context of solid tumors, the entry of apoptosis sensitizers into clinical practice has been relatively slow,
a fact that is partially explained by the lack of gene mutations or pronounced over- or under-
expression of individual apoptosis signaling proteins in solid tumor cells which could otherwise serve

as stratification tools in clinical trials.

To overcome such limitations, various groups have developed computational models that describe
apoptosis sensitivity on a systems level. BH3-only proteins are upstream initiators of the mitochondrial
apoptosis pathway that are activated transcriptionally or post-translationally in response to stresses,
such as DNA damage, genotoxic drugs, irradiation or withdrawal of trophic support. BH3-only proteins
activate BAK and BAX directly, or activate these indirectly by binding to and neutralizing anti-apoptotic
Bcl-2 proteins (Leber et al., 2007). BH3-peptide profiling has been successfully applied to predict
outcome and responses to cancer therapeutics in solid cancers, however this technique requires fresh
tissue (Ni Chonghaile et al., 2011). Other groups, including our own, have used gene expression or

protein level (Reverse Protein Phase Array, RPPA) data of apoptosis-regulating genes from fresh-
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frozen or formalin-fixed tissues as input into deterministic signaling network models to estimate the

intrinsic apoptosis sensitivity of individual tumors (Lindner et al., 2017; Salvucci et al., 2017).

Notwithstanding the successful application of these techniques in predicting chemotherapy responses
and clinical outcome in cancer patients, the above techniques usually require a tissue homogenate to
be analyzed. However, such “bulk” profiling results in the loss of not only important spatial
information but also the precise cell-of-origin of the signals. It is feasible that some cancer cell
populations in a given tumor are more resistant to therapy than other cancer cells, which is in line
with evidence indicating the role of tumor heterogeneity in determining clinical outcome and
responses to therapy (Fisher et al., 2013; Marusyk et al., 2012). Such resistant cell populations could
give rise to more aggressive tumors on recurrence. Similarly, chemo- or radiation therapy not only
affects tumor cells, but also cells in the tumor microenvironment such as immune cells; therefore, a
higher apoptosis sensitivity of anti-tumor immune cells compared to cancer epithelial cells may be

detrimental to patients.

To describe the extent of inter-individual and intra-tumor heterogeneity in apoptosis signaling, herein
we employed an innovative multiplexed immunofluorescence imaging technique (Cell DIVE™), which
is comprised of a repeated stain-image-dye-inactivation sequence using direct antibody-fluorophore
conjugates, as well as a small number of primary antibodies from distinct species with secondary
antibody detection (Gerdes et al., 2013), followed by single cell segmentation in a colorectal tumor
tissue cohort. Using this method, we imaged 20 proteins and mapped quantities of the key members
of the mitochondrial apoptosis pathway to 2.4 million individual cells (of which 1.6 million were
colorectal tumor epithelial cells). This enabled us to calculate each individual cell’s apoptosis
sensitivity through single cell systems modelling, and quantitatively describe inter- and intra-tumor
heterogeneity of the mitochondrial apoptosis pathway within the different cell types that constitute

a colorectal tumor.

To assess intrinsic apoptosis sensitivity of individual tumors, we had previously applied ‘averaged’
protein levels of tissue, but never single cell levels to our experimentally validated models, APOPTO-
CELL (Huber et al., 2007; Rehm et al., 2006) and DR_MOMP (Lindner et al., 2013). Studying single cells’
with our apoptosis models is providing us with new insights into the mechanisms underlying apoptosis

and treatment resistance.
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o7 Results

9¢ Multiplexed immunofluorescence imaging generates single cell
99 profiles of mitochondrial apoptosis pathway proteins in 1.6 million
100 individual colorectal tumor cells

101  To explore the levels of key proteins of the mitochondrial apoptosis pathways in colorectal cancer
102 (CRC) tissue at the single cell level, we performed Cell DIVE™ multiplexing of nine pro- and anti-
103  apoptotic proteins in regions of resected primary tumors in 355 tumor cores derived from 164 stage llI

104 CRC patients.

105 Apoptosis signaling protein selected for analysis included BCL2, BCL(X)L, MCL1, BAK and BAX which
106 regulate the process of mitochondrial outer membrane permeabilization (MOMP), as well as PRO-
107 CASPASE 9, PRO-CASPASE 3, XIAP and SMAC (DIABLO) which control the process of executioner
108  caspase activation downstream of MOMP. For both processes, we previously devised and
109 experimentally validated ordinary differential equation (ODE)-based, deterministic models, APOPTO-
110  CELL (Huber et al., 2007; Rehm et al., 2006) and DR_MOMP (Lindner et al., 2013), that calculate the
111 sensitivity of cancer cells to undergo mitochondrial apoptosis with high accuracy (Lindner et al., 2017,
112 Salvucci et al., 2017), using quantities of the above 9 proteins as model input. Additional proteins
113 selected for this study included cell identity markers (CD3, CD4, CD8, CD45, FOXP3, PCK26 and
114  cytokeratin AE1), established markers of cell proliferation (KI67), antigen-presenting protein (HLA-A)
115  and bioenergetics (GLUT1, CA9), as well as proteins used for cell segmentation analysis (Na+/K+-

116 ATPase, cytokeratin AE1, PCK26, and S6).

117  We proceeded with multiplexed data acquisition of colon tumor tissue as follows (Figure 1A):
118 1-5) FFPE cores where formalin fixed paraffin embedded (FFPE) tissue microarrays first underwent
119  antigen retrieval, followed by repeated cycles of protein staining, imaging and dye inactivation using
120  cyanine dyes (Cy3 and Cy5) conjugated antibodies. DAPI staining and a background image was
121  acquired in the beginning of each cycle for quality control and image processing. After rudimentary
122 image processing (including illumination correction, distortion, stitching and registration) 6) we
123 performed cell segmentation and single cell densitometry analysis. 7) We assessed the image quality
124  of each core and removed 48 cores with insufficient quality. 8) We corrected possible batch effects
125 between the five slides applying affine matrix transformations using an averaged distribution of
126 protein intensities as reference for each protein marker. 9) Finally, we performed core and single cell

127  analysis of the markers and performed model calculations within different cell populations.
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128  This delivered a total of 54.6 million protein profiles (Figure 1B) in a total of 2.4 million cells which
129  were used for cell identity analysis, construction of a tissue atlas of apoptotic proteins profiles, intra-

130  andinter-tumor heterogeneity analysis, spatial tissue analysis as well as single cell systems modelling.

131  Cell DIVE™ and cell segmentation analysis identified on average 6,492 (SD 1,228) cells per tissue
132 microarray (TMA) core; totaling on average 14,414 (SD 4,196) cells per patient (1 to 3 cores; Figure
133 1B). Cells were classified into different cell types based on cell identity markers for cancer/epithelial
134  cells (positive for cytokeratin AE1 or PCK26), immune cells (positive for CD3, CD4, CD8 or CD45) and
135  other stromal cells that were negative for any of these markers. For more extensive cell classification,
136  aRandom Forest model was trained with 15,184 manual annotated cells (0.6% of total cells) and CD3,
137 CD4, CD8, CD45 and FOXP3, and applied on 99.9% of all cells to further differentiate immune cells into
138  Cytotoxic, Regulatory, Helper T and other immune cells (Figure 1C). The model classified 65.7% as
139  (epithelial like) cancer cells (type Il error 3.0%; training set), 23.6% other stromal cells (type Il error
140  8.1%) and 10.7% as immune cells (type Il error 3.0%), of which 2.0% were Helper (type Il error 28.8%),
141 1.4% Regulatory (type Il error 7.4%), 1.3% Cytotoxic (type Il error 28.0%) and 6.0% other T or immune
142 cells (type Il error 18.8%; Figure 1DE). Of note, the cell type composition in CRC core tissues varied
143  significantly, with some cores showing predominantly cancerous/epithelial cells in the absence of
144  immune cell infiltration, and others showing very high levels (up to 55%) of immune cells (Figure 1D).
145  The median distribution of cells was 66.5% tumor, 7.8% immune and 22.2% stromal cells (Figure 1E).
146 A bootstrap analysis with sampled pairings suggested that cell type composition in tumors of patients
147  with paired-cores were, despite high heterogeneity, more similar to each other compared to random
148  pairings. This suggests that cell type composition was a biological feature of individual tumors (Suppl.

149  Figure 1).

150 Tumor cell atlas shows heterogeneous and cell-type specific
151 enrichment of key proteins of the mitochondrial apoptosis pathway

152  We next calculated molar protein profiles for proteins that are key to control MOMP and are used as
153 input for the deterministic systems model, DR_MOMP. For the calculations of protein profiles of
154  individual cells, we normalized cell intensities to the mean intensity in Hela cells and used previously

155 established concentrations in Hela cells as reference (Flanagan et al., 2015; Lindner et al., 2013).

156  Analysis of the five key BCL2 proteins that control the process of MOMP demonstrated a significant
157  enrichment in anti-apoptotic BCL2 in immune cells when compared to cancerous epithelial cells or
158  other stromal cells, while anti-apoptotic BCL(X)L and MCL1 although statistically enriched in cancer

159  epithelial cells were more homogenously distributed between the three cell types (Figure 2A-C). Mean
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160 levels of MCL1 were in general lower compared to BCL2 and BCL(X)L, confirming previous studies
161 (Lindner et al., 2013). Of note, pro-apoptotic BAK showed a strong enrichment in cancer cells
162 (Figure 2A-C), while again BAX, although statistically enriched in cancer cells, was more homogenously

163  distributed between the three cell types.

164 For PRO-CASPASE 3, PRO-CASPASE 9, SMAC and XIAP single protein profiling we converted the batch-
165 corrected protein intensities to UM concentrations via alignment with reference distributions (Hector
166 et al., 2012) using a pipeline that we previously developed (Salvucci et al., 2019a; Salvucci et al., 2017).
167 Proteins that control executioner caspase activation downstream of MOMP also showed a
168 heterogeneous distribution between cell types, with XIAP, SMAC, PRO-CASPASE 3 and PRO-
169 CASPASE 9, all at higher levels in cancer cells when compared to immune cells (Figure 2D-F). Stromal
170  cells showed the lowest levels of these proteins, suggesting that the apoptotic machinery downstream

171  of MOMP is suppressed in non-transformed cells when compared to cancer epithelial cells.

172 Utilizing transcriptional data derived from flow-sorted immune (n = 6), epithelial (n = 6) and fibroblast
173 (n = 6) populations isolated from CRC primary tumor tissue (GSE39396 (Calon et al., 2012); Suppl.
174  Table 2), we identified elevated levels of bc/2 mRNA levels in leukocytes compared to cancer
175 (epithelial) cells (ANOVA p = 0.006, Tukey post-hoc p = 0.005) but also significantly higher levels of bax
176  and mcll mRNA levels in Leukocytes compared to cancer cells, and in Stroma (Fibroblasts) compared
177  to cancer cells (ANOVA p <0.01, Tukey post-hoc p <0.01; Suppl. Figure 2). We did not find any
178  significant differences in mRNA levels of the bak1, bcl2/1 (BCL(X)L), caspases, nor xiap between the

179  cell populations.

180  Apoptotic protein profiles from approximate 115,923 identified T cells showed higher levels of BAK,
181 XIAP, SMAC, PRO-CASPASE 3 and PRO-CASPASE 9 and lower levels of BCL2 in Cytotoxic T cells when
182  compared to Helper or Regulatory T cells (Figure 3A-C). These findings suggests that Cytotoxic T cells

183 may represent the T cells most sensitive to the activation of mitochondrial apoptosis.

184  As expected, cancer epithelial cells also showed higher levels of the glucose transporter GLUT1,
185  sodium-potassium ATPase, the hypoxia-inducible factor-la (HIF-1a) target gene CA9, and the
186  proliferation marker KI67, while HLA-A were enriched in immune cells (Figure 4AB). In contrast,
187 protein levels of p70S6 kinase (S6) were more evenly distributed across all cell types. Calculating the
188  cores’ quartile coefficients of dispersion (COD; Suppl. Figure 3), a measure of the spread of the protein
189 levels, we found that immune cells had a greater COD for BCL2 and BAK compared to cancer and

190 stroma cells. Stroma cells showed the highest, and cancer epithelial cells the lowest, COD for MCL1,
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191  APAF1 and PRO-CASPASE 3. Cancer cells showed greater CODs of SMAC, GLUT1 and KI67 protein levels

192  compared to immune and stroma cells.

193  Correlation analysis (Figure 4C-D) of the 1,556,581 cancer cells demonstrated high, positive median
194  Spearman’s correlation coefficients (p > 0.5) between BAK and BAX levels. Levels between BAK (and
195 BAX) and PRO-CASPASE 3 (and PRO-CASPASE 9), BCL(X)L and BCL2, PRO-CASPASE 3 and BCL2, BCL2
196 and MCL1, BCL2 and XIAP, SMAC and BCL(X)L, PRO-CASPASE 3 and PRO-CAPSASE 9, and PRO-
197  CASPASE 3 and XIAP had high positive median correlation coefficients in cancer and stromal, but not
198 immune cells. The Spearman’s correlation coefficient between BCL(X)L and MCL1, CA9 and XIAP, and
199 SMAC and XIAP levels was > 0.5 in all cells. Comparing GLUT1 to apoptosis protein levels returned
200 coefficients around 0, but showed greater values when compared to HLA-A and CA9 in cancer cells.
201 HLA-A levels correlated with PRO-CASPASE 3 levels only in stromal cells. Generally, correlations
202 between individual proteins were nearly identical in leukocytes and stromal cells and frequently
203  differed from those in cancer cells, validating at the single cell level that transformed cells deviate

204  from a physiological regulation of apoptotic and metabolic pathways.

205 Single cell systems modelling of apoptosis sensitivity shows inter-
206 individual differences in apoptosis sensitivity and an enhanced
207 ability of tumor «cells to undergo Caspase-3-dependent
206 mitochondrial apoptosis

209 Next, we used quantitative single cell protein profiles to predict the apoptosis sensitivity of the
210 1.6 million colorectal tumor cells. We employed two systems models of the mitochondrial apoptosis
211 pathway that were previously established and experimentally validated in our group to predict the
212 intrinsic ability of cells to initiate and execute apoptosis. DR_MOMP (Flanagan et al., 2015; Lindner et
213 al., 2013; Lindner et al., 2017) calculates the sensitivity of cells to undergo mitochondrial
214  permeabilization by computing a score that, in summary, quantifies the amount of pro-apoptotic BH3-
215  only proteins required to trigger sufficient BAK or BAX pore formation to induce mitochondrial outer
216 membrane permeabilization (MOMP) during genotoxic stress (Figure 5A). In contrast, APOPTO-CELL
217  (Huberetal., 2007; Rehm et al., 2006) calculates the amount of caspase 3 mediated substrate cleavage

218  as a consequence of MOMP and apoptosome formation (Figure 5A).

219 Using the quantitative Bcl-2 protein profiles of BAK, BAX, BCL2, BCL(X)L and MCL1 as model input for
220 DR_MOMP, we were able to calculate the sensitivity of individual tumor cells to the process of
221 mitochondrial apoptosis initiation. Calculating mean DR_MOMP scores for each core (Figure 5B, top)

222 and % cells with low sensitivity for MOMP for individual core (Figure 5B, bottom) using the calculated
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223 average stress dose of the population as threshold (Flanagan et al., 2015; Lindner et al., 2013; Lindner
224 et al., 2017), we were able to show significant differences in % cells with low sensitivity for MOMP in
225  this otherwise homogeneous cohort of stage lll CRC patients. Between patient-matched cores, we
226  found a mean difference of 18.8% + SD 14.1% and a mean SD of 14.0% cells with low sensitivity for
227 MOMP. When stratifying DR_MOMP calculations for individual cell types, we found that, on average,
228 significantly fewer cancer cells and stromal cells exhibited low sensitivity for MOMP when compared
229  toimmune cells (Figure 5C, upper). Among immune cells, Regulatory T cells were found to have largest
230  population of single cells with low sensitivity for MOMP (Figure 5C lower). And, in line with our analysis
231 on protein level (Figure 3), we found that cytotoxic T cells are overall significantly more susceptible to
232 apoptosis stimuli compared to other immune cells. Figure 5D depicts examples of DR_MOMP
233 predictions in cores with a majority of cells having a high sensitivity for MOMP (left) or a majority of

234  cells having low sensitivity for MOMP (right).

235  When investigating the sensitivity of individual tumor cells to undergo caspase 3 activation (once the
236  process of MOMP is activated) using the APOPTO-CELL systems model, we similarly found significant
237  differences between individual patients (Figure 5E, top) and cores (Figure 5E, bottom): Between
238  patient-matched cores we found a mean difference of 18.8% + SD 15.7% and a mean SD of 13.8% cells
239  with low predicted caspase activity. Importantly, when investigating individual cell types, we found
240  that cancer cells were predicted to show a higher caspase activity compared to immune cells and
241 stromal cells, with the latter showing the greatest fraction of cells with low predicted caspase activity
242 (Figure 5F). Figure 5G depicts examples of cores with APOPTO-CELL predicting the majority of cells

243  showing high caspase activity (left) or the majority of cells exhibiting low caspase activity (right).

244  The activation of mitochondrial (or intrinsic) apoptosis is considered to be a two-step process, with
245 little feed-back from one to the other process (Ichim and Tait, 2016). The multiplexing, quantitative
246  protein profiling and single cell systems modelling pipeline developed here hence also allowed us to
247  address the question of whether cancer cells show differences in their ability to activate each of these

248 two apoptotic control points.

249 In line with the latter analysis, assessing apoptosis sensitivity up- and downstream of MOMP showed
250 that cancer cells are sensitive for both apoptosis pathways in the majority of tumors and that only a
251  small fraction of cores showed low sensitivity in both pathways at the same time (Figure 6A). In
252 contrast, immune and stroma cells had a higher fraction of cells that showed low sensitivity in both
253 pathways, and a lower fraction of cells that showed high sensitivity in both, compared to cancer cells
254  (Figure 6AB). Of the cancer of cells that show low sensitivity in one and high sensitivity in the other

255 pathway, we found that a majority of cancer cells showed a low MOMP sensitivity and a predicted
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256  high caspase activity (Figure 6A-C). In contrast, the majority of immune cells showed a predicted high
257  caspase activity but a low sensitivity for MOMP (Figure 6A-C), and the majority of stroma cells showed
258  a high sensitivity for MOMP but a predicted low caspase activity (Figure 6A-C). Collectively, the data
259  suggested that the majority of cancer cells showed a high sensitivity for at least one of the two
260 apoptosis pathways, and that cancer cells were overall more likely to respond to both signaling

261 pathways when compared to immune or stromal cells.

262 Analysis of intra-tumoral heterogeneity

263  While investigating apoptosis sensitivity at the single cell level using our systems models, we also
264  noticed that certain patients showed a significant intra-tumor heterogeneity among cancer cells, while
265  other patients showed a more homogenous distribution in model predictions (Figure 5BE).To further
266 investigate such intra-tumoral heterogeneity, we assessed the Shannon Entropy between the models
267 in each core to measure the unanimity of single-cell predictions. A low entropy, close to zero, suggests
268 homogenous model predictions among all cells, which could either indicate systemic sensitivity or
269 systemic resistance. In contrast, higher values suggest a more heterogeneous, or random,
270  configuration of cell states, indicating a high diversity in distinct cells populations (Figure 7A). Overall,
271 we did not find a significant difference in model predictions with the majority of cores having high
272 entropy (> 0.5) for both models (Figure 7A). However, the cell composition of different cores may bias
273  the calculation if not stratified for cell types. While the difference was small, cancer cells and immune
274  cells had significantly lower entropy compared to stroma cells for DR_MOMP (Figure 7B). We found
275 something similar for the predictions of the APOPTO-CELL model, however, the difference between
276  cancer and immune cells was much more distinct (Figure 7C). Studying the entropy of protein levels
277  using histograms (normalized bin size = 0.1 SD) in cancer cells (Figure 7D), suggested the highest
278  entropy in BCL2 and the lowest entropy in MCL1 if comparing protein relevant for DR_MOMP. Among
279 proteins relevant for APOPTO-CELL, we found the highest entropy in XIAP and the lowest PRO-
280  CASPASE 3. Overall, cancer epithelial cells showed higher entropy in levels of all proteins but BCL(X)L
281  and PRO-CASPASE 3 when compered between epithelial cancer, immune and stroma cells (ANOVA p
282 < 0.05, Tukey post-hoc p < 0.05; Suppl. Figure 5). Figure 6D depicts examples of low (left) and high
283 (right) entropy. On average, protein levels of most proteins were greater in cancer compared to
284  immune and stroma cells (Figure 2) which allows more states and leads naturally to high entropy in

285 cancer cells.

286  We also assessed the presence of systematic spatial variation of protein levels and model predictions
287  (spatial autocorrelation) by measuring Moran’s | in each core (Figure 7F-J). A Moran’s | of 1 indicates

288  a perfect spatial separation (e.g. left versus right separation), while a value of -1 indicates a perfect


https://doi.org/10.1101/2021.03.19.436184
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436184; this version posted March 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

289  dispersion (checkerboard pattern; Figure 7F). A Moran’s | is close to zero for a random distribution.

290 Figure 6G depicts examples of low (left) and high (right) Moran’s .

291  Overall, we found little evidence of strong spatial autocorrelation or spatial separation in the majority
292  of cores suggesting that cells that were close to each other did not have similar protein levels or similar
293 apoptosis sensitivities. Overall, we did not find any statistically significant difference in Moran’s |
294 between the different apoptosis models (Figure 7H). Similar to the Entropy, this value is biased if cells
295 of different types are spatial separated, and Moran’s | needs to be studied individually. Although we
296  observe only minor difference for the DR_MOMP model (Figure 71), cancer cells with different
297 predictions for APOPTO-CELL were significantly more randomly dispersed compared to stromal cells

298 (ANOVA p = 0.004 and Tukey post-hoc p = 0.002; Figure 7E).

299  Calculating Moran’s | for cells’ protein levels, we found that the majority of cancer cells have a score
300 lessthan 0.2 suggesting a tendency towards a low correlation between protein level and the distance
301 between cells (Figure 7K). However, individual cores showed high spatial clustering for individual
302 protein suggesting that neighboring cells are more likely to have similar protein levels than distant
303 cells in these cores. Among the proteins relevant for DR_MOMP, BAX and BCL2 showed the higher
304  Moran’s | compared to BAX, BCL(X)L and MCL1 (Figure 7K). Among proteins used in the APOPTO-CELL
305 model, SMAC had the lowest Moran’s | compared to PRO-CASPASE 3, 9 and XIAP (Figure 7K). Of note,
306 since immune cells are more mobile than epithelial or stroma cells, we would assume to find the
307 lowest Moran’s | in these cells. However, this was only the case for BAK, BCL2, PRO-CASPASE 3 and
308  GLUT1 (Suppl. Figure 6). While numerically different, overall the Moran’s | was similar for BAX,
309 BCL(X)L, MCL1, SMAC and CA9 if stratified for cell types. We observed the greatest difference between
310 cells of different types for BAK, BCL2, GLUT1, HLA-I and KI67 (Suppl. Figure 6).

311  Collectively, intra-tumoural heterogeneity in apoptosis signaling was surprisingly not increased in
312  cancer cells when compared to leukocytes and other stromal cells, suggesting that heterogeneity in
313  apoptosis signaling represents an intrinsic, non-genomic cell property that is not increased by the

314  process of malignant transformation.

315 Discussion

316  The present study constitutes the first report describing the quantitative and spatial distribution of
317 key mitochondrial apoptosis proteins at single cell resolution in intact cancer tissue. Using multiplexed
318 immunofluorescence imaging (MxIF) we provide information on 2.4 million apoptosis protein profiles

319 insix different cell types and deliver the first atlas of apoptosis signaling proteins in a large cohort of
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320  patients (164 colorectal cancer patients). We furthermore conducted a systems-based analysis of each
321 individual cell’s apoptosis sensitivity. Our dynamic systems modelling estimated that cancer cells were
322  generally more sensitive to apoptosis signaling than immune or stromal cells, however with significant
323 heterogeneity between patients. We also characterized the level of intra-tumoral heterogeneity in
324 apoptosis signaling in colorectal cancer, and demonstrate that intra-tumoral heterogeneity in
325 apoptosis signaling was not increased in cancer cells when compared to leukocytes and other stromal

326 cells.

327  Apoptosis protein mapping in colorectal cancer and its implication for future therapy

328 Our first analysis steps constituted the mapping of protein profiles to the different cell types present
329 in the tumor microenvironment. Multiplexed protein imaging has been increasingly used as a tool for
330 spatial analysis of tumor cell types and microenvironment over the last 10 years (Angelo et al., 2014;
331 Gerdes et al., 2013; Goltsev et al., 2018; Gut et al., 2018; Kalra and Baker, 2017; Rashid et al., 2019;
332 Saka et al., 2019; Tan et al., 2020) and there are increasing number of multiplexing methods for in situ
333 RNA and DNA detection (Decalf et al., 2019; Kishi et al., 2019; Moffitt and Zhuang, 2016), Cell DIVE has
334  been used to analyze tumor cell heterogeneity in CRC (Badve et al., 2021; Spagnolo et al., 2017), ductal
335 carcinoma in situ (DCIS) (Badve et al., 2021; Gerdes et al., 2018), breast cancer (Sood et al., 2016),
336 glioma and glioblastoma (Berens et al., 2019) and melanoma (Yan et al., 2019). Unlike standard
337 immunohistochemistry methods which are limited to 1-5 markers in a single section, multiplexed
338 immunofluorescence imaging methods can provide single cell data on up to 60 proteins in a single
339  sample, including cell spatial coordinates, thus allowing analysis of co-expressed biomarkers and

340 relationships between cells types and functional status, as described in this paper.

341  Overall, we found that the ‘average protein level’ in a core (of the proteins we investigated), as
342  evaluated in bulk assays, is predominantly due to by the signal from cancer cells compared to immune
343  or stroma cells (Figure 2BE). However, among the analyzed key proteins regulating mitochondrial
344  apoptosis, we found interesting differences between the cell types (Figure 2AD). One of the key
345  findings was an enrichment in BCL-2 protein levels in immune cells when compared to cancer and
346  other stromal cells. This finding may have important implications regarding the use of BCL2
347 antagonists such as Venetoclax for the treatment of solid tumors. Venetoclax is well tolerated in
348  patients with relatively few side effects and would represent an ideal adjuvant and sensitizer to

349  chemotherapy for the treatment of chemotherapy-resistant solid tumors.

350 Nevertheless, Rohner et al. (Rohner et al., 2020) have previously shown that inhibition of BCL2 by ABT-

351 199 caused cell death in all types of lymphocytes but specifically reduced the counts of B cells in
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352 humans. In addition, the authors showed that while T cells showed equivalent high levels of BCL2,
353 latter were significantly less affected compared to B cells, emphasizing that triggering apoptosis is “the
354  sum of the interplay of a network of anti- and pro-apoptotic BCL-2 family members” (Rohner et al.,
355 2020) and highlighting the importance of a systematical assessment of apoptosis. Our data suggest
356 thatin certain patients BCL2 is also highly expressed in epithelial cancer cells, which could suggest that
357 BCL2 antagonist therapy may effectively reduce the overall anti-apoptotic threshold of cancer cells.
358 Due to complexity in cell-type specific BCL2 expression, our study suggests that evaluation of BCL2

359 levels in bulk tissues samples may not be sufficient as a stratification tools for BCL2 antagonists.

360 We found that MCL1 levels were enriched in epithelial and immune cells, with significantly lower levels
361 in stroma tissue. As MCL1 antagonists are also being currently developed as apoptosis sensitizers for
362 MCL-1-dependent cells, effects of MCL1 antagonists on immune cells may also need to be considered.
363  Of note, quantitatively, MCL1 levels were lower in cancer cells when compared to the anti-apoptotic
364  proteins BCL2 and BCL(X)L. Another interesting aspect of our study was the strong enrichment of BAK
365 in cancer cells. Recently, agents have been developed that activate BAX and BAK directly (Walensky
366  and Gavathiotis, 2011), including molecules that do not interact with the BH3-binding pocket of anti-
367  apoptotic proteins or pro-apoptotic BAK and induces cell death in a BAX-dependent fashion
368 (Gavathiotis et al., 2012; Gavathiotis et al., 2008). Our results suggest that BAK in particular is a good
369  target in colorectal cancer. Cancer cells also had significant higher levels of SMAC, XIAP and PRO-
370  CASPASE 9 compared to immune or stroma cells. It is therefore possible that colorectal tumors
371  expressing high XIAP levels in cancer cells are effectively sensitized by SMAC mimetics (Fichtner et al.,
372 2020), however analysis of both XIAP and SMAC levels may be required for future patient

373 stratification.

374  Priming of cancer cells and the degree of inter-individual heterogeneity

375  We also utilized the protein profiles for calculations of apoptosis sensitivity at the systems level.
376 Because of the complexity of apoptosis signaling with multiple signaling redundancies and feed-back
377  signaling, several groups have developed functional or computational models that describe apoptosis
378  sensitivity on a systems level. One such as approach, termed ‘BH3-profiling’, interrogates the response
379 of the mitochondrial apoptosis pathway to pro-apoptotic BH3-only protein peptide mimetics (Certo
380 et al., 2006; Del Gaizo Moore and Letai, 2013; Montero and Letai, 2018). However, this technique
381 requires fresh tissue and living cells. To enable analysis of fresh frozen or formalin-fixed paraffin-
382  embedded tissue, we developed DR_MOMP (Lindner et al., 2013) as an ODE-based model of MOMP
383 that, similarly to BH3 profiling, calculates the response of the BCL2 signaling network to BH3-only

384 proteins activated upon cellular stress (Flanagan et al., 2015; Lindner et al., 2013; Lindner et al., 2017).
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385 It has been extensively validated experimentally in colon and other cancer cells (Lindner et al., 2013;
386 Lindner et al., 2017; Lucantoni et al., 2018). Furthermore, we developed APOPTO-CELL as an ODE
387  model that calculates the sensitivity of cells to activate caspase-3 downstream of MOMP (Huber et al.,
388  2007; Rehm et al., 2006), as this process represents an important second control step. APOPTO-CELL
389 has also been extensively validated in-house using single cell imaging and population-based
390 approaches in cervical, colorectal and glioblastoma cells (Murphy et al., 2013; Salvucci et al., 20193;
391 Salvucci et al., 2017; Schmid et al., 2012). Both models have also been shown to predict responses to
392 apoptosis sensitizers in preclinical settings (Lucantoni et al., 2018; O'Farrell et al., 2020). Our study
393 supports the previously developed concept that tumor cells are indeed ‘primed’ to undergo
394 mitochondrial apoptosis (Llambi et al., 2011; Ni Chonghaile et al., 2011). Including additional markers
395 for BH3-only proteins and caspase-independent cell death pathways will allow us to gain a more

396  holistic picture of possible cell fates in the future.

397 However, a surprising observation was that (based on model prediction) this appeared to result
398 predominantly from an enhanced ability to overcome both apoptosis barriers, MOMP and activation
399  of caspase-3 activation downstream of MOMP, as immune cells lack sensitivity for MOMP and other
400 stromal cells showed less sensitivity to caspase-3 activation (Figure 6AC). When comparing the ability
401  to undergo MOMP, cancerous cells were equally sensitive to stromal cells to undergo MOMP. In
402 contrast, immune cells appeared to be highly resistant to MOMP due to their relatively high expression
403 of increase in BCL2. Interestingly, we found that cytotoxic (CD8+) T cells were overall significantly more
404  susceptible to apoptosis stimuli compared to other immune cells. This is clinical relevant since tumor
405 infiltration by cytotoxic T Cells has been found to be significantly positively correlated with better
406 survival in colorectal cancer(Naito et al., 1998). In patients with breast cancer, changes in the ratio
407  between FOXP3+ (Regulatory) and CD8+ (cytotoxic) T cells (before and) after neoadjuvant
408 chemotherapy was highly associated with clinical response (Ladoire et al., 2008). Similarly, a low
409  density of cytotoxic T Cells in tumor tissue after chemotherapy was associated with poor response in
410  patients with rectal cancer (Matsutani et al., 2018). Therefore, increased risk of apoptosis of cytotoxic

411  Tcells (e.g. following chemotherapy) may abrogate these benefits.

412 Nevertheless, our study cannot address the questions whether cancer cells are capable of activating
413 more BH3-only proteins at a given genotoxic (or metabolic) stress dose. We also observed significant
414 patient-to-patient heterogeneity in apoptosis sensitivity at both levels, while core-to-core differences
415  within single patients were less pronounced. Moreover, our combined analysis of both apoptosis
416  signaling pathways in each individual cell also allowed us to investigate potential blocks in either of

417  these pathways. Our combined analysis showed that the majority of cancer cells showed a high
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418  sensitivity for at least one of the two apoptosis pathways up- and downstream of MOMP, which was

419  notobserved to a similar degree in immune or other stromal cells.

420 Intra-tumoral heterogeneity

421  One of the limitations of the current study was that tumor core regions were analyzed, while tumor
422 margins in the invasive zone were not investigated. However other studies have pointed to the
423 importance of core regions in tumor progression due to silencing/methylation as a consequence of
424  tissue hypoxia (Thienpont et al., 2016). Based on this and other previous studies pointing to an
425 importance of intra-tumor heterogeneity in tumor progression and resistance, we also investigated
426 intra-tumor heterogeneity in apoptosis signaling. Collectively, our entropy and spatial image analyses
427 of the mitochondrial apoptosis pathway did not suggest that cancer cells showed an increased cell-to-
428 cell or spatial heterogeneity when compared to immune or other stromal cells. However, as shown in
429  the examples for Moran’s | (Figure 7G), there can be a significant different between the value of 0.0
430 and 0.2 and assessing autocorrelation with alternative methods, such as Variograms, may be of
431 benefit. Another limitation was that we resolved the cell’s phenotype in only three classes. Observed
432 heterogeneity in predicted model response and measured protein levels could arise through a high
433 number of various differentiated cells, and cells of the same type might have significantly lower
434  heterogeneity if compared among each other. Notwithstanding these limitations, our studies indicate
435  that intra-tumoral heterogeneity in apoptosis signaling was not increased in cancer cells, suggesting
436  that this represents an intrinsic, non-genomic property not increased by the process of malignant
437  transformation. This observation is supported by earlier studies in cell lines which demonstrated the
438 importance of non-genomic heterogeneity in apoptosis signaling due to fluctuations in protein levels
439 over the lifetime of a cell. Rehm et al. (Rehm et al., 2009) reported that sibling cells underwent
440  apoptosis execution within a narrow time window and that random cell pairs were significantly less
441  synchronous in undergoing apoptosis, independent of activating the intrinsic or extrinsic pathway.
442 However, the authors also reported that neither cell-to-cell distance nor cell membrane contacts
443 influenced the synchrony in apoptosis execution of sibling cells (Rehm et al., 2009). Similarly, Spencer
444  etal. (Spencer et al., 2009) previously showed that differences in the protein levels regulating
445  apoptosis are the primary causes of cell-to-cell variability in probability of death, with the protein state
446 being transmitted from mother to daughter, and protein synthesis rapidly promoting divergence

447 between these cells.

448  While we here consider the levels of 9 apoptosis markers, we did not take into account proteins’ state
449  such as BCL2’s phosphorylation status (Ruvolo et al., 2001) nor subcellular localization of proteins

450  which is possible to account for with the Cell DIVE™ platform. For example, BAX’s localization at the
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451 mitochondria or in the cytosol was reported to be clinically relevant in acute myeloid leukemia
452 (Reichenbach et al., 2017) and hepatocellular carcinoma (Funk et al., 2020). BAX localization could be
453  considered by including a mitochondrial marker, or by analyzing the BAX signal within the cytosolic
454  cell mask, with an evenly distributed signal suggesting cytosolic localization, and uneven distribution

455 suggesting localization at mitochondria.

456 In conclusion, our study provides the first map of apoptosis sensitivity at individual protein and
457  systems level in intact colorectal cancer tissue. We holistically describe both patient-to-patient and
458 intra-tumor heterogeneity in apoptosis signaling in stroma, immune and cancer cells which has

459 important implications for the future use of apoptosis sensitizers in the treatment of colorectal cancer.
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2 Figure titles and legends

483 Figure 1 — (A) Simplified workflow of the Cell DIVE™ platform and data analysis. (B) In total over 2
484 million cells, stratified into cancer, immune and stroma classes were analyzed. (C) Random forest was
485 used to differentiate cells using DAPI, and epithelial and CD markers. (D) The majority of cores
486 consisted of epithelial like cancer and stroma cells, (E) with less than 20% of cells being immune cells

487  in the majority of cores (ANOVA, Tukey post-hoc).

488 Figure 2 — Protein analysis of apoptosis proteins relevant for (A-C) the DR_MOMP model upstream of
489 MOMP and (D-F) the APOPTO-CELL model downstream of MOMP. (AD) To determine the difference
490 between protein quantification based on cell masks and quantification using the whole image, we first
491 determined the median protein concentration of each core, stratified for cancer (red), immune (blue)
492  and stroma (gray) cells (ANOVA, Tukey post-hoc). x marks panels with cropped high value outliers.
493 (BE) Subsequently, we compared the median pixel intensity of the core images (x-axes) with the
494  stratified median pixel intensities determined using cell masks (y-axes) before batch correction. The
495  scatter size indicates the numbers of stratified cells of the respective core. The panels C and F show
496  examples of the pre-batch corrected protein staining, cell type classification and batch corrected mean

497  cell intensities using cell masks.

498 Figure 3 — Global immune cell protein analysis of apoptosis proteins relevant for (A-C) the DR_MOMP
499  model upstream of MOMP and (D) the APOPTO-CELL model downstream of MOMP (ANOVA, Tukey
500 post-hoc). (B) Virtual IHC staining with BCL2 (red), CD3 (green) and CD45 (blue) shows that BCL2 level

501  vary largly between immune cells.

502 Figure 4 — (A) Protein analysis of KI67, CA9, GLUT1 and HLA_| proteins using core median protein levels
503  and stratified for cancer (red), immune (blue) and stroma (gray) cells (ANOVA, Tukey post-hoc). (B)
504  We compared the median pixel intensity of the core images (x-axes) with the stratified median pixel
505 intensities determined using cell masks (y-axes) before batch correction. The scatter size indicates the
506 numbers of stratified cells of the respective core. We calculated the median spearman correlation
507 coefficient between proteins, stratified for (C) cancer, (D) immune and (E) stroma cells. A more

508 detailed correplation plot, including inter quantile ranges, is provided as supplementary figure 4.

509 Figure 5 — Results of the cell-by-cell analysis using the apoptosis models DR_MOMP (Lindner et al.,
510 2013) and APOPTO-CELL (Huber et al.,, 2007; Rehm et al., 2006). (A) Graphical illustration of the
511 modelled BCL2 pathway (DR_MOMP) upstream of MOMP and the modelled caspase pathway
512  (APOPTO-CELL) downstream of MOMP. We first analyzed (B-D) DR_MOMP and subsequently (D-G)
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513  APOPTO-CELL. (BE) First we determined model predictions of required stress to induce MOMP
514  (DR_MOMP) and % substrate cleavage upon MOMP (APOPTO-ELL) based on aggregated mean protein
515 level for each patient, using the pool of all cells of multiple cores. Subsequently we calculated the
516 cores’ cell fractions with (B) high/low sensitivity for MOMP (DR_MOMP) and (E) high/low substrate
517 cleavage (APOPTO-CELL) using individual cell protein levels. We compared cores’ fractions with
518 high/low (C) sensitivity for MOMP and (F) caspase activity stratified for cancer (red), immune (blue)
519  and stroma (gray) cells (ANOVA, Tukey post-hoc).The panels D and G show examples of individual
520  cores with high/low (D) sensitivity for MOMP and (G) caspase activity. In B and E, cores were sorted

521  from high apoptosis sensitivity (left) to low apoptosis sensitivity (right), respectively.

522 Figure 6 ~We determined cores’ cells that (A) exclusively showed high sensitivity for MOMP (left), high
523  caspase activity, high responses in both apoptosis pathways and low responses in both apoptosis
524  pathways (right; ANOVA, Tukey post-hoc).(BC) Ternary plot of individual core’s cell fraction for
525  exclusively pathway responses or sensitivity in both pathways. Overall, cancer cells show high
526  sensitivity for the DR_MOMP modelled BCL2 pathway upstream of MOMP with about half showing
527  also high caspase activity modelled by APOPTO-CELL. Stroma cells showed exclusively high sensitivity
528  forthe apoptosis pathway upstream for MOMP while immune cells showed exclusively high sensitivity

529 for MOMP.

530 Figure 7 — Heterogeneity analysis calculating cells’ (A-E) Entropy and (F-K) Moran’s | for apoptosis
531 model predictions as well protein levels. (A-E) Entropy (information theory) is a measurement for the
532 bias to one state, (A) with low entropy marking captaincy for a one state and high entropy marking
533 uncertainty for one or multiple states. We first determined the binary Shannon entropy for (B)
534 low/high sensitivity for MOMP (DR_MOMP) and (C) low/high caspase activity (APOPTO-CELL; ANOVA,
535  Tukey post-hoc), finding surprisingly significant lower entropy in cancer cells (red) compared to
536  immune (blue) and stroma cells (gray). (D) Subsequently, we calculated the Shannon Entropy for the
537 proteins using bins for protein level with a bin width of z-score = 0.1 SD for each protein respectively.
538  The calculated Shannon Entropy for stroma and Immune cells can be found in supplementary figure 5.
539  (E) shows examples with low (left) and high (right) entropy for the DR_MOMP model. (F) Moran’s | is
540 a measurement of spatial autocorrelation with a Moran’s | approaching 0 and < 0 indicating spatial
541 dispersion and a Moran’s | approaching 1 marking spatial clustering. Panel G shows examples of
542 protein levels with low (left) and high (right) Moran’s Is. (G-K) We determined cores’ Moran’s | for
543 low/high (1) sensitivity for MOMP, (J) caspase activity and (K) respective protein levels (in cancer cells).

544  Calculated Moran’s | for Stroma and Immune cells can be found in supplementary figure 6. (G) While
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of local spatial autocorrelation within the cores.

STAR Methods

Key Resource Table

REAGENT or RESEOURCE SOURCE IDENTIFIER or CONTACT
Antibodies

APAF-1 Millipore 2E12 MAB3053
Bak Cell Signaling DAE4 12105

Bax Abcam E63 ab216985
BCL-2 Lifespan 124 LS-C389442
Bcl-xL Thermo 7D9 MS-1334
CA9 Thermo polyclonal PA1-16592
Caspase-3 Cell Signaling D3R6Y 14214
Caspase-9 Santa Cruz 96.1.23 sc-56076 A647
CD3 Dako F7.2.38 M7254
CDh4 Abcam EPR6855 ab181724
CD8 Dako C8/144B M7103
CD45 Dako 2B11 +PD7/26 MO0701
Cytokeratin AE1 eBioscience AE1l 14-9001
Cytokeratin PCK26 Sigma PCK26 C1801
FOXP3 Biolegend 206D 320014
Glut-1 Abcam EPR3915 ab196357
HLA | Abcam EMR8 5 ab70328
Ki67 Zeta SP6 72031
MCL-1 Abcam Y37 ab186822
NAKATPase Abcam EP1845Y ab167390
S6 Santa Cruz C-8 sc-74459 Ae47
Smac Cell Signaling 79-1-83 2954

PD1 Abcam EPR4877(2) ab201825
XIAP (API3) Thermo polyclonal APH937
Cell Lines

HCT-116 SMAC KO
HCT-116 XIAP KO
Hela

JURKAT

MCF7

SKMEL

Dr. B Vogelstein (John Hopkins University, MD, USA)
Dr. B Vogelstein (John Hopkins University, MD, USA)
American Type Culture Collection (LGC Standards)
Dr. PH Krammer and Dr. H Walczak (DKFZ, Germany)
Dr. RU Janicke (University of Disseldorf, Germany)
DSMZ, Germany ACC 151
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REAGENT or RESEOURCE SOURCE IDENTIFIER or CONTACT
Biological Samples
Stage Il primary CRC tumour Beaumont Hospital (RCSI, IE) NA
tissue resect prior 5-FU based Queen’s University Belfast (UK) NA
chemotherapy ) ) )
Paris Descartes University (FR) NA
Cell DIVE Platform
Cell DIVE™ Cytiva; GE Research fiona.ginty@ge.com
Multi tumor tissue array Pantomics MTU 481

Software and algorithms

R (3.6.3) R Foundation WWW.r-project.org
Fiji (ImageJ; 1.51k) Schindelin et al.(Schindelin et www.fiji.sc
al., 2012)
GE SingleCellMetrics Plugin GE Research fiona.ginty@ge.com
Layers cell analysis software GE Research fiona.ginty@ge.com
version 1
APOPTO-CELL Rehm and Huber et al.(Huber prehn@rcsi.ie
et al., 2007; Rehm et al., 2006)
DR_MOMP Lindner et al.(Lindner et al., prehn@rcsi.ie
2013)
MATLAB with the Statistics The MathWorks www.mathworks.com

and Parallel toolboxes
(version 2014b)

549 Resource Availability

550 Lead Contact

551 Further information and request for code or resources should be directed to and will be fulfilled by

552  the lead contact, Prof. Jochen Prehn (prehn@rcsi.ie).

553  Materials Availability

554 e This study did not generate new unique reagents.

555 Data and Code Availability

556 e Imaging data, cell masks and generated single cell measurements of 20 markers is available
557 from the lead contact.
558 o The full pipeline for data analysis is available from the lead contact.

559 e Any additional information required to reproduce this work is available from the Lead Contact.
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560 Experimental Model and Subject Details

561  This section does not apply to our computational study.

s62 Method Details

563 Colorectal cancer cohort

564  Formalin-fixed, paraffin-embedded (FFPE) primary tumor tissue sections were obtained from
565 170 chemotherapy-naive, resected stage Il CRC patients. Tumor samples were collected from three
566  centers: Beaumont Hospital (RCSI, Ireland), Queen's University Belfast (UK) and Paris Descartes
567 University (France). All centers provided ethical approval for this study and informed consent was
568 obtained from all participants. A summary of the clinical characteristics of the cohort is provided in
569 Suppl. Table 1. Data of 46 cores of 36 patients were dropped after quality assessment of the stained

570 tissue (see below). All cores of two patients were removed in this process.

571  Cell lines

572  Three technical replicates (cores) of pellets of formalin-fixed Hela, Jurkat, MCF7, SKMEL, HCT-116
573  SMAC*® and HCT-116 XIAPXC cells in which quantities of mitochondrial apoptosis proteins were
574 previously determined (Lindner et al., 2013; Passante et al., 2013; Rehm et al., 2006) were included in
575  the construction of the tissue microarray (TMA) in parallel to the patients’ cores, and served as quality
576  control and internal standards for protein quantification. 3 of 18 cores of two cell lines were removed
577  after quality control. Cells were grown to 80% confluence. Media was replaced 12-24 hours before
578 fixation. To fix cells, cells were gently washed in sterile 1XPBS solution. Cell monolayers were covered
579  with 5 mL 10% neutral-buffered formalin (NBF) for 2-5 min. Cells were scraped into NBF, and collected
580 into labelled 50 mL tubes, and stored at 4 C for at least 3-4 hours. For further processing, cells were
581  centrifuged at 1,200 rpm for 5 min and washed in 1% low melt agarose solution XBPS before re-
582  suspensionin 0.5 ml 80% ethanol and centrifugation at 12,000 rpm twice for 5 min. Subsequently 80%

583  of ethanol was aspirated and cell pellets were molded into caps and frozen, prior to TMA construction.

584  Antibody validation and conjugation

585  Commercially acquired antibodies underwent multi-step process of validation and conjugation (as
586  previously described by Gerdes et al. (Gerdes et al., 2013). Briefly, at least 2-3 clones for each target
587  were stained in parallel using a multi-tissue array (MTU 481, Pantomics, CA) and staining performance
588  visually compared. At least one antibody clone was down-selected for conjugation with either Cy3 or

589  Cy5 bis-NHS-ester dyes. Epitopes were also tested for sensitivity to the dye inactivation solution (basic
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590 hydrogen peroxide) by exposing multi-tissue arrays to 0, 1 and 10 rounds the solution and stained with
591 the antibody of interest and compared. Approx. 10% of epitopes have been shown to have decreased
592  signal following exposure to the inactivation solution and those antibodies are placed early in the
593 multiplexing sequence (Gerdes et al., 2013). The key resource table shows the antibodies, clones and
594 conjugates used in this study. Briefly the markers and staining rounds were as follows: Round 1: BCL2,
595 APAF1; Round 2: MCL1, PRO-CASPASE-9; Round 3: S6, PRO-CASPASE-3; Round 4: BAX, SMAC; Round
596 5: BAK, XIAP; Round 6: NaKATPase, BCL(X)L; Round 7: Cytokeratin PCK26, CD8; Round 8: Cytokeratin
597 AE1, FOXP3; Round 9: CD4, Ki67; Round 10: HLA1, CD45; Round 11: Glutl, CA9; Round 12: CD3, PD1;

598 Round 13: S6 (repeated). Note that in total, 9 background imaging rounds were also included.

599 Immunofluorescence Imaging of Patient TMAs

600 Multiplexed immunofluorescence iterative staining of the CRC TMAs was performed as previously
601  described (Gerdes et al., 2013) using the Cell DIVE™ technology (Cytiva, Issaquah, WA; formerly GE
602 Healthcare). This involves iterative staining and imaging of the same tissue section with 60+ antibodies
603 and is achieved by mild dye oxidation between successive staining and imaging rounds. In total, there
604  were 13 staining rounds using the antibodies described above and DAPI was imaged in each round.
605 The Leica Bond (Leica Biosystems) was used for antibody staining and the IN Cell 2200 was used for
606  imaging. Staining and image recording was repeated twice for S6 due to staining failure. Exposure

607  times were set to fixed values for all images of a given marker-

608 Image pre-processing

609 Immunofluorescent images were processed and cells were segmented and quantified as described
610  previously (Gerdes et al., 2013). To summarize, cells in the epithelial and stromal compartments were
611 segmented using DAPI, pan-cytokeratin, S6, and NaKATPase stains (Gerdes et al., 2013). Images and
612  segmented cell data then underwent a multistep review process (described by Berens et al.(Berens et
613  al., 2019): 1) images were visually reviewed and manual scoring of tissue quality and segmentation
614  was determined by at least one researcher. Images with poor quality staining or too few cells were
615  excluded from data analysis; 2) cell filtering based on minimum and maximum number of pixels in
616  each sub-cellular compartment (> 10 pixels and < 1500 pixels per compartment) and 1-2 nuclei per
617 cell; cells with values outside these limits were removed 3) confirmation of excellent alignment of all
618 cells in all staining rounds compared to the first round of staining. For this, an automated QC score
619  was generated for every cell in each imaging round by correlating baseline DAPI images with all
620  corresponding DAPI images from other multiplexing rounds. A perfect score of 1 indicated perfect

621 registration, no cell loss and no cell movement. A score of 0 indicated complete loss of that cell after
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622 baseline imaging. After quality control, cells included in the analysis had a median QC score of 0.95,
623  with 53% having a QC score greater than 0.8. The average QC score was 0.57. In comparison, 83% of
624  cells removed during quality control had a QC score less than 0.1 with an average QC score of 0.15.
625 From the single-cell segmentation masks, the mean intensity, standard deviation, and coherent
626 statistics were quantified for each protein with respect to the whole cell as well as xy-location. From
627  the single-cell segmentation masks, the mean, standard deviation, median, and maximum staining
628 intensity for each protein were quantified with respect to the whole cell, cell membrane, cytoplasm,
629 and nucleus as well as cell location, area, and shape. Following quantification, slides were normalized

630  for batch effects and exposure time for each channel/marker analyzed.

631 48 positions showing major cell loss during staining rounds were excluded from all analysis, as well as
632  cells within the images’ margins of 15 pixel on the x-axis and 10 pixel on the y-axes were dropped from
633  all data analysis. 74 positions showing major or minor cell loss during staining rounds were excluded

634  from training datasets for post-processing such as batch correction or cell classification.

635 Post pre-processing and batch correction

636  To correct for a possible batch effects between slides, cells” mean intensity were first normalized using
637 upper-quantile normalization, grouped by protein marker and slide. Secondly, quantiles of the
638 normalized intensities were plotted against their rankits, and an affine transformation matrices to
639  rotate the function to the main diagonal were calculated. Obtained transformation matrices were
640  applied on the intensities, and pixel intensity values were restored using linear regression and upper-
641  quantile normalized values. Solely for the batch correction, cells within 5% of the images’ margins
642  were excluded for the calculation of the reference values. The batch correction was quality controlled

643  with cell lines spotted in parallel to tissue samples on 3 of 5 slides.

644 Immune Cell classification

645 To differentiate cell types, we used CD3, CD4, CD8, CD45, FOXP3, PCK26 and Cytokeratin AE1 markers.
646  We manually annotated 4,839 AE1- or PCK27-positive cells as (epithelial) cancer cells. Of 3,121 CD3-
647  positive cells (Beare et al., 2008), 788 CD4-positive cells were annotated as Helper T cells (Beare et al.,
648  2008), 991 CD8-positive cells were annotated as Cytotoxic T cells (Beare et al., 2008), and
649 1,360 FOXP3-positive cells were annotated as Regulatory T cells (Hori et al., 2003). 3,369 CD3-negative
650 cells that were either CD4-, CD45- or CD8-positive were annotated as other leukocytes. 3,837 cells
651  that lacked any marker but were DAPI positive were annotated as stroma-rich cells (other stromal
652  cells). Using the manual annotations, we constructed a random forest of 2,000 trees (R package

653  randomForest, version 4.6-14) and employed it to classify all cells.
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654 Protein profiling and apoptosis sensitivity modelling

655 Protein levels of BAK, BAX, BCL2, BCL(X)L and MCL1 were normalized to the mean protein levels in
656 Hela cells spotted in parallel to patients’ core on 3 of 5 slides. Protein’s molar concentrations were
657  calculated using previously established Hela concentrations (Lindner et al., 2013).The five proteins
658  were used as input for the DR_MOMP mathematical model(Lindner et al., 2013) that models the BCL2
659  signaling pathway before MOMP and is able to calculate the stress dose required for MOMP or if a cell
660 undergoes MOMP due to a specified stress. DR_MOMP (Lindner et al., 2013) was translated from its
661 MATLAB implementation to C++ and R using deSolve (1.28), doParallel (1.0.15) and Rcpp (1.0.5).

662 APOPTO-CELL (Rehm et al., 2006) was executed in MATLAB with the Statistics and Parallel toolboxes
663 (version 2014b, The MathWorks, Inc., Natick, MA, USA). The model requires molar concentrations
664 [uM] of APAF1, PRO-CASPASE 3, PRO-CASPASE 9, SMAC and XIAP as input to predict amount of
665 cleaved substrate, as a readout for apoptosis susceptibility [%]. Previous research(Hector et al., 2012;
666  Salvucci et al., 2019a) has shown that APAF1 is not the limiting factor in apoptosome formation in the
667 CRC settings(Hector et al., 2012; Salvucci et al.,, 2019a) and was set to 0.123 uM. Molar protein
668 concentrations for PRO-CASPASE 3, PRO-CASPASE 9, SMAC and XIAP were estimated by aligning signal
669 intensities [a.U.] to profiles [uM] determined in a reference clinically-relevant CRC cohort(Hector et
670  al., 2012) with an established pipeline(Salvucci et al., 2019a; Salvucci et al., 2017). The pipeline was
671 built upon the assumptions that 1) measurement ranking is preserved (monotonic relationship
672 between batch-corrected signaling intensities and molar concentrations); and 2) absolute
673  concentration profiles in clinically-matched cohorts are comparable. The pipeline implementation
674  follows directly from the above assumptions. Briefly, for each protein smoothed kernel probability
675  distribution objects were fitted to 1) the known protein molar concentrations of the reference CRC
676  cohort (Hector et al., 2012) and 2) batch-corrected multiplexed signal intensities (restricted to high
677  quality data points where no signal loss across staining rounds had been observed), with the MATLAB
678  function fitdist (as detailed in Salvucci M et al. (Salvucci et al., 2017)). The inverse cumulative
679  distribution transformation of the reference distribution kernel was applied on the batch-corrected

680  signal intensities to determine the corresponding absolute concentrations (MATLAB function icdf).

681 For both models, we performed two sets of simulations: 1) per-core and 2) per-cell. For the per-core
682  simulations, we aggregated (by median) the batch-corrected protein intensities across all cells for each
683 core per patient prior to conversion to molar concentrations, resulting in one simulations per-core
684  and thus 2-3 simulations per patient. For the per-cell simulations, we performed a simulation for each

685 cell, totaling ~3.5 million simulations for 164 patients included in the study.
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636 Statistical Analysis

687  All statistical tests were performed in R (3.6.3) and p values of < 0.05 were considered statistically
688 significant. All data are presented as mean + SEM. All statistical tests were performed in R. If not
689  otherwise mentioned, two-tailed t tests were performed for pairwise comparison, while analysis of
690  variance (ANOVA) with Tukey honest significance post-hoc tests were performed in cases of the
691  comparison of three or more populations. The quartile coefficients of dispersion (COF) were calculated
692 using (Qz - Qa) / (Qs + Qu) with Q, be the respective quartiles. Shannon Entropy was calculated either
693 using log; for binary populations or the natural logarithm, with 101° added to all values. Moran’s | was
694  calculated using the R package ape (5.4-1) without outliers and only on populations > 100 cells.
695 Distances >2,000 px were set to 2,000 px. Consensus Clustering was performed using
696 ConsensusClusterPlus (1.48.0) with a seed of 42, 100,000 repetitions, Spearman and Ward’s method
697 as parameters. For the bootstrap analysis, slides were randomly 100,000 times randomly paired using

698 a seed of 42.

90  Supplemental Information titles and legends

700  Supplementary Table 1 — Patient information with mean cell fractions and DR_MOMP and APOPTO-

701 CELL results for aggregated protein levels for patient-matched cores.

702  Supplementary Table 2 - of transcriptional data derived from flow-sorted immune, epithelial and

703  fibroblast populations isolated from CRC primary tumor tissue (GSE39396).

704  Supplementary Figure 1 - Plot of patients’ consensus cluster score of patient-matched cores after
705 hierarchical consensus clustering using cancer, immune and stroma cell fractions of each core.
706 Patients with a low consensus score (0) show high difference in cell fractions between matched cores
707  while patients with a high consensus score (1) show high similarity in cell fractions between matched

708 cores.

709  Supplementary Figure 2 — Box plot of transcriptional data derived from flow-sorted immune (n = 6),
710  epithelial (n = 6) and fibroblast (n = 6) populations isolated from CRC primary tumor tissue (GSE39396
711 (Calon et al., 2012); Suppl. Table 2; ANOVA and Tukey post-hoc).

712  Supplementary Figure 3 - Box plot of quartile coefficients of dispersion of protein levels of each core

713 and stratified for cancer (red), immune (blue) and stroma cells (grey).
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714  Supplementary Figure 4 - In analog to the correlation plot in Figure 4C-E showing the median
715 correlation coefficient in all (black), cancer (red), immune (blue) and stroma (gray) cells, but including

716  theinterquartile range.

717  Supplementary Figure 5 - Calculated the Shannon Entropy for the proteins using bins for protein level
718  with a bin width of z-score = 0.1 SD for each protein respectively and stratified for cancer (red),
719  immune (blue) and stroma (gray) cells. Proteins were sorted base for (A) DR_MOMP, (B) APOPTO-CELL
720  and (C) others.

721 Supplementary Figure 6 - Calculated cores’ Moran’s | for low/high () sensitivity for MOMP for protein
722 levels stratified for cancer (red), immune (blue) and stroma (gray) cells. Proteins were sorted base for

723 (A) DR_MOMP, (B) APOPTO-CELL and (C) others.
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