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ABSTRACT

Graph-based genome reference representations have seen significant development, motivated by the inadequacy of the

current human genome reference to represent the diverse genetic information from different human populations and its

inability to maintain the same level of accuracy for non-European ancestries. While there have been many efforts to develop

computationally efficient graph-based toolkits for NGS read alignment and variant calling, methods to curate genomic variants

and subsequently construct genome graphs remains an understudied problem that inevitably determines the effectiveness of

the overall bioinformatics pipeline. In this study, we discuss obstacles encountered during graph construction and propose

methods for sample selection based on population diversity, graph augmentation with structural variants and resolution of graph

reference ambiguity caused by information overload. Moreover, we present the case for iteratively augmenting tailored genome

graphs for targeted populations and demonstrate this approach on the whole-genome samples of African ancestry. Our results

show that population-specific graphs, as more representative alternatives to linear or generic graph references, can achieve

significantly lower read mapping errors and enhanced variant calling sensitivity, in addition to providing the improvements of

joint variant calling without the need of computationally intensive post-processing steps.

Introduction

Next-generation sequencing read alignment and variant calling methods rely on the human genome reference1, 2 in order to

make sense of the raw data. The validity and effectiveness of these methods are fundamentally determined by the genome

reference. The latest version, GRCh38, is derived from a handful of individuals with approximately 70% pertaining to a

single individual, and therefore it fails to capture the genetic diversity of the vast majority of human populations3–5. This

issue has been highlighted by many studies over the past decade5–10 and various methods for incorporating a wider breadth

of genetic information into the reference have been proposed including nucleotide additions and extensions to the current

reference11–13, de novo assembly of raw read data to generate a population-specific consensus sequence14–16, and graph-based

references capable of simultaneously representing multiple diverse populations17–22. All of these methods have trade-offs

between accuracy, efficiency and applicability23. In addition to developing a suitable data structure and appropriate algorithms

to work with it, choosing the appropriate variation information to incorporate into the reference is an important but understudied

problem without a straightforward solution24.

In order to ensure long-term utility and compatibility, especially with large-scale sequencing projects25–28, a novel genome

reference and associated bioinformatics tools should meet the following criteria: (1) Accurate representation of diverse genetic

information, (2) Compatibility with existing methods and standards29–32, (3) Aptness for improvements and other modifications

(see Figure 1a), (4) Computational efficiency and scalability, (5) Tailorability for targeted populations and/or applications. In

this study, we propose a population-specific graph construction method that meets all of these criteria and compare its utility in

next-generation sequencing (NGS) read alignment and variant calling to other approaches. We show that a population-specific

genome graph can significantly improve both read alignment and variant calling accuracy while being computationally efficient.

Moreover, we show that genome graphs can be augmented to further improve the detection power of both short variants (SNPs

and INDELs) and structural variants (SVs). We compare our results with those obtained by using joint variant calling33, which

is the state-of-the-art method for genotyping a large number of samples, and show that a graph-based approach provides most

of the improvements provided by joint calling with significantly reduced computational requirements.
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Results

In order to measure the utility of a graph-based method and constructing a population-specific graph, we use the Seven Bridges

GRAF pipeline20 and benchmark the pipeline on the Illumina sequencing data of the African population samples from the

1000 Genomes Project, which constitute the most genetically diverse and also the most under-represented population with

respect to the current human genome reference15, 34, 35. We split the samples into two sets, each containing the same ratio of

males/females and the 7 African populations in the 1000 Genomes dataset. The construction set is used for graph reference

construction and the benchmarking set is used to measure the performance of various types of graph references. We categorize

graph references into three main types depending on the sources used to construct them.

1. Pan-genome graph: A graph reference that contains information from many populations around the world20.

2. Population-specific graph: A graph reference that contains genetic information pertaining to a single population, usually

collected from public databases.

3. Population-specific graph with cohort information: A population-specific graph reference that is augmented with a

subset of the sample set under study.

In this study, we construct all three types of graphs for the African population and compare the alignment and variant calling

performance on the benchmarking set. We show that, as the graph reference becomes more tailored to the population (from

type 1 to type 3 above), alignment error rate is reduced and variant calling sensitivity is enhanced. To simulate a multi-phase

sequencing project (Figure 1a), the construction set is split into 5 equal sized cohorts of 104 samples each, leaving 141 samples

for the benchmarking set. Initially, a population-specific graph is constructed using the public database gnomAD36, which

is used to process the first cohort, as shown in Figure 1b. The variant calls on the first cohort are combined with the initial

graph to generate the next graph reference which, in turn, is used to process the second cohort. Starting with the construction of

Pan-African 1 graph, we also incorporate the high quality SVs curated by the Human Genome Structural Variation Consortium

(HGSVC) using PacBio HiFi sequencing data for 10 African samples in the 1000 Genomes dataset37.

The graphs produced at each step are used to process the benchmarking set and evaluate the performance. Additionally, a

pan-genome graph, which is constructed from multiple public resources and contains genetic information of many populations20,

is used to compare the population-specific graphs to a non-specific graph. Finally, all graph approaches are compared to the

standard linear reference based approach, i.e. BWA-MEM38 and GATK, to establish a baseline for a reliable comparison with

the existing technologies. The linear BWA+GATK pipeline utilizes joint calling and VQSR variant filtration which are the

recommended methods for genotyping a large number of whole genome samples35.

Population-Specific Graph Construction

Variant selection for graph references still remains an open question. Previous studies mostly relied on simple heuristics such

as filtering with respect to allele frequency, or methods that may not scale well with large and/or missing information19, 24.

Here, we propose a framework that relies on two basic measurements on a given population: Nucleotide diversity within

the population and absolute divergence from the current human genome reference, in this case, GRCh38 (see Methods)39.

Nucleotide diversity measures the average genetic distance between the individuals from the same population while absolute

divergence measures how distant the population is from GRCh38. The results in the whole genome for all five populations in

the 1000 Genomes dataset are given in Figure 2a. As expected, the African population shows the highest diversity and also

the largest divergence from GRCh38. Detailed measurements on individual sub-populations are provided in Supplementary

Material S2. Next, we calculate the true positive rate (TPR) and false positive rate (FPR) in graph references constructed

for each of the five populations after applying a 5% allele frequency cut-off as a function of the number of samples used

for graph reference construction. TPR and FPR represent the ratio of variants that are correctly and incorrectly added to the

graph, respectively. It is observed that more diverse populations require a higher number of samples to reach the same level of

representativeness (Figure 2b). The calculation is done both theoretically (Expected) by assuming an underlying AF distribution

for the given population, and also empirically (Homogeneous) by picking samples one by one directly from the 1000 Genomes

dataset. The details of sample selection, TPR and FPR calculation are provided in the Methods section.

After relevant variants are collected from the cohort samples and other databases, the graph reference is constructed

using the pipeline shown in Figure 2c. The pipeline consists of five main steps. First, all variants are split into biallelics,

left-normalized and filtered with respect to user defined population and quality control criteria. If there are any alternate contigs

in the linear assembly with well-defined mappings to the primary chromosomes, they are converted into variants with respect

to their mappings and merged with the variants obtained from samples and databases. After the AFs are re-calculated it is

processed via a set of filtration steps. The first filtration step, SV Filter, compares the structural variants (SVs) with each other

and with the linear assembly/backbone to avoid duplicate sequences and limits the lengths of SVs to avoid computational
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problems during alignment and variant calling. A subset of SVs are filtered out as a result of this step. Then, the resultant

variant set is used to simulate reads and detect regions that are causing ambiguity in the reference. Identical paths in different

regions of the genome graph may cause multi-mapping and reduce the reliability of subsequent variant calling. These regions

are resolved by pruning the graph. All filtering steps implement decision making heuristics that minimize the number of base

pairs removed from the graph. The exact details of each step and associated algorithms are provided in the Methods section.

We follow the procedure outlined above to construct graph references at each iteration of the workflow used in the Pan-

African experiments (Figure 1b). Variant counts for each constructed graph and their intersections along with the mean AFs are

shown in Figure 2d. It is seen that the initial iterations capture most of the variation in the population leaving only a small

number of relatively low frequency variants to be discovered in subsequent iterations, agreeing well with the trend in Figure 2b.

A similar analysis on the construction sets are provided in Supplementary Material S1.2.

Alignment

The alignment accuracy for each pipeline and/or graph reference is compared as shown in Figure 3. Panels a-f show various

alignment statistics with each violin representing the median and the distribution of the statistic over all benchmarking samples

for the corresponding pipeline. BWA maps more reads compared to any of the graph references. This is due to the lenient

alignment approach used by BWA as opposed to the more stringent criteria used by the graph aligner. All population-specific

graphs map more reads compared to the Pan-Genome approach, while progressively mapping more reads with each graph

augmentation step. Improper read (classified as either an improper orientation for read pairs or an insertion length outside the

expected range) and uninformative read (MAPQ < 20) percentages are much lower for graph approaches compared to BWA.

Population-specific graphs also provide better performance compared to the Pan-Genome graph. Pan-African 0 graph, although

still tailored to the African population, is based on public databases and potentially contains many variants irrelevant for the

cohort under study. This manifests itself as a larger number of unmapped, improper, and uninformative reads compared to

graphs incorporating variants directly obtained from the cohort (Pan-African 1-5).

The multi-mapped read ratio is also higher for BWA compared to any graph approach. A distinct jump is observed between

Pan-African iterations 0 and 1. This is due to the addition of cohort-specific SVs into the graph reference. Even though a

multi-mapping detection filter is implemented into the graph construction method (Figure 2c), a graph-based approach will

inevitably increase the similarity between genomic regions simply because the genome reference now contains more nucleotide

sequences. Our graph construction method effectively balances the trade-off between benefits and multi-mapping as evidenced

by the reduction in the improper and uninformative read ratios and the alignment error rate from Pan-African 0 to Pan-African

1 (Figure 3b,d,f).

Graph approaches provide a significantly higher number of informative reads (MAPQ ≥ 20) as shown in Figure 3e. The

difference in the number of informative reads between the graph types is minimal. However, it is equally important to have

the reads align to their proper places in addition to having high mapping quality. In this case, the reads are aligning to the

population-specific haplotypes in the graphs and there is significant relocation of reads both within chromosomes and between

chromosomes (see Supplementary Material S3.2 for details), which is demonstrated in the next section by the increased

sensitivity in variant discovery and SV genotyping.

A useful metric to measure the representativeness of a population-specific is the alignment error rate, i.e. per-base mismatch

rate with respect to the genome reference. A smaller error rate indicates that the genetic composition of the population is

more successfully captured and also the reference bias is reduced. Figure 3f shows that the error rate consistently decreases

from the linear method BWA to the Pan-Genome graph and to the Pan-African graphs. Each augmentation of the Pan-African

graph achieves a better error rate, leading to around 50% reduction compared to BWA. This is an indication of the accuracy

improvements that the iterative graph construction approach can provide.

Next, we investigate how much each graph is utilized during read alignment. We calculate the average number of graph

edges that are used in alignment per sample and compare it to the total number of edges in the constructed graph reference

(Figure 3g). The ratio of the two is also shown as the magenta line. Population-specific graphs provide a utilization rate of

around 50% per sample, whereas it is below 40% for the Pan-Genome graph. Notably, Pan-African 1 graph provides better

alignment performance than the Pan-Genome graph even though it is smaller in size. This implies that a targeted graph reference

is more beneficial than a more encompassing but generic graph reference, mainly because the irrelevant variants in the generic

graph can act as misinformation and cause ambiguity for read alignment. It is also observed that each graph augmentation

grows the size of the graph and the number of edges being used, as expected. The utilization rate is slowly reduced with each

augmentation. This agrees with the results in Figure 2d, which shows that the mean AF of the variants added in each subsequent

iteration is lower. Figure 3h shows the total utilization of the graph references across all benchmarking samples. All edges are

binned by the number of samples that make use of them in alignment, with yellow and magenta bars showing the number of

edges used by all and none of the samples, respectively. The Pan-Genome graph has the highest number of unused edges and

also the least number of edges used by all samples. The usage of graph edges increase with each augmentation with a trivial
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amount of unused edges.

Variant Calling

We show the overall performance on single nucleotide polymorphisms (SNPs), insertions and deletions (INDELs) and structural

variants (SVs) for all graph references in Figure 4. Panels (a) and (c) show the number of SNPs and INDELs discovered per

sample, respectively. Pan-Genome graph provides a higher sensitivity compared to the BWA+GATK pipeline. Moreover, the

Pan-African graphs 0 to 5 can increasingly detect more variants compared to the Pan-Genome graph. Both SNPs and INDELs

are annotated using the dbSNP154 variant database40 and labelled as known or novel. Fraction of known variants is around 87%

for all pipelines, which implies that most of the additional variants detected by the graph pipelines are previously discovered in

other studies and therefore are likely to constitute a reliable variant call set. Detailed variant counts categorized into genotypes,

variant type and known/novel with respect to dbSNP154 are provided in Supplementary Table S4. SNP Ti/Tv and INDEL

het/hom ratios are provided in Supplementary Tables S10 and S12.

Figure 4e shows the number of SVs detected by each pipeline (SVs are defined as variants longer than 50 base pairs).

The size distribution of SVs are also shown in Figure 4f for BWA+GATK, Pan-Genome, Pan-African 5 pipelines. The linear

approach BWA+GATK has a significantly lower SV detection rate and can only detect short SVs. The improvement in the

pan-genome approach is made possible by the addition of the alt-contigs in the GRCh38 assembly as alternate paths into the

graph reference. Starting with Pan-African 1 graph, SVs obtained directly from the 1000 Genomes African samples are used to

augment the population-specific graphs. The result of this augmentation is a much higher rate of SV detection and also an

increase in the size of SVs that can be genotyped.

Next, we compare the variant calls made by the Pan-African 5 and the BWA+GATK pipelines in more detail. Figures 4b&d

show the cumulative variant counts for both pipelines with respect to the allele frequency (detailed counts are provided in

Supplementary Table S7). The variants are first classified into SNPs and INDELs (panels b and d, respectively), and then

into shared (detected in the benchmarking samples by both pipelines) and unique (detected by either pipeline) variant sets.

High concordance is observed between the pipelines as majority of the variants are detected by both pipelines (solid lines). In

order to distinguish between the genotyping efficacy of these methods, shared variants are further split into two categories as

AFGRAF > AFGATK and AFGATK > AFGRAF (dotted lines). The former represents the number of variants that are detected in

the population by both methods but genotyped with a higher sensitivity by the graph pipeline (and by the GATK pipeline, for

the latter). Among the variants observed in the population with a high frequency (≥ 5%), graph pipeline is able to genotype

approximately 120k INDELs and 119k SNPs with a higher AF, where as the same numbers for GATK is 106k INDELs and 51k

SNPs. Additionally, it is noteworthy that the graph-based approach identifies approximately 6 times as many unique variants as

the linear method.

To measure the putative functional impact of variants, we stratify all variants into coding, intronic and intergenic regions

and divide them into three frequency bins as singleton (observed in only one sample), rare (AF < 5% but observed in multiple

samples) and common (AF ≥ 5%). Table 1 shows the number of variants unique to each pipeline (detailed results are provided

in Supplementary Table S5). The use of Pan-African graph leads to the detection of 3 to 4 times more high and moderate

impact variants in coding regions for all frequency bins, compared to the BWA+GATK pipeline. The contrast between the

linear and the graph approaches increases in intronic and intergenic regions. Similar trends are observed for low impact and

modifier mutation events in all regions. These observations indicate that the Pan-African graph improves the sensitivity for both

common and rare variants across the whole genome.

Region Impact
Singleton

(Graph)

Rare

(Graph)

Common

(Graph)

Singleton

(GATK)

Rare

(GATK)

Common

(GATK)

Coding HIGH 935 259 145 419 294 197

Coding MODERATE 5855 3582 2944 1371 1028 525

Coding LOW 2533 1698 1497 570 404 270

Coding MODIFIER 36781 29140 20203 5354 6949 2841

Intronic HIGH 297 218 158 39 31 17

Intronic LOW 1310 982 730 159 171 133

Intronic MODIFIER 1239286 998546 404136 255666 321315 92814

Intergenic MODERATE 458 389 206 100 102 17

Intergenic MODIFIER 1575710 1287305 831713 240360 300409 99425

Table 1. Functional impact of detected variants that are unique to each pipeline. Variants are split based on their

occurence; Singleton (observed in a single sample), Rare (AF < 5%) and Common (AF ≥ 5%).
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Finally, we compare the graph pipeline results to the genotyping improvements facilitated by joint calling in the BWA+GATK

pipeline: a method that uses a genomic VCF (GVCF) file obtained from read alignments for each sample independently, and

then jointly genotypes all GVCF files together33. The result is a multi-sample VCF file containing genotype information for all

samples at each loci where there is variation in the population. One of the fundamental advantages of joint calling is that it can

recover missing variants and correct genotypes in individuals by considering the rest of the population. The recommended

step after joint calling is the variant quality score recalibration (VQSR): a machine learning based variant filtration tool that is

effective on large number of samples33.

A population-specific graph reference readily captures the population’s genetic diversity and therefore it is able to utilize

this information not just in variant calling but also in read alignment, unlike the standard joint calling approach. To measure

how these two approaches compare to each other, we extract the variants that are recovered/corrected by the BWA+GATK joint

calling pipeline, i.e. variants that would have been missed with single sample calling, and look at the concordance of these

variant calls with the calls made by the graph-based approach. These recovered variants are further classified by VQSR as PASS

and non-PASS, indicating whether or not they pass the filtration criteria to be considered as high quality variant calls. The

percentage overlap of these recovered/corrected genomic loci with the calls made by each graph pipeline is shown in Figure 4g.

The Pan-African 5 graph is able to genotype almost 78% of the variants recovered by traditional joint calling (11,763,827 out of

15,088,205 genotypes across all benchmarking samples), without the need of a post-processing step, while calling less than

18% of the variants filtered out by VQSR (1,625,108 out of 9,049,451 genotypes), providing both sensitivity and specificity.

Note that the Pan-Genome graph also provides most of the improvements provided by joint calling. The detailed breakdown of

variant counts for each genotype and variant type is provided in Supplementary Table S6.

Discussion

In this study, we have shown that pangenome graphs can provide an overall accuracy improvement over linear references when

analyzing NGS samples regardless of their ancestry, and population-specific graphs that are augmented with cohort-specific

information provide the highest utility in read alignment and variant calling. The performance of such graphs are ultimately

determined by the nucleotide diversity within the population, the absolute divergence from the linear reference sequence, and

the availability of pre-existing genomic information to be used for graph construction. Despite the quantitative similarity,

these two metrics are fundamentally independent. Nucleotide diversity measures the average genetic distance between any

pair of individuals from the same population and determines the number of samples required to construct a representative

graph; Diverse populations will require a larger number of samples for graph construction. In the context of NGS secondary

analysis, the reference genome is used only to have an intermediate representation of an individual’s genome, therefore it

does not influence, at least theoretically, the diversity measurement. On the other hand, absolute divergence is the genetic

distance to an arbitrarily defined DNA sequence (e.g. GRCh38), and its value can range from low to high for populations

with a similar diversity, as empirically shown in Figure 2a. For example, the East Asian population shows a large divergence

from GRCh38 while showing the least amount of diversity among the five populations. Absolute divergence can significantly

influence the performance of bioinformatics methods, and standard approaches can suffer from a loss of accuracy when used

on divergent populations, which is usually reflected in increased reference bias in alignment and decreased variant calling

sensitivity. In instances of large divergence, it may be desirable to additionally incorporate results from orthogonal technologies

(e.g. long-read sequencing data41–43) to compensate for the shortcomings of the sequencing technologies already used.

The variant curation method for graph construction presented in this study lays out a procedure for sample selection that

is based on the population’s genetic diversity. The representativeness of the resultant genome graph, along with the required

number of samples, is also calculated with associated true and false positive rates (see Supplementary Table S1). We expect

that the improvements obtained from a genome graph will be more dramatic for divergent populations. This is especially

important since it has been well documented that accurate and sensitive detection of variants in under-represented populations

plays a critical role in the accuracy of frequently used population genomics methods such as GWAS44, 45. We have tested the

graph construction method on the African population which is both the most diverse and the most divergent among the five

populations in the 1000 Genome dataset. While exemplifying the suitability of genome graphs for large-scale sequencing

projects, the iterative graph construction approach emphasizes the importance of extracting genetic information directly from

the cohort under study and making the graph reference more tailored to the cohort. Transitioning from the linear human

genome reference GRCh38, which is the least specific reference, to a pan-genome and finally to a set of population-specific

graphs is shown to improve secondary analysis on multiple fronts. We expect this improvement trend to continue as graphs are

further tailored to sub-populations or even smaller groups of individuals with higher genetic similarity, assuming the number of

samples in the group remains sufficiently large to capture the genetic architecture. Moreover, the iterative approach enables the

detection of an incorrect augmentation, a mismatch between the target population and the analyzed sample, or a quality control

problem with the sequencing data by monitoring metrics such as graph utilization directly from the alignments, as shown in

Figure 3. This provides the opportunity to go back one step to correct any mistakes, which is advantageous especially in large
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sequencing projects.

There are several pitfalls one might face during the construction of a graph reference. With an aim to address these, our

graph construction method takes into account the inadvertent ambiguity introduced to the reference genome as more variants

are added and resolves the culpable graph paths. This is a crucial step regardless of the types of variants being added to the

graph; we have observed in the construction of Pan-African graphs that even a few SNPs might cause undesirable amounts

of read multi-mapping. Moreover, great care should be exercised if large variants such as SVs are being added to the graph

to make sure that they do not contain high similarity to the reference genome or to each other. These control mechanisms

lead to an effective graph construction with alignment benefits such as higher rate of informative reads and reduced reference

bias, which remains an obstacle for linear methods, especially in genomic studies of under-represented populations. Since

the applicability of our graph construction method is not limited to the specific tools used in this study, we expect that similar

improvements can be obtained for other graph-based bioinformatics toolkits.

We have shown that population-specific genome graphs facilitate the detection of more variants and genotyping of SVs at

the population scale. We have been able to identify thousands of functionally important variants in the coding regions that are

completely missed by the standard BWA+GATK pipeline. Additionally, we have detected significantly more novel SNPs and

INDELs when compared against dbSNP154 (see Supplementary Table S4). Further studies are required to truly understand the

impact of these variants for research and clinical applications. Another advantage of population-specific graphs is that they can

readily provide the sensitivity and specificity improvements expected from joint calling without the need for simultaneous

processing of all samples in the cohort. This removes the computational burden faced by joint calling when applied to large

cohorts.

Methods

Nucleotide Diversity and Absolute Divergence

Graph references rely on enhancing the linear reference with common polymorphisms observed in a given population. Therefore,

it is important to estimate the level of polymorphism within the population (diversity) as well as how much the population

differs from the linear reference (divergence).

Polymorphism within a population is commonly measured with nucleotide diversity defined by Nei and Li in 197939.

This measure calculates the average number of nucleotide differences between two sequences for all possible pairs within

a population. Since variant call format defines sequence differences with respect to a common linear reference, nucleotide

diversity can simply be calculated from variant calls of samples from a population. For a given variant locus, diversity

contribution will be sum of the number of base differences between two alleles weighted with respect to their occurrence

frequencies over all possible allele pairs at that loci. Diversity for a genomic region will be the sum of all diversity contributions

from variant loci in the region divided by the size of the region.

Diversity =
∑variant loci ∈R ∑i, j 6=i

|i|| j|δi, j

N(N−1)

|R|
(1)

where i, j are the distinct alleles at given loci, |i| is the number of occurrences for particular allele, δi, j is the edit distance

between two alleles, N is the total number of alleles at given loci and |R| is the number of bases within the genomic region.

Divergence is similar to diversity, but instead of measuring the differences between two samples from the population, each

sample in the population is compared against the linear reference. Therefore the divergence contribution at a variant locus

is average nucleotide differences between an allele and the reference weighted by the occurence frequencies of those alleles.

Divergence within a genomic region is then the sum of all divergence contributions divided by the size of the region.

Divergence =
∑variant loci ∑i

|i|δi,r

N

|R|
(2)

where δi,r is the edit distance between allele i and referece allele at that loci.

Calculation of TPR and FPR in Graph Construction

Graphs can enhance a linear reference by incorporating common variations that can be selected by applying allele frequency

threshold on the population variants. Furthermore, since graphs are constructed from a subset of samples from a population,

observed allele frequency of a variant in the subset can differ from the ideal allele frequency in whole population thus resulting

in a different set of variants to be selected for graph. Variants in the graph constructed from a subset can be divided into two
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groups: true variants (ideal allele frequency above cut-off) and false variants (ideal allele frequency below cut-off). True

positive rate (T PR) is the rate of true variants with respect to ideal graph size, and similarly false positive rate (FPR) is the rate

of false variants with respect to ideal graph size.

We investigate the influence of the number of samples on the representativeness of the constructed graph reference and show

that it correlates well with the population’s nucleotide diversity. In this experiment, we pick samples from a given population

one by one and measure how much of the population’s genetic variation is correctly captured in the graph reference. To include

only common variants in the graph, we use an allele frequency (AF) cut-off of 5%, variants below which are discarded. At each

step, we compare the content of the graph with the complete population information (obtained from all available samples), label

any high (AF ≥ 5%) and low (AF < 5%) frequency variants in the graph as true and false positives, respectively, and finally

calculate true positive rate (TPR) and false positive rate (FPR). This procedure is repeated for each population independently.

For result with different AF thresholds and sampling strategies see Supplementary Material S2.

The TPR and FPR are also calculated theoretically, assuming an underlying AF distribution obtained empirically for each

population. Ideal allele frequency of a given variant can be considered as the occurrence probability of that variant for each

allele. Assuming the occurrence of variant is independent for each allele, number of times a variant is observed in N diploid

samples (2N alleles) follows a binomial distribution with allele frequency as success probability. For an allele frequency cut-off

( fc) used in graph construction, the probability of adding a variant with true allele frequency f into graph in N samples is then

sum of probabilities where occurrence count results in observed allele frequency larger than cut-off (k/2N ≥ fc).

P(added| f ) = P

(

k

2N
≥ fc| f

)

=
2N

∑
k≥2N fc

(

2N

k

)

f k (1− f )2N−k
(3)

T PR can be calculated by the expected fraction of true variants added to graph in N samples divided by the fraction true

variants.

T PR =

∫ 1
fc

P(added| f )p( f )d f
∫ 1

fc
p( f )d f

(4)

Similarly, FPR can be calculated by the expected fraction false variants added to graph in N samples divided by the fraction

of true variants.

FPR =

∫ fc
0 P(added| f )p( f )d f

∫ 1
fc

p( f )d f
(5)

Graph Construction
It is common to use the linear reference as the backbone of the graph reference, which facilitates variant representation with

respect to the same sequence and the coordinate system, ensuring compatibility with the standard bioinformatics tools19, 20, 46, 47.

We assume the same approach and use the GRCh38 assembly as the backbone for all graphs. There are the so-called alt-contigs

in the GRCh38 assembly, which represent alternate sequences for certain regions in the canonical chromosomes. These regions

show high variability in the population and alt-contig haplotypes are provided as additional sequences to augment the haploid

genome. However, the natural way of incorporating alternate sequences is indeed adding another path to the graph reference.

Therefore, we have developed an alt-contig processing step which removes alt-contigs from the GRCh38 assembly, maps them

to the canonical regions and finally adds them as graph paths with an appropriate representation. First, the contigs labelled

as ALT and NOVEL are removed from the linear reference so that it only contains the primary chromosomes, unplaced and

unlocalized contigs and decoy sequences. Next, ALT and NOVEL contigs are mapped to the primary chromosomes. Since they

usually contain long stretches of sequences that are identical to the linear reference, ALT and NOVEL contigs are decomposed

into smaller variants and left normalized. The final outputs are a modified linear reference that does not contain the alt-contigs

and a VCF file that concisely represents alt-contigs with respect to the linear reference.

Additional variations from public sources are collected and harmonized through normalization, splitting multiallelics and

filtering by AF. The use of an AF cut-off is a vital filtering step for graph-based methods and justified by the fact that a low

frequency variant will pose misinformation to most of the samples and make the alignment more ambiguous and genotyping less

accurate for those samples. The exact AF cut-off is a free parameter and can be chosen depending on the specific application,

population, or type of sequencing data. We have observed that a value of 5% provides shows good performance without

incurring large computational costs (see Supplementary Material S1.2). Here, we used gnomAD database with an African AF
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cut-off of 5% in addition to structural variations observed in African samples from the HGSVC dataset. After each construction

iteration, the resulting variant calls above the 5% AF cut-off are used to augment the graph.

After the variant sources are harmonized, they are merged and final allele frequencies are calculated. Given a large set of

variant sources, adding all variants to the graph structure could cause computational inefficiencies, and also lead to inaccuracies

in alignment and variant calling. Therefore, the resultant merged VCF file is passed through a couple of filtration steps to

remove variants that could cause issues. The first step is the filtration of structural variants (SVs), which processes all SVs

to resolve any ambiguity that might be introduced to the reference due to the nature of short-read sequencing data. First, the

insertion SVs are aligned to the linear reference and any SV with an identical subsequence of at least read-length (150bp) is

filtered. Next, remaining SVs are aligned to each other and if similarities of at least read length are identified, shorter SVs are

filtered. Finally, remaining SVs are aligned to the decoy sequences in the linear reference and if a match is found, matching

sections on the decoys are masked with N-bases in order to prevent these sections acting as sinks for valid reads on these SVs.

As more variants are added, the number of possible paths in the graph grows exponentially and it becomes highly likely

that there will be identical paths in different regions of the graph. This issue introduces ambiguity to the genome during read

alignment, potentially causing sequencing reads to be multi-mapped and become uninformative for variant calling. Therefore,

next step is a multimap filter that breaks the identity of such paths in the graph by selectively removing variants from it. This is

achieved by simulating reads that traverse all possible paths in the graph reference, mapping these reads back to the graph

reference, identifying regions that cause multi-mapping, and pruning the variants in these regions of the graph. We calculate the

smallest set of variants that resolves the ambiguity and only remove those variants to avoid detracting from the representatives

of the graph reference.

A more detailed explanation of graph construction pipeline is provided in Supplementary Section 1.1. The detailed

breakdown of each graph used in this study into variant types can be found in the Supplementary Table S2. The contribution of

each variant source to the final population-specific graph Pan-African 5 is given in Supplementary Table S3.

Data availability

The public high coverage dataset from 1000 Genomes project is available at https://www.internationalgenome.org/data-

portal/data-collection/30x-grch38. The public structural variation dataset from Human Genome Structural Variation Consortium

is available at https://www.internationalgenome.org/data-portal/data-collection/hgsvc2. The public gnomAD v3 dataset is

available at https://gnomad.broadinstitute.org/downloads.
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Figure 1. Steps involved in a multi-phase sequencing project. (a) Large-scale sequencing projects are commonly executed

in multiple phases, each comprising the sequencing and bioinformatics analysis of only a subset of the samples that are planned

to be sequenced throughout the project (Large-scale Project Cycle). This iterative nature provides the opportunity to produce

genomic information in each cycle that can be used to improve the bioinformatics processes (Perpetual Improvement of Graph

Genomes). Graph-based secondary analysis approaches can utilize this information to improve the variant detection power for

subsequent cycles. (b) Iterative population-specific graph construction workflow. The initial population-specific graph

reference (Pan-African 0) is constructed using publicly available variant databases. At each iteration, a subset of the population

(construction set) is processed with the current graph and the variant calls are used to construct the next graph. This process is

repeated until the entire construction set is exhausted. All graph references are tested on the same benchmarking set and their

performance is evaluated. The population-specific graphs (Pan-African 0-5) are also compared to a generic graph

(Pan-Genome) containing genetic information from many populations and to a linear approach using only GRCh38 reference.
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Figure 2. Population-specific graph construction summary. (a) Nucleotide diversity and divergence with respect to

GRCh38 linear reference for each population in the 1000 Genomes dataset. (b) True positive (TPR) and false positive (FPR)

rates in the constructed graph references as a function of number of samples used in construction. (c) Overview of the graph

construction method. (d) Summary statistics for Pan-African graphs constructed at each iteration of the workflow show in

Figure 1b.
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Figure 3. Alignment Metrics. Rate of unmapped (a), improper (b), multi-mapped (MAPQ=0) (c), uninformative (MAPQ

< 20) (d) and informative reads (MAPQ ≥ 20) (e). (f) Alignment error rate. Error rate is the ratio of mismatches to aligned

bases in read alignments with respect to the reference. Wilcoxon tests between consecutive distributions are performed. In all

cases except for one (uninformative reads between iterations 2 and 3) the difference is significant (p < 10−3). (g) Total number

of variants in graph (solid bars) and per-sample mean of number of used variants/edges in alignment (dashed bars). Magenta

line shows the ratio of used variants to the graph size. (h) Categorization of variant utilization in alignment with respect to the

number of samples.
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Figure 4. Variant calling results. (a) Sample distribution of SNP counts, (b) cumulative AF distribution of SNPs, (c) INDEL

counts, (d) cumulative AF distribution of INDELs, (e) structural variant (SV) counts, (f) size distribution of detected structural

variants, and (g) percentage of loci called by the graph pipeline for the variants rescued in traditional joint calling (results are

split based on the filtration output of VQSR). Wilcoxon tests between consecutive distributions are performed for (a), (c), and

(e). In all cases the difference is significant (p < 10−21).
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