

1 **An efficient urine peptidomics workflow identifies chemically defined
2 dietary gluten peptides from patients with celiac disease**

3
4 Brad A. Palanski^{1,13}, Nielson Weng^{1,2,3}, Lichao Zhang⁴, Andrew J. Hilmer¹, Lalla A.
5 Fall⁵, Kavya Swaminathan⁶, Bana Jabri^{7,8,9}, Carolina Sousa¹⁰, Nielsen Q. Fernandez-
6 Becker¹¹, Chaitan Khosla^{1,5,12}, and Joshua E. Elias⁴

7 ¹Department of Chemistry, Stanford University, Stanford, CA, USA. ²School of Medicine,
8 Stanford University, Stanford, CA, USA. ³Medical Scientist Training Program, Stanford
9 University, Stanford, CA, USA. ⁴Chan Zuckerberg Biohub, San Francisco, CA, USA. ⁵Stanford
10 ChEM-H, Stanford University, Stanford, CA, USA. ⁶Division of Blood and Bone Marrow
11 Transplantation, Stanford University, Stanford, CA, USA. ⁷Department of Medicine, University of
12 Chicago, Chicago, IL, USA. ⁸Committee on Immunology, University of Chicago, Chicago, IL,
13 USA. ⁹Department of Pathology and Pediatrics, University of Chicago, Chicago, IL, USA.
14 ¹⁰Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de
15 Sevilla, Sevilla, Spain.

16 ¹¹Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University,
17 Stanford, CA, USA. ¹²Department of Chemical Engineering, Stanford University, Stanford, CA,
18 USA. ¹³Present address: Department of Medicine, Brigham and Women's Hospital, and
19 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School,
20 Boston, MA, USA

21
22 These authors contributed equally: Brad A. Palanski, Nielson Weng.

23
24 These authors jointly supervised this work: Chaitan Khosla, Joshua E. Elias. Email:
25 khosla@stanford.edu, josh.elias@czbiohub.org.

26
27
28
29

30 **ABSTRACT**

31
32 Celiac disease (CeD) is an autoimmune disorder induced by consuming gluten proteins from
33 wheat, barley, and rye. Glutens resist gastrointestinal proteolysis, resulting in peptides that elicit
34 inflammation in patients with CeD. Despite well-established connections between glutens and
35 CeD, chemically defined, bioavailable peptides produced from dietary proteins have never been
36 identified from humans in an unbiased manner. This is largely attributable to technical
37 challenges, impeding our knowledge of potentially diverse peptide species that encounter the
38 immune system. Here, we developed a novel liquid chromatographic-mass spectrometric
39 workflow for untargeted sequence analysis of the urinary peptidome. We detected 679 distinct
40 dietary peptides, of which ~35% have a CeD-relevant T cell epitope and ~5% are known to
41 stimulate innate immune responses. Remarkably, gluten peptides from patients with CeD
42 qualitatively and quantitatively differ from controls. Our results provide a new foundation for
43 understanding gluten immunogenicity, improving CeD management, and characterizing the
44 dietary and urinary peptidomes.

45
46
47
48

49 **INTRODUCTION**

50
51 In humans, the prevailing understanding of physiological digestion is that proteins are
52 broken down into single amino acids or di- or tri-peptides before absorption as nutrients^{1,2}.
53 Gluten proteins found in wheat, barley, and rye are exceptions to this tenet with notable health
54 consequences. Unusual biochemical properties of these proteins, such as a high abundance of
55 glutamine (Gln, Q) and proline (Pro, P) residues, render them resistant to degradation by
56 gastrointestinal proteases³. Consequently, relatively long gluten peptides with intact
57 immunotoxic epitopes accumulate in the lumen of the small intestine⁴ and cross the epithelial
58 barrier, although the mechanism(s) of transport remain controversial⁵. In approximately 1 in 100
59 individuals, an aberrant immune response to these peptides causes celiac disease (CeD), an
60 autoimmune disorder that causes small intestinal mucosal injury characterized by villous
61 atrophy. Common symptoms include abdominal pain, bloating, nausea, vomiting and/or
62 diarrhea⁶. Extraintestinal CeD manifestations also occur, including blistering skin rashes and
63 ataxia⁷. At present, the only effective CeD treatment is a strict, lifelong adherence to a gluten-
64 free diet (GFD)⁸.

65 Assays to probe gluten immunogenicity in CeD have typically relied on extracted or
66 recombinant glutens that are digested *in vitro* with gastrointestinal proteases. The resulting
67 peptides can be used in bioassays to characterize mechanisms of immunotoxicity³. In most
68 cases, these peptides elicit adaptive immune responses mediated by HLA-DQ2 or -DQ8 antigen
69 presentation to Th1 cells in the small intestinal mucosa of patients with CeD^{4,9-14}. Gluten
70 peptides with alternative (i.e., non-T cell-dependent) modes of action have also been reported<sup>15-
21</sup>. Structure-function analyses using synthetic gluten peptides have revealed exquisite
71 sequence specificity for both the HLA and T cell receptor; single amino acid alterations can
72 result in dramatically altered affinities, thereby altering the strength of the immune response²²⁻²⁴.

73 Although it is well established that chemical variation in gluten peptides can influence
74 CeD immune responses, measuring their naturally processed forms and connecting them with
75 CeD patients' health status is an underexplored research area. Over 20 years ago, chromatographic analysis coupled to UV detection implied the existence of gluten-derived
76 peptides in the urine of patients with CeD²⁵. This was confirmed more recently by antibody-
77 based methods²⁶⁻²⁹. Indeed, most current gluten detection methods rely on monoclonal
78 antibodies, which recognize amino acid motifs present in a subset of gluten proteins³⁰.
79 Notwithstanding the valuable knowledge that has been gained from analyzing biospecimens
80 with these immunoreagents, they are neither capable of revealing the exact gluten peptide
81 sequences that are present, nor are they comprehensive in that some CeD-relevant peptides
82 may lack the epitopes these antibodies recognize.

83 To address mounting evidence that many disease-relevant gluten peptides remain to be
84 discovered³¹, new methods are needed to recover and precisely characterize *in vivo* gluten
85 digestion products in an untargeted fashion. In fact, not a single chemically defined peptide from
86 wheat (or, to our knowledge, from any dietary protein) has ever been identified from the human
87 circulatory or excretory systems. Consequently, very little is known about the physiological
88 absorption, distribution, metabolism, and excretion (ADME) of gluten. Specifically, we lack
89 insight into the chemical structures of peptides formed from *in vivo* digestion that may stimulate
90 the immune system.

91 As a step toward filling this knowledge gap, we sought to analyze human urine by liquid
92 chromatography coupled to tandem mass spectrometry (LC-MS/MS). Currently, LC-MS/MS is
93 the most widely used technique for peptide sequencing in complex biological samples.
94 However, many established LC-MS/MS methods suffer from technical limitations when applied
95 to urinary peptidome analysis. High concentrations of urinary salts and metabolites, which are

98 not efficiently removed by standard reversed-phase or liquid-liquid extraction procedures, can
99 overwhelm chromatography systems and interfere with peptide detection^{32,33}. Here, we develop
100 a novel sample preparation and LC-MS/MS method that utilizes mixed cation exchange solid
101 phase extraction to exclude these interfering molecules in a single step. This workflow
102 overcomes problems we initially encountered with adapting established methods for urinary
103 peptidomics, such as the need for time-consuming strong cation exchange purification and/or
104 limited depth of peptide sampling. With it, we can now efficiently identify dietary gluten peptides
105 and report the precise sequences of such peptides in the urine of human volunteers. We also
106 undertake an exploratory clinical study, which revealed wheat-derived peptides that are
107 substantially different in their chemical and biological properties and are differentially found in
108 patients with CeD versus healthy controls. These peptides are attractive candidates for
109 improving CeD diagnosis and for monitoring patient compliance to gluten-free diets. They also
110 set the stage for elucidating mechanisms underlying the anomalous ADME characteristics of
111 gluten and other dietary proteins. More generally, the successful application of our urinary
112 peptidomic workflow to CeD suggests it should be broadly applicable for direct measurement of
113 any endogenous or exogenous peptide present in urine.
114

115 RESULTS

116

117 LC-MS/MS Method Development

118 Previous chromatographic and antibody-based detection methods suggested the presence of
119 gluten-derived peptides in human urine but were incapable of directly elucidating their
120 sequences²⁵⁻²⁹. To determine if an unbiased LC-MS/MS approach could be used for this
121 purpose, we initially analyzed urine samples from volunteers who had consumed a meal rich in
122 dietary gluten by following an extraction and analysis protocol typically used in LC-MS/MS-
123 based proteomics studies (**Supplementary Methods**). These exploratory efforts yielded just
124 one gluten-derived peptide identification. Furthermore, very few endogenous human peptides
125 were detected (**Supplementary Fig. 1**). In accordance with challenges previously reported with
126 urinary peptidome experiments^{32,33}, we noted severe degradation of the LC column and MS
127 electrospray source over consecutive analyses, preventing us from analyzing multiple samples
128 without unacceptable interruptions in instrument operation.

129 We therefore endeavored to systematically optimize each step in our peptidome
130 extraction and LC-MS/MS analytical protocols in order to reliably detect peptides from urine.
131 Starting with urine from an individual challenged with dietary gluten, we first confirmed it had
132 measurable gluten levels by ELISA. The commercially available R5 monoclonal antibody we
133 used targets the pentameric motif QXP(W/F)P found in many gluten proteins³⁴ and is therefore
134 expected to react with gluten peptides produced by patients with CeD and healthy controls.
135 Using this reference specimen, we tested a variety of methods to enrich and purify urinary
136 peptides. In addition, we optimized the LC gradient and MS acquisition method
137 (**Supplementary Methods**). These efforts resulted in >30- and >12-fold increases in the
138 number of identifiable wheat- and human-derived peptides, respectively, while eliminating
139 longstanding problems with instrument contamination by background metabolites
140 (**Supplementary Methods, Supplementary Figs. 2-3**, see also Method Specificity section
141 below). Importantly, by combining solid-phase extraction on a mixed-cation exchange column
142 with online reversed-phase LC and high-resolution MS/MS analysis, this workflow shortened our
143 sample preparation time from 2-3 days to 6 hours (**Fig. 1**). This allowed sufficient throughput for
144 us to undertake comparative analysis of clinical urine samples.
145

146 Pilot Identification of Chemically Defined Urinary Wheat Peptides

147 To evaluate our optimized urine peptidome extraction and LC-MS/MS method, four healthy
148 participants were recruited into a pilot study outlined as follows (**Fig. 2a**): On the first day,
149 participants initiated a GFD. The GFD was maintained on the second day, and a pooled urine
150 sample was collected over 8 h. On the third day, participants underwent a gluten challenge
151 comprised of two wheat bagels (~18 g gluten), and subsequently collected a second pooled
152 urine specimen over the next 8 h. LC-MS/MS analysis of these urine samples yielded an
153 average of 24 unique peptide sequences per participant mapping to the wheat proteome, all of
154 which were identified only in the post-gluten challenge samples (**Supplementary Dataset 3**).
155 The number of unique wheat peptides varied widely between individual volunteers (**Fig. 2b**). In
156 contrast, the number of detected human peptides was essentially unchanged in the GFD versus
157 post-challenge samples (**Supplementary Fig. 4**).

In anticipation of recruiting larger cohorts of human participants, we sought to confirm our initial findings while also simplifying the dietary gluten challenge protocol. The four original participants, along with four additional healthy participants, were asked to fast overnight in place of the 48 h GFD employed in the pilot study (**Fig. 2c**). Then, a single urine sample was collected before consumption of two wheat bagels for breakfast and collection of a pooled 8 h urine sample. Wheat peptides were readily detected in all post-challenge samples (**Fig. 2d and Supplementary Table 2**), while the number of human peptides was similar in both sample groups (**Supplementary Fig. 5**). These results support our initial finding that a dietary gluten challenge consistently leads to urinary gluten peptides that are measurable by LC-MS/MS. They also indicate that levels of these peptides fall to undetectable levels after overnight fasting, justifying use of the abbreviated protocol for subsequent studies.

Considering all sequences of the wheat-derived peptides identified from healthy participants (**Supplementary Datasets 3 and 4**), four noteworthy characteristics were apparent (**Fig. 2e**). First, although 125 unique peptide sequences were identified, only one peptide was found in common in all 8 participants: GQQQPFPPQQPYPQPQPFPS. Its C-terminally truncated derivative, GQQQPFPPQQPYPQPQPF, was identified in 7/8 participants; other overlapping variants of these peptides were also detected in more than one urine sample. While these sequences from α -gliadin proteins are not known to be recognized by patient-derived T cells, multiple studies have demonstrated that they can stimulate an innate immune response^{15–21}. Strikingly, these prevalent urinary peptides do not have a motif that is recognized by monoclonal antibodies commonly used for gluten detection^{34,35}. Thus, they would evade detection by traditional immunoassays.

Second, we identified many peptides harboring known CeD-relevant T cell epitopes³⁶. The DQ2.5-glia- γ 4c/DQ8-glia- γ 1a epitope was most common, with 32 distinct peptides harboring the corresponding QQPQQPFPQ sequence. The DQ2.5-glia- γ 5 epitope (QQPFPQQPQ) also appeared frequently, as it was identified in 14 unique peptides. Other known T cell epitopes, including DQ2.5-glia- γ 1 (PQQSFPQQQ), DQ2.5-glia- γ 3 (QQPQQPYQPQ), and DQ2.5/2.2-glut-L1 (PFSQQQQPV) were identified less frequently (**Supplementary Table 1**). Some T-cell stimulatory peptides, such as FLQPQQPFPQQPQQPYQPQQPFPQ and SQQPQQPFPQQFQPQQPQQPQ, harbor more than one epitope and were previously identified as being both proteolytically resistant and highly inflammatory to CeD patients through *in silico* and *in vitro* analysis³⁷.

190 Third, some peptides such as PyrQTFPHQPQQQVPQPQQPQQP had undergone post-
 191 translational modification via cyclization of an N-terminal Gln into a pyroglutamic acid residue.
 192 The possibility that this modification occurs during sample processing cannot be excluded.
 193 However, N-terminal pyroglutamination is known to protect peptides from proteolytic
 194 degradation³⁸⁻⁴⁰ and thus may contribute to their stability in circulation.

195 Last, we found novel gluten peptides from human urine that have not been described by
196 any prior study as either being resistant to gastrointestinal digestion or as having any

197 pathophysiological characteristics. One such peptide, SCHVMQQQCC, is derived from γ -gliadin
198 and from the low molecular weight subunits of glutenins B and C. It was identified in 6/8
199 participants, while its C-terminally truncated form was detected in 5/8 urine samples. Longer
200 and shorter versions were also detected in multiple samples. This result illustrates the power
201 our untargeted approach has for identifying wheat-derived peptides that have eluded prior
202 description despite their seemingly common representation.

203
204

205 **Method Specificity**

206 To our knowledge, the above proof-of-concept studies report the first untargeted detection of
207 diet-derived peptides in humans. We therefore sought to confirm that our LC-MS/MS method
208 reliably detects these peptides and accurately identifies their sequences in the complex
209 background of the human urinary peptidome. To do so, we took advantage of the fact that rye
210 and barley also contain proteolytically resistant gluten proteins⁴¹. For example, wheat gliadins
211 (one of two major protein families that comprise gluten) are homologous to secalin proteins in
212 rye and hordeins in barley (**Fig. 3a**). We thus anticipated that urine analysis should distinguish
213 the particular grain consumed by volunteers who ate meals rich in either wheat, barley, or rye.
214 To test this hypothesis, two healthy participants fasted overnight, and then, on different days,
215 maintained a grain-free diet, or ate breakfasts prepared with approximately 1.5 cups of wheat,
216 barley, or rye flour. Urine was then collected for 8 h, analyzed by our optimized LC-MS/MS
217 protocol, and the data were searched against a customized database that included the human,
218 rye, wheat, and barley proteomes (**Supplementary Methods**).

219 When participants maintained a grain-free diet, only a single grain peptide (likely a false
220 discovery) was identified. In contrast, subsequent to wheat, rye, and barley dietary challenges,
221 we respectively detected 51, 43, and 37 unique grain peptide sequences (**Supplementary**
222 **Dataset 5**). The human peptide repertoire was similar in all specimens (**Supplementary Fig. 6**).
223 Notably, all identified peptides were restricted to just one dietary challenge (**Fig. 3b**), suggesting
224 that our method readily differentiates peptides formed from different dietary proteins. Indeed,
225 when the sequences were mapped onto the grain proteomes, the majority were predominately
226 derived from the corresponding dietary challenge (**Fig. 3c and Supplementary Fig. 7**). We
227 attribute the fact that fewer sequences could be mapped to the rye proteome from rye challenge
228 urine as a likely artifact of the small size of the rye proteome available from the UniProt
229 resource, which contains ~100x fewer sequences than the wheat or barley proteomes, despite
230 their genomes having similar sizes. Our data suggest that many of the detected sequences in
231 the rye challenge urine may be derived from yet unannotated rye proteins whose sequences are
232 also present in the wheat proteome. Taken together, these results demonstrate that the
233 peptides detected by our method originate from the diet. They also confirm the specificity of our
234 method to distinguish closely related dietary components.

235

236 **Preliminary Analysis of Banked Urine from Patients with CeD**

237 To test our ability to identify wheat-derived peptides in the urine of individuals with CeD, we
238 analyzed a set of nine urine samples banked from a prior study²⁷. These urine samples were
239 collected from single voids of patients with confirmed CeD diagnoses and were previously
240 assayed for gluten presence by lateral flow immunoassay. This immunoassay used G12 and A1
241 monoclonal antibodies, which specifically recognize the pentameric amino acid motifs
242 QPQLP(Y/F) and QLP(Y/F)PQP, respectively³⁵. Samples (n=4) from patients reporting
243 adherence to a GFD and in which the measured gluten peptide concentrations were below the
244 lateral flow assay limit of quantification were analyzed as negative controls. In accordance with
245 the lateral flow results, we did not measure peptides mapping to the wheat proteome by LC-
246 MS/MS. In contrast, all samples (n=5) for which lateral flow assays indicated high apparent
247 gluten peptide concentrations, yielded at least 16 wheat peptide sequences (**Fig. 4**) by LC-

248 MS/MS. The mean number of identified wheat peptides (74 per sample) was much higher than
249 those described in our proof-of-concept studies with healthy participants (24 per sample; **Fig.**
250 **2b,d**) while the number of human peptides was similar (**Supplementary Fig. 8**). Strikingly, one
251 sample from a patient with CeD yielded 206 distinct wheat peptides, a quantity four times
252 greater than in any healthy participant analyzed previously. These intriguing observations led us
253 to hypothesize that the urinary wheat peptide repertoires of patients with CeD are much more
254 diverse than non-CeD individuals. We therefore initiated a prospective clinical study to formally
255 test this hypothesis, described below.

256
257 **Clinical Study**

258 Adult patients with gastrointestinal symptoms including dyspepsia, bloating and diarrhea who
259 were eating gluten-containing diets and were undergoing evaluation for CeD were recruited
260 within the Celiac Disease Program at the Stanford Digestive Health Center, along with gender-
261 matched healthy controls (**Fig. 5a**). CeD vs. non-CeD diagnoses were not known at the time of
262 enrollment and were subsequently established by serology and endoscopy with biopsy. All
263 participants undertook a dietary gluten challenge and urine collection according to the optimized
264 study design depicted in **Fig. 2c**. At the end of the recruitment period, urine samples were
265 processed and analyzed by LC-MS/MS. Compared to healthy controls (n=8) and patients
266 ultimately diagnosed with non-celiac gastrointestinal disorders (n=5), patients with CeD (n=6)
267 had 2.5-fold more unique gluten peptides in their urine (**Fig. 5b**), while the number of
268 endogenous human peptides was similar in all three groups (**Supplementary Fig. 9**).

269 Consistent with our pilot studies, variants of the innate immune response stimulating-
270 peptide GQQQPFPQQPYPPQQPQPFPS were detected in all individuals, regardless of clinical
271 status (**Supplementary Dataset 7**). We analyzed whether patients with CeD had increased
272 diversity of peptides with T cell epitopes known to stimulate the adaptive immune response.
273 Indeed, the number of peptides with at least one CeD-relevant T-cell epitope was approximately
274 4-fold higher in patients with CeD (**Fig. 5c,d**). All CeD-relevant T cell epitopes occurred more
275 frequently in participants with CeD, and seven different T cell epitopes completely absent in
276 controls were found in patients (**Fig. 5d and Supplementary Table 2**). Overall, we measured
277 289 unique wheat peptides from patients with CeD that were not detected in healthy individuals
278 or patients with non-celiac gastrointestinal disorders, whereas only 36 peptides were shared
279 between all three groups (**Fig. 5e and Supplementary Dataset 7**).

280 To gain insight into the diversity of peptide sequences found in patients with CeD, we
281 ranked the frequency by which CeD-specific peptide sequences were detected
282 (**Supplementary Dataset 8**). Just four peptides were found in the majority of ($\geq 4/6$) patients
283 (**Fig. 5f**), whereas most (207) were detected only in single individuals. To understand the
284 chemical space occupied by the peptides that were found in patients with CeD, we aligned the
285 detected peptide sequences to the wheat proteome (**Fig. 5g-h**). Strikingly, patients with CeD not
286 only had more variants (i.e., slightly longer or shorter versions) of peptides found in controls, but
287 they also possessed peptides that mapped to distinct regions of the wheat proteome
288 (**Supplementary Fig. 10**). For example, three patients had peptides spanning residues 194-199
289 of γ -gliadin (GDBX) that were absent in controls (**Fig. 5g**). Taken together, these results
290 demonstrate that patients with CeD have peptidomes that are more diverse in their chemical
291 and biological properties compared to control participants.

292
293 **DISCUSSION**

294
295 Despite extensive research into the mechanisms by which gluten proteins play a role in
296 CeD pathogenesis (**Fig. 6**), the identities of the actual diet-derived molecules that interact with
297 the human immune system in the gut and other organs have been a long-standing mystery. As
298 a step toward illuminating these molecular interactions, we developed a novel LC-MS/MS-based

299 assay that directly detects the metabolic products of food grains. In contrast to *in vitro* gluten
300 preparations that have been standard research tools in the CeD field for several decades, our
301 method is compatible with *in vivo* dietary challenge. It therefore can reveal, for the first time, the
302 precise chemical structures of dietary peptides that may drive CeD in humans. Furthermore,
303 unlike traditional antibody reagents, the untargeted LC-MS/MS readout readily distinguishes the
304 precise amino acid sequences of digestion-resistant peptides from wheat, barley, and rye. Thus,
305 this method provides a unique window into gluten's ADME characteristics and immunogenicity.
306 Indeed, we observed more varied wheat peptide repertoires from patients with CeD than was
307 previously appreciated – and ones that were much more diverse than those found in non-CeD
308 individuals.

309 Initially, our efforts were hindered by LC-MS/MS methods that were unsuited to the
310 unique challenges of urinary peptidome analysis. Urine contains high concentrations of
311 metabolites and salts that are difficult to separate from peptides and are incompatible with LC-
312 MS/MS^{32,33}. Therefore, we developed an extraction technique to remove these interfering
313 compounds (**Supplementary Fig. 3**), and dramatically improve our ability to measure all urinary
314 peptides, including those derived from wheat. Our workflow (**Fig. 1**) is compatible with standard
315 reversed-phase LC-MS/MS instrumentation available in most proteomics laboratories⁴². It is less
316 time- and labor-intensive than prior approaches, while also allowing the identification of 2-to-10-
317 fold more endogenous human peptides from typical 1-10 mL urine samples^{32,33,43,44}. This
318 methodological advance allowed us to undertake a comparative analysis of the wheat-derived
319 urinary peptidomes of patients with CeD and healthy controls. Given its high specificity (**Fig. 3**),
320 our workflow should be readily applicable to other studies requiring analysis of the urinary
321 peptidome. Although here we focused on identification of wheat derived peptides, we also
322 identified over 30,000 human peptides (**Supplementary Datasets 1-7**), which is to our
323 knowledge, is the largest collection of urinary peptides sequenced by LC-MS/MS to date.
324 Moreover, we have deposited the raw data in the PRIDE database to allow additional analyses
325 (e.g., using other variable modifications or alternative search engines).

326 This study is the first to identify the specific amino acid sequences and post-translational
327 modifications of the peptides resulting from *in vivo* digestion of gluten or any other dietary
328 protein. In our pilot identification of dietary wheat peptides in healthy participants (**Fig. 2**), we
329 identified sequences with known CeD relevance, as well as others that had never been
330 implicated in CeD or identified as being resistant to gastrointestinal digestion. These findings
331 underscored the value of our untargeted LC-MS/MS method and motivated us to analyze the
332 urine of patients with CeD.

333 Using banked urine specimens, we found that wheat-consuming patients with CeD had
334 substantially greater gluten peptide diversity than non-CeD individuals (**Figs. 2 and 4**). We
335 confirmed this finding with a subsequent controlled clinical study (**Fig. 5**) in which participants
336 followed our well-defined gluten challenge protocol (**Fig. 2d**). Mechanistically, this peptide
337 diversity may stem from the fact that individuals with active CeD have elevated intestinal
338 permeability, which likely allows wheat-derived peptides to more readily cross the epithelial
339 barrier⁵. This phenomenon could lead to increased peptide concentrations in the systemic
340 circulation and in urine, thereby enhancing their ability to be detected. A different (or
341 complementary) explanation is that patients with CeD digest and/or metabolize wheat differently
342 than other individuals. Such potential differences in wheat metabolism could contribute to the
343 onset of CeD. Future analyses of patients with other non-CeD enteropathies known to cause
344 "leaky gut" such as tropical sprue as well as disorders in which the mucosa remains grossly
345 intact such as irritable bowel syndrome with diarrhea should be insightful in pinpointing the
346 origins the increased peptide diversity observed in patients with CeD^{45,46}. More fundamentally,
347 analysis of urine from individuals consuming diets with various food additives, such as microbial
348 transglutaminase, should help to address the emerging hypothesis that these additives contain

349 increased levels of immunogenic peptides and/or directly contribute to increases in intestinal
350 permeability^{47,48}.

351 We identified 18 distinct immunotoxic epitopes known to be presented on MHC class II
352 molecules and recognized by T-cells that reside in the lamina propria of patients with CeD.
353 Many of these epitopes occurred more frequently in patients with CeD than in controls (**Fig. 5d**).
354 Notably, however, we were unable to detect in its intact form an extensively studied and highly
355 inflammatory 33-residue peptide from α 2-gliadin that accumulates in the mammalian gut lumen
356 under physiological conditions by virtue of its resistance to gastrointestinal proteolysis⁴. Its
357 apparent absence from human urine could be due to physicochemical properties that hinder
358 absorption, promote systemic metabolism, or make it unamenable to chemical extraction and/or
359 detection by mass spectrometry. Nonetheless, it is just as noteworthy that an analogous 26-
360 residue peptide from γ -gliadin, FLQPQQPFPQQPQQPYPQQPQQPFPQ, was observed in 2/7
361 patients with CeD. This peptide is also proteolytically resistant and highly inflammatory to CeD-
362 specific T cells on account of its polyvalency³⁷.

363 Despite the abundance of immunogenic wheat peptides in urine, thus far we have been
364 unable to definitively identify any peptide that underwent regioselective Gln deamidation by
365 transglutaminase 2 (TG2), an important step in CeD pathogenesis (**Fig. 6**). Because TG2-
366 catalyzed deamidation increases the immunogenicity of gluten-derived peptides by several
367 orders of magnitude⁴, it is possible that a relatively small molar fraction of absorbed gluten is
368 deamidated in patients with CeD, making the concentrations of these peptide species too low to
369 be detectable. Alternatively (or additionally), deamidation may enhance the metabolic lability of
370 circulating gluten peptides. The possibility that their high affinity for HLA-DQ2 or -DQ8 alters
371 their ADME characteristics should not be overlooked. Regardless, future development of
372 targeted LC-MS/MS methods could facilitate detection of low-abundance deamidated gluten
373 peptides.

374 There is increasing interest in non-invasive monitoring of GFD compliance via
375 urinalysis^{26-28,49}, as a large proportion of patients with CeD experience symptoms even when
376 attempting to adhere to a GFD⁵⁰. Available methods predominantly exploit the G12 monoclonal
377 antibody, which preferentially recognizes the immunotoxic QPQLP(Y/F) motif found in several
378 CeD-relevant T-cell epitopes³⁵. Our data suggest that this motif is rare in urine from individuals
379 who consume dietary wheat (**Fig. 5e**). In contrast, the sequence
380 GQQQPFPPQQPYPQPQPFPS appeared in the urine of every gluten-challenged individual in
381 this study regardless of CeD status. Most urine samples also contained longer or shorter
382 variants of this sequence. Interestingly, a variant of this peptide has been widely investigated for
383 its ability to actuate the innate immune response by stimulating production of IL-15¹⁷⁻²¹, a key
384 cytokine in CeD pathogenesis^{51,52}. At a minimum, our findings suggest that antibody-based
385 detection methods for monitoring GFD compliance could be vastly improved by targeting
386 detection of this common urinary peptide.

387 The results reported here pave the way for designing improved diagnostic methods for
388 CeD. Although we observed a statistically significant increase in the number of wheat-derived
389 peptides in patients with CeD compared to healthy controls and individuals with other
390 gastrointestinal aliments, the range of unique peptide sequences was quite broad, suggesting
391 that peptide number alone is unlikely to be sufficiently sensitive or selective for CeD diagnosis.
392 Only a small subset (~2%) of 289 CeD-unique peptides occurred in the majority of patients,
393 while ~75% of these sequences were uniquely detected in single individuals (**Supplementary**
394 **Dataset 8**). This broad distribution of detected peptide sequences likely stems from the
395 intrinsically high variability of protein digestion⁵³, as well as the fact that CeD is a highly
396 heterogenous disease in terms of symptoms and extent of gastrointestinal damage⁵⁴.
397 Nonetheless, a subset of diet-derived peptide sequences tended to occur more frequently in
398 CeD patients (**Fig. 5h** and **Supplementary Dataset 8**). Undoubtedly, future studies using larger
399 sample cohorts will be required to identify and validate strong candidate peptides for diagnostic

400 purposes. Such validation studies should benefit from development of targeted LC-MS/MS
401 methods that reproducibly sample and quantify the peptides of interest.

402 Beyond monitoring and diagnosing CeD, our urine peptidomic workflow has potential to
403 advance our fundamental understanding of gluten immunogenicity. Recent evidence indicates
404 that only half of gluten-reactive T cells recognize a known epitope³¹. Analysis of urine from
405 gluten-challenged individuals with T-cells of unknown sequence specificity may reveal candidate
406 epitopes that can be tested in immunoassays. Knowledge of the complete repertoire of disease-
407 relevant wheat peptide sequences that encounter the immune system *in vivo* will be critical to
408 advance efforts to treat CeD by sequestering, degrading, or blocking the interaction of these
409 peptides with immune cells⁸.

410 Generally, our sample extraction and LC-MS/MS analysis protocol promises to reveal
411 new biological insights currently hidden in the urinary peptidome. For example, there is
412 longstanding interest in bioactive peptides derived from dietary proteins other than gluten, but
413 little direct evidence for their existence in humans². More broadly, while it is appreciated that
414 urinary peptides may reflect an individual's health status, few peptides have been identified as
415 disease biomarkers⁵⁵. The high specificity and throughput afforded by our urinary peptidomics
416 workflow should enable investigations into questions such as these that require identification of
417 the sequences and post-translational modifications of exogenous or endogenous urinary
418 peptides.

419

420 **METHODS**

421

422 **Human Urine Donors.** Control urine samples were obtained from healthy adult volunteers
423 without any gastrointestinal symptoms suggestive of CeD. Urine samples were also obtained
424 from eleven adult participants undergoing evaluation for suspected CeD within the Celiac
425 Disease Program at the Stanford Digestive Health Center, in accordance with a protocol
426 approved by the Stanford institutional review board (#20362). Subsequent to urine collection, six
427 of these individuals were diagnosed with CeD on the basis of abnormally high anti-TG2 and
428 deamidated gliadin peptide antibody titers and a confirmatory endoscopy with biopsies
429 demonstrating villous atrophy, in accordance with currently accepted diagnostic guidelines⁵⁶.
430 Five individuals were determined to have non-celiac gastrointestinal ailments on the basis of
431 negative anti-TG2 and deamidated gliadin peptide antibody titers, and optically and
432 histologically normal small bowel on endoscopy (with the exception of one patient who refused
433 endoscopy). All participants provided informed consent, and ethical approval for these sample
434 collections was obtained from the Institutional Review Board for Human Subject Research of
435 Stanford University (Stanford, CA). Urine samples from participants analyzed in Fig. 5 frozen on
436 the day of collection and stored until the end of the two-year study recruitment period. All
437 samples were then defrosted and processed on the same day, as detailed below. Further
438 details related to these participants are provided in **Supplementary Table 3**. The data in **Fig. 4**
439 were obtained from analysis of banked urine samples of individuals with a confirmed CeD
440 diagnosis from a previously published study²⁷. Participants provided informed consent, and the
441 local ethics committee of the Hospital Universitario Virgen del Rocío (Sevilla, Spain) approved
442 the study.

443

444 **Urine Conditioning and Immunochromatographic Test for Detection of Gluten**
445 **Immunogenic Peptides.** Urine samples were processed according to the manufacturer's
446 recommendations (iVYCHECK GIP Urine, Biomedal S.L., Seville, Spain), and subsequent to the
447 processing of the sample: 100 µL of the sample was added onto the detection test strip. After 30
448 min, the immunochromatographic strip was measured in the cassette of the lateral flow test
449 reader, essentially as previously described²⁹.

450

451 **Gluten Challenge and Urine Collection.** In initial experiments, participants followed a gluten-
452 free diet for one day, and then continued the gluten-free diet and collected a pooled urine
453 sample for 8 h on the second day, beginning with the second morning void. On the third day,
454 volunteers underwent a dietary gluten challenge consisting of two bagels made with wheat flour
455 (approximately 9 g gluten each). After the gluten challenge, participants were permitted to eat
456 *ad libitum*, and a pooled urine sample was collected for 8 h. For studies that required a barley or
457 rye enriched diet, pancakes prepared with approximately 1.5 cups of barley (Arrowhead Mills),
458 rye (Bob's Red Mill), or wheat (Bob's Red Mill) flour were substituted for bagels prepared with
459 wheat flour, and participants refrained from eating any wheat, rye, or barley products until the
460 end of the 8 h urine collection. In later experiments, volunteers were not prescribed a gluten-free
461 diet the day prior to the gluten challenge but were instructed to fast overnight. After fasting,
462 participants collected a spot urine sample, and underwent the dietary gluten challenge as
463 previously described. Subsequent to this gluten challenge, a pooled urine sample was collected
464 for 8 h in a 4 L urine container (Simport Scientific #B3504L), whereas spot urine samples were
465 collected in 120 mL urine collection cups (Thermo Scientific #010001). Urine was stored at 4 °C
466 throughout the collection day and was preprocessed and frozen on the same day it was
467 collected. To do so, urine samples were centrifuged in 50-mL polypropylene tubes for 3000 x g
468 for 20 min and transferred to 15 mL polypropylene tubes in 10-15 mL aliquots. Samples were
469 stored at -80 °C until further analysis.

470

471 **Creatinine Normalization and Urinary Peptidome Enrichment.** At the time of analysis, urine
472 samples were placed in a 37 °C water bath until just thawed and then centrifuged at 5000 $\times g$ for
473 5 min at room temperature to pellet any precipitates. For all analyses, urine samples were
474 processed in singlicate, except for the Clinical Study presented in **Fig. 5**, in which samples were
475 processed in duplicate on two separate days. Creatinine levels were measured using a kit
476 (Cayman Chemical #500701) according to the manufacturer protocol. Briefly, urine sample
477 aliquots were diluted 1:10 in MilliQ water and 15 μ L of the diluted samples, or 15 μ L of the kit-
478 provided creatinine standard (0-20 mg/dL final concentration, also diluted in water) were added
479 to a 96-well plate followed by 150 μ L of alkaline picrate solution. After incubation for 10 min at
480 room temperature, the initial absorbances at 500 nm were determined on a plate reader. The
481 reaction was quenched with 5 μ L of the kit-provided acid solution, incubated for 20 minutes, and
482 the final absorbances at 500 nm was measured. Final absorbance values were subtracted from
483 the initial values, and a calibration curve using the creatinine standards was constructed. The
484 creatinine concentrations from the urine samples were calculated based on this curve. If a urine
485 sample reading fell out of the linear range, the measurement was repeated using an appropriate
486 dilution. Then, a volume of urine containing ca. 30 μ mol creatinine (1-10 mL for most donors)
487 was neutralized by addition of aqueous 1 M ammonium bicarbonate solution to a final
488 concentration of 50 mM. Samples were reduced for 30 min at room temperature by dithiothreitol
489 (500 mM aqueous stock added to a final concentration of 2 mM) and then alkylated in the dark
490 with iodoacetamide (500 mM aqueous stock added to a final concentration of 4 mM) for 30 min
491 at room temperature. Urine was acidified with mass spectrometry-grade formic acid to a final
492 concentration of 2% (v/v). To enrich the low-molecular weight urinary peptidome, the acidified
493 samples were applied to water-washed Vivaspin Centrifugal Filtration Columns (Sartorius,
494 #VS0602) with a molecular weight cutoff of 10 kDa, and centrifuged at 4000 $\times g$ until less than
495 200 μ L urine remained in the retentate. The filtrate was then processed by solid phase
496 extraction, as described below.
497

498 **Solid Phase Extraction of Urinary Peptides.** To remove salts, metabolites, and urinary
499 pigments that interfere with downstream LC-MS/MS analysis, solid phase extraction of
500 peptidome-enriched urine was performed using Oasis Mixed Cation Exchange Prime Columns
501 (3 cc size, 100 mg resin, Waters Corporation #186008918). The filtrate from the prior centrifugal
502 filtration step was applied at a rate of approximately 2 drops/s. The column was washed with 1
503 mL of an aqueous solution of 2% formic acid containing 100 mM ammonium formate, followed
504 by 1 mL methanol. The resin was re-equilibrated with 2 mL aqueous 2% formic acid, then
505 washed with 1 mL 95% water/5% ammonium hydroxide followed by 1 mL 95% acetonitrile/5%
506 ammonium hydroxide. The reequilibration and wash steps were repeated one additional time.
507 Peptides were eluted in 1 mL 95% methanol/5% ammonium hydroxide directly into a low-
508 binding microcentrifuge tube (Fisher #3453) at a rate of approximately 1 drop every 2 seconds
509 and dried using vacuum centrifugation. Dried peptides were stored at 4 °C.
510

511 **LC-MS/MS Analysis.** At the time of analysis, solid phase extracted urine samples were
512 reconstituted in 25 μ L MilliQ water. The resuspended peptides were centrifuged at 16,300 $\times g$
513 for 10 min, and the supernatants were transferred to low-binding ultra-performance liquid
514 chromatography vials (Wheaton #11-0000-100-S) and analyzed on a Fusion Lumos mass
515 spectrometer (Thermo Fisher Scientific, San Jose, USA). Peptides were separated by capillary
516 reverse phase chromatography on a 24 cm reversed phase column (100 μ m inner diameter,
517 packed in-house with ReproSil-Pur C18-AQ 3.0 μ m resin from Dr. Maisch GmbH). The Fusion
518 Lumos was equipped with a Dionex Ultimate 3000 LC system and used a two-step linear
519 gradient with 4–25 % buffer B (0.1% (v/v) formic acid in acetonitrile) for 50 min followed by 25–
520 50% buffer B for 20 min, where buffer A was 0.1% (v/v) formic acid in water. Sample analysis
521 with the Fusion Lumos system (Tune 3.3) was carried out in top speed data dependent mode

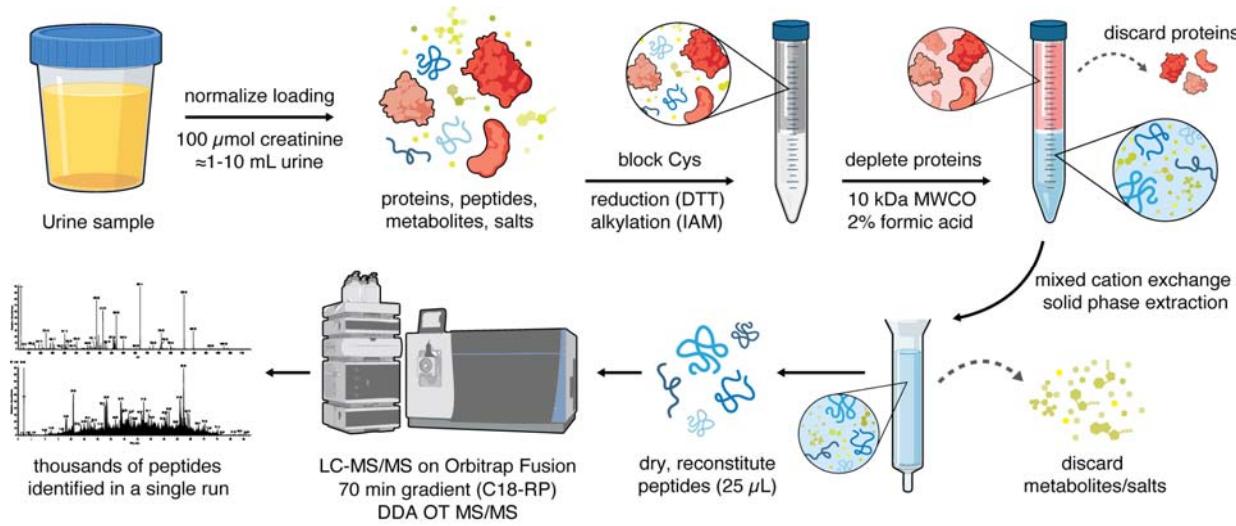
522 with a duty cycle time of 3 s. Full MS scans were acquired in the Orbitrap mass analyzer with a
523 resolution of 120 000 (FWHM) and m/z scan range of 400-1500. Precursor ions with charge
524 state 2-7 and intensity threshold above 50,000 were selected for fragmentation using collision-
525 induced dissociation (CID) with quadrupole isolation, isolation window of 1.6 m/z, normalized
526 collision energy of 35%, activation time of 10 ms and activation Q of 0.25. Precursor ions with
527 charge state 3-7 were also selected for fragmentation using electron transfer dissociation (ETD)
528 supplemented with 25% collision energy (EThcD). Calibrated charge dependent ETD
529 parameters were enabled. MS2 fragment ions were analyzed in the Orbitrap mass analyzer with
530 a resolution of 15,000 (FWHM) and m/z scan range of 156-2000. Fragmented precursor ions
531 were dynamically excluded from further selection for a period of 30 seconds. The AGC target
532 was set to 400,000 and 50,000 for full FTMS scans and FTMS2 scans. The maximum injection
533 time was set to “auto” for full FTMS scans and to “dynamic” for FTMS2 scans.
534

535 **Data Analysis.** To identify peptides originating from the human and wheat proteomes, and in
536 some cases, the barley and rye proteomes, the corresponding protein sequences were
537 downloaded from UniProt (www.uniprot.org) to generate custom FASTA databases, as detailed
538 in the **Supplementary Methods**. The raw MS data were searched against these databases
539 using PEAKS software (versions X or X+, Bioinformatics Solutions, Inc.). Carbamidomethylation
540 (on Cys) was set as a fixed modification and deamidation (on Asn and Gln), oxidation (on Met),
541 and N-terminal pyroglutamination (on Gln and Glu) were allowed as variable modifications, with
542 a maximum of 3 variable modifications per peptide. The allowed mass tolerances were 10 ppm
543 for precursor ions and 0.02 Da for product ions. The digest mode was “unspecific”. Peptides
544 identified in each urine sample were filtered to a false discovery rate of 1% using the decoy-
545 fusion approach implemented in PEAKS. Sequences were assigned to the human and wheat
546 proteomes, and wheat peptide assignments were manually validated to ensure correct
547 assignment of deamidation, as detailed in the **Supplementary Methods**.
548

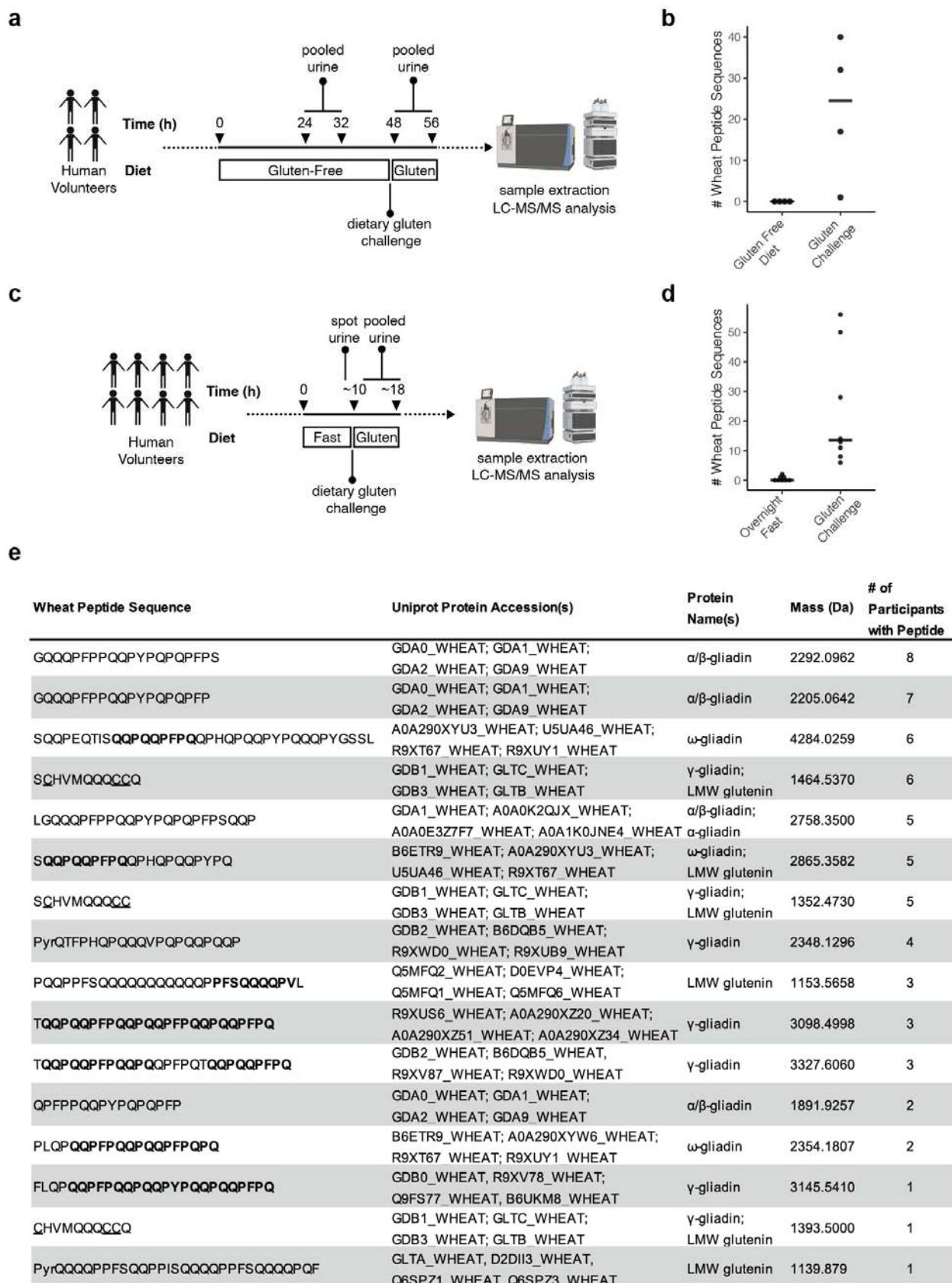
549 DATA AVAILABILITY

550 The mass spectrometry data have been deposited to the ProteomeXchange Consortium via the
551 PRIDE partner repository (<https://www.ebi.ac.uk/pride/>) with the dataset identifier PXD023160.
552 Source data are provided with the paper.
553

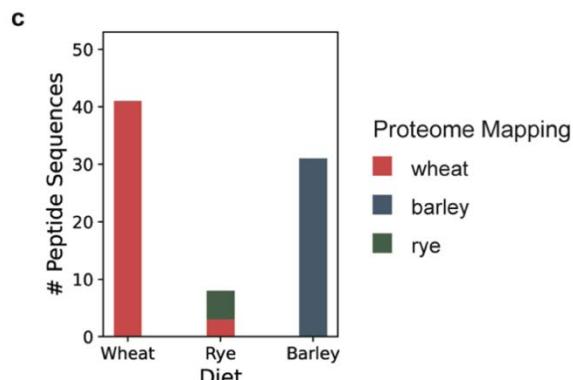
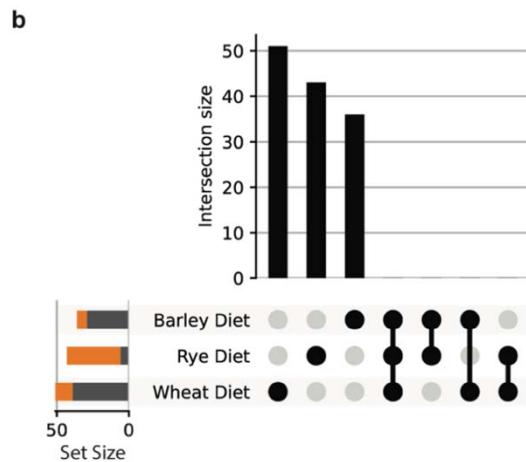
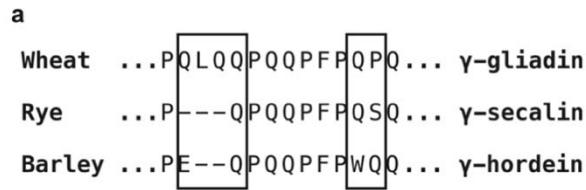
554 ACKNOWLEDGMENTS


555 We thank Elvi Sanjines and Gotzone Garay for support with patient recruitment, and Dr. Carlos
556 Gonzales, Dr. Niclas Olsson, and Shelley Dutt for assistance with mass spectrometry. We also
557 thank Dr. Emma Chory for helpful discussions on data processing and visualization. Parts of
558 some figures in this manuscript were created using BioRender.com.
559

560 C.K. and B.J. received support for this research from the National Institutes of Health under
561 award number NIH R01 DK063158. C.K. gratefully acknowledges seed funding from The Joint
562 Institute for Metrology in Biology, founded by the National Institute of Standards and
563 Technology. J.E.E. is supported by the Chan Zuckerberg Biohub. N.F.B. gratefully
564 acknowledges Joelle and Robert Triebisch and the Division of Gastroenterology and Hepatology
565 for supporting our celiac translational research program. C.S. was supported by a grant from
566 Ministerio de Ciencia e Innovación from Spain and FEDER funds (SAF2017-83700-R).
567

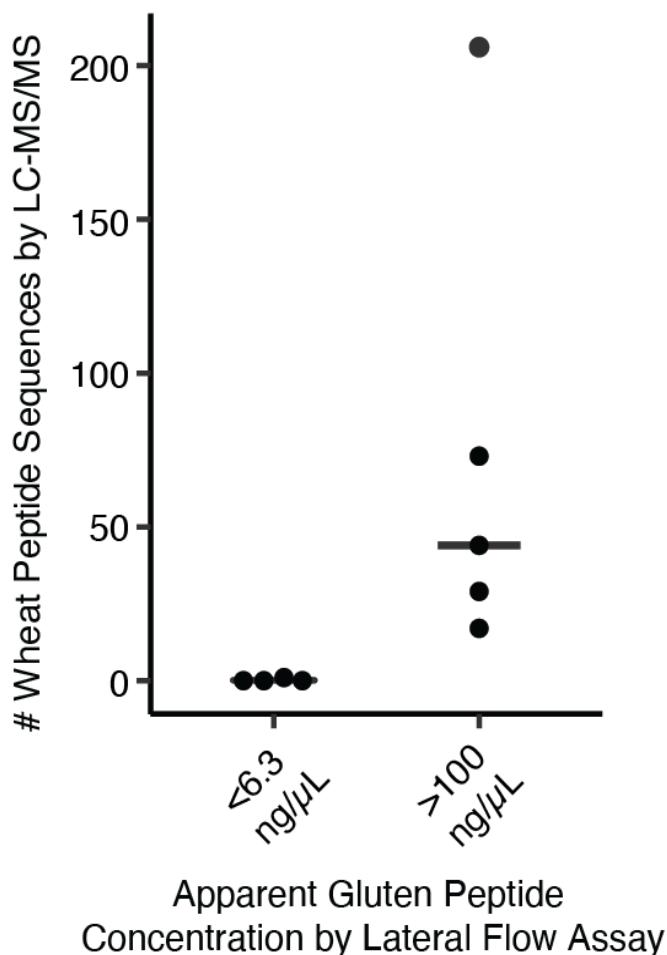

568 AUTHOR CONTRIBUTIONS

569 B.A.P., N.W., L.Z., A.J.H., B.J., N.Q.F., C.K., and J.E.E. designed research. B.A.P., N.W., L.Z.,
570 A.J.H., L.A.F., and K.S. performed research. C.S. contributed reagents and specimens. B.A.P.,
571




573 N.W., L.Z., A.J.H., C.K., and J.E.E. analyzed the data. B.A.P., N.W., A.J.H., C.K., and J.E.E.
574 wrote the paper with input from all authors.
575

576
577
578 **Fig 1. An efficient chemical extraction and LC-MS/MS workflow for urinary peptidomic**
579 **analysis.** Urine sample volumes are first normalized based on creatinine measurement. To
580 prevent the formation of intra- or intermolecular disulfide bonds that would confound
581 downstream data analysis, cysteine (Cys) residues are reduced with dithiothreitol (DTT) and
582 alkylated with iodoacetamide (IAM). Proteins are depleted using a centrifugal filtration device
583 with a molecular weight cutoff (MWCO) of 10 kDa under acidic denaturing conditions. The
584 filtrate is processed using a mixed cation exchange solid phase extraction column to remove
585 metabolites and salts that interfere with LC-MS/MS analysis. After extensive washing, peptides
586 are eluted from the column with methanol containing 5% ammonium hydroxide. Eluted peptides
587 are dried in a centrifugal vacuum concentrator and reconstituted in water. Peptides are
588 separated by nano-liquid chromatography (LC) on a reversed-phase column (RP-C18) and
589 analyzed by tandem mass spectrometry (MS/MS) on an Orbitrap Fusion mass spectrometer
590 operated in the data dependent acquisition (DDA) mode, with precursor and fragment ions
591 analyzed in high resolution in the Orbitrap (OT). The resulting LC-MS/MS data are searched
592 against the desired databases (e.g., the human and wheat proteomes). The experimental
593 workflow takes ~6 h to complete and results in the identification of thousands of peptides.
594

596 **Fig 2. LC-MS/MS enables the identification of chemically defined dietary wheat peptides**
597 **in human urine. a** Pilot study design. **b** Number of wheat-derived peptide sequences detected
598 in the urine of 4 healthy participants after a 24-hour gluten-free diet and after a dietary challenge
599 with wheat gluten. Horizontal line represents median. **c** Simplified study design. **d** Number of
600 wheat-derived peptide sequences detected in 8 healthy participants after an overnight fast and
601 after a dietary challenge with wheat gluten. Horizontal line represents median. **e** Examples of
602 wheat-derived peptide sequences identified in human urine. Bolded residues indicate CeD-
603 relevant T-cell epitopes, as defined in ref. ³⁶. Underlines indicate that Cys residues were
604 detected in their carbamidomethylated forms due to derivatization with iodoacetamide during
605 sample workup. “PyrQ” indicates glutamine residues that had undergone cyclization into
606 pyroglutamic acid. For peptides mapping to more than four proteins in the UniProt database,
607 only the first four accession codes are displayed. All identified peptide sequences and full
608 details relating to peptide identification in each participants’ urine is provided in **Supplementary**
609 **Datasets 3 and 4**. In all LC-MS/MS experiments, peptide identifications were controlled at a
610 false discovery rate of 1% using the PEAKS software decoy-fusion approach⁵⁷.
611



612
613

614 **Fig 3. LC-MS/MS analysis of urine from two healthy volunteers challenged with dietary**
615 **wheat, rye, and barley. a** Illustration of sequence differences between closely related gliadin,
616 secalin, and hordein proteins from wheat, rye, and barley, respectively. The boxes highlight
617 source-specific sequence regions. **b** All possible intersections of the three sets of peptide
618 sequences identified after the grain challenges are depicted as an UpSet plot⁵⁸. The individual
619 set size is plotted to the left of each row, with the grey portion of the bar representing sequences
620 that map uniquely to the respective dietary challenge proteome, and the orange portion
621 representing those that do not. There are no intersections between these sets of peptides,
622 suggesting the peptides depicted in orange are nonetheless likely to have originated from the
623 specific grain used for the dietary challenge. **c** Number of distinct peptide sequences uniquely
624 mapping to the wheat, barley, and rye proteomes following dietary challenges. Sequences that
625 mapped to more than one of the proteomes were excluded from this figure. Sequences that
626 mapped to more than one of the proteomes were excluded from this figure. In the rye diet,
627 sequences mapping uniquely to the wheat proteome were only found in the rye diet, suggesting
628 they are yet unannotated rye peptides. A full list of observed peptide sequences and their
629 respective proteome mappings is provided in **Supplementary Dataset 5**.

630

631

633

634

635

636

637

638

639

640

641

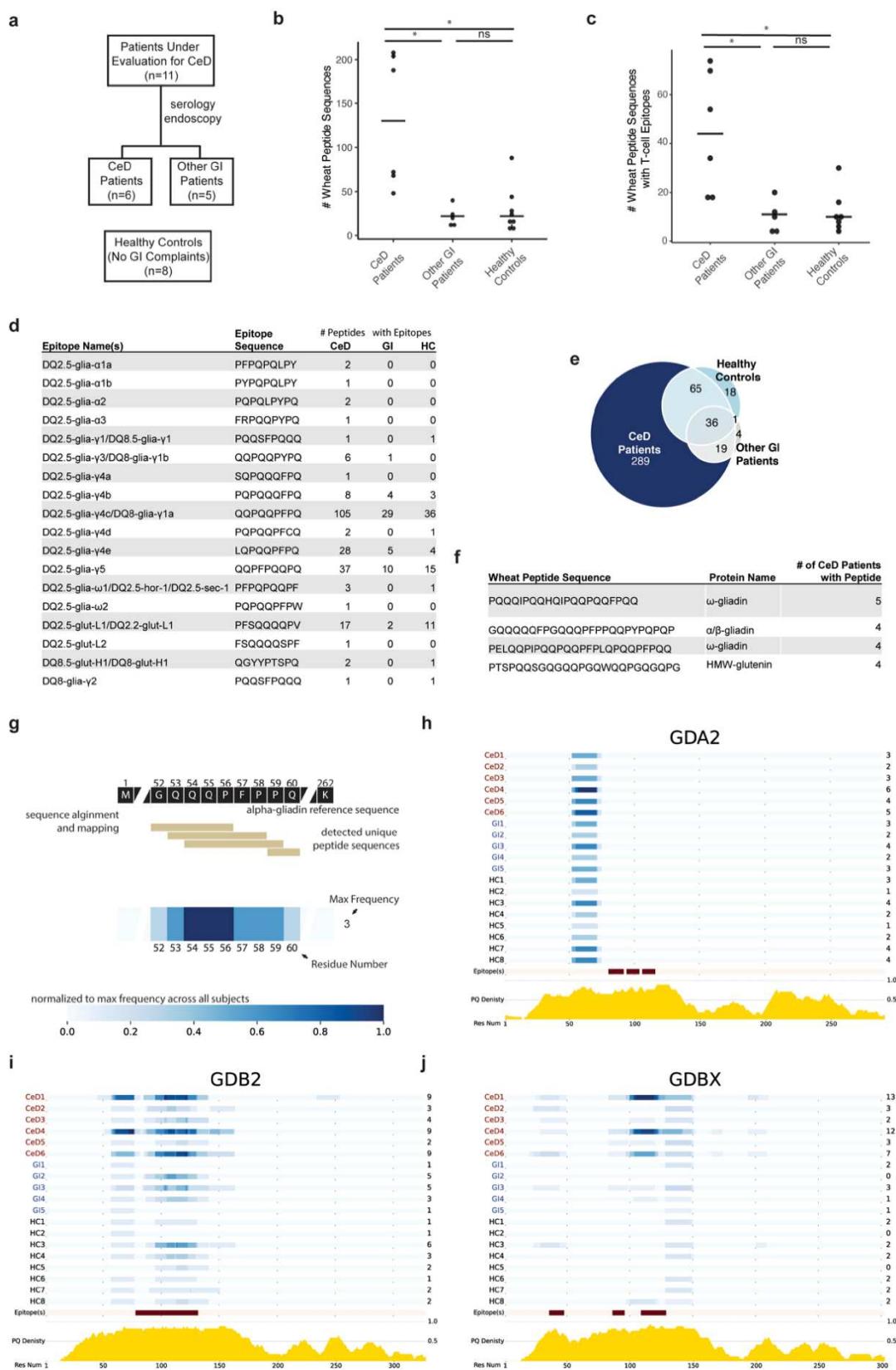
642

643

644

645

646


647

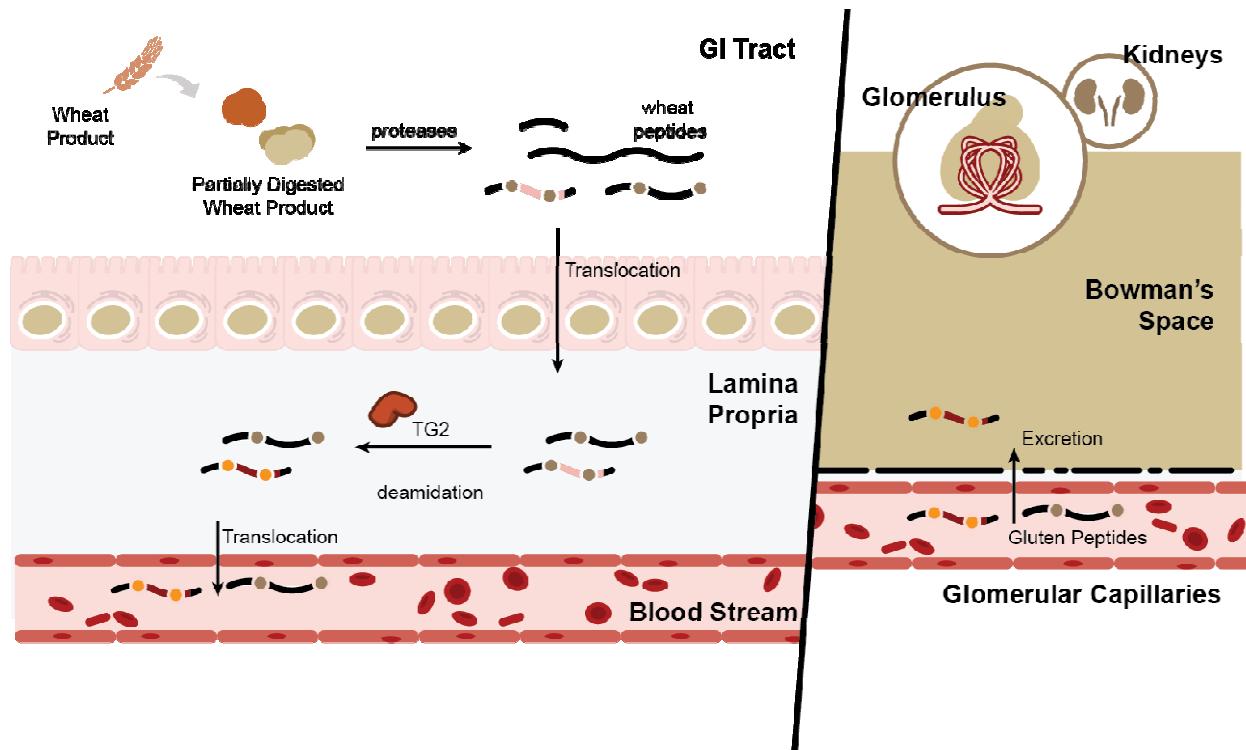
648

649

650

Fig 4. LC-MS/MS analysis of banked urine samples from patients with CeD²⁷. Urine collected from a single void was tested for the presence of gluten by an A1 and G12 monoclonal antibody-based lateral flow assay. Each data point represents a single urine sample, and the horizontal bar indicates the median. Information associated with the identification of these peptide sequences by LC-MS/MS is provided in **Supplementary Dataset 6**.

651


652

653

Fig 5. The urinary wheat peptidomes of patients with CeD are significantly more diverse than in healthy controls or patients with non-celiac gastrointestinal disorders. a Clinical

654 study design. Participants were recruited over approximately two years within the Celiac
655 Disease Program at the Stanford Digestive Health Center. **b** Number of wheat peptides
656 detected in pooled urine samples collected for 8 h subsequent to a dietary challenge with two
657 bagels (~18 g gluten). Patients with CeD had substantially more wheat peptide sequences
658 compared to healthy controls ($p=0.017$) or patients with non-celiac gastrointestinal disorders
659 ($p=0.017$). **c** Number of unique wheat-derived peptide sequences with at least one T-cell
660 epitope in patients with CeD compared to healthy controls ($p=0.019$) and patients with non-
661 celiac gastrointestinal disorders ($p=0.046$). **b,c** One-way Kruskal-Wallis ANOVA/Dunn's multiple
662 comparison test, horizontal bar represents the median. **d** Summary of detected T-cell epitopes.
663 **e** Venn diagram comparing the unique peptide sequences detected in healthy controls, patients
664 with CeD, and other GI patients. A full listing of peptide sequences is provided in
665 **Supplementary Dataset 7**. **f** Wheat-derived peptide sequences detected in the majority of
666 patients with CeD but not in control groups. **g** Schematic describing how the frequencies at
667 which urinary wheat-derived peptides map to proteins in the wheat proteome were plotted as
668 heatmaps. **h-j** Heatmap representation of detected peptide sequences in alpha/beta gliadin 2
669 (GDA2), γ -gliadin 2 (GDB2) and gamma-gliadin X (GDBX) demonstrates that while many
670 peptides map to the same region of the wheat proteome, the urinary wheat peptidomes of
671 patients with CeD also occupy distinct chemical space. Below the maps, the locations of CeD T-
672 cell epitopes are highlighted in red, and the relative density of Gln and Pro is indicated in yellow.
673 Heatmaps for other proteins in the wheat proteome are provided in **Supplementary Fig. 10**. In
674 **b-h**, all samples were analyzed in duplicate the aggregated results are shown. Analyses of
675 individual replicates are provided in **Supplementary Fig. 11**. Full details on LC-MS/MS
676 identification of peptide sequences is provided in **Supplementary Dataset 7**.
677

678
679

680
681 **Fig 6. Schematic representation of relevant metabolic products of dietary gluten in**
682 **humans.** Wheat-derived proteins such as gluten are resistant to gastrointestinal proteolysis.
683 Incomplete digestion preserves disease-causing T-cell epitopes (depicted in red) in peptides
684 that accumulate in the gut lumen. A portion of these gluten peptides translocate to the lamina
685 propria where transglutaminase 2 (TG2) deamidates selected Gln residues (brown dots) in
686 some sequences, thereby converting them into Glu residues (yellow dots). Absorbed peptides
687 can also enter the blood stream, and are further metabolized and/or excreted into urine.
688

689 **REFERENCES**

- 690
- 691 1. Erickson, R. H. & Kim, Y. S. Digestion and absorption of dietary protein. *Annu. Rev. Med.* **41**, 133-139 (1990).
- 692 2. Miner-Williams, W. M., Stevens, B. R. & Moughan, P. J. Are intact peptides absorbed from
- 693 the healthy gut in the adult human? *Nutr. Res. Rev* **27**, 308-329 (2014).
- 694 3. Shan, L. & Khosla, C. Chemistry and Biology of Gluten Proteins. *Immunology, Endocrine*
- 695 & *Metabolic Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-*
- 696 *Immunology, Endocrine and Metabolic Agents)* **7**, 187-193 (2007).
- 697 4. Shan, L. et al. Structural basis for gluten intolerance in celiac sprue. *Science* **297**, 2275-
- 698 2279 (2002).
- 699 5. Heyman, M., Abed, J., Lebreton, C. & Cerf-Bensussan, N. Intestinal permeability in coeliac
- 700 disease: insight into mechanisms and relevance to pathogenesis. *Gut* **61**, 1355-1364
- 701 (2012).
- 702 6. Green, P. H. & Cellier, C. Celiac disease. *N. Engl. J. Med.* **357**, 1731-1743 (2007).
- 703 7. Leffler, D. A., Green, P. H. & Fasano, A. Extraintestinal manifestations of coeliac disease.
- 704 *Nat. Rev. Gastroenterol. Hepato./* **12**, 561-571 (2015).
- 705 8. Plugis, N. M. & Khosla, C. Therapeutic approaches for celiac disease. *Best. Pract. Res.*
- 706 *Clin. Gastroenterol.* **29**, 503-521 (2015).
- 707 9. Molberg, O. et al. Gliadin specific, HLA DQ2-restricted T cells are commonly found in
- 708 small intestinal biopsies from coeliac disease patients, but not from controls. *Scand. J.*
- 709 *Immunol* **46**, 103-109 (1997).
- 710 10. Sjöström, H. et al. Identification of a gliadin T-cell epitope in coeliac disease: general
- 711 importance of gliadin deamidation for intestinal T-cell recognition. *Scand. J. Immunol.* **48**,
- 712 111-115 (1998).
- 713 11. van de Wal, Y. et al. Small intestinal T cells of celiac disease patients recognize a natural
- 714 pepsin fragment of gliadin. *Proc. Natl. Acad. Sci USA* **95**, 10050-10054 (1998).
- 715 12. Arentz-Hansen, H. et al. The intestinal T cell response to alpha-gliadin in adult celiac
- 716 disease is focused on a single deamidated glutamine targeted by tissue transglutaminase.
- 717 *J. Exp. Med.* **191**, 603-612 (2000).
- 718 13. Iversen, R. et al. Efficient T cell-B cell collaboration guides autoantibody epitope bias and
- 719 onset of celiac disease. *Proc. Natl. Acad. Sci. USA* **116**, 15134-15139 (2019).
- 720 14. Høydahl, L. S. et al. Plasma cells are the most abundant gluten peptide MHC-expressing
- 721 cells in inflamed intestinal tissues from patients with celiac disease. *Gastroenterology* **156**,
- 722 1428-1439.e10 (2019).
- 723 15. de Ritis, G. et al. In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides
- 724 in celiac disease. *Gastroenterology* **94**, 41-49 (1988).
- 725 16. Shidrawi, R. G. et al. In vitro toxicity of gluten peptides in coeliac disease assessed by
- 726 organ culture. *Scand J Gastroenterol* **30**, 758-763 (1995).
- 727 17. Maiuri, L. et al. Association between innate response to gliadin and activation of
- 728 pathogenic T cells in coeliac disease. *The Lancet* **362**, 30-37 (2003).
- 729 18. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling
- 730 pathway converts CTL into lymphokine-activated killer cells in celiac disease. *Immunity* **21**,
- 731 357-366 (2004).
- 732 19. Hüe, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac
- 733 disease. *Immunity* **21**, 367-377 (2004).
- 734 20. Nanayakkara, M. et al. P31-43, an undigested gliadin peptide, mimics and enhances the
- 735 innate immune response to viruses and interferes with endocytic trafficking: a role in celiac
- 736 disease. *Sci. Rep.* **8**, 10821 (2018).
- 737

- 738 21. Gómez Castro, M. F. et al. p31-43 Gliadin peptide forms oligomers and induces NLRP3
739 inflammasome/caspase 1- dependent mucosal damage in small intestine. *Front Immunol.*
740 **10**, 31 (2019).
- 741 22. Qiao, S.-W. et al. Refining the rules of gliadin T cell epitope binding to the disease-
742 associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine
743 Deamidation. *J. Immunol.* **175**, 254-261 (2005).
- 744 23. Qiao, S. W., Sollid, L. M. & Blumberg, R. S. Antigen presentation in celiac disease. *Curr.*
745 *Opin. Immunol.* **21**, 111-117 (2009).
- 746 24. Dahal-Koirala, S. et al. Discriminative T-cell receptor recognition of highly homologous
747 HLA-DQ2-bound gluten epitopes. *J. Biol. Chem.* **294**, 941-952 (2019).
- 748 25. Reichelt, W. H., Ek, J., Stensrud, M. & Reichelt, K. L. Peptide excretion in celiac disease.
749 *J. Pediatr. Gastroenterol. Nutr.* **26**, 305-309 (1998).
- 750 26. Soler, M., Estevez, M. C., Moreno, M. L., Cebolla, A. & Lechuga, L. M. Label-free SPR
751 detection of gluten peptides in urine for non-invasive celiac disease follow-up. *Biosens.*
752 *Bioelectron.* **79**, 158-164 (2016).
- 753 27. Moreno, M. L. et al. Detection of gluten immunogenic peptides in the urine of patients with
754 coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal
755 healing. *Gut* **66**, 250-257 (2017).
- 756 28. Costa, A. F. et al. Gluten immunogenic peptide excretion detects dietary transgressions in
757 treated celiac disease patients. *World J. Gastroenterol.* **25**, 1409-1420 (2019).
- 758 29. Ruiz-Carnicer, Á. et al. Negative predictive value of the repeated absence of gluten
759 immunogenic peptides in the urine of treated celiac patients in predicting mucosal healing:
760 new proposals for follow-up in celiac disease. *Am. J. Clin. Nutr.* **112**, 1240-1251 (2020).
- 761 30. Diaz-Amigo, C. & Popping, B. Accuracy of ELISA detection methods for gluten and
762 reference materials: a realistic assessment. *J. Agric. Food. Chem.* **61**, 5681-5688 (2013).
- 763 31. Ráki, M. et al. Similar responses of intestinal T cells from untreated children and adults
764 with celiac disease to deamidated gluten epitopes. *Gastroenterology* **153**, 787-798.e4
765 (2017).
- 766 32. Sigdel, T. K. et al. Optimization for peptide sample preparation for urine peptidomics. *Clin.*
767 *Proteomics* **11**, 7 (2014).
- 768 33. Smith, C. R. et al. Deciphering the peptidome of urine from ovarian cancer patients and
769 healthy controls. *Clin. Proteomics* **11**, 23 (2014).
- 770 34. Osman, A. A. et al. A monoclonal antibody that recognizes a potential coeliac-toxic
771 repetitive pentapeptide epitope in gliadins. *Eur J Gastroenterol Hepatol* **13**, 1189-1193
772 (2001).
- 773 35. Morón, B. et al. Toward the assessment of food toxicity for celiac patients: characterization
774 of monoclonal antibodies to a main immunogenic gluten peptide. *PLoS One* **3**, e2294
775 (2008).
- 776 36. Sollid, L. M. et al. Update 2020: nomenclature and listing of celiac disease-relevant gluten
777 epitopes recognized by CD4⁺ T cells. *Immunogenetics* **72**, 85-88 (2020).
- 778 37. Shan, L. et al. Identification and analysis of multivalent proteolytically resistant peptides
779 from gluten: implications for celiac sprue. *J. Proteome Res.* **4**, 1732-1741 (2005).
- 780 38. Gazme, B., Boachie, R. T., Tsopmo, A. & Udenigwe, C. C. Occurrence, properties and
781 biological significance of pyroglutamyl peptides derived from different food sources. *Food*
782 *Sci. Hum. Wellness* **8**, 268-274 (2019).
- 783 39. Sato, K. et al. Occurrence of indigestible pyroglutamyl peptides in an enzymatic
784 hydrolysate of wheat gluten prepared on an industrial scale. *J. Agric. Food Chem.* **46**,
785 3403-3405 (1998).
- 786 40. Van Coillie, E. et al. Functional comparison of two human monocyte chemotactic protein-2
787 isoforms, role of the amino-terminal pyroglutamic acid and processing by CD26/dipeptidyl
788 peptidase IV. *Biochemistry* **37**, 12672-12680 (1998).

- 789 41. Biesiekierski, J. R. What is gluten? *J Gastroenterol. Hepatol.* **32**, 78-81 (2017).
- 790 42. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and
791 function. *Nature* **537**, 347-355 (2016).
- 792 43. Di Meo, A. et al. An integrated proteomic and peptidomic assessment of the normal
793 human urinome. *Clin. Chem. Lab. Med.* **55**, 237-247 (2017).
- 794 44. Van, J. A. D. et al. Peptidomic analysis of urine from youths with early type 1 diabetes
795 reveals novel bioactivity of uromodulin peptides in vitro. *Mol. Cell. Proteomics* **19**, 501-517
796 (2020).
- 797 45. Arrieta, M. C., Bistritz, L. & Meddings, J. B. Alterations in intestinal permeability. *Gut* **55**,
798 1512-1520 (2006).
- 799 46. Kumar, S. et al. Abnormal small intestinal permeability in patients with idiopathic
800 malabsorption in tropics (tropical sprue) does not change even after successful treatment.
801 *Dig. Dis. Sci.* **56**, 161-169 (2011).
- 802 47. Lerner, A. & Matthias, T. Changes in intestinal tight junction permeability associated with
803 industrial food additives explain the rising incidence of autoimmune disease. *Autoimmun. Rev.* **14**, 479-489 (2015).
- 804 48. Lerner, A. & Matthias, T. Processed food additive microbial transglutaminase and its
805 cross-linked gliadin complexes are potential public health concerns in celiac disease. *Int. J. Mol. Sci.* **21**, (2020).
- 806 49. Silvester, J. A. et al. Most patients with celiac disease on gluten-free diets consume
807 measurable amounts of gluten. *Gastroenterology* **158**, 1497-1499.e1 (2020).
- 808 50. Rubio-Tapia, A. et al. Mucosal recovery and mortality in adults with celiac disease after
809 treatment with a gluten-free diet. *Am. J. Gastroenterol.* **105**, 1412-1420 (2010).
- 810 51. Abadie, V. & Jabri, B. IL-15: a central regulator of celiac disease immunopathology.
811 *Immunological Rev.* **260**, 221-234 (2014).
- 812 52. Abadie, V. et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease.
813 *Nature* **578**, 600-604 (2020).
- 814 53. Walther, B. et al. GutSelf: Interindividual Variability in the Processing of Dietary
815 Compounds by the Human Gastrointestinal Tract. *Mol. Nutr. Food Res.* **63**, e1900677
816 (2019).
- 817 54. Parzanese, I. et al. Celiac disease: from pathophysiology to treatment. *World J.
818 Gastrointest. Pathophysiol.* **8**, 27-38 (2017).
- 819 55. Vitorino, R. Digging deep into peptidomics applied to body fluids. *Proteomics* **18**, 1700401
820 (2018).
- 821 56. Rubio-Tapia, A. et al. ACG clinical guidelines: diagnosis and management of celiac
822 disease. *Am. J. Gastroenterol.* **108**, 656-76 (2013).
- 823 57. Zhang, J. et al. PEAKS DB: de novo sequencing assisted database search for sensitive
824 and accurate peptide identification. *Mol. Cell. Proteomics* **11**, M111.010587 (2012).
- 825 58. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: Visualization of
826 intersecting sets. *IEEE Trans. Vis. Comput. Graph* **20**, 1983-1992 (2014).
- 827
- 828
- 829