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Abstract

Background: Molecular characterization of primary urothelial carcinoma (UC) revealed molecular subtypes
with different genomic, transcriptomic, and clinicopathological characteristics, which might guide therapeutic
decision making. A comprehensive molecular characterization of metastatic UC (mUC), however, is currently
lacking in the literature. Because of the lethality of mUC, with few therapeutic options available for patients, a

multi-omics characterization of mUC could aid to improve patient selection for new and existing therapies.

Methods: To define the molecular landscape of mUC and to identify potential targets for therapy, we
performed whole genome DNA sequencing on fresh-frozen metastatic tumor biopsies of 116 mUC patients,

and mRNA sequencing on 90 matched biopsies.

Results: Hierarchical clustering based on mutational signatures revealed two major genomic subtypes. The
most prevalent subtype (67%) consisted almost exclusively of tumors with high APOBEC mutagenesis. APOBEC
mutagenesis was detected in 91% of the samples, and appeared to be an ongoing process in mUC based on
analysis of eight patients from whom serial biopsies were obtained during treatment. Contrary to the overall
distribution of mutations, APOBEC associated mutations occurred throughout the genome, and independently
of predicted accessible or transcribed genomic regions, suggesting that these mutations were generated
during replication. Transcriptomic analysis revealed five mRNA-based subtypes: two luminal subtypes (40%), a
stroma-rich (24%), basal/squamous (23%), and non-specified subtype (12%). The transcriptomic subtypes were
different regarding driver gene alterations (e.g. ELF3 and TSC1), gene amplifications (NECTIN4 and PPARG),
pathway activity, and immune cell infiltration. By integrating the genomic and transcriptomic data, potential

therapeutic options per transcriptomic subtype and individual patient were proposed.

Conclusions: This study expands our knowledge on the molecular landscape of mUC, and serves as a reference

for subtype-oriented and patient-specific research on the etiology of mUC, and for novel drug development.

Trial registration: The mUC cohort studied here is part of the Netherlands nationwide study of the center for
personalized cancer treatment consortium (CPCT-02 Biopsy Protocol, NCT01855477), and the Drug

Rediscovery Protocol (DRUP Trial, NCT02925234).
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Background

Urothelial cancer (UC) is a molecularly and clinically heterogeneous disease. Non-muscle invasive bladder
cancer (NMIBC) is characterized by excellent survival but high recurrence rates, whereas muscle-invasive
bladder cancer (MIBC) has high metastatic potential and poor patient outcome despite aggressive local and
systemic treatment [1]. Comprehensive molecular profiling of UC has been restricted to NMIBC [2] and
localized MIBC [3]. At the genomic level, NMIBC is characterized by frequent FGFR3 and PIK3CA mutations,
whereas TP53 mutations are uncommon [1]. In MIBC, TP53 is the most commonly mutated gene [4]. The
Cancer Genome Atlas (TCGA) initiative molecularly characterized 412 chemotherapy-naive primary MIBC
patients and found that a subgroup of patients had high Apolipoprotein B mRNA Editing Catalytic Polypeptide-
like (APOBEC) signature mutagenesis and high mutational burden. The patients in this subgroup had an
excellent 5-year overall survival rate of 75% [3]. At the transcriptomic level, MIBC can be stratified into basal
and luminal subtypes. A recent study proposed a consensus molecular classification of MIBC, consisting of six
subtypes: basal/squamous, luminal non-specified, luminal papillary, luminal unstable, neuroendocrine-like
(NE-like), and stroma-rich [5]. These subtypes included distinct genomic alterations and clinical and

pathological characteristics, which might guide therapeutic decision making.

A comprehensive multi-omics characterization of mUC has not yet been performed. A previous study reported
the clonal evolution of mUC by whole-exome sequencing (WES) in a cohort of 32 chemotherapy-treated
patients, and showed that APOBEC mutagenesis was clonally enriched in chemotherapy-treated mUC [6].
Expanding the knowledge on the molecular characteristics of mUC is crucial for more robust and accurate
patient stratification and for rational drug development paths that will eventually improve the outcome of this
lethal cancer. In the present study, we conducted a comprehensive genomic and transcriptomic analysis of
freshly obtained metastatic biopsies of 116 mUC patients, with the aim of identifying key molecular insights

into tumorigenesis and defining molecular subtypes of mUC.
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82 Methods

83 Patient cohort and study procedures

84 Between 07 June 2012 up to and including 28 February 2019, patients with advanced or mUC (n = 210) from 23
85 Dutch hospitals (Fig. 1a, Fig. S1) who were scheduled for 15t or 2™ line palliative systemic treatment were

86 included in the Netherlands nationwide study of the Center for Personalized Cancer Treatment (CPCT)

87 consortium (CPCT-02 Biopsy Protocol, NCT01855477 [7]) and the Drug Rediscovery Protocol (DRUP Trial,

88 NCT02925234), which aimed to analyze the cancer genome and transcriptome of patients with advanced

89 cancer. The CPCT-02 and DRUP study protocols were approved by the medical ethics review board of the

90 University Medical Center Utrecht and the Netherlands Cancer Institute, respectively. Patients eligible for

91 inclusion were those aged > 18 years old, with locally advanced or mUC, from whom a histological tumor

92 biopsy could be safely obtained, and whom had an indication for initiation of a new line of systemic treatment
93 with anti-cancer agents. Written informed consent was obtained from all participants prior to inclusion in the
94 trial; the studies comply with all relevant ethical regulations. Tumor biopsies and matched normal blood

95 samples were collected following a standardized procedure described by the Hartwig Medical Foundation

96 (HMF; https://www.hartwigmedicalfoundation.nl; [7]). Whole genome sequencing (WGS) was successfully

97 performed on DNA from freshly obtained biopsies from metastatic sites in 116 mUC patients (124 samples),

98 and matched RNA-sequencing (RNA-seq) data was available for 90 patients (97 samples; Fig. 1a). Patient

99 characteristics are described in Table S1.1. Biopsies were obtained from a safely accessible site, including
100 lymph nodes, liver, bone and other organs (Fig. 1b). In five patients, a tumor biopsy was obtained from the
101 primary bladder or upper urinary tract tumor as no safely accessible metastatic lesion was present. In two
102 patients, a biopsy was obtained from a local recurrence after cystectomy and nephrectomy, respectively (Table
103 $1.2). Sequential biopsies of a metastatic lesion taken at the time of clinical or radiological disease progression
104 from eight patients were additionally sequenced. This study extends the pan-cancer analysis of Priestley et al.,
105 2019, in which WGS (but not RNA-seq) data of 72 mUC patients included in the current cohort were initially

106 analyzed (Table S1.2).

107

108
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110 Figure 1 — Overview of the study design and biopsy sites of 116 patients with metastatic urothelial cancer

111 a) Flowchart of patient inclusion. Patients with advanced or metastatic urothelial cancer who were

112 scheduled for systemic palliative treatment were selected from the prospective Center for

113 Personalized Cancer Treatment (CPCT-02) patient cohort and the Drug Rediscovery Protocol (DRUP
114 Trial (n = 210). Patients were excluded if the tumor cell percentage in the biopsy was <20%, resulting
115 in WGS data and RNA-seq for 116 and 90 patients, respectively. Tissue slides of 79 patients were

116 available for central pathology review (primary tumor and/or metastatic biopsy). DNA +8 and RNA +7
117 indicate the numbers of patients from whom a second biopsy was obtained at disease progression.
118 b) Overview of the number of biopsies per site analyzed by WGS. * Other biopsy sites included

119 abdominal or pelvic masses (n = 3), adrenal gland (n = 1), and brain (n = 1), or unspecified biopsy site
120 (n=1).

121
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122 Central pathology review

123 Tumor tissue slides for central pathological revision of the diagnosis of UC was available for 79/116 patients.
124 Hematoxylin and eosin (H&E) stained slides from primary tumor tissues (cystectomy and transurethral

125 resection specimens of the bladder, n = 23 patients), metastatic tumor biopsies (n = 15 patients), or both (n =
126 41 patients) were requested from the Nationwide Network and Registry of Histo- and Cytopathology in the
127 Netherlands (PALGA) [8]. Tissue slides and corresponding pathological reports were provided anonymously. All
128 patient materials used for central pathology review were obtained within the CPCT-02 biopsy protocol, the
129 DRUP trial, or during routine patient care, and the use of these materials for research purposes was approved
130 by the medical ethics review board of the Erasmus University Medical Center, Rotterdam, the Netherlands

131 (MEC-2019-0188). H&E slides were reviewed by an expert genitourinary pathologist (LLB), and used for re-

132 evaluation of the diagnosis and description of aberrant histology (Tables S1.3 and S1.4). Tumors were classified
133 as pure UC (n = 66), or predominant UC with variant histology (n = 9 squamous, n = 3 neuro-endocrine, n =1
134 micropapillary UC), and pure squamous cell bladder carcinomas (n = 3). In patients for whom both the primary
135 and the metastatic tumor biopsy was available for review, the highest grade (WHO 1973 classification) was

136 assigned, and presence of aberrant histology in one of the tissue samples was considered as positive.

137

138 Whole-genome sequencing and analysis

139 Whole-genome DNA sequencing, alignment and data processing

140 Sufficient amount of DNA (50-200 ng) was extracted from fresh-frozen tumor tissue and blood samples

141 following standard protocols from Qiagen. DNA was fragmented by sonication for NGS Truseq library

142 preparation and sequenced paired-end reads of 2x150 bases with the lllumina HiSegX platform. Alignment,
143 somatic alterations, ploidy, sample purity and copy numbers estimations were performed as previously

144 described [7]. WGS was aligned to the human reference genome GRCH37 with BWA-mem v.0.7.5a [9], and
145 duplicate reads were marked for filtering. Indels were realigned using GATK IndelRealigner v3.4.46 [10].

146 Recalibration of base qualities for single nucleotide variants (SNVs) and small insertions and deletions (Indels)
147 was performed with GATK BQSR [11], and SNV and Indel variants were evaluated with Strelka v.1.0.14 [12]

148 using matched blood WGS as normal reference (Table S1.5). Somatic mutations were further annotated with
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149 Ensembl Variant Effect Predictor (VEP, v99, cache 99_GRCh37) [13] using GENCODE v33 in combinations with
150 the dbNSFP plugin v3.5 hg19 [14] for gnomAD [15] population frequencies. SNVs, Indels and multiple

151 nucleotide variants (MNVs) variants were removed if the following filters were not passed: default Strelka

152 filters (PASS-only), gnomAD exome (ALL) allele frequency < 0.001, gnomAD genome (ALL) < 0.005 and number
153 of reads < 3. In addition, structural variants (SVs) and copy number changes were estimated using GRIDSS,

154 PURPLE and LINX suit v2.25 [16]. SVs that passed the default QC filters (PASS-only) and Tumor Allele Frequency

155 (TAF) > 0.1 were annotated as “somatic SVs” if there was overlap with coding region. Mean read coverages of

156 tumor and reference samples were estimated using Picard Tools v1.141 (CollectWgsMetrics) based on GRCh37

157 (https://broadinstitute.github.io/picard/). Genomic and coding tumor mutational burden (TMB; mutations per

158 megabase pair (Mbp)) were calculated considering SNVs, Indels and MNVs (Table S1.5). The total number of
159 somatic mutations in coding region was divided by 28.71 Mbp (protein-coding region size) and in the whole

160 genome by 2,858.67 Mbp (genomic alignment size).

161

162 Detection of driver genes using dN/dS ratios

163 Cancer driver genes under strong positive selection were detected with dNdScv v0.0.0.9 [17]. This method
164 uses 192 mutation rates representing all combinations in trinucleotide context. Mutation rates of each gene
165 were corrected by the global mutation rate. The ratio of non-synonymous over synonymous mutations was

166 calculated with maximum-likelihood methods, and statistical significance was estimated. Genes with either

167 gglobal_cv £ 0.05 or qallsubs_cv < 0.05 were considered drivers of mUC (Table S1.6 and 1.7).

168

169 Detection and characterization of recurrent copy number alterations

170 Ploidy and copy number alterations (CNAs) were estimated as described by Priestley et al. 2019; and following
171 the pipeline described by van Dessel et al., 2019. Recurrent focal and broad CNAs were estimated with

172 GISTIC2.0 v2.0.23 [19]. CNAs were classified as shallow or deep according to the threshold in GISTIC2 calls.
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173 Significant recurrent focal CNAs were identified when g < 0.05 and annotated with genes overlapping these
174 regions, which were considered drivers (Table S1.7 and 1.8).
175

176 APOBEC enrichment and mutagenesis

177 For each sample, the total number of C>T or C>G (G>A or G>C) mutations was calculated (C™“t(©"¢¢)), From
178 these mutations, the total number of APOBEC mutations was estimated by counting all mutations in TCW

179 (WGA) context (TCW™t), where W = A or T. The total number of TCW (WGA) motifs and total C (G)

180 nucleotides in the hg19 reference genome were also estimated (TCW®"ext gnd Cext, respectively). Using this
181 information and following Roberts et al., 2013, a contingency table was constructed; one-sided Fisher’s exact
182 test was applied to calculate the overrepresentation of APOBEC mutations. P-values were Benjamini-Hochberg

183 corrected. Tumors with adjusted p-values lower than 0.01 were considered APOBEC enriched.
184 The magnitude of APOBEC enrichment E was estimated as [20]

TCWCmut . Ccontext

185 = : €Y)
TCWecontext . Cmut(C>T,C>G)

186 APOBEC enriched tumors (always E > 1) were classified as high APOBEC mutagenesis when E > 2, and as low
187 APOBEC mutagenesis when E < 2. Tumors without APOBEC enrichment were considered tumors with no

188 APOBEC mutagenesis (Table $1.9).

189 It has been shown that mutations caused by APOBEC3A and APOBEC3B are distinguishable at the tetra-

190 nucleotide context [21]. Mutations in the YTCA (Y =T or C) context have been related to APOBEC3A, while

191 mutations in the RTCA (R = G or A) context are attributed to APOBEC3B. Fold enrichment of C>T and C>G

192 mutations in the tetra YTCA and RTCA context was calculated with equation (1), using the corresponding tetra-

193 nucleotide context (Table S1.9).

194
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195 Clonality fraction estimation

196 Mutations start as a single copy in the DNA, and multiple copies of the mutated nucleotide may appear if
197 affected by CNAs events. Correcting for tumor purity and CNA, the number of copies nsyv of each SNV was

198 calculated as follows [22]

199 Nsny = f?m[pct + (1 —p)Cyl, (2)

200 where fm is the relative frequency of the mutant variant reads, p is the tumor purity, C: is the local copy
201 number affecting a particular SNV, and Cx is the healthy copy number (two for autosomes and one for

202 allosomes).

203 Equation (2) is equivalent to the cancer cell fraction (CCF) with nsyvv = 1 in haploid and heterozygous-diploid
204 regions; i.e., the fraction of tumor cells carrying a particular mutation. For regions with CNAs, nsnv> 1, we must
205 estimate the fraction of cancer cells carrying a particular SNV. As described previously [23], we assume that all
206 SNVs are present in the major copy number Cv; hence nsvv< Cv will include mutations that were acquired

207 after copy number change events or present only in the minor copy number. Given the number of reference
208 and mutant reads, and assuming binomial distribution, we estimated the expected number of allelic copies
209 (nckr) carrying the observed SNV resulting from fn values when the mutation is presentin 1, 2, 3,..., Nenr allelic
210 copies. In some cases (sequencing noise) nswv> Cuv, which was corrected with Ncar = max(Cu, nswv). We also

211 corrected each fm value with normal cell contamination — multiplying it by p. The resulting estimated ncnr with

212 the maximum likelihood serves to calculate the CCF as nswv/nchr.

213 Dirichlet process from DPClust v2.2.8 (https://github.com/Wedge-lab/dpclust) with 250 iterations and 125
214 burn in iterations was applied to the CCF distribution to estimate the fraction of clonal and subclonal SNVs per
215 tumor. Multiple distributions (clusters) were obtained, representing different cancer cell populations. The
216 mean of the distributions was used to classify clusters of SNVs as clonal or subclonal. Clusters of SNVs with

217 mean distribution > 0.8 were considered clonal (Table S1.5).

218
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219 Mutational signatures and genomic subtypes

220 The mutational pattern of each sample was established by categorizing SNVs according to their 96-

221 trinucleotide context. The contribution of each of the 67 mutational signatures from COSMIC v3 (as deposited
222 on May 2019) [24] was subsequently estimated with MutationalPatterns v1.4.2 (Table $1.10) [25]. To reduce
223 the noise attributed to mutational signatures with very low contribution, mutational signatures were grouped
224 into 26 proposed etiology categories (Table S1.11) derived from Alexandrov et al., 2020, Petljak et al., 2019,
225 Angus et al., 2019 and Christensen et al., 2019. All 26 proposed etiology contributions were used, and

226 hierarchical clustering was applied on 1-Pearson’s correlation coefficient, 80% resampling and 1,000 iterations
227 using ConsensusClusterPlus v1.48.0 [30]. Considering average stability of each cluster and the cluster size

228 (favoring large clusters) after each partition, samples were grouped into five distinct clusters.

229 Independently, mutational patterns were deconvoluted to estimate de novo mutational signatures. Non-

230 negative Matrix Factorization from the NMF R package v0.21.0 was used with 1000 iterations [31]. Evaluating
231 different metrics provided by the NMF R package (high cophenetic correlation coefficient, high dispersion

232 coefficient, high silhouette consensus, high sparseness basis and low sparseness coefficients), seven de novo
233 signatures were recovered from the mutational patterns. Cosine similarity was applied to compare the de novo

234 signatures with mutational signatures from COSMIC v3.

235

236 Detection of chromothripsis

237 Genomic catastrophic-like events, such as chromothripsis, were detected with Shatterseek v0.4 [32] using

238 default parameters. Absolute copy numbers (as derived by PURPLE) were rounded to the nearest integer; only

239 structural variants with TAF > 0.1 at either end of the breakpoint were considered, and chrY was excluded.

240 Applying the filters suggested by Cortés-Ciriano, et al. [32], we identified 220 chromothripsis events suggesting

241 an enrichment in mUC compared to primary UC from the PCAWG dataset [31] (76% vs 48%, p = 0.011).

242 Inspecting manually these events, we concluded that a more stringent filter should be used to reduce the rate

243 of false positive events. The following filters were applied and chromothripsis was considered when: a) the

244 number of intra-chromosomal structural variants > 25; b) the maximum number of oscillating CN segments
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245 with two states > 7 or with three states > 14; c) the size of the chromothripsis event > 20 Mbp; d) random

246 distribution of breakpoints p < 0.05; and e) chromosomal breakpoint enrichment p < 0.05. All 220

247 chromothripsis events are summarized in Table $1.12, indicating those detected by the stringent filtering,

248 which we refer to as chromothripsis throughout the text.

249

250 MicroSatellite Instabilty (MSI) status

251 As previously described [7], MSI status was determined by estimating the MSI score as the number of indels
252 (length < 50 bp) per Mbp occurring in homopolymers of five or more bases, dinucleotide, trinucleotide and
253 tetranucleotide sequences of repeat count above five. Tumors with MSI score > 4 were considered MSI

254 positive (Table $1.13).

255

256 Detection of homologous recombination (HR) deficiency

257 The Classifier for Homologues Recombination Deficiency (CHORD; v2.0) with default parameters was used to
258 identify tumors with HR proficiency and deficiency [33]. Four samples had very high number of indels

259 corresponding with MSI samples and were discarded for the HR deficiency analysis (Table S1.14).

260

261 Detection of kataegis

262 Following the method described by van Dessel et al. 2019, kataegis events were estimated using all SNVs. Each
263 chromosome was divided into segments (maximum 5000 segments) of five or more consecutive SNVs.

264 Segments were considered a kataegis event when the mean intermutational distance was < 2000 bp (Table
265 $1.15). Events were considered APOBEC-driven when >60% of mutations were C>T or C>G mutations in TCW

266 context.

267
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268 Mutational load across genomic regions

269 The genome was divided in regions (bins) of one Mbp size. The number of SNVs was counted in each bin, and
270 the mean number of SNVs was estimated from the entire cohort. These values represented the average

271 SNVs/Mbp reflecting the mutational load in each genomic region. The average SNVs/Mbp was smoothed by
272 applying a moving average with k = 9 bins. This approach was used per sample and for mean values from the

273 entire cohort.

274

275 Genomic alteration of oncogenic pathways

276 Eleven oncogenic pathways were analyzed for somatic alterations. The list of genes was modified from
277 Sanchez-Vega et al., 2018 and Leonard, 2001 (Table S1.16). Altered pathways were defined when at least one
278 of the pathway-genes was affected by any somatic mutation (SNV, Indel, MNV, SV or deep CNA; excluding

279 synonymous mutations).

280

281 Inventory of clinically-actionable somatic alterations and putative therapeutic targets

282 Current clinical relevance of somatic alterations in relation to putative treatment options or resistance

283 mechanisms and trial eligibility was determined based upon the following databases: CiViC [36] (Nov. 2018),
284 OncoKB [37] (Nov. 2018), CGI [38] (Nov. 2018) and the iClusion (Dutch) clinical trial database (Sept. 2019,

285 Rotterdam, the Netherlands). The databases were aggregated and harmonized using the HMF knowledgebase-

286 importer (v1.7; https://github.com/hartwigmedical/hmftools/tree/master/knowledgebase-importer).

287 Subsequently, we curated the linked putative treatments and selected treatments for which level A (biomarker
288 for approved therapy or in guidelines) or level B (biomarker on strong biological evidence or used in clinical
289 trials) evidence was available. Genomic alterations that confer resistance to certain therapies were excluded
290 from the analysis. Treatment strategies including anti-hormonal therapy (as used for breast and prostate

291 cancer), surgical resection, or radioiodine uptake therapy were excluded. Furthermore, closed trials (according

292 to www.clinicaltrials.gov), and trials with only pediatric patients or patients with hematological malignancies

293 were excluded (Table S1.17). The data base was complemented with FGFR3 and NTRK2 gene fusions (at RNA
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294 level) and patients with MSI high and HR deficient tumors. On-label treatments included chemotherapy
295 (cisplatin, gemcitabine, doxorubicin, mitomycin, and valrubicin) and the FGFR3 inhibitor erdafitinib. Off-label
296 treatments included treatments that are on-label for other tumor types (FDA approved drugs according to the

297 US national cancer institute; https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type), and

298 treatments available in clinical trials or basket trials. When patients had more than one possible treatment, on-

299 label treatment was the preferred treatment, followed by on-label treatments for other tumor types.

300

301 DNA accessibility estimation (ChiPseq)

302 All available ChlPseq data for healthy urinary bladder (H3K4mel, H3K4me3, H3K36me3 and H3K27ac) were

303 downloaded from the ENCODE portal (https://www.encodeproject.org) to our local server. The bed.gz files

304 were imported with narrowPeak format for analysis. The signal of each experiment was divided in regions of
305 one Mbp, and a moving average with k = 9 bins was applied. The scale of the signal was normalized; hence the
306 sum of all regions in a chromosome is one. This step was taken to compensate for the bias observed in peak
307 intensity signals across different chromosomes, possible due to technical issues in the ChlPseq technology, e.g.

308 hyper-ChlPable regions or mappability [39].

309 High DNA accessible regions (open chromatin) were determined as such if the ChIPseq signal value of the
310 region was above the median. Otherwise, the region was considered as low DNA accessible (condensed

311 chromatin). This procedure was applied on each chromosome.

312

313 Whole-transcriptome sequencing and analysis

314 RNA-sequencing, alignment and data pre-processing

315 Total RNA was extracted using the QIAGEN QlAsymphony kit (Qiagen, FRITSCH GmbH, Idar-Oberstein,
316 Germany). Samples with a minimum of 100 ng total RNA were sequenced according to the manufacturer’s
317 protocols. Paired-end sequencing of RNA was performed on the lllumina NextSeq 550 platform (2x75bp) and

318 Illumina NovaSeq 6000 platform (2x150bp).
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319 Prior to alignment, samples were visually inspected with FastQC v0.11.5. Sequence adapters (lllumina TruSeq)
320 were trimmed using Trimmomatic v0.39 [40] at the following settings:

321 ILLUMINACLIP:adapters.fa:2:30:10:2:keepBothReads MINLEN:36. The trimmed paired-end reads were aligned
322 to the human reference (GRCh37) using STAR v2.7.1a [41] with genomic annotations from GENCODE hg19
323 release 30 [42]. Multiple lanes and runs per sample were aligned simultaneously and given respective read-
324 group identifiers for use in downstream analysis to produce two BAM files per sample, consisting of genome-

325 and transcriptome-aligned reads respectively.

326 STAR was performed using the following command:

327 STAR --genomeDir <genome> --readFilesin <R1> <R2> --readFilesCommand zcat --outFileNamePrefix

328 <outPrefix> --outSAMtype BAM SortedByCoordinate --outSAMunmapped Within --chimSegmentMin 12 --
329 chimJunctionOverhangMin 12 --chimOutType WithinBAM --twopassMode Basic --twopasslreadsN -1 --

330 runThreadN 10 --limitBAMsortRAM 10000000000 --quantMode TranscriptomeSAM --outSAMattrRGline <RG>

331 After alignment, duplicate reads were marked and alignment quality metrics (flagstat) were generated using
332 Sambamba v0.7.1 [43]. For each genome-aligned sample, the uniformity of read distributions across transcript
333 lengths was assessed using tin.py v2.6.6 [44] from the RseQC library v3.0.0 [45].

334 FeatureCounts v1.6.3 [46] was applied to count the number of overlapping reads per gene using genomic

335 annotations from GENCODE (hg19) release 30 [42]; only primary (uniquely mapped) reads were counted per

336 exon and summarized per gene:

337 featureCounts -T 50 -t exon -g gene_id --primary -p -s 2 -a <gencode> -0 <output> <genomic BAMs>

338 RSEM v1.3.1 [47] was applied to quantify RNA expression into transcripts per million (TPM) values using

339 transcript annotations from GENCODE (hg19) release 30 [42]:

340 rsem-calculate-expression --bam --paired-end --strand-specific --alignments -p 8 <transcriptome BAM> <RSEM

341 Index> <output>

342
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343 Transcriptome expression data mapped to genomic regions

344 MultiBamSummary from deepTools v1.30.0 [48] was used to read BAM files and estimate number of reads in
345 genomic regions with a size of one Mbp. The average raw read count per Mbp was calculated, and a moving
346 average with k = 9 bins was applied. The scale of the read counts was normalized following the method for
347 DNA accessibility regions, and high transcriptional regions were defined as such when the expression value of

348 one region was above the median. This procedure was applied on each chromosome.

349

350 Transcriptomic subtypes: clustering samples by RNA-seq data

351 Several methods have been proposed to classify bladder cancer into transcriptomic subtypes. In an attempt to
352 standardize the molecular profiling of bladder cancer, a consensus molecular classification was proposed for
353 MIBC based on RNA-seq data from 1750 patients [5]. This classifier was developed strictly for MIBC and is not
354 directly applicable to mUC [49]. Furthermore, this classifier was developed for samples derived from the same
355 organ carrying transcriptomic contamination of normal urothelial cells. In this study, biopsies were obtained
356 from metastatic sites leading to contamination with normal cells from multiple different organs for which no
357 correction was applied in the consensus classifier. Therefore, it was mandatory to perform de novo subtyping

358 in this study, which is described below.

359 Multiple methods were explored to correct for the bias of biopsy site, including batch-correction with DESeq2
360 [50], and a tissue-aware correction method developed by the Genotype-Tissue Expression (GTEx) project [51].
361 In both cases, transcripts from liver tissue were very dominant and clustered together in one stable cluster.
362 The tissue-specific transcript removal method described above was successfully able to correct for organ-

363 specific transcripts, and as a result samples were clustered based on transcriptomic features rather than

364 biopsy site.

365 Transcripts were normalized using DESeq2 v1.24.0 [50] with variance stabilizing transformation. Only highly
366 expressed mRNA with base mean above 100 was kept. The top 50% most variably expressed genes (6,410
367 transcripts) were used for clustering. To reduce the ‘transcriptomic noise’ introduced by normal cells of the

368 tissue from which the biopsy was taken, these transcripts were identified and excluded. Samples were grouped
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369 according to their biopsy site: liver (n = 31), lymph node (n = 30), bone (n = 5), other (n = 23) and unknown

370 (n=1). Differential expression analysis was performed to compare tumors from a specific biopsy site (liver,

371 lymph node and bone) against all other tumors using DESeq2 with Wald test p-value estimation. Tissue-specific
372 transcripts with logz Fold Change (log2FC) > 1.0 and Benjamini-Hochberg corrected p-value < 0.05 were

373 considered differentially expressed and identified as tissue-specific (Table $S1.18). A total of 689 transcripts

374 were tissue-specific, and were removed from the data set.

375 The remaining 5,721 transcripts were grouped by hierarchical clustering with 1-Pearson’s correlation

376 coefficient, 80% resampling and 1,000 iterations using ConsensusClusterPlus v1.48.0 [30]. The mean cluster
377 consensus value was obtained as a measure of cluster stability. Increasing the number of clusters will increase
378 the stability by creating smaller clusters. Taking this into account, the criteria for selecting five clusters was
379 based on cluster stability and cluster size by not allowing clusters with <5 samples (Table S1.19). Patients with
380 primary upper tract tumors did not cluster together as was observed for biopsy sites, instead they were

381 distributed across all different transcriptomic clusters (Fig. 5), suggesting that their influence on the clustering

382 was negligible.

383 To identify transcripts that contribute most to each cluster, we followed the same strategy used to identify
384 tissue-specific transcripts. The top five transcripts with the highest log2FC and with Benjamini-Hochberg
385 adjusted p-values lower than 1x10° were identified as the most overexpressed genes per cluster. Other
386 differentially expressed genes were included for their clinical relevance (TGFB3, DDR2, PDGFRA, CD274 and
387 TGFBR1). All differentially expressed genes per cluster with adjusted p < 1x107° and logzFC > 1 are listed in

388 Table 51.20.

389 To compare our classification system developed for mUC with the consensus classifier, all samples were
390 classified into one of six molecular classes identified in MIBC. All normalized transcripts (excluding biopsy

391 specific transcripts) were used as input for the consensus classifier of primary MIBC (v1.1.0) [5].

392
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393 Phenotypic markers and signature score

394 Marker genes for basal (CD44, CDH3, KRT1, KRT14, KRT16, KRT5, KRT6A, KRT6B, KRT6C), squamous (DSCI,
395 DSC2, DSC3, DSG1, DSG2, DSG3, S100A7, S100A8), luminal (CYP2J2, ERBB2, ERBB3, FGFR3, FOXA1, GATA3,
396 GPX2, KRT18, KRT19, KRT20, KRT7, KRT8, PPARG, XBP1, UPK1A, UPK2), neuroendocrine (CHGA, CHGB, SCG2,
397 ENO2, SYP, NCAM1), cancer-stem cell (CD44, KRT5, RPSA, ALDH1A1), EMT (ZEB1, ZEB2, VIM, SNAI1, TWIST1,
398 FOXC2, CDH2) and claudin (CLDN3, CLDN7, CLDN4, CDH1, SNAI2, VIM, TWIST1, ZEB1, ZEB2) were used for
399 signature scores [3]. Stroma (FAP), interferon, and CD8+ effector T cell (IFNG, CXCL9, CD8A, GZMA, GZMB,
400 CXCL10, PRF1, TBX21) markers were also included [52]. All normalized expression values were median

401 centered, and the mean expression of each group of genes was defined as signature score.

402

403 Pathway activity score

404 Transcriptionally activated genes by the eleven canonical pathways analyzed in this study were used to

405 estimate pathway activity score. All normalized expression values were median centered, and the mean

406 expression of each group of genes was defined as activity score. Activity score was estimated for the TGFf3

407 pathway (ACTA2, ACTG2, ADAM12, ADAM19, CNN1, COL4A1, CCN2, CTPS1, RFLNB, FSTL3, HSPB1, IGFBP3,

408 PXDC1, SEMA7A, SH3PXD2A, TAGLN, TGFBI, TNS1, TPM1) [53], cell cycle pathway (MKI67, CCNE1, BUB1,

409 BUB1B, CCNB2, CDC25C, CDK2, MCM4, MCM®6, MCM2) [52], WNT pathway (EFNB3, MYC, TCF12, VEGFA) [53],
410 Notch pathway (HES1, HES5, HEY1) [54], PI3K pathway (AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1,
411 CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBX032, GADD45A, INSR, MXI1, NOS3, PCK1, POMC,

412 PPARGCI1A, PRDX3, RBL2, SOD2, TNFSF10) [55], hippo pathway (TAZ, YAP1) [56], p53 pathway (CDKN1A,

413 RRM2B, GDF15, SUSD6, BTG2, DDB2, GADD45A, PLK3, TIGAR, RPS27L, TNFRSF10B, TRIAP1, ZMAT3, BAX,

414 BLOC1S2, PGF, POLH, PPM1D, PSTPIP2, SULF2, XPC) [57], Nrf2 pathway (GCLM, NQO1, PHGDH, PSAT1, SHMT2)
415 [58], MYC pathway (TFAP4, BMP7, CCNB1, CCND2, CCNE1, CDC25A, CDK4, CDT1, E2F1, GATA4, HMGA1,

416 HSP90AA1L, JAG2, CDCA7, LDHA, MCL1, NDUFAF2, MTA1, MYCT1, NPM1, ODC1, SPP1, PIN1, PTMA, PRDX3,

417 PRMT5, DNPH1, TFRC, EMP1, PMEL, C1QBP) [59], RTK-RAS pathway (SPRY2, SPRY4, ETV4, ETV5, DUSP4,

418 DUSP6, CCND1, EPHA2, EPHA4) [60] and JAK-STAT pathway (IRGM, ISG15, GATA3, FCER2, THY1, NFIL3, ARG1,

419 RETNLB, CLEC7A, CHIA, OSM, BCL2L1, CISH, PIM1, SOCS2, GRB10) [61].
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420 Pathway enrichment analysis

421 All differentially expressed genes with Benjamini-Hochberg adjusted p < 0.05 and absolute log2FC > 1 in each
422 transcriptomic subtype were used for pathway enrichment analysis. Using reactomePA v1.34 [62], the top ten

423 (sorted by Benjamini-Hochberg adjusted p-value) up- and down-regulated pathways were selected.

424

425 Immune cell infiltration

426 To quantify immune cell fractions in each sample, we analyzed RSEM read counts of all transcripts with

427 immunedeconv v2.0.3 [63] using the quanTiseq method [64].

428

429 Detection of gene fusions
430 In-frame gene fusions were detected at DNA level by the GRIDSS, PURPLE, LINX suite v2.25 [16], and reported
431 relevant if they appear in the ChimerDB 4.0 (Table S1.21) [65]. At RNA level, Arriba v2.0.0

432 (https://github.com/suhrig/arriba/) was used to infer gene fusion events with the option to discard known

433 false positives from a list provided by Arriba. High confidence fusions were retained, and only events where at
434 least one transcript is protein coding were kept (Table S1.22). Gene fusions previously identified by other

435 studies, mostly from the TCGA data, were identified with ChimerDB 4.0 [65]. All “deletion/read-through”

436 events were discarded as possible false positives unless they were supported by the ChimerDB 4.0 database.
437 Medium confidence fusions were included in the final list if one of the fused genes appeared in a high

438 confidence fusion event.

439

440 mMRNA editing
441 Jalili, et al. 2017 [67] identified hotspot mutations in the mRNA of DDOST and CYFIP1 that are targeted by
442 APOBEC3A. The genomic position of these hotspot mutations reveals hairpin loop structures that are the ideal

443 substrate for APOBEC3A. Due to the short life-time of mMRNA molecules, the presence of these hotspot
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444 mutations reflects ongoing APOBEC mutagenesis. The proportion of C>U mutations in chr1:20981977 and

445 chr15:22999350 were estimated to identify the RNA-editing activity of APOEBC3A.

446

447 APOBEC mutation rate and APOBEC expression in tumors with multiple sequential biopsies

448 A second metastatic tumor biopsy was taken in eight patients from the same (n = 5) or a different (n = 3)

449 metastatic lesion, and analyzed by WGS (n = 8) and RNA-seq (n = 7). Patients with high APOBEC mutagenesis (n
450 =5) tumors were all treated with pembrolizumab (one patient received consecutive lines of chemotherapy and
451 pembrolizumab). Two out of three patients with low APOBEC mutagenesis tumors were treated with

452 chemotherapy. All patients, except two, received systemic pre-treatment.

453 Each patient’s first and second biopsies shared a high proportion of mutations (SNVs, Indels and MNVs),

454 confirming the clonal relation of the sampled sites. Dirichlet process from the DPClust v2.2.8 R package

455 (https://github.com/Wedge-lab/dpclust) with 250 iterations and 125 burn in iterations was applied to the CCF
456 distribution of paired-biopsies to estimate the subclonal (clusters) composition of each tumor. All unique

457 mutations in each biopsy were considered a subclone; only subclones with >5% of SNVs were considered

458 relevant. Small populations of subclones (<5% of SNVs) were merged to the nearest subclone. The

459 evolutionary tree was reconstructed following the sum rule [66].

460 The CCF of somatic mutations in the branches was lower than that in the trunk, suggesting that these

461 mutations are recently acquired mutations. To compare APOBEC mutagenesis between patients, the rate of
462 novel APOBEC associated mutations was estimated. Only unique SNVs from the second biopsy were kept, as
463 these somatic alterations probably correspond to new mutations acquired during the time frame between the
464 biopsies. As the time elapsed between the first and the second biopsy varied between tumors, we normalized
465 the number of recent APOBEC associated mutations by dividing the total over the number of days elapsed
466 between the biopsies. The value estimated is proportional to the mutation rate of APOBEC associated

467 mutations (mutations per day).

468 For seven tumors, RNA-seq data was available. Expression of APOBEC3A and APOBEC3B per patient represents

469 the mean normalized expression of the paired biopsies.
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470 Analysis of the The Cancer Genome Atlas primary bladder cancer cohort

471 To compare the genomic and transcriptomic landscapes of mUC with primary bladder cancer, publicly

472 available data of the TCGA bladder cancer cohort, including somatic mutations detected by Mutect (SNVs and
473 Indels) of 412 tumors, GISTIC copy number changes at gene level of 410 tumors, and RNA-seq (HTSeq

474 counts; Affymetrix SNP6 arrays) data available for 410 tumors were analyzed. Some samples had very few

475 mutations, and only tumors with total SNVs > 50 were considered in this analysis (367/412). The same method
476 applied on our mUC cohort was applied on the TCGA data to deconvolute mutational signatures and to identify
477 genomic subtypes. Twelve genomic subtypes were identified, but several of them formed small groups with
478 very specific mutational signature patterns, including one sample with very high POLE signature. All genomic
479 subtypes with < 1% of the total cohort were grouped together in GenS0. We compared the genomic subtypes

480 between mUC and the TCGA cohort using cosine similarity.

481 Transcript counts were normalized with DESeq2 [50] following the same procedure used for the mUC cohort.
482 All tumors were from primary UC, and organ-specific transcripts were not discarded. The consensus classifier

483 of primary MIBC [5] was applied to infer the transcriptomic subtype of each tumor.

484

485 Code availability
486  All custom code and scripts are available at https://bitbucket.org/ccbc/dr31_hmf_muc/ and

487 https://github.com/hartwigmedical/.

488

489 Statistical analysis

490 Several statistical tests were used in this study: Fisher’s exact test, T-test, binomial test, Wald test for

491 differential expression analysis and logistic regression analysis, Wilcoxon signed-rank test, Wilcoxon rank-sum
492 test, Kruskal-Wallis test, and tests performed by dNdScv [17] and GISTIC2 [19]. In cases of multiple testing, p-
493 values were Benjamini-Hochberg corrected. The appropriate statistical test is mentioned in the text when
494 describing significance values. All statistical analyses were performed using the statistical computing and

495 graphics platform R v3.6.1 [69].
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496 Results

497 Genomic landscape of mUC

498 Analysis of WGS (mean coverage 106 X) and matched blood samples (mean coverage 38 X) identified a median
499 of 20,634 SNVs, 1,018 Indels and 175 MNVs (Fig. S2a). SNVs were more frequent in coding regions (7.63 SNVs
500 per Megabase pair; SNVs/Mbp) than in the whole genome (7.22 SNVs/Mbp; Wilcoxon signed-rank test p =

501 0.0024; Supplementary Fig. 2b). However, Indels and MNVs were less frequent in coding regions (Wilcoxon
502 signed-rank test p < 0.001 and p = 0.0072, respectively). Analysis of all SNVs revealed that 68% of all SNVs were
503 clonal with a median of 74% per tumor, and that 91% of the tumors were enriched for APOBEC associated

504 mutations (73% high and 18% low enrichment of APOBEC mutagenesis; Fig. 2a). The mean contribution of

505 APOBEC COSMIC signatures (SBS2 and SBS13) in tumors with high APOBEC mutagenesis enrichment was 52%

506 versus 15% in tumors with low APOBEC mutagenesis.
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508 Figure 2 — Genomic landscape of metastatic urothelial carcinoma stratified by genomic subtypes

509 a) Whole-genome sequencing data from biopsy samples of metastatic urothelial carcinoma were

510 classified into genomic subtypes by hierarchical consensus clustering of the relative contribution of
511 COSMIC v3 mutational signatures [24] grouped by etiology. The genomic features are displayed from
512 top to bottom as follows: Genome-wide TMB; Genomic subtype (GenS1-5); APOBEC enrichment

513 analysis showing tumors with no-, low- and high-APOBEC mutagenesis; Mutational signatures

514 grouped by etiology, except for APOBEC activity for which both signatures are shown separately;

515 Relative contribution of seven de novo (custom) mutational signatures by deconvolution of SNVs in 96
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tri-nucleotide context with NMF; Relative frequency of different types of structural variants; Mean
ploidy; Tumors with MSI; HR deficiency status; Samples with at least one chromothripsis event;
Samples with at least one kataegis event; Female patients; Origin of primary tumor; Metastatic site
from which a biopsy was obtained; Treatment-naive patients.

Overview of recurrent hotspot mutations, driver genes and gene fusions for the genomic subtypes
GenS1 and GenS2. Name of genes affected by hotspot mutations in >5% of samples are displayed in
red when the hotspot had a COSMIC id. Significantly mutated genes were estimated by dNdScv [17];
all genes with g < 0.05 were considered driver genes. Recurrent focal copy number changes were
estimated by GISTIC2 [19]; genes in genomic regions with g < 0.05 were considered significant. Only
affected genes present in >10% of the samples are shown. Gene fusions were detected from RNA-seq
data. Benjamini-Hochberg adjusted p-values of Fisher’s exact test (for hotspot mutations and GISTIC2)
and of logistic regression analysis corrected by mutational load (driver genes by dNdScv) are shown
on the right to reflect the significance of the difference between GenS1 and GenS2. An additional
logistic (logit) regression analysis was performed on hotspot mutations to show the linear relation
with the number of APOBEC associated mutations. Bars beyond the dashed line (-log10(0.05)) are
statistically significant.

Abbreviations: TMB = tumor mutational burden; Mbp = mutations per mega base pair; NMF = non-
Negative Matrix Factorization; MSI = microsatellite instability; HR = Homologous Recombination;

UTUC = upper tract urothelial carcinoma.

Genes harboring more mutations in their coding sequence than expected by random chance were analyzed

with dNdScv; the analysis revealed 18 significantly mutated genes (Table S1.6). These genes resembled those

reported for primary UC [3], although mUC lesions did harbor more somatic mutations in TP53 than numbers

reported in TCGA (non-synonymous mutations and indels; 60% vs 49%, Fisher’s exact test p = 0.021, Fig. S3).

SVs were common with a median of 259 (40,297 in total) per tumor. Deletion was the most frequent type of

SV with a median of 92 per tumor (Fig. S2d). The genes most frequently affected by SVs were CCSER1 (13%)

and AHR (12%; Fig. S3). Chromothripsis, a complex event that produces SVs in which chromosomes are

shattered and rearranged, was detected in 20% of the tumors (Fig. S4).


https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.17.435757; this version posted June 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

544 Chromosomal arm and focal CNA were analyzed with GISTIC2. This revealed frequent deletion of chromosome
545 9 and amplification of chromosome 20 (Fig. S5a). In total, 49 genomic regions were significantly altered by

546 focal CNAs which included several oncogenic genes (Table $1.8). The most frequently amplified genes were
547 SOX4 (28%), GATA3 (22%), PPARG (22%), and ERBB2 (19%); the most frequently deleted genes were CDKN2A/B
548 (43%), FHIT (24%), CCSER1 (17%) and LRP1B (17%), and also resembled those reported in primary UC [3] (Fig.

549  S3).

550 Hotspot mutations in driver genes concerned FGFR3 S249C (8%), PIK3CA E54K (7%), and TP53 E285K (5%).

551 Hotspot mutations in the TERT promoter were present in 62% of the tumors (Fig. S3; Table S1.23). Still, TERT
552 expression did not differ between tumors with and without hotspot mutations (Fig. S6b), in line with a

553 previous report [68]. However, differential gene expression analysis showed that tumors with hotspot

554 mutations in the TERT promoter had downregulation of genes related to the muscle contraction pathway (Fig.
555 S6a, Table S1.24). Furthermore, hotspot mutations were identified in non-coding regions of ADGRG6 (40%),
556 PLEKHS1 (28%), LEPROTL1 (18%), and TBC1D12 (15%; Fig. S3) with no apparent association with gene

557 expression and minimal transcriptomic effect (Fig. S6a-b). The hotspot areas of ADGRG6, PLEKHS1 and

558 TBC1D12 form hairpin loop structures in the DNA with specific tri-nucleotide sequences frequently mutated by
559 APOBEC enzymes (Fig. S6c). Unlike other known driver genes affected by hotspot mutations (TERT, FGFR3,
560 PIK3CA and TP53), these genes were not significantly affected by other somatic mutations in the coding region
561 or by CNAs, suggesting that hotspot mutations in ADGRG6, PLEKHS1 and TBC1D12 are likely passenger

562 hotspots attributed to APOBEC activity as theoretically predicted [69].

563 Gene fusion analysis performed at the transcriptomic level (Table $1.22) detected 1394 gene fusions, of which
564 10% were also reported in the TCGA cohort [65]. Seventy-six percent of all individual genes found involved in
565 fusion events have previously been implicated in fusions [65]. FGFR3 gene fusions were present in seven out of
566 90 samples with only one FGFR3-TACC3 fusion. Four PPARG fusions were detected, of which two PPARG-TSEN2
567 fusions were confirmed at DNA level (Table S1.21). Other putative fusion events in cancer-related genes were

568 found in CCSER1 (n =9), ERBB4 (n =5), RB1 (n = 4), MDM2 (n = 4), TERT (n = 3) and STAG2 (n = 3).

569 A stratification based on the proposed etiology of SNV COSMIC signatures using unsupervised consensus
570 clustering [30] revealed two major genomic subtypes (GenS; Fig. 2; Fig. S7). GenS1 (67%) contained almost

571 exclusively tumors with high APOBEC mutagenesis, which was reflected by a large contribution of APOBEC
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572 signatures SBS2 and SBS13. In addition, we performed deconvolution of SNV patterns by non-negative matrix
573 factorization (NMF; Fig. S8), which confirmed APOBEC signatures as the main source of mutations in GenS1,
574 with high contribution of de novo mutational signatures SigA (0.99 cosine similarity with APOBEC signhature
575 SBS2) and SigB (0.89 cosine similarity with APOBEC signature SBS13). GenS2 (24%) aggregated predominantly
576 tumors with low APOBEC mutagenesis (16 out of 28), and was characterized by signatures of unknown

577 etiology. De novo mutational signatures SigF (0.91 cosine similarity with SBS18 COSMIC signature) and SigG
578 (0.90 cosine similarity with SBS5 COSMIC signature) were dominant in GenS2. Analysis of the TCGA cohort

579 (WES data) showed that GenS1 and GenS2 were also the two major genomic subtypes in localized UC (Fig. S9a-
580 b). The other three smaller subtypes (9% of the present cohort) were related to the platinum treatment

581 signature (GenS3), the defective DNA mismatch repair (MMR) signature and microsatellite instability (MSl,

582 GenS4), and the reactive oxygen species signature (GenS5), which was characterized by de novo sigF in > 95%.

583 The origin of somatic driver mutations was independent of the genomic subtypes, although amplifications of
584 GATA3 and FGF19 were enriched in GenS1 and GenS2, respectively (Fig. 2b). Hotspot mutations occurred more
585 frequently in GenS1. In particular, ADGRG6, PLEKHS1 and TBC1D12 were significantly more often mutated in
586 GenS1. However, these hotspot mutations are potentially irrelevant byproducts caused by APOBEC

587 mutagenesis as logistic regression analysis showed a correlation between APOBEC mutational load (C>T and

588 C>G mutations in TCW context) and occurrence of these hotspot mutations (Fig. 2b).

589 Other genomic differences between GenS1 and GenS2 (Fig. S3, S10 and S11) included higher SNVs/Mbp in

590 GenS1 and higher Indels/Mbp in GenS2, which was also observed in the TCGA cohort (Fig. S9c). All three

591 tumors with homologous recombination (HR) deficiency identified were of subtype GenS2. Clinical

592 characteristics such as sex, cancer subtype (bladder or upper tract UC), and pre-treatment status did not differ
593 between GenS1 and GenS2. Thus, despite that two very different etiologies lead to UC development, the two

594 mutagenic processes lead to similar profiles of somatically affected driver genes.

595
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596 APOBEC mutagenesis is an active process that generates new mutations in mUC
597 In tumors with high APOBEC mutagenesis, the mean ploidy and the number of genes affected by CNA were
598 higher than in tumors without APOBEC mutagenesis (Wilcoxon rank-sum test p = 0.01 and p < 0.001,

599 respectively; Fig. S12e-f). This phenomenon may indicate genomic instability in APOBEC-driven mUC tumors.

600 APOBEC enzyme expression analysis revealed neither significant differences between GenS1 and GenS2 (Fig.
601 S12a), nor between tumors with and without APOBEC mutagenesis (Fig. S12c). To further investigate the role
602 of APOBEC mutagenesis in mUC, we analyzed WGS data of eight tumors from patients who had undergone
603 serial biopsies, and reconstructed their evolutionary paths (Fig. 3a). Significantly mutated genes (dNdScv),
604 kataegis events and hotspot mutations displayed in the trunk represent clonal alterations that are fixed in the
605 tumor and are present in all cancer cells of both biopsies. Alternatively, mutations displayed in the branches
606 represent subclonal alterations that are present exclusively in one biopsy, or present in both biopsies but are
607 found only in a fraction of cancer cells (e.g. patient 1 in Fig. 3a). A lower cancer cell fraction in the branches of
608 than the trunk of the evolutionary trees (Fig. 3b) suggests that mutations from branches corresponding to the
609 second biopsy might be novel and not widely spread in the cancer cell population. The rate of novel APOBEC
610 mutations (number of APOBEC mutations divided by the number of days elapsed between serial biopsies) was
611 calculated using only mutations from branches corresponding to the second biopsy. This analysis showed that
612 tumors with high APOBEC mutagenesis accumulated more novel APOBEC mutations than other tumors (Fig.
613 3d, Wilcoxon rank-sum test p = 0.036). In line with this, we observed that the APOBEC mutational signature
614 was still present in the second biopsy of these patients, together suggesting that APOBEC mutagenesis is

615 ongoing in these samples (Fig. 3c). We further confirmed ongoing APOBEC mutagenesis by analyzing hotspot
616 mutations in mRNA. The frequency of hotspot mutations in DDOST (mRNA) was enriched in tumors with high
617 APOBEC mutagenesis and in GenS1 compared to GenS2, with up to 15% of mRNA molecules mutated in one

618 single sample (Fig. S13a).

619 Several studies have linked the expression of APOBEC3A/3B to APOBEC mutagenesis in UC [3,70]. When

620 comparing the estimated relative expression of APOBEC3A and 3B in the same tumor, we observed differential
621 expression of these enzymes (Fig. 3e). Some tumors had high levels of APOBEC3A expression while the

622 expression of APOBEC3B was low — or vice versa. The correlation between the expression of APOBEC3A and

623 APOBEC3B was poor (Fig S13b), which may explain the lack of differential expression of individual APOBEC
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624 enzymes between tumors with different levels of APOBEC mutagenesis (Fig. S12c). To further investigate the
625 link between the occurrence of APOBEC mutations and APOBEC gene expression, we considered the

626 expression of both APOBEC enzymes and calculated an APOBEC score (sum of the median centered normalized
627 expression of APOBEC3A and 3B). It appeared that tumors with high APOBEC mutagenesis had a higher

628 APOBEC score than other tumors (Wilcoxon rank-sum test p = 0.012; Fig. S12d). The APOBEC score was also
629 higher in GenS1 compared to GenS2 (Wilcoxon rank-sum test p < 0.001; Fig. S12b). This analysis confirmed a
630 link between APOBEC gene expression and APOBEC mutations in mUC. To further validate this result, the fold
631 enrichment of C>T and C>G mutations in the tetra YTCA (related to APOBEC3A) and RTCA (related to

632 APOBEC3B) context was calculated for the entire cohort (Fig. S13c). We found that both APOBEC3A and

633 APOBEC3B contribute to APOBEC associated mutations (fold enrichment is above 1.0), but APOBEC3A appears

634 to be the main contributor in mUC, as was reported previously [21,71].
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635

636 Figure 3 — Cancer evolution of eight tumors from metastatic urothelial carcinoma patients with serial

637 biopsies of metastatic lesions

638 a) Evolutionary trees from eight tumors (five with high APOBEC and three with low APOBEC

639 mutagenesis) from which two biopsies were obtained (interval depicted in months) were

640 reconstructed from single nucleotide variants. Significantly mutated genes (dNdScv), kataegis

641 (number of events in parenthesis) and hotspot sites (hs) are shown, and their locations are indicated
642 (trunk or branch). Branches represent subclonal populations (A, B or C), indicating their presence in

643 the first or second biopsy (b1 or b2). For patient 1, a subclonal population is present in both biopsies.
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644 The cancer cell fraction of each single nucleotide variant was calculated and clustered using DPClust
645 for paired-biopsies. The evolutionary tree was reconstructed using the sum rule [66].

646 b) Boxplots comparing the cancer cell fraction of somatic mutations from the trunk and branches.
647 Wilcoxon rank-sum test was applied and p-values were Benjamini-Hochberg corrected.

648 c) COSMIC v3 mutational signatures calculated from the trunk and from the branch exclusive to the
649 second biopsy.

650 d) The APOBEC mutation rate from novel (recent) mutations in the second biopsy was compared

651 between low and high APOBEC mutagenesis tumors. Wilcoxon rank-sum test was applied.

652 e) APOBEC mutation rate is displayed as a function of APOBEC3A and APOBEC3B median centered
653 normalized expression. APOBEC expression was estimated as the mean expression of both biopsies
654 per tumor. Numbers indicate patient number. RNA-seq was not available for patient 1.

655

656 APOBEC associated mutations are randomly distributed across the genome in mUC

657 The substrate of APOBEC enzymes is single-stranded DNA (ssDNA) [20], this has led to the hypothesis that

658 APOBEC enzymes are mainly active during replication or in open chromatin and transcriptionally active

659 genomic regions [72,73]. As our cohort contained predominantly tumors with APOBEC mutagenesis, and WGS
660 data of these tumors was available, we had the unique opportunity to explore the mutational consequences of

661 APOBEC mutagenesis across the genome.

662 The total number of SNVs/Mbp varied across the genome, and non-APOBEC mutations followed the same

663 pattern (Fig. 4a). The frequency of non-APOBEC mutations decreased as the predicted DNA accessibility and
664 overall gene expression level increased (Fig. 4b). In contrast, the frequency of APOBEC mutations was constant
665 across the genome, demonstrating that APOBEC mutagenesis was likely independent of genomic regions (Fig.
666 4a-c). The ratio of APOBEC mutations between high and low transcriptional regions also suggests an equal

667 distribution of APOBEC associated mutations across the genome (Fig S14). This ratio was close to 0.5 (0.45-
668 0.55) in tumors with high APOBEC mutagenesis. The equal distribution of APOBEC mutations across genomic
669 regions supported the hypothesis that these mutations had been generated during replication, when APOBEC

670 enzymes have equal access to ssDNA across the genome [73].
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671

672 Figure 4 — Differences in the load of APOBEC associated mutations between high and low DNA accessibility

673 regions in metastatic urothelial carcinoma genomes

674 a) WGS data (n = 116) was analyzed to estimate the mean number of single nucleotide variants in

675 windows of one mega base pair across the entire genome. The Circos plot shows from outer to inner
676 circles: the genomics ideogram from chromosome 1 to X where the centrosomes are indicated in red;
677 Mutational load of APOBEC and non-APOBEC associated mutations; Average RNA counts (expression)
678 from 90 tumors with RNA-seq data; DNA accessibility estimation from different ChiPseq experiments
679 in normal urothelial samples derived from the ENCODE [74]. Peaks represent highly accessible DNA.
680 b) Linear regression (with 95% confidence interval) of mutational load per mega base pairs for APOBEC
681 and non-APOBEC associated mutations with DNA accessibility and expression data.

682 c) The number of APOBEC and non-APOBEC associated mutations were compared between high and low
683 RNA expression and DNA accessibility regions. The distributions are shown as boxplots and as violin

684 plots. T-test was applied and p-values were Benjamini-Hochberg corrected for multiple testing. Here,
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685 in b) and in c), results from H3K4mel ChIPseq were used. Using other ChlPseq experiments showed
686 similar results.

687 d) Frequency of kataegis events (n = 116) in high and low DNA accessibility or in high and low RNA
688 expression regions. P-values of binomial test are shown for each comparison.

689

690 Localized hypermutation events (kataegis) were present in 70% of the samples (Fig. 2a); which was more
691 frequent when APOBEC mutagenesis was high (Fig. S14). This higher frequency confirmed a link between
692 kataegis and APOBEC activity [75], and we therefore expected to find kataegis events scattered across the
693 genome. However, our data suggested that kataegis was more likely to happen in regions with high DNA
694 accessibility and high transcriptional activity (Fig. 4d). Thus, while general APOBEC mutagenesis seemed to
695 occur primarily during replication, kataegis-like APOBEC events seemed to occur more frequently at

696 transcribed loci.

697 In summary, APOBEC mutagenesis was an ongoing process in mUC that equally affected the whole genome,
698 and seemed to be triggered by both APOBEC3A and APOBEC3B. Tumors with APOBEC mutagenesis were

699 genomically less stable and displayed more kataegis events.

700

701 Transcriptomic subtypes of mUC

702 The consensus classifier of primary MIBC stratifies organ-confined UC of the bladder into six transcriptomic
703 subtypes [5]. Unlike primary bladder tumor samples, metastatic biopsies are derived from different organs
704 with some degree of normal non-urothelial cell contamination. Using the consensus classifier would lead to
705 misclassification of samples when no correction for organ-specific transcripts is applied. It would also limit the
706 detection of new phenotypic subtypes if they existed in mUC, which is crucial in this study as the

707 transcriptomic phenotypes of mUC are unknown. Therefore, we performed de novo subtyping for mUC

708 samples (see Methods section for details).

709 High-quality RNA-seq data was available for 90 (97 samples) out of 116 patients (Fig. S15). To reduce the bias
710 introduced by biopsy location, we filtered the organ-specific transcripts prior to hierarchical consensus

711 clustering (Fig. S16). Five transcriptomic subtypes were identified (Fig. 5). We did not observe a
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neuroendocrine subtype in our cohort, and noticed that the neuroendocrine signature score was equally low

in all mUC subtypes (Fig. S17a). Several phenotypic markers were used to establish the phenotype of each

subtype (Fig. S17a), and are described below.
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Figure 5 — Genomic and transcriptomic characteristics of patients with metastatic urothelial carcinoma

stratified by mRNA subtypes

Transcriptomic profiles of 90 metastatic urothelial carcinoma samples were clustered using

ConsensusClusterPlus [30]. Five transcriptomic subtypes were identified: luminal-a, luminal-b, stroma,

basal/squamous and non-specified phenotype. From top to bottom: Transcriptomic subtypes;
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722 Genomic subtypes (GenS1-4); Transcriptional subtypes based on the consensus classifier of primary
723 MIBC [5]; Metastatic site from which a biopsy was obtained; Site of origin of primary tumor (UTUC =
724 upper tract urinary cancer); Estimated tumor cell percentage; Female patients; Pre-treatment naive
725 patients; Tumors with hotspot mutations in TERT promoter; Tumors with gene fusions detected by
726 RNA-seq; Tumors with alterations in selected genes; Tumors with one or more kataegis events;

727 Tumors with one or more chromothripsis events; APOBEC enrichment analysis showing tumors with
728 no-, low- and high-APOBEC mutagenesis; APOBEC3B and APOBEC3A expression; Signature score
729 (mean expression of genes related to each phenotype) of basal, squamous, luminal, stroma and

730 neuroendocrine markers; Top overexpressed genes in each mRNA subtype; Immune cell fractions
731 estimated with immunedeconv [63], using the quanTlseq method [64].

732

733 The luminal subtypes represented 51% of the tumors in the TCGA cohort versus 40% in the present cohort (p =
734 0.061, Fig. S9d). In contrast to the consensus classifier of primary MIBC, we identified two and not three

735 luminal subtypes. The luminal mUC tumors were mostly identified as luminal-papillary and luminal-unstable
736 according to the consensus classifier of primary MIBC. All luminal tumors together exhibited similarities with
737 the consensus-based luminal subtypes [5] with respect to high luminal signature scores, high expression of
738 PPARG and GATAS3 (Fig. S16d), and frequent alterations in FGFR3 and KDM6A (Fig. S17). In contrast, the

739 individual luminal mUC subtypes lacked a high TMB; high APOBEC mutation load, as described for the luminal
740 unstable subtype; high stromal signature score, as described for the luminal non-specified subtype; and

741 frequent CDKN2A alterations, as described for the luminal papillary and unstable subtypes. Looking into the
742 characteristics of the two luminal mUC subtypes, we noted that the luminal-a subtype had high expression of
743 MYCN, one of the MYC oncogene family members that regulates different species of RNA [76], and high

744 expression of CD96 (Fig. 5). This subtype had low tumor purity, a high fraction of NK cells, a low clonal fraction
745 (interpreted as high heterogeneity), and relatively high expression of FGFR3 and NECTIN4 (Fig. S17). NECTIN4
746 was amplified in 61% of these tumors. The luminal-b subtype had high tumor purity, a low number of SVs, a
747 low fraction of NK cells, high expression of FGFR3 and S100A6 (Fig. S17), and a higher proportion of ELF3 (56%)
748 and FGFR3 (50%) DNA alterations compared to all other subtypes (Fig. S18; Fisher’s exact test p = 0.0023 and p

749 =0.0053, respectively).
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750 The stroma-rich subtype, had the highest level of stroma signature score. Genes known to be associated with
751 stromal content and cancer-associated fibroblasts (THBS4, CNTN1, CXCL14 and BOC) [77-80] were

752 differentially expressed (Fig. 5). This subtype was highly concordant with the stratification of the consensus
753 classifier of primary MIBC: 79% of tumors identified as stroma-rich by the consensus classifier of MIBC were in
754 the stroma-rich subtype of mUC. However, the stroma-rich subtype was more prevalent in the present mUC
755 cohort than in the TCGA cohort (24% vs 9%, Fisher’s exact test p < 0.001, Fig. S9d). Tumors of the stroma-rich
756 subtype showed high expression of TGFB3, a ligand of the TGF-B pathway (Fig. 5), low tumor purity, a high
757 signature score for epithelial to mesenchymal transition (Fig. S17), high expression of various collagens (Table
758 $1.20), and a higher rate of TSC1 DNA alterations (45% of the tumors, Fig. 5) compared to the rest of the

759 cohort (Fisher’s exact test p < 0.001).

760 The basal/squamous subtype was also highly concordant to the similarly named cluster of the consensus

761 classifier for MIBC; 86% of tumors identified as basal/squamous by the consensus MIBC were in this group.
762 Yet, the prevalence of this subtype was lower in the present cohort than in the TCGA cohort (23% vs 37%,

763 Fisher’s exact test p = 0.013; Fig. S9d). This subtype was characterized by high expression of basal/squamous
764 markers (DSG3, KRT5, KRT6A and S100A7), highest levels of basal and squamous signature scores, and

765 enrichment in females (52%, Fisher’s exact test p = 0.0043). TGFBR1, a receptor of the TGF-B pathway; CD274,
766 the gene that encodes PD-L1; and MSLN, a tumor-associated antigen, were highly expressed in this subtype
767 (Fig. 5). NECTIN4 amplifications were not found, and NECTIN4 expression level was low (Fig. S17). In line with a
768 previous study [81], the expression of adipogenesis regulatory factor (ADIRF) was low (Fig. 5). The immune cell
769 compartment consisted of a large fraction of M1 macrophages and a low fraction of neutrophils (Fig. S17b).
770 This subtype was less affected by kataegis and chromothripsis events than the other subtypes (Fig. 5, Fisher’s

771 exact test p = 0.0006 and p = 0.019, respectively).

772 The majority of samples in the non-specified subtype was identified as luminal unstable according to the

773 consensus classifier of primary MIBC. However, key markers of luminal phenotypes such as the luminal

774 signature score, and PPARG and GATA3 expression were relatively low, and genomic instability (high TMB, high
775 APOBEC mutagenesis) was not observed in this subtype (Fig. 5 and S17). This subtype had overexpression of
776 KIAA1324; a diagnostic biomarker in different cancer subtypes [82], and of LRP2 (Fig. 5),. Furthermore, it had a

777 high score of claudin markers, a low fraction of neutrophils, high numbers of Indels, high numbers of SVs, high
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778 levels of APOBEC3B expression (Fig. S16), and this subtype was enriched for patients who were previously

779 treated with chemotherapy (Fisher’s exact test p = 0.023, Fig. 5).

780 In summary, transcriptomic profiling revealed that mUC can be stratified into five transcriptomic subtypes, of
781 which the stroma-rich and basal/squamous subtypes are highly concordant to primary MIBC subtypes. Both
782 luminal subtypes showed some concordance with the luminal MIBC subtypes, however the individual luminal
783 subtypes in mUC and MIBC differed. The phenotype of the non-specified mUC subtype did not match any of
784 the phenotypes of the consensus classifier established for MIBC. A complete overview of driver genes, fusion

785 genes and hotspot mutations per transcriptomic subtype is presented in Fig. S18.

786

787 Altered canonical signaling pathways in different transcriptomic subtypes

788 Several canonical pathways involved in cell growth, proliferation and survival [34] were altered at the DNA
789 level (Fig. 6a). Of all subtypes, the luminal-a subtype showed most alterations in the Myc (72%) and TGF-B

790 (72%) pathways. In contrast, only 5% of basal/squamous tumors had TGF-B pathway alterations. Perturbations
791 in the TGF-B pathway were mainly driven by alterations in TGFBR2, SMAD4, SMAD2 and TGFBR1. The most

792 altered genes per pathway are displayed in Fig. S19.
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794 Figure 6 — Pathway alterations at genomic and transcriptomic level across mRNA-based subtypes of

795 metastatic urothelial carcinoma

796 a) The percentage of samples with DNA alterations in 11 canonical pathways is shown for each

797 transcriptomic subtype (90 tumors in total) and for the entire cohort (n = 116). A patient was

798 considered to have an altered pathway when at least one of the pathway-genes was altered either by
799 non-synonymous mutations, structural variants or by deep copy number changes.

800 b) Pathway activity was estimated as the mean expression of downstream genes targeted by each

801 pathway. Only genes that were transcriptionally activated by these pathways were considered.

802 Kruskal-Wallis test p-values were Benjamini-Hochberg corrected.

803 c) Pathways up- (red) or down-regulated (blue) were estimated with reactomePA [62] from RNA-seq
804 data. Only the top ten up- and top ten down-regulated pathways per subtype are shown.

805

806 The luminal-b subtype was characterized by fewer alterations in Notch, Cell cycle, Hippo, PI3K, p53, Myc and
807 JAK-STAT pathways. Alterations in the p53 pathway were common in the other subtypes, and most of them
808 were the result of somatic mutations in TP53 or amplification of MDM2 (mutually exclusive p = 0.024).

809 Amplification of MDM2 has been previously reported in a pan-cancer study [34] as an alternative to TP53

810 alterations to inactivate the p53 pathway through direct inhibition of p53 protein [83].

811 To assess pathway activity across different transcriptomic subtypes, we calculated the mean expression of

812 genes targeted by each pathway as a proxy of activity (Fig. 6b). Myc and TGF-B pathway activities were low in
813 the luminal-a subtype, corresponding with high frequencies of pathway alterations at the genomic level (Fig.
814 6a). The luminal-b subtype showed the highest RTK-RAS and high WNT pathway activity. The stroma-rich

815 subtype had high TGF-B pathway activity. The basal/squamous subtype had high activity of the Hippo, Myc and
816 TGF-B pathways. The non-specified subtype had very low p53 pathway activity and very active cell cycle

817 pathway signaling, two pathways that are usually co-altered [34].

818 In addition to the 11 oncogenic pathways described above, any pathway up- or down-regulated was analyzed
819 by enriched pathway analysis with ReactomePA (Fig. 6¢). Up-regulation of pathways involved in collagen
820 metabolism and extracellular matrix in the stroma-rich subtype corresponded with the stromal phenotype of

821 this subtype [84]. In the non-specified subtype, pathways related to cell cycle and chromosome integrity were
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822 up-regulated. Considering as well the high cell cycle pathway activity (Fig. 6b), and high frequency of mutations
823 in the cell cycle pathway (Fig. 6a), this up-regulation may suggest that the non-specified subtype is highly

824 proliferative.

825 In summary, signaling pathway analysis showed the extent of heterogeneity between the transcriptomic
826 subtypes, reflecting phenotypic characteristics of each group. The most striking difference was observed for
827 the TGF-B pathway, in which genomic alterations greatly affected the luminal-a subtype and pathway activity

828 was heavily reduced.
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829 Discussion

830 To the best of our knowledge, we defined, for the first time, molecular subtypes of mUC based on whole

831 genome and transcriptome characteristics of metastatic biopsies of 116 mUC patients. In line with findings
832 reported for primary UC, we identified a central role for APOBEC mutagenesis in mUC. Furthermore, we

833 showed that mUC is a heterogeneous disease with various genomic and transcriptomic subtypes revealing the

834 main mutational processes and phenotypes of this cancer.

835 The genomic landscape of mUC showed important similarities to that of primary UC. We validated our mUC
836 findings in the TCGA cohort of primary MIBC, showing that aggregating mutational signatures by etiology is a
837 robust approach to identify genomic subtypes. A recent study analyzed archived paraffin-embedded primary
838 or metastatic tumor samples from UC patients who received palliative chemotherapy. By WES analysis, two
839 major genomic subtypes were identified [85]. The GenS2 subtype, enriched with SigG that correlates with
840 COSMIC SBS5, in the present study largely overlapped with the SBS5 subtype reported by Taber et al., 2020.

841 Furthermore, an APOBEC high signature was identified that was similar to GenS1 in our study.

842 We identified significantly mutated genes similar to those reported for primary UC. Frequent hotspot

843 mutations in the non-coding region of TERT, ADGRG6, PLEKHS1, LEPROTL1 and TBC1D12 occurred similarly in
844 NMIBC and MIBC [86,87]. Evidence suggests that clones with known driver genes emerge early during bladder
845 cancer development and colonize distant areas of the bladder, which may explain the genomic similarity

846 between mUC and primary UC [88].

847 WGS analysis revealed frequent SVs affecting AHR (aryl hydrocarbon receptor) and CCSER1 (coiled-coil serine
848 rich protein). SVs in AHR have not been described in cancer, but other molecular alterations in this gene have
849 been associated with bladder cancer progression [89—91]. CCSER1 is located in a common fragile site region;
850 thus, it is exposed to chromosomal rearrangements [92]. Altered transcripts created through the deletion of
851 specific exons in CCSER1 have been associated with oncogenesis [92,93]; it is unclear, however, if SVs may

852 have similar oncogenic effects in UC.

853 Previous studies that performed RNA-based subtyping showed that NMIBC is a homogeneous disease primarily
854 of luminal origin (> 90%) and that MIBC is highly heterogeneous with multiple subtypes [5,94]. Here, we
855 performed de novo transcriptomic subtyping of mUC, as the consensus classifier of primary MIBC is not

856 suitable for mUC, and it does not correct for organ-specific transcriptomic contamination. Although this


https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.17.435757; this version posted June 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

857 method may also remove transcription related to urothelial adaptation, or to a specific metastatic site, it was
858 mandatory in order to prevent subtyping of tumors to be predominantly based on biopsy site rather than
859 biological differences. We showed that mUC is a heterogeneous disease, with similarities to subtypes

860 described for primary MIBC, specifically regarding the stroma-rich and basal/squamous subtypes. The luminal
861 subtypes overall showed some concordance, although there was not a one to one match with the primary
862 MIBC luminal subtypes. The phenotypic similarity of primary MIBC and mUC suggests that despite ongoing
863 mutagenesis, UC cell behavior does not change significantly during the metastatic process — all subtypes have
864 metastatic potential. However, as matched data from the primary tumor were lacking in this study, we were
865 unable to draw conclusions on specific factors which may drive some clones towards metastasis whilst other
866 remain tissue confined. Furthermore, some patients with primary non-metastatic MIBC, as assessed by cross-
867 sectional imaging, actually have systemic rather than localized disease. In a previous study, lymph node

868 metastases were present in the cystectomy resection specimen of 25% of clinically node-negative patients. In
869 addition, patients with locally advanced bladder tumors (pathological stage T3) have a poor 5-year overall

870 survival rate of only 35% due to rapid onset of metastatic disease, despite radical surgery [95,96].

871 In the present cohort, we did not identify a NE-like subtype at the transcriptional level. The prevalence of this
872 subtype in UC is, however low; in the TCGA cohort only 2% of tumors were of the NE-like subtype. Central

873 pathology revision of the metastatic biopsies identified only three NE-like tumors in our cohort (Table S3-4).
874 The non-specified subtype we identified did not express any of the markers used to identify the consensus

875 subtypes of primary MIBC (luminal, basal, squamous, stroma or NE), suggesting rewiring of its transcriptomic
876 profile for adaptation. Studies in various cancers have shown that therapeutic pressure may trigger a

877 phenotype-switching event [97], which could have happened in the non-specified phenotype as it was

878 enriched for patients who had received systemic therapy prior to biopsy. Studies with larger numbers of paired
879 biopsies, obtained before and after treatment, and obtained from the primary and metastatic site would be

880 needed to explore this phenomenon in mUC.

881 APOBEC mutagenesis was widespread in mUC; the reconstruction of evolutionary paths from sequential
882 biopsies of eight patients indicated that it was an ongoing process, which was confirmed in the entire cohort
883 by RNA-editing of DDOST attributed to APOBEC3A. This suggests that mUC is in continuous adaptation by

884 generating novel mutations. A previous study indeed reported accumulating mutations in six patients whose
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885 primary tumor and metachronous metastases were analyzed by WES [85]. In our study, the accumulation of
886 new mutations in the sequential biopsy specimen of one of eight patients led to the identification of new

887 therapeutic targets (Fig. S20).

888 In a previous study [7], the genomic landscape of 85 (72 re-analyzed here) mUC patients was compared with
889 that of other metastatic tumor types. This pan-cancer study concluded that mUC was characterized by high
890 tumor mutational load, with no difference between mUC and primary UC, high CNAs, the highest number of
891 driver genes among all cancer types analyzed, and actionable targets in 75% of the patients. In our study, we
892 identified a potential targetable alteration in the genome of 98% of the patients (Fig. 7a). In line with Priestley
893 et al., 2019, we found that 41% of patients could benefit from on-label therapies, and 63% from therapies
894 approved by the US Food and Drug Administration for other tumor types. Additionally, we identified targets
895 for therapies under investigation in clinical trials including basket trials in 109 of 116 patients. We identified
896 four patients with MSI-high tumors that are potentially sensitive to immune checkpoint inhibitors [98]. HR
897 deficiency, observed in three patients, is a potential target for treatment with poly-ADP ribose polymerase
898 inhibitors and/or double-stranded DNA break-inducing chemotherapy. At the RNA level, targetable FGFR3 and

899 NTRK2 gene fusions were identified in eight patients.
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Figure 7 — Overview of actionable targets and possible treatments per transcriptomic subtype for metastatic

urothelial carcinoma

a)

Per patient overview of therapeutic targets based on gene fusions at RNA level (first column), tumors

with microsatellite instability high (MSI-H) tumors, or homologous recombination (HR) deficiency

(second column), and clinically-actionable genomic alterations for on- and off-label therapies for

urothelial carcinoma (third column). On the left side, the therapeutic label for the best treatment
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907 option per patient is shown. Bars on the right depict the genomic and the transcriptomic subtype per
908 patient.

909 b) Summary of molecular characteristics found in the present study, and potential therapeutic

910 implications for the treatment of metastatic urothelial carcinoma per transcriptomic subtype. From
911 top to bottom: transcriptomic mUC subtypes, genomic mUC subtypes, shared genomic features

912 among transcriptomic subtypes; unique characteristics per transcriptomic subtype; suggested

913 therapeutic strategies per transcriptomic subtype.

914

915 In a previous study, the antibody-drug conjugate enfortumab vedotin targeting NECTIN4 induced objective
916 clinical responses in 44% of mUC patients who experienced disease progression following chemotherapy and
917 anti-PD1/L1 therapy [99]. Currently, preselection for this treatment is not required. However, we found

918 significant variation in the expression of NECTIN4, suggesting that patients with tumors of the basal/squamous
919 subtype may be less likely to experience clinical benefit, as no NECTIN4 amplifications were detected, and

920 NECTIN4 expression levels were low. Thus, subtype-specific treatment with enfortumab vedotin might result in
921 better risk-benefit ratios. The 23 patients with HER2 aberrations may be sensitive to HER2 targeting agents;
922 especially some of the newer antibody-drug conjugates with DNA damaging payloads could represent an

923 effective treatment [100,101].

924 Based on the identified transcriptomic subtypes we suggested potential therapeutic targets per subtype (Fig.
925 7b). The luminal-a subtype was characterized by MYCN and PPARGC1B overexpression. In pre-clinical studies,
926 treatment with a BET- or PPARy-inhibitor downregulated the expression levels of both genes, and had an
927 antiproliferative effect on tumor cells [102,103]. The immune cell compartment of tumors of the luminal-a
928 subtype was found rich in NK cells, which could be explained by the large fraction of liver biopsies, which are
929 known to be enriched for NK cells [104]. Thus, other potential treatment strategies comprise of cytokine-

930 mediated stimulation of NK cells and TLR agonists [105].

931 The luminal-b subtype was enriched for FGFR3 mutations and had high expression of FGFR3, suggesting that
932 this subtype may be susceptible to FGFR inhibitors. This subtype may also be sensitive to RAS pathway

933 inhibitors as the RTK-RAS pathway activity was high [106].
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934 The stroma-rich subtype was characterized by TSC1 alterations that confer sensitivity to MTOR inhibitors,
935 which have been approved for treatment of several tumor types [37,38]. Compared with the other subtypes,
936 the stroma-rich subtype displayed the highest TGF- pathway activity and overexpression of different

937 collagens. Previous studies have shown that TGF-B can stimulate cancer-associated fibroblasts to produce
938 collagens [107,108]. Other studies found that TGF- expression was associated with resistance to immune
939 checkpoint inhibition in bladder cancer [52,109]. Results from pre-clinical studies suggest that addition of a

940 TGF-B inhibitor may improve anti-PD1 efficacy [53].

941 The basal/squamous subtype has been found associated with high immune cell infiltration (significantly more
942 M1 macrophages) and overexpression of PD-L1, which suggests that patients with tumors of this subtype are
943 likely to benefit from immunotherapy [3]. Since TGF-B pathway activity was also high in this subtype,

944 combination therapy with a TGF-B inhibitor could be of added value. Furthermore, this subtype was

945 characterized by overexpression of mesothelin, a known tumor antigen that is being investigated as a target

946 for antibody-based, vaccine and CAR-T cell therapies in several tumor types [110].

947 A limitation of this study is the lack of matched primary tumor samples. Despite this, we showed striking
948 genomic and transcriptomic similarities between mUC and what has been reported for primary MIBC. Our
949 results, however, require validation in other independent mUC cohorts. Also, as our studied cohort was
950 heterogeneous regarding pre-treatment history and type of treatment initiated after biopsy collection, we
951 were unable to correlate the characteristics of the molecular subtypes to clinical endpoints such as overall
952 survival. Additional studies in which biopsies are collected from uniformly treated mUC patients would be

953 crucial to be able to properly correlate large scale genomic and transcriptomic data with clinical outcomes.

954 Conclusions

955 By performing WGS and RNA-seq analysis of metastatic sites of 116 mUC patients who participated in a clinical
956 trial, this study contributed to the knowledge on the molecular landscape of mUC, which has important

957 similarities to the molecular landscape of primary UC. The findings reported here serve as a reference for

958 subtype-oriented and patient-specific research on the etiology of mUC and for novel drug development — with

959 the ultimate aim to improve the management of mUC patients.

960
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961 List of abbreviations

962 APOBEC: Apolipoprotein B mRNA Editing Catalytic Polypeptide-like

963 CCF: Cancer cell fraction

964 CNA: Copy number alterations

965 CPCT: The Center for Personalized Cancer Treatment

966 FC: Fold change

967 H&E: Hematoxylin and eosin

968 HMF: Hartwig Medical Foundation

969 HR: Homologues recombination

970 Indel: insertion/deletion

971 Mbp: Megabase pair

972 MIBC: Muscle invasive bladder cancer

973 MMR: Mismatch repair

974 MNV: Multiple nucleotide variants

975 MSI: Microsatellite instability

976 mUC: Metastatic urothelial carcinoma

977 NE-like: Neuroendrocrine-like

978 NMF: Non-negative matrix factorization

979 NMIBC: Non-muscle invasive bladder cancer

980 RNA-seq: RNA sequencing

981 SNV: Single nucleotide variant

982 SV: Structural variant
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TAF: Tumor allele frequency

TCGA: The Cancer Genome Atlas

TMB: Tumor mutational burden

UC: Urothelial carcinoma

UTUC: Upper tract urothelial carcinoma

VEP: Variant effect predictor

WES: whole-exome sequencing

WGS: Whole-genome sequencing
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