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Abstract 32 

Background: Molecular characterization of primary urothelial carcinoma (UC) revealed molecular subtypes 33 

with different genomic, transcriptomic, and clinicopathological characteristics, which might guide therapeutic 34 

decision making. A comprehensive molecular characterization of metastatic UC (mUC), however, is currently 35 

lacking in the literature. Because of the lethality of mUC, with few therapeutic options available for patients, a 36 

multi-omics characterization of mUC could aid to improve patient selection for new and existing therapies. 37 

Methods: To define the molecular landscape of mUC and to identify potential targets for therapy, we 38 

performed whole genome DNA sequencing on fresh-frozen metastatic tumor biopsies of 116 mUC patients, 39 

and mRNA sequencing on 90 matched biopsies. 40 

Results: Hierarchical clustering based on mutational signatures revealed two major genomic subtypes. The 41 

most prevalent subtype (67%) consisted almost exclusively of tumors with high APOBEC mutagenesis. APOBEC 42 

mutagenesis was detected in 91% of the samples, and appeared to be an ongoing process in mUC based on 43 

analysis of eight patients from whom serial biopsies were obtained during treatment. Contrary to the overall 44 

distribution of mutations, APOBEC associated mutations occurred throughout the genome, and independently 45 

of predicted accessible or transcribed genomic regions, suggesting that these mutations were generated 46 

during replication. Transcriptomic analysis revealed five mRNA-based subtypes: two luminal subtypes (40%), a 47 

stroma-rich (24%), basal/squamous (23%), and non-specified subtype (12%). The transcriptomic subtypes were 48 

different regarding driver gene alterations (e.g. ELF3 and TSC1), gene amplifications (NECTIN4 and PPARG), 49 

pathway activity, and immune cell infiltration. By integrating the genomic and transcriptomic data, potential 50 

therapeutic options per transcriptomic subtype and individual patient were proposed. 51 

Conclusions: This study expands our knowledge on the molecular landscape of mUC, and serves as a reference 52 

for subtype-oriented and patient-specific research on the etiology of mUC, and for novel drug development. 53 

Trial registration: The mUC cohort studied here is part of the Netherlands nationwide study of the center for 54 

personalized cancer treatment consortium (CPCT-02 Biopsy Protocol, NCT01855477), and the Drug 55 

Rediscovery Protocol (DRUP Trial, NCT02925234).   56 
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Background 59 

Urothelial cancer (UC) is a molecularly and clinically heterogeneous disease. Non-muscle invasive bladder 60 

cancer (NMIBC) is characterized by excellent survival but high recurrence rates, whereas muscle-invasive 61 

bladder cancer (MIBC) has high metastatic potential and poor patient outcome despite aggressive local and 62 

systemic treatment [1]. Comprehensive molecular profiling of UC has been restricted to NMIBC [2] and 63 

localized MIBC [3]. At the genomic level, NMIBC is characterized by frequent FGFR3 and PIK3CA mutations, 64 

whereas TP53 mutations are uncommon [1]. In MIBC, TP53 is the most commonly mutated gene [4]. The 65 

Cancer Genome Atlas (TCGA) initiative molecularly characterized 412 chemotherapy-naïve primary MIBC 66 

patients and found that a subgroup of patients had high Apolipoprotein B mRNA Editing Catalytic Polypeptide-67 

like (APOBEC) signature mutagenesis and high mutational burden. The patients in this subgroup had an 68 

excellent 5-year overall survival rate of 75% [3]. At the transcriptomic level, MIBC can be stratified into basal 69 

and luminal subtypes. A recent study proposed a consensus molecular classification of MIBC, consisting of six 70 

subtypes: basal/squamous, luminal non-specified, luminal papillary, luminal unstable, neuroendocrine-like 71 

(NE-like), and stroma-rich [5]. These subtypes included distinct genomic alterations and clinical and 72 

pathological characteristics, which might guide therapeutic decision making. 73 

A comprehensive multi-omics characterization of mUC has not yet been performed. A previous study reported 74 

the clonal evolution of mUC by whole-exome sequencing (WES) in a cohort of 32 chemotherapy-treated 75 

patients, and showed that APOBEC mutagenesis was clonally enriched in chemotherapy-treated mUC [6]. 76 

Expanding the knowledge on the molecular characteristics of mUC is crucial for more robust and accurate 77 

patient stratification and for rational drug development paths that will eventually improve the outcome of this 78 

lethal cancer. In the present study, we conducted a comprehensive genomic and transcriptomic analysis of 79 

freshly obtained metastatic biopsies of 116 mUC patients, with the aim of identifying key molecular insights 80 

into tumorigenesis and defining molecular subtypes of mUC.  81 
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Methods 82 

Patient cohort and study procedures 83 

Between 07 June 2012 up to and including 28 February 2019, patients with advanced or mUC (n = 210) from 23 84 

Dutch hospitals (Fig. 1a, Fig. S1) who were scheduled for 1st or 2nd line palliative systemic treatment were 85 

included in the Netherlands nationwide study of the Center for Personalized Cancer Treatment (CPCT) 86 

consortium (CPCT-02 Biopsy Protocol, NCT01855477 [7]) and the Drug Rediscovery Protocol (DRUP Trial, 87 

NCT02925234), which aimed to analyze the cancer genome and transcriptome of patients with advanced 88 

cancer. The CPCT-02 and DRUP study protocols were approved by the medical ethics review board of the 89 

University Medical Center Utrecht and the Netherlands Cancer Institute, respectively. Patients eligible for 90 

inclusion were those aged ≥ 18 years old, with locally advanced or mUC, from whom a histological tumor 91 

biopsy could be safely obtained, and whom had an indication for initiation of a new line of systemic treatment 92 

with anti-cancer agents. Written informed consent was obtained from all participants prior to inclusion in the 93 

trial; the studies comply with all relevant ethical regulations. Tumor biopsies and matched normal blood 94 

samples were collected following a standardized procedure described by the Hartwig Medical Foundation 95 

(HMF; https://www.hartwigmedicalfoundation.nl; [7]). Whole genome sequencing (WGS) was successfully 96 

performed on DNA from freshly obtained biopsies from metastatic sites in 116 mUC patients (124 samples), 97 

and matched RNA-sequencing (RNA-seq) data was available for 90 patients (97 samples; Fig. 1a). Patient 98 

characteristics are described in Table S1.1. Biopsies were obtained from a safely accessible site, including 99 

lymph nodes, liver, bone and other organs (Fig. 1b). In five patients, a tumor biopsy was obtained from the 100 

primary bladder or upper urinary tract tumor as no safely accessible metastatic lesion was present. In two 101 

patients, a biopsy was obtained from a local recurrence after cystectomy and nephrectomy, respectively (Table 102 

S1.2). Sequential biopsies of a metastatic lesion taken at the time of clinical or radiological disease progression 103 

from eight patients were additionally sequenced. This study extends the pan-cancer analysis of Priestley et al., 104 

2019, in which WGS (but not RNA-seq) data of 72 mUC patients included in the current cohort were initially 105 

analyzed (Table S1.2). 106 

 107 

 108 
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 109 

Figure 1 – Overview of the study design and biopsy sites of 116 patients with metastatic urothelial cancer 110 

a) Flowchart of patient inclusion. Patients with advanced or metastatic urothelial cancer who were 111 

scheduled for systemic palliative treatment were selected from the prospective Center for 112 

Personalized Cancer Treatment (CPCT-02) patient cohort and the Drug Rediscovery Protocol (DRUP 113 

Trial (n = 210). Patients were excluded if the tumor cell percentage in the biopsy was <20%, resulting 114 

in WGS data and RNA-seq for 116 and 90 patients, respectively. Tissue slides of 79 patients were 115 

available for central pathology review (primary tumor and/or metastatic biopsy). DNA +8 and RNA +7 116 

indicate the numbers of patients from whom a second biopsy was obtained at disease progression. 117 

b) Overview of the number of biopsies per site analyzed by WGS. * Other biopsy sites included 118 

abdominal or pelvic masses (n = 3), adrenal gland (n = 1), and brain (n = 1), or unspecified biopsy site 119 

(n = 1). 120 

 121 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


Central pathology review 122 

Tumor tissue slides for central pathological revision of the diagnosis of UC was available for 79/116 patients. 123 

Hematoxylin and eosin (H&E) stained slides from primary tumor tissues (cystectomy and transurethral 124 

resection specimens of the bladder, n = 23 patients), metastatic tumor biopsies (n = 15 patients), or both (n = 125 

41 patients) were requested from the Nationwide Network and Registry of Histo- and Cytopathology in the 126 

Netherlands (PALGA) [8]. Tissue slides and corresponding pathological reports were provided anonymously. All 127 

patient materials used for central pathology review were obtained within the CPCT-02 biopsy protocol, the 128 

DRUP trial, or during routine patient care, and the use of these materials for research purposes was approved 129 

by the medical ethics review board of the Erasmus University Medical Center, Rotterdam, the Netherlands 130 

(MEC-2019-0188). H&E slides were reviewed by an expert genitourinary pathologist (LLB), and used for re-131 

evaluation of the diagnosis and description of aberrant histology (Tables S1.3 and S1.4). Tumors were classified 132 

as pure UC (n = 66), or predominant UC with variant histology (n = 9 squamous, n = 3 neuro-endocrine, n = 1 133 

micropapillary UC), and pure squamous cell bladder carcinomas (n = 3). In patients for whom both the primary 134 

and the metastatic tumor biopsy was available for review, the highest grade (WHO 1973 classification) was 135 

assigned, and presence of aberrant histology in one of the tissue samples was considered as positive.  136 

 137 

Whole-genome sequencing and analysis 138 

Whole-genome DNA sequencing, alignment and data processing 139 

Sufficient amount of DNA (50-200 ng) was extracted  from fresh-frozen tumor tissue and blood samples 140 

following standard protocols from Qiagen. DNA was fragmented by sonication for NGS Truseq library 141 

preparation and sequenced paired-end reads of 2x150 bases with the Illumina HiSeqX platform. Alignment, 142 

somatic alterations, ploidy, sample purity and copy numbers estimations were performed as previously 143 

described [7]. WGS was aligned to the human reference genome GRCH37 with BWA-mem v.0.7.5a [9], and 144 

duplicate reads were marked for filtering. Indels were realigned using GATK IndelRealigner v3.4.46 [10]. 145 

Recalibration of base qualities for single nucleotide variants (SNVs) and small insertions and deletions (Indels) 146 

was performed with GATK BQSR [11], and SNV and Indel variants were evaluated with Strelka v.1.0.14 [12] 147 

using matched blood WGS as normal reference (Table S1.5). Somatic mutations were further annotated with 148 
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Ensembl Variant Effect Predictor (VEP, v99, cache 99_GRCh37) [13] using GENCODE v33 in combinations with 149 

the dbNSFP plugin v3.5 hg19 [14] for gnomAD [15] population frequencies. SNVs, Indels and multiple 150 

nucleotide variants (MNVs) variants were removed if the following filters were not passed: default Strelka 151 

filters (PASS-only), gnomAD exome (ALL) allele frequency < 0.001, gnomAD genome (ALL) < 0.005 and number 152 

of reads < 3. In addition, structural variants (SVs) and copy number changes were estimated using GRIDSS, 153 

PURPLE and LINX suit v2.25 [16]. SVs that passed the default QC filters (PASS-only) and Tumor Allele Frequency 154 

(TAF) ≥ 0.1 were annotated as “somatic SVs” if there was overlap with coding region. Mean read coverages of 155 

tumor and reference samples were estimated using Picard Tools v1.141 (CollectWgsMetrics) based on GRCh37 156 

(https://broadinstitute.github.io/picard/). Genomic and coding tumor mutational burden (TMB; mutations per 157 

megabase pair (Mbp)) were calculated considering SNVs, Indels and MNVs (Table S1.5). The total number of 158 

somatic mutations in coding region was divided by 28.71 Mbp (protein-coding region size) and in the whole 159 

genome by 2,858.67 Mbp (genomic alignment size). 160 

 161 

Detection of driver genes using dN/dS ratios 162 

Cancer driver genes under strong positive selection were detected with dNdScv v0.0.0.9 [17]. This method 163 

uses 192 mutation rates representing all combinations in trinucleotide context. Mutation rates of each gene 164 

were corrected by the global mutation rate. The ratio of non-synonymous over synonymous mutations was 165 

calculated with maximum-likelihood methods, and statistical significance was estimated. Genes with either 166 

qglobal_cv ≤ 0.05 or qallsubs_cv ≤ 0.05 were considered drivers of mUC (Table S1.6 and 1.7). 167 

 168 

Detection and characterization of recurrent copy number alterations 169 

Ploidy and copy number alterations (CNAs) were estimated as described by Priestley et al. 2019; and following 170 

the pipeline described by van Dessel et al., 2019. Recurrent focal and broad CNAs were estimated with 171 

GISTIC2.0 v2.0.23 [19]. CNAs were classified as shallow or deep according to the threshold in GISTIC2 calls. 172 
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Significant recurrent focal CNAs were identified when q ≤ 0.05 and annotated with genes overlapping these 173 

regions, which were considered drivers (Table S1.7 and 1.8). 174 

 175 

APOBEC enrichment and mutagenesis 176 

For each sample, the total number of C>T or C>G (G>A or G>C) mutations was calculated (Cmut (C>T,C>G)). From 177 

these mutations, the total number of APOBEC mutations was estimated by counting all mutations in TCW 178 

(WGA) context (TCWCmut), where W = A or T. The total number of TCW (WGA) motifs and total C (G) 179 

nucleotides in the hg19 reference genome were also estimated (TCWcontext and Ccontext, respectively). Using this 180 

information and following Roberts et al., 2013 , a contingency table was constructed; one-sided Fisher’s exact 181 

test was applied to calculate the overrepresentation of APOBEC mutations. P-values were Benjamini-Hochberg 182 

corrected. Tumors with adjusted p-values lower than 0.01 were considered APOBEC enriched. 183 

The magnitude of APOBEC enrichment E was estimated as [20] 184 

끫歰 = TCW끫歬끫歬끫歬끫歬 ∙ C끫殠끫殠끫殠끫歬끫殠끫殠끫歬
TCW끫殠끫殠끫殠끫歬끫殠끫殠끫歬 ∙ C끫歬끫歬끫歬(끫歬>끫殎,끫歬>끫歴) . (1) 185 

APOBEC enriched tumors (always E > 1) were classified as high APOBEC mutagenesis when E ≥ 2, and as low 186 

APOBEC mutagenesis when E < 2. Tumors without APOBEC enrichment were considered tumors with no 187 

APOBEC mutagenesis (Table S1.9). 188 

It has been shown that mutations caused by APOBEC3A and APOBEC3B are distinguishable at the tetra-189 

nucleotide context [21]. Mutations in the YTCA (Y = T or C) context have been related to APOBEC3A, while 190 

mutations in the RTCA (R = G or A) context are attributed to APOBEC3B. Fold enrichment of C>T and C>G 191 

mutations in the tetra YTCA and RTCA context was calculated with equation (1), using the corresponding tetra-192 

nucleotide context (Table S1.9).  193 

 194 
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Clonality fraction estimation 195 

Mutations start as a single copy in the DNA, and multiple copies of the mutated nucleotide may appear if 196 

affected by CNAs events. Correcting for tumor purity and CNA, the number of copies nSNV of each SNV was 197 

calculated as follows [22] 198 

끫殶끫殌끫殌끫殌 = 끫殦끫歬끫殺 [끫殺끫歬끫歬 + (1 − 끫殺)끫歬ℎ], (2) 199 

where fm is the relative frequency of the mutant variant reads, p is the tumor purity, Ct is the local copy 200 

number affecting a particular SNV, and Ch is the healthy copy number (two for autosomes and one for 201 

allosomes). 202 

Equation (2) is equivalent to the cancer cell fraction (CCF) with nSNV ≈ 1 in haploid and heterozygous-diploid 203 

regions; i.e., the fraction of tumor cells carrying a particular mutation. For regions with CNAs, nSNV > 1, we must 204 

estimate the fraction of cancer cells carrying a particular SNV. As described previously [23], we assume that all 205 

SNVs are present in the major copy number CM; hence nSNV ≤ CM will include mutations that were acquired 206 

after copy number change events or present only in the minor copy number. Given the number of reference 207 

and mutant reads, and assuming binomial distribution, we estimated the expected number of allelic copies 208 

(nchr) carrying the observed SNV resulting from fm values when the mutation is present in 1, 2, 3,…, Nchr allelic 209 

copies. In some cases (sequencing noise) nSNV > CM, which was corrected with Nchr = max(CM, nSNV). We also 210 

corrected each fm value with normal cell contamination – multiplying it by p. The resulting estimated nchr with 211 

the maximum likelihood serves to calculate the CCF as nSNV/nchr. 212 

Dirichlet process from DPClust v2.2.8 (https://github.com/Wedge-lab/dpclust) with 250 iterations and 125 213 

burn in iterations was applied to the CCF distribution to estimate the fraction of clonal and subclonal SNVs per 214 

tumor. Multiple distributions (clusters) were obtained, representing different cancer cell populations. The 215 

mean of the distributions was used to classify clusters of SNVs as clonal or subclonal. Clusters of SNVs with 216 

mean distribution > 0.8 were considered clonal (Table S1.5). 217 

 218 
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Mutational signatures and genomic subtypes 219 

The mutational pattern of each sample was established by categorizing SNVs according to their 96-220 

trinucleotide context. The contribution of each of the 67 mutational signatures from COSMIC v3 (as deposited 221 

on May 2019) [24] was subsequently estimated with MutationalPatterns v1.4.2 (Table S1.10) [25]. To reduce 222 

the noise attributed to mutational signatures with very low contribution, mutational signatures were grouped 223 

into 26 proposed etiology categories (Table S1.11) derived from Alexandrov et al., 2020, Petljak et al., 2019, 224 

Angus et al., 2019 and Christensen et al., 2019. All 26 proposed etiology contributions were used, and 225 

hierarchical clustering was applied on 1-Pearson’s correlation coefficient, 80% resampling and 1,000 iterations 226 

using ConsensusClusterPlus v1.48.0 [30]. Considering average stability of each cluster and the cluster size 227 

(favoring large clusters) after each partition, samples were grouped into five distinct clusters. 228 

Independently, mutational patterns were deconvoluted to estimate de novo mutational signatures. Non-229 

negative Matrix Factorization from the NMF R package v0.21.0 was used with 1000 iterations [31]. Evaluating 230 

different metrics provided by the NMF R package (high cophenetic correlation coefficient, high dispersion 231 

coefficient, high silhouette consensus, high sparseness basis and low sparseness coefficients), seven de novo 232 

signatures were recovered from the mutational patterns. Cosine similarity was applied to compare the de novo 233 

signatures with mutational signatures from COSMIC v3. 234 

 235 

Detection of chromothripsis 236 

Genomic catastrophic-like events, such as chromothripsis, were detected with Shatterseek v0.4 [32] using 237 

default parameters. Absolute copy numbers (as derived by PURPLE) were rounded to the nearest integer; only 238 

structural variants with TAF ≥ 0.1 at either end of the breakpoint were considered, and chrY was excluded. 239 

Applying the filters suggested by Cortés-Ciriano, et al. [32], we identified 220 chromothripsis events suggesting 240 

an enrichment in mUC compared to primary UC from the PCAWG dataset [31] (76% vs 48%, p = 0.011). 241 

Inspecting manually these events, we concluded that a more stringent filter should be used to reduce the rate 242 

of false positive events. The following filters were applied and chromothripsis was considered when: a) the 243 

number of intra-chromosomal structural variants ≥ 25; b) the maximum number of oscillating CN segments 244 
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with two states ≥ 7 or with three states ≥ 14; c) the size of the chromothripsis event ≥ 20 Mbp; d) random 245 

distribution of breakpoints p ≤ 0.05; and e) chromosomal breakpoint enrichment p ≤ 0.05. All 220 246 

chromothripsis events are summarized in Table S1.12, indicating those detected by the stringent filtering, 247 

which we refer to as chromothripsis throughout the text. 248 

 249 

MicroSatellite Instabilty (MSI) status 250 

As previously described [7], MSI status was determined by estimating the MSI score as the number of indels 251 

(length < 50 bp) per Mbp occurring in homopolymers of five or more bases, dinucleotide, trinucleotide and 252 

tetranucleotide sequences of repeat count above five. Tumors with MSI score > 4 were considered MSI 253 

positive (Table S1.13). 254 

 255 

Detection of homologous recombination (HR) deficiency 256 

The Classifier for Homologues Recombination Deficiency (CHORD; v2.0) with default parameters was used to 257 

identify tumors with HR proficiency and deficiency [33]. Four samples had very high number of indels 258 

corresponding with MSI samples and were discarded for the HR deficiency analysis (Table S1.14). 259 

 260 

Detection of kataegis 261 

Following the method described by van Dessel et al. 2019, kataegis events were estimated using all SNVs. Each 262 

chromosome was divided into segments (maximum 5000 segments) of five or more consecutive SNVs. 263 

Segments were considered a kataegis event when the mean intermutational distance was ≤ 2000 bp (Table 264 

S1.15). Events were considered APOBEC-driven when >60% of mutations were C>T or C>G mutations in TCW 265 

context. 266 

 267 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mutational load across genomic regions  268 

The genome was divided in regions (bins) of one Mbp size. The number of SNVs was counted in each bin, and 269 

the mean number of SNVs was estimated from the entire cohort. These values represented the average 270 

SNVs/Mbp reflecting the mutational load in each genomic region. The average SNVs/Mbp was smoothed by 271 

applying a moving average with k = 9 bins. This approach was used per sample and for mean values from the 272 

entire cohort. 273 

 274 

Genomic alteration of oncogenic pathways  275 

Eleven oncogenic pathways were analyzed for somatic alterations. The list of genes was modified from 276 

Sanchez-Vega et al., 2018 and Leonard, 2001 (Table S1.16). Altered pathways were defined when at least one 277 

of the pathway-genes was affected by any somatic mutation (SNV, Indel, MNV, SV or deep CNA; excluding 278 

synonymous mutations). 279 

 280 

Inventory of clinically-actionable somatic alterations and putative therapeutic targets 281 

Current clinical relevance of somatic alterations in relation to putative treatment options or resistance 282 

mechanisms and trial eligibility was determined based upon the following databases: CiViC [36] (Nov. 2018), 283 

OncoKB [37] (Nov. 2018), CGI [38] (Nov. 2018) and the iClusion (Dutch) clinical trial database (Sept. 2019, 284 

Rotterdam, the Netherlands). The databases were aggregated and harmonized using the HMF knowledgebase-285 

importer (v1.7; https://github.com/hartwigmedical/hmftools/tree/master/knowledgebase-importer). 286 

Subsequently, we curated the linked putative treatments and selected treatments for which level A (biomarker 287 

for approved therapy or in guidelines) or level B (biomarker on strong biological evidence or used in clinical 288 

trials) evidence was available. Genomic alterations that confer resistance to certain therapies were excluded 289 

from the analysis. Treatment strategies including anti-hormonal therapy (as used for breast and prostate 290 

cancer), surgical resection, or radioiodine uptake therapy were excluded. Furthermore, closed trials (according 291 

to www.clinicaltrials.gov), and trials with only pediatric patients or patients with hematological malignancies 292 

were excluded (Table S1.17). The data base was complemented with FGFR3 and NTRK2 gene fusions (at RNA 293 
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level) and patients with MSI high and HR deficient tumors. On-label treatments included chemotherapy 294 

(cisplatin, gemcitabine, doxorubicin, mitomycin, and valrubicin) and the FGFR3 inhibitor erdafitinib. Off-label 295 

treatments included treatments that are on-label for other tumor types (FDA approved drugs according to the 296 

US national cancer institute; https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type), and 297 

treatments available in clinical trials or basket trials. When patients had more than one possible treatment, on-298 

label treatment was the preferred treatment, followed by on-label treatments for other tumor types. 299 

 300 

DNA accessibility estimation (ChIPseq) 301 

All available ChIPseq data for healthy urinary bladder (H3K4me1, H3K4me3, H3K36me3 and H3K27ac) were 302 

downloaded from the ENCODE portal (https://www.encodeproject.org) to our local server. The bed.gz files 303 

were imported with narrowPeak format for analysis. The signal of each experiment was divided in regions of 304 

one Mbp, and a moving average with k = 9 bins was applied. The scale of the signal was normalized; hence the 305 

sum of all regions in a chromosome is one. This step was taken to compensate for the bias observed in peak 306 

intensity signals across different chromosomes, possible due to technical issues in the ChIPseq technology, e.g. 307 

hyper-ChIPable regions or mappability [39]. 308 

High DNA accessible regions (open chromatin) were determined as such if the ChIPseq signal value of the 309 

region was above the median. Otherwise, the region was considered as low DNA accessible (condensed 310 

chromatin). This procedure was applied on each chromosome.  311 

 312 

Whole-transcriptome sequencing and analysis 313 

RNA-sequencing, alignment and data pre-processing 314 

Total RNA was extracted using the QIAGEN QIAsymphony kit (Qiagen, FRITSCH GmbH, Idar-Oberstein, 315 

Germany). Samples with a minimum of 100 ng total RNA were sequenced according to the manufacturer’s 316 

protocols. Paired-end sequencing of RNA was performed on the Illumina NextSeq 550 platform (2x75bp) and 317 

Illumina NovaSeq 6000 platform (2x150bp). 318 
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Prior to alignment, samples were visually inspected with FastQC v0.11.5. Sequence adapters (Illumina TruSeq) 319 

were trimmed using Trimmomatic v0.39 [40] at the following settings: 320 

ILLUMINACLIP:adapters.fa:2:30:10:2:keepBothReads MINLEN:36. The trimmed paired-end reads were aligned 321 

to the human reference (GRCh37) using STAR v2.7.1a [41] with genomic annotations from GENCODE hg19 322 

release 30 [42]. Multiple lanes and runs per sample were aligned simultaneously and given respective read-323 

group identifiers for use in downstream analysis to produce two BAM files per sample, consisting of genome- 324 

and transcriptome-aligned reads respectively. 325 

STAR was performed using the following command:  326 

STAR --genomeDir <genome> --readFilesIn <R1> <R2> --readFilesCommand zcat --outFileNamePrefix 327 

<outPrefix> --outSAMtype BAM SortedByCoordinate --outSAMunmapped Within --chimSegmentMin 12 --328 

chimJunctionOverhangMin 12 --chimOutType WithinBAM --twopassMode Basic --twopass1readsN -1 --329 

runThreadN 10 --limitBAMsortRAM 10000000000 --quantMode TranscriptomeSAM --outSAMattrRGline <RG> 330 

After alignment, duplicate reads were marked and alignment quality metrics (flagstat) were generated using 331 

Sambamba v0.7.1 [43]. For each genome-aligned sample, the uniformity of read distributions across transcript 332 

lengths was assessed using tin.py v2.6.6 [44] from the RseQC library v3.0.0 [45]. 333 

FeatureCounts v1.6.3 [46] was applied to count the number of overlapping reads per gene using genomic 334 

annotations from GENCODE (hg19) release 30 [42]; only primary (uniquely mapped) reads were counted per 335 

exon and summarized per gene: 336 

featureCounts -T 50 -t exon -g gene_id --primary -p -s 2 -a <gencode> -o <output> <genomic BAMs> 337 

RSEM v1.3.1 [47] was applied to quantify RNA expression into transcripts per million (TPM) values using 338 

transcript annotations from GENCODE (hg19) release 30 [42]: 339 

rsem-calculate-expression --bam --paired-end --strand-specific --alignments -p 8 <transcriptome BAM> <RSEM 340 

Index> <output> 341 

 342 
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Transcriptome expression data mapped to genomic regions 343 

MultiBamSummary from deepTools v1.30.0 [48] was used to read BAM files and estimate number of reads in 344 

genomic regions with a size of one Mbp. The average raw read count per Mbp was calculated, and a moving 345 

average with k = 9 bins was applied. The scale of the read counts was normalized following the method for 346 

DNA accessibility regions, and high transcriptional regions were defined as such when the expression value of 347 

one region was above the median. This procedure was applied on each chromosome. 348 

 349 

Transcriptomic subtypes: clustering samples by RNA-seq data 350 

Several methods have been proposed to classify bladder cancer into transcriptomic subtypes. In an attempt to 351 

standardize the molecular profiling of bladder cancer, a consensus molecular classification was proposed for 352 

MIBC based on RNA-seq data from 1750 patients [5]. This classifier was developed strictly for MIBC and is not 353 

directly applicable to mUC [49]. Furthermore, this classifier was developed for samples derived from the same 354 

organ carrying transcriptomic contamination of normal urothelial cells. In this study, biopsies were obtained 355 

from metastatic sites leading to contamination with normal cells from multiple different organs for which no 356 

correction was applied in the consensus classifier. Therefore, it was mandatory to perform de novo subtyping 357 

in this study, which is described below.  358 

Multiple methods were explored to correct for the bias of biopsy site, including batch-correction with DESeq2 359 

[50], and a tissue-aware correction method developed by the Genotype-Tissue Expression (GTEx) project [51]. 360 

In both cases, transcripts from liver tissue were very dominant and clustered together in one stable cluster. 361 

The tissue-specific transcript removal method described above was successfully able to correct for organ-362 

specific transcripts, and as a result samples were clustered based on transcriptomic features rather than 363 

biopsy site. 364 

Transcripts were normalized using DESeq2 v1.24.0 [50] with variance stabilizing transformation. Only highly 365 

expressed mRNA with base mean above 100 was kept. The top 50% most variably expressed genes (6,410 366 

transcripts) were used for clustering. To reduce the ‘transcriptomic noise’ introduced by normal cells of the 367 

tissue from which the biopsy was taken, these transcripts were identified and excluded. Samples were grouped 368 
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according to their biopsy site: liver (n = 31), lymph node (n = 30), bone (n = 5), other (n = 23) and unknown 369 

(n=1). Differential expression analysis was performed to compare tumors from a specific biopsy site (liver, 370 

lymph node and bone) against all other tumors using DESeq2 with Wald test p-value estimation. Tissue-specific 371 

transcripts with log2 Fold Change (log2FC) > 1.0 and Benjamini-Hochberg corrected p-value < 0.05 were 372 

considered differentially expressed and identified as tissue-specific (Table S1.18). A total of 689 transcripts 373 

were tissue-specific, and were removed from the data set. 374 

The remaining 5,721 transcripts were grouped by hierarchical clustering with 1-Pearson’s correlation 375 

coefficient, 80% resampling and 1,000 iterations using ConsensusClusterPlus v1.48.0 [30]. The mean cluster 376 

consensus value was obtained as a measure of cluster stability. Increasing the number of clusters will increase 377 

the stability by creating smaller clusters. Taking this into account, the criteria for selecting five clusters was 378 

based on cluster stability and cluster size by not allowing clusters with <5 samples (Table S1.19). Patients with 379 

primary upper tract tumors did not cluster together as was observed for biopsy sites, instead they were 380 

distributed across all different transcriptomic clusters (Fig. 5), suggesting that their influence on the clustering 381 

was negligible.  382 

To identify transcripts that contribute most to each cluster, we followed the same strategy used to identify 383 

tissue-specific transcripts. The top five transcripts with the highest log2FC and with Benjamini-Hochberg 384 

adjusted p-values lower than 1x10-5 were identified as the most overexpressed genes per cluster. Other 385 

differentially expressed genes were included for their clinical relevance (TGFB3, DDR2, PDGFRA, CD274 and 386 

TGFBR1). All differentially expressed genes per cluster with adjusted p < 1x10-5 and log2FC > 1 are listed in 387 

Table S1.20. 388 

To compare our classification system developed for mUC with the consensus classifier, all samples were 389 

classified into one of six molecular classes identified in MIBC. All normalized transcripts (excluding biopsy 390 

specific transcripts) were used as input for the consensus classifier of primary MIBC (v1.1.0) [5]. 391 

 392 
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Phenotypic markers and signature score 393 

Marker genes for basal (CD44, CDH3, KRT1, KRT14, KRT16, KRT5, KRT6A, KRT6B, KRT6C), squamous (DSC1, 394 

DSC2, DSC3, DSG1, DSG2, DSG3, S100A7, S100A8), luminal (CYP2J2, ERBB2, ERBB3, FGFR3, FOXA1, GATA3, 395 

GPX2, KRT18, KRT19, KRT20, KRT7, KRT8, PPARG, XBP1, UPK1A, UPK2), neuroendocrine (CHGA, CHGB, SCG2, 396 

ENO2, SYP, NCAM1), cancer-stem cell (CD44, KRT5, RPSA, ALDH1A1), EMT (ZEB1, ZEB2, VIM, SNAI1, TWIST1, 397 

FOXC2, CDH2) and claudin (CLDN3, CLDN7, CLDN4, CDH1, SNAI2, VIM, TWIST1, ZEB1, ZEB2) were used for 398 

signature scores [3]. Stroma (FAP), interferon, and CD8+ effector T cell (IFNG, CXCL9, CD8A, GZMA, GZMB, 399 

CXCL10, PRF1, TBX21) markers were also included [52]. All normalized expression values were median 400 

centered, and the mean expression of each group of genes was defined as signature score. 401 

 402 

Pathway activity score 403 

Transcriptionally activated genes by the eleven canonical pathways analyzed in this study were used to 404 

estimate pathway activity score. All normalized expression values were median centered, and the mean 405 

expression of each group of genes was defined as activity score. Activity score was estimated for the TGFβ 406 

pathway (ACTA2, ACTG2, ADAM12, ADAM19, CNN1, COL4A1, CCN2, CTPS1, RFLNB, FSTL3, HSPB1, IGFBP3, 407 

PXDC1, SEMA7A, SH3PXD2A, TAGLN, TGFBI, TNS1, TPM1) [53], cell cycle pathway (MKI67, CCNE1, BUB1, 408 

BUB1B, CCNB2, CDC25C, CDK2, MCM4, MCM6, MCM2) [52], WNT pathway (EFNB3, MYC, TCF12, VEGFA) [53], 409 

Notch pathway (HES1, HES5, HEY1) [54], PI3K pathway (AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, 410 

CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, 411 

PPARGC1A, PRDX3, RBL2, SOD2, TNFSF10) [55], hippo pathway (TAZ, YAP1) [56], p53 pathway (CDKN1A, 412 

RRM2B, GDF15, SUSD6, BTG2, DDB2, GADD45A, PLK3, TIGAR, RPS27L, TNFRSF10B, TRIAP1, ZMAT3, BAX, 413 

BLOC1S2, PGF, POLH, PPM1D, PSTPIP2, SULF2, XPC) [57], Nrf2 pathway (GCLM, NQO1, PHGDH, PSAT1, SHMT2) 414 

[58], MYC pathway (TFAP4, BMP7, CCNB1, CCND2, CCNE1, CDC25A, CDK4, CDT1, E2F1, GATA4, HMGA1, 415 

HSP90AA1, JAG2, CDCA7, LDHA, MCL1, NDUFAF2, MTA1, MYCT1, NPM1, ODC1, SPP1, PIN1, PTMA, PRDX3, 416 

PRMT5, DNPH1, TFRC, EMP1, PMEL, C1QBP) [59], RTK-RAS pathway (SPRY2, SPRY4, ETV4, ETV5, DUSP4, 417 

DUSP6, CCND1, EPHA2, EPHA4) [60] and JAK-STAT pathway (IRGM, ISG15, GATA3, FCER2, THY1, NFIL3, ARG1, 418 

RETNLB, CLEC7A, CHIA, OSM, BCL2L1, CISH, PIM1, SOCS2, GRB10) [61]. 419 
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Pathway enrichment analysis 420 

All differentially expressed genes with Benjamini-Hochberg adjusted p < 0.05 and absolute log2FC > 1 in each 421 

transcriptomic subtype were used for pathway enrichment analysis. Using reactomePA v1.34 [62], the top ten 422 

(sorted by Benjamini-Hochberg adjusted p-value) up- and down-regulated pathways were selected. 423 

 424 

Immune cell infiltration 425 

To quantify immune cell fractions in each sample, we analyzed RSEM read counts of all transcripts with 426 

immunedeconv v2.0.3 [63] using the quanTIseq method [64]. 427 

 428 

Detection of gene fusions 429 

In-frame gene fusions were detected at DNA level by the GRIDSS, PURPLE, LINX suite v2.25 [16], and reported 430 

relevant if they appear in the ChimerDB 4.0 (Table S1.21) [65]. At RNA level, Arriba v2.0.0 431 

(https://github.com/suhrig/arriba/) was used to infer gene fusion events with the option to discard known 432 

false positives from a list provided by Arriba. High confidence fusions were retained, and only events where at 433 

least one transcript is protein coding were kept (Table S1.22). Gene fusions previously identified by other 434 

studies, mostly from the TCGA data, were identified with ChimerDB 4.0 [65]. All “deletion/read-through” 435 

events were discarded as possible false positives unless they were supported by the ChimerDB 4.0 database. 436 

Medium confidence fusions were included in the final list if one of the fused genes appeared in a high 437 

confidence fusion event. 438 

 439 

mRNA editing 440 

Jalili, et al. 2017 [67] identified hotspot mutations in the mRNA of DDOST and CYFIP1 that are targeted by 441 

APOBEC3A. The genomic position of these hotspot mutations reveals hairpin loop structures that are the ideal 442 

substrate for APOBEC3A. Due to the short life-time of mRNA molecules, the presence of these hotspot 443 
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mutations reflects ongoing APOBEC mutagenesis. The proportion of C>U mutations in chr1:20981977 and 444 

chr15:22999350 were estimated to identify the RNA-editing activity of APOEBC3A. 445 

 446 

APOBEC mutation rate and APOBEC expression in tumors with multiple sequential biopsies 447 

A second metastatic tumor biopsy was taken in eight patients from the same (n = 5) or a different (n = 3) 448 

metastatic lesion, and analyzed by WGS (n = 8) and RNA-seq (n = 7). Patients with high APOBEC mutagenesis (n 449 

= 5) tumors were all treated with pembrolizumab (one patient received consecutive lines of chemotherapy and 450 

pembrolizumab). Two out of three patients with low APOBEC mutagenesis tumors were treated with 451 

chemotherapy. All patients, except two, received systemic pre-treatment. 452 

Each patient’s first and second biopsies shared a high proportion of mutations (SNVs, Indels and MNVs), 453 

confirming the clonal relation of the sampled sites. Dirichlet process from the DPClust v2.2.8 R package 454 

(https://github.com/Wedge-lab/dpclust) with 250 iterations and 125 burn in iterations was applied to the CCF 455 

distribution of paired-biopsies to estimate the subclonal (clusters) composition of each tumor. All unique 456 

mutations in each biopsy were considered a subclone; only subclones with >5% of SNVs were considered 457 

relevant. Small populations of subclones (<5% of SNVs) were merged to the nearest subclone. The 458 

evolutionary tree was reconstructed following the sum rule [66]. 459 

The CCF of somatic mutations in the branches was lower than that in the trunk, suggesting that these 460 

mutations are recently acquired mutations. To compare APOBEC mutagenesis between patients, the rate of 461 

novel APOBEC associated mutations was estimated. Only unique SNVs from the second biopsy were kept, as 462 

these somatic alterations probably correspond to new mutations acquired during the time frame between the 463 

biopsies. As the time elapsed between the first and the second biopsy varied between tumors, we normalized 464 

the number of recent APOBEC associated mutations by dividing the total over the number of days elapsed 465 

between the biopsies. The value estimated is proportional to the mutation rate of APOBEC associated 466 

mutations (mutations per day). 467 

For seven tumors, RNA-seq data was available. Expression of APOBEC3A and APOBEC3B per patient represents 468 

the mean normalized expression of the paired biopsies. 469 
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Analysis of the The Cancer Genome Atlas primary bladder cancer cohort 470 

To compare the genomic and transcriptomic landscapes of mUC with primary bladder cancer, publicly 471 

available data of the TCGA bladder cancer cohort, including somatic mutations detected by Mutect (SNVs and 472 

Indels) of 412 tumors, GISTIC copy number changes at gene level of 410 tumors, and RNA-seq (HTSeq 473 

counts; Affymetrix SNP6 arrays) data available for 410 tumors were analyzed. Some samples had very few 474 

mutations, and only tumors with total SNVs > 50 were considered in this analysis (367/412). The same method 475 

applied on our mUC cohort was applied on the TCGA data to deconvolute mutational signatures and to identify 476 

genomic subtypes. Twelve genomic subtypes were identified, but several of them formed small groups with 477 

very specific mutational signature patterns, including one sample with very high POLE signature. All genomic 478 

subtypes with < 1% of the total cohort were grouped together in GenS0. We compared the genomic subtypes 479 

between mUC and the TCGA cohort using cosine similarity.  480 

Transcript counts were normalized with DESeq2 [50] following the same procedure used for the mUC cohort. 481 

All tumors were from primary UC, and organ-specific transcripts were not discarded. The consensus classifier 482 

of primary MIBC [5] was applied to infer the transcriptomic subtype of each tumor. 483 

 484 

Code availability 485 

All custom code and scripts are available at https://bitbucket.org/ccbc/dr31_hmf_muc/ and 486 

https://github.com/hartwigmedical/. 487 

 488 

Statistical analysis 489 

Several statistical tests were used in this study: Fisher’s exact test, T-test, binomial test, Wald test for 490 

differential expression analysis and logistic regression analysis, Wilcoxon signed-rank test, Wilcoxon rank-sum 491 

test, Kruskal-Wallis test, and tests performed by dNdScv [17] and GISTIC2 [19]. In cases of multiple testing, p-492 

values were Benjamini-Hochberg corrected. The appropriate statistical test is mentioned in the text when 493 

describing significance values. All statistical analyses were performed using the statistical computing and 494 

graphics platform R v3.6.1 [69].  495 
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Results 496 

Genomic landscape of mUC 497 

Analysis of WGS (mean coverage 106 X) and matched blood samples (mean coverage 38 X) identified a median 498 

of 20,634 SNVs, 1,018 Indels and 175 MNVs (Fig. S2a). SNVs were more frequent in coding regions (7.63 SNVs 499 

per Megabase pair; SNVs/Mbp) than in the whole genome (7.22 SNVs/Mbp; Wilcoxon signed-rank test p = 500 

0.0024; Supplementary Fig. 2b). However, Indels and MNVs were less frequent in coding regions (Wilcoxon 501 

signed-rank test p < 0.001 and p = 0.0072, respectively). Analysis of all SNVs revealed that 68% of all SNVs were 502 

clonal with a median of 74% per tumor, and that 91% of the tumors were enriched for APOBEC associated 503 

mutations (73% high and 18% low enrichment of APOBEC mutagenesis; Fig. 2a). The mean contribution of 504 

APOBEC COSMIC signatures (SBS2 and SBS13) in tumors with high APOBEC mutagenesis enrichment was 52% 505 

versus 15% in tumors with low APOBEC mutagenesis. 506 
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 507 

Figure 2 – Genomic landscape of metastatic urothelial carcinoma stratified by genomic subtypes 508 

a) Whole-genome sequencing data from biopsy samples of metastatic urothelial carcinoma were 509 

classified into genomic subtypes by hierarchical consensus clustering of the relative contribution of 510 

COSMIC v3 mutational signatures [24] grouped by etiology. The genomic features are displayed from 511 

top to bottom as follows: Genome-wide TMB; Genomic subtype (GenS1-5); APOBEC enrichment 512 

analysis showing tumors with no-, low- and high-APOBEC mutagenesis; Mutational signatures 513 

grouped by etiology, except for APOBEC activity for which both signatures are shown separately; 514 

Relative contribution of seven de novo (custom) mutational signatures by deconvolution of SNVs in 96 515 
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tri-nucleotide context with NMF; Relative frequency of different types of structural variants; Mean 516 

ploidy; Tumors with MSI; HR deficiency status; Samples with at least one chromothripsis event; 517 

Samples with at least one kataegis event; Female patients; Origin of primary tumor; Metastatic site 518 

from which a biopsy was obtained; Treatment-naïve patients. 519 

b) Overview of recurrent hotspot mutations, driver genes and gene fusions for the genomic subtypes 520 

GenS1 and GenS2. Name of genes affected by hotspot mutations in >5% of samples are displayed in 521 

red when the hotspot had a COSMIC id. Significantly mutated genes were estimated by dNdScv [17]; 522 

all genes with q < 0.05 were considered driver genes. Recurrent focal copy number changes were 523 

estimated by GISTIC2 [19]; genes in genomic regions with q < 0.05 were considered significant. Only 524 

affected genes present in >10% of the samples are shown. Gene fusions were detected from RNA-seq 525 

data. Benjamini-Hochberg adjusted p-values of Fisher’s exact test (for hotspot mutations and GISTIC2) 526 

and of logistic regression analysis corrected by mutational load (driver genes by dNdScv) are shown 527 

on the right to reflect the significance of the difference between GenS1 and GenS2. An additional 528 

logistic (logit) regression analysis was performed on hotspot mutations to show the linear relation 529 

with the number of APOBEC associated mutations. Bars beyond the dashed line (-log10(0.05)) are 530 

statistically significant.  531 

Abbreviations: TMB = tumor mutational burden; Mbp = mutations per mega base pair; NMF = non-532 

Negative Matrix Factorization; MSI = microsatellite instability; HR = Homologous Recombination; 533 

UTUC = upper tract urothelial carcinoma. 534 

 535 

Genes harboring more mutations in their coding sequence than expected by random chance were analyzed 536 

with dNdScv; the analysis revealed 18 significantly mutated genes (Table S1.6). These genes resembled those 537 

reported for primary UC [3], although mUC lesions did harbor more somatic mutations in TP53 than numbers 538 

reported in TCGA (non-synonymous mutations and indels; 60% vs 49%, Fisher’s exact test p = 0.021, Fig. S3).  539 

SVs were common with a median of 259 (40,297 in total) per tumor. Deletion was the most frequent type of 540 

SV with a median of 92 per tumor (Fig. S2d). The genes most frequently affected by SVs were CCSER1 (13%) 541 

and AHR (12%; Fig. S3). Chromothripsis, a complex event that produces SVs in which chromosomes are 542 

shattered and rearranged, was detected in 20% of the tumors (Fig. S4).  543 
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Chromosomal arm and focal CNA were analyzed with GISTIC2. This revealed frequent deletion of chromosome 544 

9 and amplification of chromosome 20 (Fig. S5a). In total, 49 genomic regions were significantly altered by 545 

focal CNAs which included several oncogenic genes (Table S1.8). The most frequently amplified genes were 546 

SOX4 (28%), GATA3 (22%), PPARG (22%), and ERBB2 (19%); the most frequently deleted genes were CDKN2A/B 547 

(43%), FHIT (24%), CCSER1 (17%) and LRP1B (17%), and also resembled those reported in primary UC [3] (Fig. 548 

S3).  549 

Hotspot mutations in driver genes concerned FGFR3 S249C (8%), PIK3CA E54K (7%), and TP53 E285K (5%). 550 

Hotspot mutations in the TERT promoter were present in 62% of the tumors (Fig. S3; Table S1.23). Still, TERT 551 

expression did not differ between tumors with and without hotspot mutations (Fig. S6b), in line with a 552 

previous report [68]. However, differential gene expression analysis showed that tumors with hotspot 553 

mutations in the TERT promoter had downregulation of genes related to the muscle contraction pathway (Fig. 554 

S6a, Table S1.24). Furthermore, hotspot mutations were identified in non-coding regions of ADGRG6 (40%), 555 

PLEKHS1 (28%), LEPROTL1 (18%), and TBC1D12 (15%; Fig. S3) with no apparent association with gene 556 

expression and minimal transcriptomic effect (Fig. S6a-b). The hotspot areas of ADGRG6, PLEKHS1 and 557 

TBC1D12 form hairpin loop structures in the DNA with specific tri-nucleotide sequences frequently mutated by 558 

APOBEC enzymes (Fig. S6c). Unlike other known driver genes affected by hotspot mutations (TERT, FGFR3, 559 

PIK3CA and TP53), these genes were not significantly affected by other somatic mutations in the coding region 560 

or by CNAs, suggesting that hotspot mutations in ADGRG6, PLEKHS1 and TBC1D12 are likely passenger 561 

hotspots attributed to APOBEC activity as theoretically predicted [69]. 562 

Gene fusion analysis performed at the transcriptomic level (Table S1.22) detected 1394 gene fusions, of which 563 

10% were also reported in the TCGA cohort [65]. Seventy-six percent of all individual genes found involved in 564 

fusion events have previously been implicated in fusions [65]. FGFR3 gene fusions were present in seven out of 565 

90 samples with only one FGFR3-TACC3 fusion. Four PPARG fusions were detected, of which two PPARG-TSEN2 566 

fusions were confirmed at DNA level (Table S1.21). Other putative fusion events in cancer-related genes were 567 

found in CCSER1 (n = 9), ERBB4 (n = 5), RB1 (n = 4), MDM2 (n = 4), TERT (n = 3) and STAG2 (n = 3). 568 

A stratification based on the proposed etiology of SNV COSMIC signatures using unsupervised consensus 569 

clustering [30] revealed two major genomic subtypes (GenS; Fig. 2; Fig. S7). GenS1 (67%) contained almost 570 

exclusively tumors with high APOBEC mutagenesis, which was reflected by a large contribution of APOBEC 571 
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signatures SBS2 and SBS13. In addition, we performed deconvolution of SNV patterns by non-negative matrix 572 

factorization (NMF; Fig. S8), which confirmed APOBEC signatures as the main source of mutations in GenS1, 573 

with high contribution of de novo mutational signatures SigA (0.99 cosine similarity with APOBEC signature 574 

SBS2) and SigB (0.89 cosine similarity with APOBEC signature SBS13). GenS2 (24%) aggregated predominantly 575 

tumors with low APOBEC mutagenesis (16 out of 28), and was characterized by signatures of unknown 576 

etiology. De novo mutational signatures SigF (0.91 cosine similarity with SBS18 COSMIC signature) and SigG 577 

(0.90 cosine similarity with SBS5 COSMIC signature) were dominant in GenS2. Analysis of the TCGA cohort 578 

(WES data) showed that GenS1 and GenS2 were also the two major genomic subtypes in localized UC (Fig. S9a-579 

b). The other three smaller subtypes (9% of the present cohort) were related to the platinum treatment 580 

signature (GenS3), the defective DNA mismatch repair (MMR) signature and microsatellite instability (MSI, 581 

GenS4), and the reactive oxygen species signature (GenS5), which was characterized by de novo sigF in > 95%. 582 

The origin of somatic driver mutations was independent of the genomic subtypes, although amplifications of 583 

GATA3 and FGF19 were enriched in GenS1 and GenS2, respectively (Fig. 2b). Hotspot mutations occurred more 584 

frequently in GenS1. In particular, ADGRG6, PLEKHS1 and TBC1D12 were significantly more often mutated in 585 

GenS1. However, these hotspot mutations are potentially irrelevant byproducts caused by APOBEC 586 

mutagenesis as logistic regression analysis showed a correlation between APOBEC mutational load (C>T and 587 

C>G mutations in TCW context) and occurrence of these hotspot mutations (Fig. 2b).  588 

Other genomic differences between GenS1 and GenS2 (Fig. S3, S10 and S11) included higher SNVs/Mbp in 589 

GenS1 and higher Indels/Mbp in GenS2, which was also observed in the TCGA cohort (Fig. S9c). All three 590 

tumors with homologous recombination (HR) deficiency identified were of subtype GenS2. Clinical 591 

characteristics such as sex, cancer subtype (bladder or upper tract UC), and pre-treatment status did not differ 592 

between GenS1 and GenS2. Thus, despite that two very different etiologies lead to UC development, the two 593 

mutagenic processes lead to similar profiles of somatically affected driver genes. 594 

 595 
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APOBEC mutagenesis is an active process that generates new mutations in mUC 596 

In tumors with high APOBEC mutagenesis, the mean ploidy and the number of genes affected by CNA were 597 

higher than in tumors without APOBEC mutagenesis (Wilcoxon rank-sum test p = 0.01 and p < 0.001, 598 

respectively; Fig. S12e-f). This phenomenon may indicate genomic instability in APOBEC-driven mUC tumors. 599 

APOBEC enzyme expression analysis revealed neither significant differences between GenS1 and GenS2 (Fig. 600 

S12a), nor between tumors with and without APOBEC mutagenesis (Fig. S12c). To further investigate the role 601 

of APOBEC mutagenesis in mUC, we analyzed WGS data of eight tumors from patients who had undergone 602 

serial biopsies, and reconstructed their evolutionary paths (Fig. 3a). Significantly mutated genes (dNdScv), 603 

kataegis events and hotspot mutations displayed in the trunk represent clonal alterations that are fixed in the 604 

tumor and are present in all cancer cells of both biopsies. Alternatively, mutations displayed in the branches 605 

represent subclonal alterations that are present exclusively in one biopsy, or present in both biopsies but are 606 

found only in a fraction of cancer cells (e.g. patient 1 in Fig. 3a). A lower cancer cell fraction in the branches of 607 

than the trunk of the evolutionary trees (Fig. 3b) suggests that mutations from branches corresponding to the 608 

second biopsy might be novel and not widely spread in the cancer cell population. The rate of novel APOBEC 609 

mutations (number of APOBEC mutations divided by the number of days elapsed between serial biopsies) was 610 

calculated using only mutations from branches corresponding to the second biopsy. This analysis showed that 611 

tumors with high APOBEC mutagenesis accumulated more novel APOBEC mutations than other tumors (Fig. 612 

3d, Wilcoxon rank-sum test p = 0.036). In line with this, we observed that the APOBEC mutational signature 613 

was still present in the second biopsy of these patients, together suggesting that APOBEC mutagenesis is 614 

ongoing in these samples (Fig. 3c). We further confirmed ongoing APOBEC mutagenesis by analyzing hotspot 615 

mutations in mRNA. The frequency of hotspot mutations in DDOST (mRNA) was enriched in tumors with high 616 

APOBEC mutagenesis and in GenS1 compared to GenS2, with up to 15% of mRNA molecules mutated in one 617 

single sample (Fig. S13a).  618 

Several studies have linked the expression of APOBEC3A/3B to APOBEC mutagenesis in UC [3,70]. When 619 

comparing the estimated relative expression of APOBEC3A and 3B in the same tumor, we observed differential 620 

expression of these enzymes (Fig. 3e). Some tumors had high levels of APOBEC3A expression while the 621 

expression of APOBEC3B was low – or vice versa. The correlation between the expression of APOBEC3A and 622 

APOBEC3B was poor (Fig S13b), which may explain the lack of differential expression of individual APOBEC 623 
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enzymes between tumors with different levels of APOBEC mutagenesis (Fig. S12c). To further investigate the 624 

link between the occurrence of APOBEC mutations and APOBEC gene expression, we considered the 625 

expression of both APOBEC enzymes and calculated an APOBEC score (sum of the median centered normalized 626 

expression of APOBEC3A and 3B). It appeared that tumors with high APOBEC mutagenesis had a higher 627 

APOBEC score than other tumors (Wilcoxon rank-sum test p = 0.012; Fig. S12d). The APOBEC score was also 628 

higher in GenS1 compared to GenS2 (Wilcoxon rank-sum test p < 0.001; Fig. S12b). This analysis confirmed a 629 

link between APOBEC gene expression and APOBEC mutations in mUC. To further validate this result, the fold 630 

enrichment of C>T and C>G mutations in the tetra YTCA (related to APOBEC3A) and RTCA (related to 631 

APOBEC3B) context was calculated for the entire cohort (Fig. S13c). We found that both APOBEC3A and 632 

APOBEC3B contribute to APOBEC associated mutations (fold enrichment is above 1.0), but APOBEC3A appears 633 

to be the main contributor in mUC, as was reported previously [21,71]. 634 
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 635 

Figure 3 – Cancer evolution of eight tumors from metastatic urothelial carcinoma patients with serial 636 

biopsies of metastatic lesions 637 

a) Evolutionary trees from eight tumors (five with high APOBEC and three with low APOBEC 638 

mutagenesis) from which two biopsies were obtained (interval depicted in months) were 639 

reconstructed from single nucleotide variants. Significantly mutated genes (dNdScv), kataegis 640 

(number of events in parenthesis) and hotspot sites (hs) are shown, and their locations are indicated 641 

(trunk or branch). Branches represent subclonal populations (A, B or C), indicating their presence in 642 

the first or second biopsy (b1 or b2). For patient 1, a subclonal population is present in both biopsies. 643 
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The cancer cell fraction of each single nucleotide variant was calculated and clustered using DPClust 644 

for paired-biopsies. The evolutionary tree was reconstructed using the sum rule [66]. 645 

b) Boxplots comparing the cancer cell fraction of somatic mutations from the trunk and branches. 646 

Wilcoxon rank-sum test was applied and p-values were Benjamini-Hochberg corrected. 647 

c) COSMIC v3 mutational signatures calculated from the trunk and from the branch exclusive to the 648 

second biopsy. 649 

d) The APOBEC mutation rate from novel (recent) mutations in the second biopsy was compared 650 

between low and high APOBEC mutagenesis tumors. Wilcoxon rank-sum test was applied. 651 

e) APOBEC mutation rate is displayed as a function of APOBEC3A and APOBEC3B median centered 652 

normalized expression. APOBEC expression was estimated as the mean expression of both biopsies 653 

per tumor. Numbers indicate patient number. RNA-seq was not available for patient 1. 654 

 655 

APOBEC associated mutations are randomly distributed across the genome in mUC 656 

The substrate of APOBEC enzymes is single-stranded DNA (ssDNA) [20], this has led to the hypothesis that 657 

APOBEC enzymes are mainly active during replication or in open chromatin and transcriptionally active 658 

genomic regions [72,73]. As our cohort contained predominantly tumors with APOBEC mutagenesis, and WGS 659 

data of these tumors was available, we had the unique opportunity to explore the mutational consequences of 660 

APOBEC mutagenesis across the genome. 661 

The total number of SNVs/Mbp varied across the genome, and non-APOBEC mutations followed the same 662 

pattern (Fig. 4a). The frequency of non-APOBEC mutations decreased as the predicted DNA accessibility and 663 

overall gene expression level increased (Fig. 4b). In contrast, the frequency of APOBEC mutations was constant 664 

across the genome, demonstrating that APOBEC mutagenesis was likely independent of genomic regions (Fig. 665 

4a-c). The ratio of APOBEC mutations between high and low transcriptional regions also suggests an equal 666 

distribution of APOBEC associated mutations across the genome (Fig S14). This ratio was close to 0.5 (0.45-667 

0.55) in tumors with high APOBEC mutagenesis. The equal distribution of APOBEC mutations across genomic 668 

regions supported the hypothesis that these mutations had been generated during replication, when APOBEC 669 

enzymes have equal access to ssDNA across the genome [73].  670 
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 671 

Figure 4 – Differences in the load of APOBEC associated mutations between high and low DNA accessibility 672 

regions in metastatic urothelial carcinoma genomes 673 

a) WGS data (n = 116) was analyzed to estimate the mean number of single nucleotide variants in 674 

windows of one mega base pair across the entire genome. The Circos plot shows from outer to inner 675 

circles: the genomics ideogram from chromosome 1 to X where the centrosomes are indicated in red; 676 

Mutational load of APOBEC and non-APOBEC associated mutations; Average RNA counts (expression) 677 

from 90 tumors with RNA-seq data; DNA accessibility estimation from different ChIPseq experiments 678 

in normal urothelial samples derived from the ENCODE [74]. Peaks represent highly accessible DNA. 679 

b) Linear regression (with 95% confidence interval) of mutational load per mega base pairs for APOBEC 680 

and non-APOBEC associated mutations with DNA accessibility and expression data. 681 

c) The number of APOBEC and non-APOBEC associated mutations were compared between high and low 682 

RNA expression and DNA accessibility regions. The distributions are shown as boxplots and as violin 683 

plots. T-test was applied and p-values were Benjamini-Hochberg corrected for multiple testing. Here, 684 
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in b) and in c), results from H3K4me1 ChIPseq were used. Using other ChIPseq experiments showed 685 

similar results. 686 

d) Frequency of kataegis events (n = 116) in high and low DNA accessibility or in high and low RNA 687 

expression regions. P-values of binomial test are shown for each comparison. 688 

  689 

Localized hypermutation events (kataegis) were present in 70% of the samples (Fig. 2a); which was more 690 

frequent when APOBEC mutagenesis was high (Fig. S14). This higher frequency confirmed a link between 691 

kataegis and APOBEC activity [75], and we therefore expected to find kataegis events scattered across the 692 

genome. However, our data suggested that kataegis was more likely to happen in regions with high DNA 693 

accessibility and high transcriptional activity (Fig. 4d). Thus, while general APOBEC mutagenesis seemed to 694 

occur primarily during replication, kataegis-like APOBEC events seemed to occur more frequently at 695 

transcribed loci. 696 

In summary, APOBEC mutagenesis was an ongoing process in mUC that equally affected the whole genome, 697 

and seemed to be triggered by both APOBEC3A and APOBEC3B. Tumors with APOBEC mutagenesis were 698 

genomically less stable and displayed more kataegis events. 699 

 700 

Transcriptomic subtypes of mUC 701 

The consensus classifier of primary MIBC stratifies organ-confined UC of the bladder into six transcriptomic 702 

subtypes [5]. Unlike primary bladder tumor samples, metastatic biopsies are derived from different organs 703 

with some degree of normal non-urothelial cell contamination. Using the consensus classifier would lead to 704 

misclassification of samples when no correction for organ-specific transcripts is applied. It would also limit the 705 

detection of new phenotypic subtypes if they existed in mUC, which is crucial in this study as the 706 

transcriptomic phenotypes of mUC are unknown. Therefore, we performed de novo subtyping for mUC 707 

samples (see Methods section for details). 708 

High-quality RNA-seq data was available for 90 (97 samples) out of 116 patients (Fig. S15). To reduce the bias 709 

introduced by biopsy location, we filtered the organ-specific transcripts prior to hierarchical consensus 710 

clustering (Fig. S16). Five transcriptomic subtypes were identified (Fig. 5). We did not observe a 711 
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neuroendocrine subtype in our cohort, and noticed that the neuroendocrine signature score was equally low 712 

in all mUC subtypes (Fig. S17a). Several phenotypic markers were used to establish the phenotype of each 713 

subtype (Fig. S17a), and are described below. 714 

 715 

 716 

Figure 5 – Genomic and transcriptomic characteristics of patients with metastatic urothelial carcinoma 717 

stratified by mRNA subtypes 718 

Transcriptomic profiles of 90 metastatic urothelial carcinoma samples were clustered using 719 

ConsensusClusterPlus [30]. Five transcriptomic subtypes were identified: luminal-a, luminal-b, stroma, 720 

basal/squamous and non-specified phenotype. From top to bottom: Transcriptomic subtypes; 721 
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Genomic subtypes (GenS1-4); Transcriptional subtypes based on the consensus classifier of primary 722 

MIBC [5]; Metastatic site from which a biopsy was obtained; Site of origin of primary tumor (UTUC = 723 

upper tract urinary cancer); Estimated tumor cell percentage; Female patients; Pre-treatment naïve 724 

patients; Tumors with hotspot mutations in TERT promoter; Tumors with gene fusions detected by 725 

RNA-seq; Tumors with alterations in selected genes; Tumors with one or more kataegis events; 726 

Tumors with one or more chromothripsis events; APOBEC enrichment analysis showing tumors with 727 

no-, low- and high-APOBEC mutagenesis; APOBEC3B and APOBEC3A expression; Signature score 728 

(mean expression of genes related to each phenotype) of basal, squamous, luminal, stroma and 729 

neuroendocrine markers; Top overexpressed genes in each mRNA subtype; Immune cell fractions 730 

estimated with immunedeconv [63], using the quanTIseq method [64]. 731 

 732 

The luminal subtypes represented 51% of the tumors in the TCGA cohort versus 40% in the present cohort (p = 733 

0.061, Fig. S9d). In contrast to the consensus classifier of primary MIBC, we identified two and not three 734 

luminal subtypes. The luminal mUC tumors were mostly identified as luminal-papillary and luminal-unstable 735 

according to the consensus classifier of primary MIBC. All luminal tumors together exhibited similarities with 736 

the consensus-based luminal subtypes [5] with respect to high luminal signature scores, high expression of 737 

PPARG and GATA3 (Fig. S16d), and frequent alterations in FGFR3 and KDM6A (Fig. S17). In contrast, the 738 

individual luminal mUC subtypes lacked a high TMB; high APOBEC mutation load, as described for the luminal 739 

unstable subtype; high stromal signature score, as described for the luminal non-specified subtype; and 740 

frequent CDKN2A alterations, as described for the luminal papillary and unstable subtypes. Looking into the 741 

characteristics of the two luminal mUC subtypes, we noted that the luminal-a subtype had high expression of 742 

MYCN, one of the MYC oncogene family members that regulates different species of RNA [76], and high 743 

expression of CD96 (Fig. 5). This subtype had low tumor purity, a high fraction of NK cells, a low clonal fraction 744 

(interpreted as high heterogeneity), and relatively high expression of FGFR3 and NECTIN4 (Fig. S17). NECTIN4 745 

was amplified in 61% of these tumors. The luminal-b subtype had high tumor purity, a low number of SVs, a 746 

low fraction of NK cells, high expression of FGFR3 and S100A6 (Fig. S17), and a higher proportion of ELF3 (56%) 747 

and FGFR3 (50%) DNA alterations compared to all other subtypes (Fig. S18; Fisher’s exact test p = 0.0023 and p 748 

= 0.0053, respectively). 749 
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The stroma-rich subtype, had the highest level of stroma signature score. Genes known to be associated with 750 

stromal content and cancer-associated fibroblasts (THBS4, CNTN1, CXCL14 and BOC) [77–80] were 751 

differentially expressed (Fig. 5). This subtype was highly concordant with the stratification of the consensus 752 

classifier of primary MIBC: 79% of tumors identified as stroma-rich by the consensus classifier of MIBC were in 753 

the stroma-rich subtype of mUC. However, the stroma-rich subtype was more prevalent in the present mUC 754 

cohort than in the TCGA cohort (24% vs 9%, Fisher’s exact test p < 0.001, Fig. S9d). Tumors of the stroma-rich 755 

subtype showed high expression of TGFB3, a ligand of the TGF-β pathway (Fig. 5), low tumor purity, a high 756 

signature score for epithelial to mesenchymal transition (Fig. S17), high expression of various collagens (Table 757 

S1.20), and a higher rate of TSC1 DNA alterations (45% of the tumors, Fig. 5) compared to the rest of the 758 

cohort (Fisher’s exact test p < 0.001). 759 

The basal/squamous subtype was also highly concordant to the similarly named cluster of the consensus 760 

classifier for MIBC; 86% of tumors identified as basal/squamous by the consensus MIBC were in this group. 761 

Yet, the prevalence of this subtype was lower in the present cohort than in the TCGA cohort (23% vs 37%, 762 

Fisher’s exact test p = 0.013; Fig. S9d). This subtype was characterized by high expression of basal/squamous 763 

markers (DSG3, KRT5, KRT6A and S100A7), highest levels of basal and squamous signature scores, and 764 

enrichment in females (52%, Fisher’s exact test p = 0.0043). TGFBR1, a receptor of the TGF-β pathway; CD274, 765 

the gene that encodes PD-L1; and MSLN, a tumor-associated antigen, were highly expressed in this subtype 766 

(Fig. 5). NECTIN4 amplifications were not found, and NECTIN4 expression level was low (Fig. S17). In line with a 767 

previous study [81], the expression of adipogenesis regulatory factor (ADIRF) was low (Fig. 5). The immune cell 768 

compartment consisted of a large fraction of M1 macrophages and a low fraction of neutrophils (Fig. S17b). 769 

This subtype was less affected by kataegis and chromothripsis events than the other subtypes (Fig. 5, Fisher’s 770 

exact test p = 0.0006 and p = 0.019, respectively). 771 

The majority of samples in the non-specified subtype was identified as luminal unstable according to the 772 

consensus classifier of primary MIBC. However, key markers of luminal phenotypes such as the luminal 773 

signature score, and PPARG and GATA3 expression were relatively low, and genomic instability (high TMB, high 774 

APOBEC mutagenesis) was not observed in this subtype (Fig. 5 and S17). This subtype had overexpression of 775 

KIAA1324; a diagnostic biomarker in different cancer subtypes [82], and of LRP2 (Fig. 5),. Furthermore, it had a 776 

high score of claudin markers, a low fraction of neutrophils, high numbers of Indels, high numbers of SVs, high 777 
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levels of APOBEC3B expression (Fig. S16), and this subtype was enriched for patients who were previously 778 

treated with chemotherapy (Fisher’s exact test p = 0.023, Fig. 5). 779 

In summary, transcriptomic profiling revealed that mUC can be stratified into five transcriptomic subtypes, of 780 

which the stroma-rich and basal/squamous subtypes are highly concordant to primary MIBC subtypes. Both 781 

luminal subtypes showed some concordance with the luminal MIBC subtypes, however the individual luminal 782 

subtypes in mUC and MIBC differed. The phenotype of the non-specified mUC subtype did not match any of 783 

the phenotypes of the consensus classifier established for MIBC. A complete overview of driver genes, fusion 784 

genes and hotspot mutations per transcriptomic subtype is presented in Fig. S18. 785 

 786 

Altered canonical signaling pathways in different transcriptomic subtypes  787 

Several canonical pathways involved in cell growth, proliferation and survival [34] were altered at the DNA 788 

level (Fig. 6a). Of all subtypes, the luminal-a subtype showed most alterations in the Myc (72%) and TGF-β 789 

(72%) pathways. In contrast, only 5% of basal/squamous tumors had TGF-β pathway alterations. Perturbations 790 

in the TGF-β pathway were mainly driven by alterations in TGFBR2, SMAD4, SMAD2 and TGFBR1. The most 791 

altered genes per pathway are displayed in Fig. S19. 792 

 793 
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Figure 6 – Pathway alterations at genomic and transcriptomic level across mRNA-based subtypes of 794 

metastatic urothelial carcinoma 795 

a) The percentage of samples with DNA alterations in 11 canonical pathways is shown for each 796 

transcriptomic subtype (90 tumors in total) and for the entire cohort (n = 116). A patient was 797 

considered to have an altered pathway when at least one of the pathway-genes was altered either by 798 

non-synonymous mutations, structural variants or by deep copy number changes. 799 

b) Pathway activity was estimated as the mean expression of downstream genes targeted by each 800 

pathway. Only genes that were transcriptionally activated by these pathways were considered. 801 

Kruskal-Wallis test p-values were Benjamini-Hochberg corrected. 802 

c) Pathways up- (red) or down-regulated (blue) were estimated with reactomePA [62] from RNA-seq 803 

data. Only the top ten up- and top ten down-regulated pathways per subtype are shown. 804 

 805 

The luminal-b subtype was characterized by fewer alterations in Notch, Cell cycle, Hippo, PI3K, p53, Myc and 806 

JAK-STAT pathways. Alterations in the p53 pathway were common in the other subtypes, and most of them 807 

were the result of somatic mutations in TP53 or amplification of MDM2 (mutually exclusive p = 0.024). 808 

Amplification of MDM2 has been previously reported in a pan-cancer study [34] as an alternative to TP53 809 

alterations to inactivate the p53 pathway through direct inhibition of p53 protein [83]. 810 

To assess pathway activity across different transcriptomic subtypes, we calculated the mean expression of 811 

genes targeted by each pathway as a proxy of activity (Fig. 6b). Myc and TGF-β pathway activities were low in 812 

the luminal-a subtype, corresponding with high frequencies of pathway alterations at the genomic level (Fig. 813 

6a). The luminal-b subtype showed the highest RTK-RAS and high WNT pathway activity. The stroma-rich 814 

subtype had high TGF-β pathway activity. The basal/squamous subtype had high activity of the Hippo, Myc and 815 

TGF-β pathways. The non-specified subtype had very low p53 pathway activity and very active cell cycle 816 

pathway signaling, two pathways that are usually co-altered [34]. 817 

In addition to the 11 oncogenic pathways described above, any pathway up- or down-regulated was analyzed 818 

by enriched pathway analysis with ReactomePA (Fig. 6c). Up-regulation of pathways involved in collagen 819 

metabolism and extracellular matrix in the stroma-rich subtype corresponded with the stromal phenotype of 820 

this subtype [84]. In the non-specified subtype, pathways related to cell cycle and chromosome integrity were 821 
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up-regulated. Considering as well the high cell cycle pathway activity (Fig. 6b), and high frequency of mutations 822 

in the cell cycle pathway (Fig. 6a), this up-regulation may suggest that the non-specified subtype is highly 823 

proliferative. 824 

In summary, signaling pathway analysis showed the extent of heterogeneity between the transcriptomic 825 

subtypes, reflecting phenotypic characteristics of each group. The most striking difference was observed for 826 

the TGF-β pathway, in which genomic alterations greatly affected the luminal-a subtype and pathway activity 827 

was heavily reduced.  828 
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Discussion 829 

To the best of our knowledge, we defined, for the first time, molecular subtypes of mUC based on whole 830 

genome and transcriptome characteristics of metastatic biopsies of 116 mUC patients. In line with findings 831 

reported for primary UC, we identified a central role for APOBEC mutagenesis in mUC. Furthermore, we 832 

showed that mUC is a heterogeneous disease with various genomic and transcriptomic subtypes revealing the 833 

main mutational processes and phenotypes of this cancer. 834 

The genomic landscape of mUC showed important similarities to that of primary UC. We validated our mUC 835 

findings in the TCGA cohort of primary MIBC, showing that aggregating mutational signatures by etiology is a 836 

robust approach to identify genomic subtypes. A recent study analyzed archived paraffin-embedded primary 837 

or metastatic tumor samples from UC patients who received palliative chemotherapy. By WES analysis, two 838 

major genomic subtypes were identified [85]. The GenS2 subtype, enriched with SigG that correlates with 839 

COSMIC SBS5, in the present study largely overlapped with the SBS5 subtype reported by Taber et al., 2020. 840 

Furthermore, an APOBEC high signature was identified that was similar to GenS1 in our study.  841 

We identified significantly mutated genes similar to those reported for primary UC. Frequent hotspot 842 

mutations in the non-coding region of TERT, ADGRG6, PLEKHS1, LEPROTL1 and TBC1D12 occurred similarly in 843 

NMIBC and MIBC [86,87]. Evidence suggests that clones with known driver genes emerge early during bladder 844 

cancer development and colonize distant areas of the bladder, which may explain the genomic similarity 845 

between mUC and primary UC [88].  846 

WGS analysis revealed frequent SVs affecting AHR (aryl hydrocarbon receptor) and CCSER1 (coiled-coil serine 847 

rich protein). SVs in AHR have not been described in cancer, but other molecular alterations in this gene have 848 

been associated with bladder cancer progression [89–91]. CCSER1 is located in a common fragile site region; 849 

thus, it is exposed to chromosomal rearrangements [92]. Altered transcripts created through the deletion of 850 

specific exons in CCSER1 have been associated with oncogenesis [92,93]; it is unclear, however, if SVs may 851 

have similar oncogenic effects in UC. 852 

Previous studies that performed RNA-based subtyping showed that NMIBC is a homogeneous disease primarily 853 

of luminal origin (> 90%) and that MIBC is highly heterogeneous with multiple subtypes [5,94]. Here, we 854 

performed de novo transcriptomic subtyping of mUC, as the consensus classifier of primary MIBC is not 855 

suitable for mUC, and it does not correct for organ-specific transcriptomic contamination. Although this 856 
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method may also remove transcription related to urothelial adaptation, or to a specific metastatic site, it was 857 

mandatory in order to prevent subtyping of tumors to be predominantly based on biopsy site rather than 858 

biological differences. We showed that mUC is a heterogeneous disease, with similarities to subtypes 859 

described for primary MIBC, specifically regarding the stroma-rich and basal/squamous subtypes. The luminal 860 

subtypes overall showed some concordance, although there was not a one to one match with the primary 861 

MIBC luminal subtypes. The phenotypic similarity of primary MIBC and mUC suggests that despite ongoing 862 

mutagenesis, UC cell behavior does not change significantly during the metastatic process – all subtypes have 863 

metastatic potential. However, as matched data from the primary tumor were lacking in this study, we were 864 

unable to draw conclusions on specific factors which may drive some clones towards metastasis whilst other 865 

remain tissue confined. Furthermore, some patients with primary non-metastatic MIBC, as assessed by cross-866 

sectional imaging, actually have systemic rather than localized disease. In a previous study, lymph node 867 

metastases were present in the cystectomy resection specimen of 25% of clinically node-negative patients. In 868 

addition, patients with locally advanced bladder tumors (pathological stage T3) have a poor 5-year overall 869 

survival rate of only 35% due to rapid onset of metastatic disease, despite radical surgery [95,96]. 870 

In the present cohort, we did not identify a NE-like subtype at the transcriptional level. The prevalence of this 871 

subtype in UC is, however low; in the TCGA cohort only 2% of tumors were of the NE-like subtype. Central 872 

pathology revision of the metastatic biopsies identified only three NE-like tumors in our cohort (Table S3-4). 873 

The non-specified subtype we identified did not express any of the markers used to identify the consensus 874 

subtypes of primary MIBC (luminal, basal, squamous, stroma or NE), suggesting rewiring of its transcriptomic 875 

profile for adaptation. Studies in various cancers have shown that therapeutic pressure may trigger a 876 

phenotype-switching event [97], which could have happened in the non-specified phenotype as it was 877 

enriched for patients who had received systemic therapy prior to biopsy. Studies with larger numbers of paired 878 

biopsies, obtained before and after treatment, and obtained from the primary and metastatic site would be 879 

needed to explore this phenomenon in mUC. 880 

APOBEC mutagenesis was widespread in mUC; the reconstruction of evolutionary paths from sequential 881 

biopsies of eight patients indicated that it was an ongoing process, which was confirmed in the entire cohort 882 

by RNA-editing of DDOST attributed to APOBEC3A. This suggests that mUC is in continuous adaptation by 883 

generating novel mutations. A previous study indeed reported accumulating mutations in six patients whose 884 
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primary tumor and metachronous metastases were analyzed by WES [85]. In our study, the accumulation of 885 

new mutations in the sequential biopsy specimen of one of eight patients led to the identification of new 886 

therapeutic targets (Fig. S20). 887 

In a previous study [7], the genomic landscape of 85 (72 re-analyzed here) mUC patients was compared with 888 

that of other metastatic tumor types. This pan-cancer study concluded that mUC was characterized by high 889 

tumor mutational load, with no difference between mUC and primary UC, high CNAs, the highest number of 890 

driver genes among all cancer types analyzed, and actionable targets in 75% of the patients. In our study, we 891 

identified a potential targetable alteration in the genome of 98% of the patients (Fig. 7a). In line with Priestley 892 

et al., 2019, we found that 41% of patients could benefit from on-label therapies, and 63% from therapies 893 

approved by the US Food and Drug Administration for other tumor types. Additionally, we identified targets 894 

for therapies under investigation in clinical trials including basket trials in 109 of 116 patients. We identified 895 

four patients with MSI-high tumors that are potentially sensitive to immune checkpoint inhibitors [98]. HR 896 

deficiency, observed in three patients, is a potential target for treatment with poly-ADP ribose polymerase 897 

inhibitors and/or double-stranded DNA break-inducing chemotherapy. At the RNA level, targetable FGFR3 and 898 

NTRK2 gene fusions were identified in eight patients. 899 
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 900 

Figure 7 – Overview of actionable targets and possible treatments per transcriptomic subtype for metastatic 901 

urothelial carcinoma 902 

a) Per patient overview of therapeutic targets based on gene fusions at RNA level (first column), tumors 903 

with microsatellite instability high (MSI-H) tumors, or homologous recombination (HR) deficiency 904 

(second column), and clinically-actionable genomic alterations for on- and off-label therapies for 905 

urothelial carcinoma (third column). On the left side, the therapeutic label for the best treatment 906 
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option per patient is shown. Bars on the right depict the genomic and the transcriptomic subtype per 907 

patient. 908 

b) Summary of molecular characteristics found in the present study, and potential therapeutic 909 

implications for the treatment of metastatic urothelial carcinoma per transcriptomic subtype. From 910 

top to bottom: transcriptomic mUC subtypes, genomic mUC subtypes, shared genomic features 911 

among transcriptomic subtypes; unique characteristics per transcriptomic subtype; suggested 912 

therapeutic strategies per transcriptomic subtype. 913 

 914 

In a previous study, the antibody-drug conjugate enfortumab vedotin targeting NECTIN4 induced objective 915 

clinical responses in 44% of mUC patients who experienced disease progression following chemotherapy and 916 

anti-PD1/L1 therapy [99]. Currently, preselection for this treatment is not required. However, we found 917 

significant variation in the expression of NECTIN4, suggesting that patients with tumors of the basal/squamous 918 

subtype may be less likely to experience clinical benefit, as no NECTIN4 amplifications were detected, and 919 

NECTIN4 expression levels were low. Thus, subtype-specific treatment with enfortumab vedotin might result in 920 

better risk-benefit ratios. The 23 patients with HER2 aberrations may be sensitive to HER2 targeting agents; 921 

especially some of the newer antibody-drug conjugates with DNA damaging payloads could represent an 922 

effective treatment [100,101].  923 

Based on the identified transcriptomic subtypes we suggested potential therapeutic targets per subtype (Fig. 924 

7b). The luminal-a subtype was characterized by MYCN and PPARGC1B overexpression. In pre-clinical studies, 925 

treatment with a BET- or PPARγ-inhibitor downregulated the expression levels of both genes, and had an 926 

antiproliferative effect on tumor cells [102,103]. The immune cell compartment of tumors of the luminal-a 927 

subtype was found rich in NK cells, which could be explained by the large fraction of liver biopsies, which are 928 

known to be enriched for NK cells [104]. Thus, other potential treatment strategies comprise of cytokine-929 

mediated stimulation of NK cells and TLR agonists [105]. 930 

The luminal-b subtype was enriched for FGFR3 mutations and had high expression of FGFR3, suggesting that 931 

this subtype may be susceptible to FGFR inhibitors. This subtype may also be sensitive to RAS pathway 932 

inhibitors as the RTK-RAS pathway activity was high [106].  933 
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The stroma-rich subtype was characterized by TSC1 alterations that confer sensitivity to MTOR inhibitors, 934 

which have been approved for treatment of several tumor types [37,38]. Compared with the other subtypes, 935 

the stroma-rich subtype displayed the highest TGF-β pathway activity and overexpression of different 936 

collagens. Previous studies have shown that TGF-β can stimulate cancer-associated fibroblasts to produce 937 

collagens [107,108]. Other studies found that TGF-β expression was associated with resistance to immune 938 

checkpoint inhibition in bladder cancer [52,109]. Results from pre-clinical studies suggest that addition of a 939 

TGF-β inhibitor may improve anti-PD1 efficacy [53].  940 

The basal/squamous subtype has been found associated with high immune cell infiltration (significantly more 941 

M1 macrophages) and overexpression of PD-L1, which suggests that patients with tumors of this subtype are 942 

likely to benefit from immunotherapy [3]. Since TGF-β pathway activity was also high in this subtype, 943 

combination therapy with a TGF-β inhibitor could be of added value. Furthermore, this subtype was 944 

characterized by overexpression of mesothelin, a known tumor antigen that is being investigated as a target 945 

for antibody-based, vaccine and CAR-T cell therapies in several tumor types [110]. 946 

A limitation of this study is the lack of matched primary tumor samples. Despite this, we showed striking 947 

genomic and transcriptomic similarities between mUC and what has been reported for primary MIBC. Our 948 

results, however, require validation in other independent mUC cohorts. Also, as our studied cohort was 949 

heterogeneous regarding pre-treatment history and type of treatment initiated after biopsy collection, we 950 

were unable to correlate the characteristics of the molecular subtypes to clinical endpoints such as overall 951 

survival. Additional studies in which biopsies are collected from uniformly treated mUC patients would be 952 

crucial to be able to properly correlate large scale genomic and transcriptomic data with clinical outcomes. 953 

Conclusions 954 

By performing WGS and RNA-seq analysis of metastatic sites of 116 mUC patients who participated in a clinical 955 

trial, this study contributed to the knowledge on the molecular landscape of mUC, which has important 956 

similarities to the molecular landscape of primary UC. The findings reported here serve as a reference for 957 

subtype-oriented and patient-specific research on the etiology of mUC and for novel drug development – with 958 

the ultimate aim to improve the management of mUC patients. 959 

  960 
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