

1 **A millennium of increasing ecosystem diversity until the mid-20th century**

2 Inês S. Martins^{1,2*}, Maria Dornelas^{2,3}, Mark Vellend^{2,4}, Chris D. Thomas^{1,2}

3 ¹*Department of Biology, University of York; Wentworth Way, York YO10 5DD, UK.*

4 ²*Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York;*
5 *York YO10 5DD, UK.*

6 ³*Centre for Biological Diversity, School of Biology, University of St Andrews; St Andrews, KY16 9TF,*
7 *Scotland, UK.*

8 ⁴*Département de Biologie, Université de Sherbrooke; 2500 boulevard de l'Université, Sherbrooke, QC,*
9 *Canada.*

10 *Correspondence to: ines.martins@york.ac.uk

11

12 **Abstract**

13 Land-use change is widely regarded as a simplifying and homogenising force in nature. In
14 contrast, analysing global land-use reconstructions from the 10th to 20th centuries, we found
15 progressive increases in the number, evenness, and diversity of ecosystems (including
16 human-modified land-use types) across the globe. Ecosystem diversity increased more
17 rapidly after ~1700CE, then slowed or partially reversed (depending on the metric) following
18 the mid-20th century acceleration of human impacts. Differentiation also generally increased
19 across space, with homogenization only evident in the presence-absence analysis of
20 ecosystem types at the global scale. Our results suggest that human land-use changes have
21 primarily driven increases in ecosystem diversity over the last millennium.

22 **Main Text**

23 Humans have been reshaping the processes, structure and biological composition of
24 ecosystems for millennia. These changes are typically regarded as the most important

25 proximate drivers of terrestrial biodiversity change: the International Union for Conservation
26 of Nature (IUCN) lists various aspects of land-use change and altered management as eight of
27 the top ten threats to species (1), while the Intergovernmental Science-Policy Platform on
28 Biodiversity and Ecosystem Services (IPBES) identifies ‘changes in land and sea use’ as the
29 largest driver of ‘changes in nature’ (2). These changes are recognised by the United Nations
30 Convention on Biological Diversity (CBD), which has ecosystem extent at the core of its
31 post-2020 agenda (3).

32 Ecosystem diversity is regarded both as a key component of biodiversity in its own right by
33 the CBD, which recognises biodiversity as encompassing the “*diversity within species,*
34 *between species and of ecosystems*” (4), and as a key determinant of species richness (5).

35 Despite the central importance of ecosystem diversity changes, there is no comprehensive
36 analysis of how land-use change has altered the diversity of ecosystem types over time and
37 space. Almost all attention in the literature has been on changes in the coverage of specific
38 ecosystem types (2) rather than ecosystem diversity *per se*. It is unclear whether land-use
39 change has generally led to landscape simplification (e.g. as in some extensive arable
40 landscapes) or landscape diversification (a greater mixture of ecosystems). Ecosystem
41 diversity and its changes over time represent a major gap in our broader understanding of
42 human impacts on biodiversity.

43 Ecosystems are difficult to define unambiguously, so we here designate land cover types that
44 contain distinct plant-based physical structures and their associated biotas as “ecosystems”.
45 For example, primary forest (natural), rangelands (semi-natural) and arable (anthropogenic)
46 land covers are all included within this definition; and we regard a landscape that contains all
47 three as having greater ecosystem diversity than those that only contain one of them (see
48 Methods). We used global reconstructions of land-use data from the LUH2 dataset (6) to
49 estimate the coverage of 9 different anthropogenic and relatively natural ecosystems at 0.25°

50 resolution (~769km², or ~27.8km x 27.6km ‘landscapes’ at the equator), as used recently as
51 inputs to the modelling of past and future biodiversity change (7). These data layers are built
52 on multiple model inputs (e.g. using existing local/regional level land statistics or records,
53 population and cultural reconstructions, historical maps), with uncertainty expected to be
54 highest in the distant past. For this reason, we assess changes in ecosystem diversity in time
55 steps of 100 years since 900CE and decade-long time steps from 1700 to 2000, when data
56 quality improved (see Methods).

57 As expected, the data show declining areas of primary forested and primary non-forested
58 land, a higher rate of decline after 1700, and growing areas of multiple human-dominated
59 land uses (Fig. S1). Surprisingly, the *frequencies* of areas that include primary forested and
60 primary non-forested land remain largely unaltered. That is, most (96.6% for forests and
61 96.0% for non-forested land) of the 0.25° cells where these ecosystem types were present in
62 the 10th century still contained at least some area of the same ecosystem type in the 20th
63 century (Fig. S1; Data S1). This means that while we have seen substantial post-1700
64 declines in areas of primary land cover, these ecosystem types still persist almost everywhere.

65 We quantified changes to the diversity of ecosystems at different scales using six
66 complementary metrics. The first four are metrics of ecosystem diversity changes through
67 time within 0.25° cells (α diversity) and the remaining two are comparisons across space as
68 well as time, measuring whether the ecosystem composition in different 0.25° cells is
69 becoming more or less similar over time (β diversity). The metrics we use are equivalent to
70 those typically applied to measure species diversity, but with different ecosystems in place of
71 different species, and the area of an ecosystem equivalent to the abundance of a given
72 species.

73 The four ecosystem α diversity metrics were: ecosystem richness (number of ecosystem
74 types present per cell), Pielou’s evenness Index (the balance among relative areas of each

75 ecosystem type), the Shannon diversity Index (heterogeneity, combining richness and
76 evenness) and Rao's quadratic entropy Index (incorporating the richness, evenness, and
77 biological distinctiveness of each ecosystem type, for which reason it is the metric likely to
78 correlate most strongly with species diversity) (see Methods). All four indices showed
79 significant (based on bootstrapping) and continuous increases since the 10th century, with a
80 clear increase in rates from 1700 onwards, evident on both the centuriel and decadal time
81 scales (Fig. 1). Mean global ecosystem richness increases are predominantly driven by a
82 reduction in the number of cells containing one to four ecosystem types, and increases in
83 areas supporting five or more ecosystem types (Fig. 1A inset). This is a consequence of the
84 frequencies of different anthropogenic ecosystems (e.g. pastures, cropland) growing
85 considerably faster than the frequencies of primary vegetation decline (Fig. S1). The net
86 effect of modification has been to increase ecosystem diversity: an increased number,
87 evenness, heterogeneity and compositional entropy of ecosystem types.

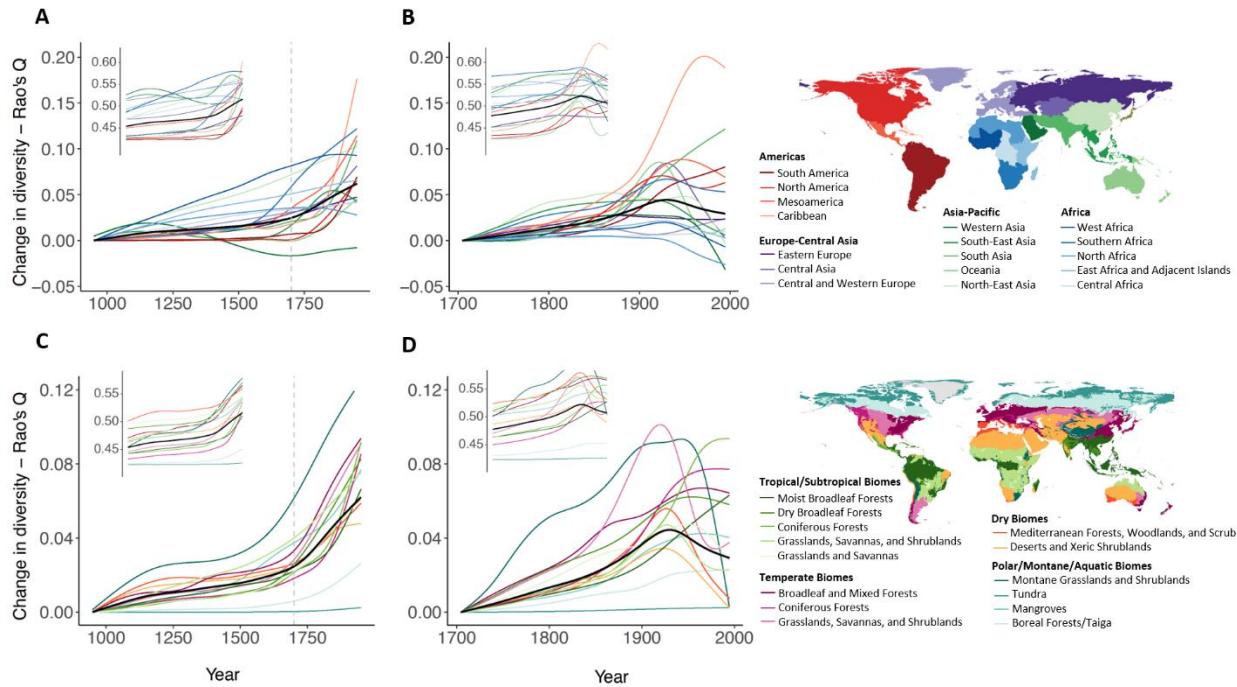
88 This trend of increasing diversity at the 0.25° cell resolution changes after the mid-20th
89 century: the rate of increase slows for ecosystem richness, flattens for Shannon heterogeneity,
90 shows a possible downturn (but shallower than the interdecile range) for evenness and
91 reverses for Rao's quadratic entropy Index (Fig. 1). This is coincident with the 'Great
92 Acceleration' of the human population, technologies and associated impacts (8, 9). Rao's
93 Index was the only metric to decline significantly (Fig. 1H), reflecting the reduced biological
94 distinctiveness of different anthropogenic ecosystems types (i.e. they often share species with
95 one another)(10), whose cover increased during this period (Fig. S1). However, this result
96 was scale-dependent: Rao's Index only reversed at sub-regional scales (< 4° cell resolution, <
97 ~197,000km² at the equator - Figs. S2-S3). Larger areas continued to accumulate increased
98 ecosystem diversity for all four metrics, but at a reduced rate (Fig. S3). Despite some
99 downturns, average ecosystem diversity for the 20th century remained higher than the

100 averages of any preceding century for all metrics at all spatial scales considered (0.25° to 15°
101 cells).

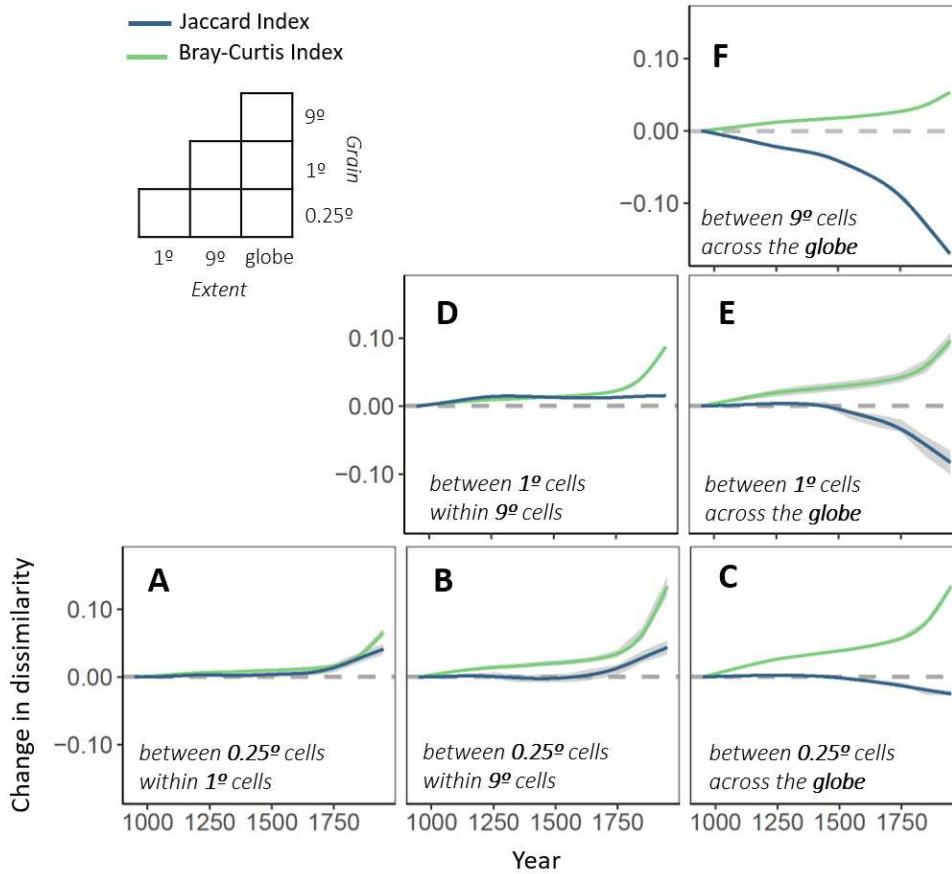
102 This pattern of increasing ecosystem diversity holds qualitatively for different regions of the
103 world (IPBES sub-regions and WWF biomes), albeit with geographic variation. Rao's
104 quadratic entropy Index, for example, revealed net diversity increases since the 10th century,
105 rate increases from 1700 onwards, and a mixture of slow-downs and reversals in the 20th
106 century across most regions and biomes of the world (Fig. 2; see Figs. S4-S5 for other
107 diversity metrics). Nearly all IPBES regions (16 out of 17) showed a net increase in
108 accumulated ecosystem diversity using this metric between the 10th and 20th centuries, and a
109 majority (13 out of 17) did so between 1700 and 2000, but with high interdecile variation
110 (Figs. S4-S5). Divergent trajectories likely reflect the timing of different human impacts in
111 different regions (e.g. Fig. S6).

112 Our two measures of spatial diversity (β diversity) also tended to increase over time,
113 although the results varied with the grain (size of cells) and extent (maximum distance
114 between pairs of cells being compared) of analysis. The Jaccard dissimilarity index, which
115 measures differences in which ecosystem types are present (incidence) in different locations,
116 revealed a pattern of increasing differentiation over time at sub-global scales (within $\leq 9^{\circ}$
117 cells $\sim 997,000 \text{ km}^2$ at the equator, or approximately the size of Egypt) but homogenization at
118 a global extent (Fig. 3, Figs. S7-S8). The latter is consistent with some individual ecosystem
119 types becoming present in more cells across the globe (e.g. at least small areas of croplands
120 are found in large numbers of cells). In contrast, the Bray-Curtis dissimilarity index, which
121 incorporates the area of each ecosystem type as well as which ecosystem types are present,
122 showed growing differentiation over time across all scales (grains and extents; Fig. 3, Figs.
123 S7-S8). Increasingly, some locations have high percentages and others low percentages of

124 particular ecosystem types. There was a possible slight shift in rates of change of spatial
125 differentiation in the mid-20th century, but no reversals of previous trends (Fig. S8).


126 The changing diversity and distributions of ecosystems represent a major global change, of
127 importance to regional and global-scale ecosystem processes, to functions, and to the
128 provision of services (2). These changes underlie the CBD aspiration to achieve “*no net loss*”
129 of ecosystems by 2030 (3). However, ‘lost’ ecosystems have been replaced by a variety of
130 anthropogenic ecosystems, increasing the numbers of ecosystem types per 0.25° landscape in
131 most parts of the world (Figs. 1-2), and also increasing spatial differentiation within most
132 country-sized regions (Fig. 3). Many of these transformations are of great antiquity, reflecting
133 the diversity of the peoples who inhabited them, making these parts of the planet less
134 hospitable to some species but more so for others. In fact, ongoing conservation programmes
135 commonly highlight the human and biodiversity value of cultural and indigenous landscapes
136 in all six populated continents (11–13). Articulating all of these ecosystem changes as ‘loss’
137 does not capture the full range of realities of the transformed Anthropocene world, and
138 should be replaced by a narrative of ecosystem ‘change’.

139 The replacement of species-rich ecosystems by anthropogenic ecosystems (land-use cover
140 types) that support impoverished biotas can potentially result in a loss of local (e.g. per m² or
141 per ha) species richness (10), and locations that today share anthropogenic ecosystem types
142 may share increasing numbers of species (14). Anthropogenic ecosystems can promote the
143 establishment of already-widespread species (15–17), while more narrowly distributed native
144 species decline (18). Such conclusions have led to an overall narrative of ecosystem and
145 biodiversity ‘decline and homogenisation’. However, the increasing diversity of ecosystem
146 types that we observe could have the opposite effect at a landscape or regional scale (e.g. in
147 0.25° cells), given that ecosystem diversity is a major determinant of total species richness
148 (5). After land-use change, many native species survive in the remaining areas (fragments in


149 some places) of original ecosystems, while additional colonising species establish in different
150 semi-natural and anthropogenic ecosystems (19, 20). This contrast between plot-scale
151 species-richness results (10) and our landscape-scale ecosystem diversity results may help
152 explain why observed biodiversity changes are scale-dependent (14, 21), and include
153 locations and periods with increases as well as declines in numbers of species (14, 22–27).
154 These contrasting trends come together within the Rao Index results (Figs. 1-2), which
155 incorporates the diversity of ecosystems but ‘down-weights’ ecosystem types that often
156 support overlapping biotas (e.g. cropland and pasture). Rao’s Index shows strongly increasing
157 diversity over the full period, but it is also the one metric to exhibit a clear decline in
158 diversity in the second half of the 20th century.
159 In conclusion, we observe net ecosystem diversification across the globe over the last
160 millennium of human transformations of the Earth’s ecosystems, and spatial differentiation at
161 sub-global scales - prior to the mid-20th century. While the global story of biodiversity
162 change involves the loss and decline of certain ecosystem types, the full story is more
163 complex and interesting, involving gains and increases in other ecosystem types, and
164 increased ecosystem diversity at most spatial and temporal scales. It therefore seems
165 appropriate to replace language emphasizing only habitat and ecosystem ‘loss’ with
166 descriptions of ecosystem ‘change’.

167 **Fig. 1. Net change in local ecosystem diversity from 900 to 2000. (A-B)** within-cell ecosystem
168 richness (mean numbers of ecosystem types per cell), **(C-D)** Pielou's evenness (J) **(E-F)** Shannon
169 diversity Index (H') **(G-H)** and Rao's quadratic entropy Index (RaoQ). C-D and G-H scale from 0
170 (minimum) to 1 (maximum evenness and diversity). The left-hand graphs show the centurial trends
171 (from 900 to 2000), where each point on the graph represents the spatial averaged means across all
172 cells ($0.25^\circ \times 0.25^\circ$) found over a 100 year period plotted on the mid-point of the century, while the
173 right-hand graphs show the decadal averages (from 1700 to 2000) plotted on the mid-point of the
174 decade. The smoothed lines represent fitted GAMs (generalized additive models), the dark grey
175 shading represents the interdecile range calculated from 1000 sampling draws (each draw contained
176 2095 random sampling cells - full range of draws is shown in light grey). Inset density plots on the
177 left show the distribution of the individual cell estimates of the different metrics at 3 points in time.

178 **Fig. 2. Regional changes in local ecosystem diversity (α diversity).** Main plots show the GAM-
179 fitted trends for (A-B) each IPBES sub-region and (C-D) each WWF Biome, measured by Rao's Q
180 Index. Centuriel trends (A, C) are shown relative to the 10th century, and decadal trends (B-D) relative
181 to 1700. Insets show absolute values. Colours represent different regions. Black lines show GAM-
182 fitted global trends. Other diversity metrics are shown in Figs. S4-S5.

183 **Fig. 3. Temporal trends in spatial β diversity of ecosystems. (A-F)** Average total dissimilarity
184 change between pairs of smaller cells (grain) within increasing larger cell areas (extent) as measured
185 by the Jaccard Index (ecosystem type presence-absence dissimilarity - blue lines) and Bray-Curtis
186 Index (ecosystem type presence-absence and area coverage dissimilarity - green lines) between the
187 10th century and each subsequent century. Upper left-side legend shows the different grains of
188 analysis and extents considered. The smoothed lines represent fitted GAMs (generalized additive
189 models). For (A, B, C, E) diversity change is characterized by the average dissimilarity change from
190 100 random draws (each draw ~1% of the full dataset), with the interdecile range calculated from all
191 draws (dark grey shading). The decomposition of total dissimilarity into its components is shown in
192 Fig. S7 (centurial) and Fig. S8 (decadal).

193 **Methods**

194 **Land-use data**

195 We consider the last millennium, given the antiquity of many land-use changes, and we
196 explore changes at a global scale to avoid the risk of selecting unrepresentative regions. Of
197 candidate datasets of sufficient duration (including (6, 28-31), only the newly released Land
198 Use Harmonization version 2 (LUH2) dataset (<http://luh.umd.edu/data.shtml>) had sufficient
199 spatial resolution, temporal resolution *and* land-use thematic resolution for us to be able to
200 perform the analyses. We downloaded the LUH2 global annual gridded maps (0.25° x 0.25°
201 cell resolution) that provide the fraction of each of 12 land-use types in each cell for historical
202 land-use change (from 900-2000, the eleven full century-long periods within the database).
203 The 12 land-use categories were: primary vegetation (forest and non-forest), secondary
204 vegetation (forest and non-forest), managed pasture, rangeland, urban land, plus 5 functional
205 crop categories (including plantations). For analysis, we grouped the crop land-use data into 2
206 major land-use classes, cropland and tree plantations, in line with our structural definition of
207 ecosystem types; using the same categorization as recently used in Chapter 4 of the IPBES
208 global assessment (7). Because the structure, biological composition and potential fates of
209 ecosystems vary geographically, we carried out separate analyses for each of 17 IPBES sub-
210 regions and each of 14 WWF biomes (and also tested for effects of spatial scale, see below),
211 in addition to a global analysis of land-use categories. These sub-global analyses test for the
212 robustness of the results to geographic region, and to the definition of ecosystem (i.e. land-
213 use*region combinations effectively represent a narrower definition of ecosystem type).
214 Data for years within centuries up to 1700, and years within decades from 1700 to 2000, were
215 not independent of one another (see Fig. S9 and “*Temporal trends in α diversity*” section for
216 more details), and hence we generated two temporal datasets: centurial means for 900 to
217 2000, and decadal means for 1700 to 2000.

218 Because of sparse spatial information for some parts of the world, the LUH2 dataset is known
219 to have some allocation issues for primary and secondary (forest and non-forest), especially
220 in northern Africa. This was not seen to be a significant issue for our analysis (Fig. S10), and
221 thus cells across all regions of the world were considered. However, we removed cells on the
222 WWF Biomes boundaries, since the precise locations of such boundaries are not static (their
223 distribution is tightly linked to dynamic climatic and geological processes), and likely to have
224 changed over the last millennium (32). The final dataset contained 210363 cells at the 0.25°
225 cell resolution. Presence, area and coverage of each ecosystem were calculated for each 0.25°
226 grid cell (Fig. S1) and averaged at different spatial scales (grain and extent). All statistical
227 analyses were performed in RStudio 1.2.1335 (33).

228

229 **Ecosystem diversity metrics (α diversity)**

230 Our use of the term ‘ecosystem diversity’ is equivalent to most uses of the terms ‘habitat
231 diversity’, ‘habitat heterogeneity’ and ‘landscape heterogeneity’, encompassing the variety of
232 major vegetation types (and the animals associated with them) in a specified area or region.
233 Ecosystem diversity was assessed for each grid cell in every time step, adapting four metrics
234 that are typically applied to the estimation of species diversity. These are: richness (the
235 number of ecosystems per cell), evenness (balance of ecosystem types), heterogeneity
236 (number and relative area coverage of ecosystems) and composition (number, relative area
237 coverage and the compositional distance between ecosystems). Specifically, within-cell
238 richness was calculated as the number of unique ecosystem types present at a given grid cell.
239 Evenness and heterogeneity estimates were computed using the Pielou’s evenness Index (J)
240 and Shannon diversity Index (H'), respectively. The Pielou’s evenness Index (J) measures the
241 extent to which the area of two or more ecosystems are similar (calculable for all cells
242 containing two or more ecosystem type), and increases with increased evenness, where $0 \leq$

243 $J \leq 1$. Shannon diversity Index (H') diversity takes into consideration both the number of
244 ecosystems present, and the area of each, thus jointly reflecting the two major contributions
245 to diversity (the number of ecosystem types and the area of each), increasing with increased
246 diversity. Both indexes were computed using R ('vegan' package). These three metrics
247 describe the diversity of ecosystems directly.

248 The number of species that can be accommodated within a region (grid cell) depends on the
249 distinctiveness of the biota associated with each ecosystem type (i.e. dissimilarity in species
250 composition between ecosystems), in addition to the number ecosystems present, and their
251 evenness. Therefore, our fourth metric of within-cell ecosystem α diversity is Rao's quadratic
252 entropy Index ($RaoQ$, where $0 \leq RaoQ \leq 1$), where we incorporated all 3 aspects by
253 considering the expected biotic dissimilarities among ecosystems (using a distance matrix for
254 species compositional dissimilarities between ecosystem types), weighted by the area of each
255 ecosystem type. Species dissimilarity matrices were derived from Newbold *et al.* (10). RaoQ
256 estimates were computed using the function *rao.diversity* in R ('SYNCSA') package.

257

258 **Temporal trends in α diversity**

259 We defined time steps t as 100yr (for 900 to 2000) and 10yr (for 1700 to 2000) periods,
260 reflecting the original temporal resolution of the underlying land-use data before and after
261 1700 (Fig. S9). These provided temporal trends in each metric (Fig. 1), as well as changes
262 (Fig. 2) since the first time-step ($t_x - t_1$) of both time series (where $t_1 = 900$ and 1700,
263 respectively).

264 While the primary spatial grain for analysis was 0.25° , we also evaluated whether the change
265 of ecosystem diversity varied with scale by conducting separate analysis using grain size cells
266 of 1° , 4° , 9° and 15° (Fig. S2-S3). For each time period, the grid-based estimates for each

267 metric were spatially averaged across the globe, and separately averaged for broad
268 biogeographic regions (IPBES sub-regions and WWF biomes). Spatial averages were
269 weighted by the land-use area of grid cells (which vary latitudinally, and because of
270 land/water cover). All estimates can be found in Data S2.

271 We visualized the uncertainty in the global and regional means by drawing 1000 random
272 samples of n cells from our grid dataset (x_1, \dots, x_n), equally distributed across all IPBES sub-
273 regions (to avoid over/under-sampling regions), and calculating for each metric the i sample
274 means (M_1, \dots, M_i) across cells, where $M = f(x_1, \dots, x_n)$. The means of the different samples
275 are shown in Fig. 1-2 (light grey lines). For all draws, sample n was 2095 cells, which
276 represents 1% of the total number of cells. This n allows us to have a rich enough sample to
277 represent (describe) the population, but small enough to avoid significant duplication (on
278 average, only 21 cells were shared between pairs of draws) and most spatial-autocorrelation
279 issues. The global means of the different samples are shown in Figures 1-2 (light grey lines),
280 whereas the regional means of the different samples are shown in Figures S4-S5 (for IPBES
281 sub-regions and WWF biomes, respectively). The latters were calculated by averaging, for
282 each sample, the cells that fall within each region.

283

284 **Ecosystem diversity metrics (β diversity).**

285 We measured β diversity as the dissimilarity among pairs of cells using two indices: an
286 incidence-based index (Jaccard dissimilarity Index) and an abundance-based index (Bray-
287 Curtis dissimilarity Index), again extending species-level diversity metrics to ecosystems.
288 The Jaccard index, as applied here, estimates the extent to which any pair of locations (grid
289 cells) share ecosystem types (0 for exactly the same ecosystems present to 1 for no overlap in
290 the ecosystem types present). We used the ‘betapart’ package in R to calculate and

291 decompose the incidence-based dissimilarity metric (Jaccard- β_{jac}) into turnover (β_{jtu}) and
292 nestedness (β_{jne}) components.

293 The Bray-Curtis (β_{bc}) dissimilarity metric takes into account differences in the cover of each
294 ecosystem type between pairs of cells, as well as differences in the identities of each
295 ecosystem type; decomposed into balanced variation (β_{bc-bal} - the areas of some ecosystems
296 decline and other ecosystems increase from one cell to another) and any abundance gradient
297 (β_{bc-gra} - the areas of all ecosystems decline or increase equally from one cell to the other)
298 (34). Bray-Curtis values also vary from 0 (two cells are identical in which ecosystems are
299 present and in the areas of each ecosystem) and 1 (no ecosystems in common).

300

301 **Temporal trends in spatial β diversity of ecosystems**

302 We characterized spatial β diversity change as the average pairwise dissimilarity of
303 ecosystem composition between pairs of grid-cells (equation 1). Average pairwise
304 dissimilarity is known to be a robust measure of spatial heterogeneity because it estimates the
305 expected difference between a random pair of sites (35). The spatial scaling of β diversity is
306 also important because the metrics indicate ecosystem differences between locations.

307 Therefore, we again varied the grain of analysis (size of the cells), and also how dissimilarity
308 changes with average distance (extent, which we varied by sampling pairs of smaller cells
309 (0.25°, 1°, 9°) within larger cell areas, up to global extent.

310 For each combination of grain and extent, we calculated century- and decadal-long spatial
311 dissimilarity values between pairs of the smaller cells. Then, for each century/decade, global
312 average pairwise dissimilarity was calculated by averaging all pairwise comparisons
313 estimates:

314
$$\overline{\beta(\Omega, \Psi)} = \frac{\sum_i p_{k,i}^{\Omega}}{N(p_i^{\Omega})} \quad \text{(equation 1)}$$

315 where $p_{k,i}^{\Omega}$ is the dissimilarity between the pair of cells i (of grain size Ψ) in the spatial
316 sampling window k of size Ω (extent), and $N(p_i^{\Omega})$ is the total number of pairwise
317 comparisons across all windows of size Ω . Note that for each sub-global extent, pairwise
318 dissimilarities were only calculated for pairs of smaller cells that occur within a given larger
319 cell (e.g. between $\Psi = 0.25^\circ$ cell grain, within $\Omega = 1^\circ \times 1^\circ$ extent), while at the greatest extent
320 ($\Omega = \text{global}$) pairwise dissimilarity was calculated for any possible pair of smaller cells across
321 the globe. Finally, we report dissimilarity change between the first time-step (900 and 1700)
322 and subsequent time-steps ($t_x - t_1$) for the two temporal scales (all estimates are presented
323 in Data S3).

324 For certain combinations of grain and extent (grain of 0.25° at any extent and 1° at the global
325 extent – Fig. 3 A-C, E) calculating pairwise dissimilarities for all possible pairs was
326 computationally intractable. For these combinations, we randomly selected a subset of 2095
327 cells ($\sim 1\%$ of the full dataset), made pairwise comparisons ($p_{k,i}^{\Omega}$) between those cells, and
328 then estimated $(\overline{\beta(\Omega, \Psi)})$. We repeated this exercise for 100 random draws, providing a mean
329 (of the 100 draws) dissimilarity change and interdecile range (among the 100 draws). The
330 final number of pairwise comparisons for each combination of grain and extent are shown in
331 Data S3.

332

333 **References**

- 334 1. IUCN. *The IUCN red list of threatened species. Version 2018-1.* (International Union for
335 Conservation of Nature and Natural Resources, 2018).
- 336 2. IPBES. *Global assessment report on biodiversity and ecosystem services of the*
337 *Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S.*

- 338 *Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn,*
339 *Germany. (2019).*
- 340 3. CBD. *Zero draft of the post-2020 global biodiversity framework.* (2020).
- 341 4. CBD. Convention on Biological Diversity: Article 2: Use of Terms. in *Convention on*
342 *Biological Diversity* (1992).
- 343 5. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of
344 species richness across taxa, biomes and spatial scales. *Ecol. Lett.* **17**, 866–880 (2014).
- 345 6. Hurtt, G. C. *et al.* Harmonization of global land use change and management for the
346 period 850–2100 (LUH2) for CMIP6. *Geosci. Model Dev.* **13**, 5425–5464 (2020).
- 347 7. Shin, Y.-J. *et al.* *IPBES Global Assessment on Biodiversity and Ecosystem Services*
348 *Chapter 4. Plausible futures of nature, its contributions to people and their good quality*
349 *of life.* (2019).
- 350 8. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the
351 Anthropocene: The Great Acceleration. *Anthr. Rev.* **2**, 81–98 (2015).
- 352 9. Brolin, J. & Kander, A. Global trade in the Anthropocene: A review of trends and
353 direction of environmental factor flows during the Great Acceleration. *Anthr. Rev.*
354 2053019620973711 (2020) doi:10.1177/2053019620973711.
- 355 10. Newbold, T. *et al.* Global effects of land use on local terrestrial biodiversity. *Nature* **520**,
356 45–50 (2015).
- 357 11. Ens, E., Scott, Mitchell. L., Rangers, Y. M., Moritz, C. & Pirzl, R. Putting indigenous
358 conservation policy into practice delivers biodiversity and cultural benefits. *Biodivers.*
359 *Conserv.* **25**, 2889–2906 (2016).
- 360 12. Adom, D. Inclusion of Local People and Their Cultural Practices in Biodiversity
361 Conservation: Lessons from Successful Nations. *Am. J. Environ. Prot.* **4**, 67–78 (2016).
- 362 13. Molnár, Z. & Berkes, F. Role of traditional ecological knowledge in linking cultural and
363 natural capital in cultural landscapes. *Reconnecting Nat. Cult. Cap. Contrib. Sci. Policy*
364 *Paracchini ML Zingari PC Blasi C Eds* 183–193 (2018).
- 365 14. McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of
366 biodiversity trend in the Anthropocene. *Trends Ecol. Evol.* **30**, 104–113 (2015).
- 367 15. Barnosky, A. D. *et al.* Has the Earth's sixth mass extinction already arrived? *Nature* **471**,
368 51–57 (2011).
- 369 16. Hobbs, R. J., Higgs, E. S. & Hall, C. *Novel ecosystems: intervening in the new ecological*
370 *world order.* (John Wiley & Sons, 2013).

- 371 17. Hiley, J. R., Bradbury, R. B. & Thomas, C. D. Impacts of habitat change and protected
372 areas on alpha and beta diversity of Mexican birds. *Divers. Distrib.* **22**, 1245–1254
373 (2016).
- 374 18. Newbold, T. *et al.* Widespread winners and narrow-ranged losers: Land use homogenizes
375 biodiversity in local assemblages worldwide. *PLOS Biol.* **16**, e2006841 (2018).
- 376 19. Desrochers, R. E., Kerr, J. T. & Currie, D. J. How, and how much, natural cover loss
377 increases species richness: How natural cover loss increases diversity. *Glob. Ecol.*
378 *Biogeogr.* **20**, 857–867 (2011).
- 379 20. Udy, K. *et al.* Environmental heterogeneity predicts global species richness patterns
380 better than area. *Glob. Ecol. Biogeogr.* **n/a**, (2021).
- 381 21. Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent.
382 *Nat. Commun.* **9**, 2565 (2018).
- 383 22. Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases.
384 *Trends Ecol. Evol.* **18**, 561–566 (2003).
- 385 23. Ellis, E. C., Antill, E. C. & Kreft, H. All Is Not Loss: Plant Biodiversity in the
386 Anthropocene. *PLOS ONE* **7**, e30535 (2012).
- 387 24. Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien
388 species redefines biogeography in the Anthropocene. *Science* **348**, 1248–1251 (2015).
- 389 25. Pimm, S. L. *et al.* The biodiversity of species and their rates of extinction, distribution,
390 and protection. *Science* **344**, 1246752 (2014).
- 391 26. Thomas, C. D. The Anthropocene could raise biological diversity. *Nature* **502**, 7 (2013).
- 392 27. Thomas, C. D. Rapid acceleration of plant speciation during the Anthropocene. *Trends*
393 *Ecol. Evol.* **30**, 448–455 (2015).
- 394 28. Kaplan, J. O. & Krumhardt, K. M. The KK10 Anthropogenic Land Cover Change
395 scenario for the preindustrial Holocene, link to data in NetCDF format. *Supplement to:*
396 *Kaplan, Jed O; Krumhardt, Kristen M; Ellis, Erle C; Ruddiman, William F; Lemmen,*
397 *Carsten; Klein Goldewijk, Kees (2011): Holocene carbon emissions as a result of*
398 *anthropogenic land cover change. The Holocene*, 21(5), 775-791,
399 <https://doi.org/10.1177/0959683610386983> (2011) doi:10.1594/PANGAEA.871369.
- 400 29. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use
401 estimates for the Holocene – HYDE 3.2. *Earth Syst. Sci. Data* **9**, 927–953 (2017).
- 402 30. Santoro, M. *et al.* *Land Cover CCI: Product User Guide Version 2.0.* (Climate Change
403 Initiative Belgium, 2017).

- 404 31. Stephens, L. *et al.* Archaeological assessment reveals Earth's early transformation
405 through land use. *Science* **365**, 897–902 (2019).
- 406 32. Moncrieff, G. R., Bond, W. J. & Higgins, S. I. Revising the biome concept for
407 understanding and predicting global change impacts. *J. Biogeogr.* **43**, 863–873 (2016).
- 408 33. Team, Rs. RStudio: Integrated development for R (Version 1.2. 1335). (2019).
- 409 34. Baselga, A. Partitioning abundance-based multiple-site dissimilarity into components:
410 balanced variation in abundance and abundance gradients. *Methods Ecol. Evol.* **8**, 799–
411 808 (2017).
- 412 35. Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an
413 underappreciated source of confusion in calculating species turnover. *Ecology* **98**, 933–
414 939 (2017).

415

416 **Data and code availability**

417 All original land-use data used is published and publicly available at
418 <https://luh.umd.edu/data.shtml>. Code for all data processing and analysis and summary
419 datasets are archived online at Zenodo (<https://doi.org/10.5281/zenodo.4557542>).

420 **Acknowledgments**

421 We are grateful to Tim Newbold for advice on data analysis strategies, and to Anne
422 Magurran, Jane Hill for comments on the manuscript. This work was funded by a
423 Leverhulme Trust Research Centre - the Leverhulme Centre for Anthropocene Biodiversity.
424 ISM also acknowledges funding from the European Union's Horizon 2020 research and
425 innovation program under Marie Skłodowska-Curie grant agreement no. 894644. MV was
426 supported by the Natural Sciences and Engineering Research Council of Canada.

427 **Author contributions**

428 Conceptualization: I.S.M., M.D., M.V. and C.D.T.; Methodology: I.S.M., M.D., M.V. and
429 C.D.T.; Software: I.S.M.; Formal Analysis, I.S.M.; Visualization: I.S.M.; Writing – Original

430 Draft: I.S.M. and C.D.T.; Writing –Review & Editing: I.S.M., M.D., M.V. and C.D.T.;

431 Supervision: M.D., M.V. and C.D.T.; Funding Acquisition: C.D.T.

432 **Competing interests**

433 Authors declare no competing interests

434 **Supplementary Information**

435 Further information is available in the supplementary file linked to this paper. Supplementary

436 data S1-S3 is archive online at Zenodo.