

1 **A *ROR2* coding variant is associated with craniofacial variation in domestic pigeons**

2

3 **Authors:** Elena F. Boer¹, Hannah F. Van Hollebeke¹, Carson Holt², Mark Yandell², and Michael
4 D. Shapiro^{1*}

5

6 **Affiliations:** ¹School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA;
7 ²Department of Human Genetics and USTAR Center for Genetic Discovery, University of Utah,
8 Salt Lake City, UT 84112, USA

9

10 *Author for correspondence:

11 Michael D. Shapiro, School of Biological Sciences, 257 South 1400 East, Salt Lake City, UT
12 84112 USA; phone: +1 801 581 5690; fax: +1 801 581 4668; email: mike.shapiro@utah.edu

13

14 **Summary**

15 Vertebrate craniofacial morphogenesis is a highly orchestrated process that is directed by
16 evolutionarily conserved developmental pathways ^{1,2}. Within species, canalized developmental
17 programs typically produce only modest morphological variation. However, as a result of
18 millennia of artificial selection, the domestic pigeon (*Columba livia*) displays radical variation in
19 craniofacial morphology within a single species. One of the most striking cases of pigeon
20 craniofacial variation is the short beak phenotype, which has been selected in numerous
21 breeds. Classical genetic experiments suggest that pigeon beak length is regulated by a small
22 number of genetic factors, one of which is sex-linked (*Ku2* locus) ³⁻⁵. However, the molecular
23 genetic underpinnings of pigeon craniofacial variation remain unknown. To determine the
24 genetic basis of the short beak phenotype, we used geometric morphometrics and quantitative
25 trait loci (QTL) mapping on an F₂ intercross between a short-beaked Old German Owl (OGO)
26 and a medium-beaked Racing Homer (RH). We identified a single locus on the Z-chromosome
27 that explains a majority of the variation in beak morphology in the RH x OGO F₂ population. In
28 complementary comparative genomic analyses, we found that the same locus is also strongly
29 differentiated between breeds with short and medium beaks. Within the differentiated *Ku2* locus,
30 we identified an amino acid substitution in the non-canonical Wnt receptor ROR2 as a putative
31 regulator of pigeon beak length. The non-canonical Wnt (planar cell polarity) pathway serves
32 critical roles in vertebrate neural crest cell migration and craniofacial morphogenesis ^{6,7}. In
33 humans, homozygous *ROR2* mutations cause autosomal recessive Robinow syndrome, a rare
34 congenital disorder characterized by skeletal abnormalities, including a widened and shortened
35 facial skeleton ^{8,9}. Our results illustrate how the extraordinary craniofacial variation among
36 pigeons can reveal genetic regulators of vertebrate craniofacial diversity.

37

38 **Keywords:**

39 Craniofacial, beak, pigeon, morphometrics, QTL mapping, comparative genomics, non-
40 canonical Wnt signaling pathway, ROR2

41 **Results and Discussion**

42 The avian beak shows remarkable diversity among species. Variation in beak
43 morphology within groups like Darwin's finches and Hawaiian honeycreepers illustrates the
44 diversifying potential of natural selection on beak skeletal structures and functions^{10,11}. Although
45 the underlying genetic basis of the extraordinary variation among birds remains relatively poorly
46 understood, several genes associated with overall beak size or linear dimensions of beak shape
47 are known in a modest number of species (e.g., *COL4A5* in Great tits¹²; *IGF1* in Black-bellied
48 seedcrackers¹³; *BMP4*, *CALM1*, *ALX1*, and *HMGA2* in Darwin's finches^{14–18}). Unlike wild birds,
49 the domestic pigeon beak is unconstrained by natural selection; the astounding level of
50 morphological variation within this species is instead the product of intensive artificial selection.
51 Some of the major axes of variation in craniofacial shape that distinguish distantly related avian
52 species are recapitulated among breeds of domestic pigeon, despite different mechanisms of
53 selection between wild and captive populations^{19,20}. Therefore, pigeons provide a unique
54 opportunity to uncover genetic variants associated with the types of beak variation that exist
55 throughout the radiation of birds.

56

57 *Pigeon beak length covaries with body size and braincase shape in an experimental cross*

58 To determine the genetic architecture of beak length in pigeons, we established an F_2
59 intercross between a male Racing Homer (RH) and a female Old German Owl (OGO). The RH,
60 which "has been bred for one purpose – speed – almost to the exclusion of all other factors and
61 traits"²¹, has a medium-length beak that resembles the ancestral condition in rock pigeons
62 (Figure 1A,B). In contrast, the OGO beak "is one of the distinctive characteristics" of the breed
63 and is "short in appearance, which is partly caused by the broad width of the beak in relation to
64 its length"²² (Figure 1C,D).

65 We scanned the RH x OGO cross founders and 145 F_2 individuals using micro-CT,
66 generated 3D surface models of the craniofacial skeleton, and applied a set of 49 landmarks to

67 the beak and braincase (Supplemental Figure 1, Supplemental Tables 1-2). By calculating the
68 linear distance between the base and tip of the beak and using mass as a proxy for body size²³,
69 we found a significant positive association between beak length and body size in the F₂
70 population ($R^2=0.092$, $p=0.0001$, Figure 1E). We removed the effects of body size variation by
71 fitting a beak length ~ body size linear regression model and found that beak length residuals
72 remained highly variable in the F₂ population, demonstrating that beak length varies
73 independently of body size (Figure 1F).

74 We also measured three-dimensional (3D) variation in beak and braincase shape
75 through geometric morphometric analysis. In the RH x OGO F₂ population, cranium centroid
76 size is negatively associated with body size ($R^2=0.03$, $p=0.02$, Supplemental Figure 2A). This
77 result contrasts broad patterns of cranium ~ body size allometry observed across diverse
78 pigeon breeds and wild birds²⁰, and is likely driven by the exceptionally large cranium and small
79 body size selected for in the OGO breed. In the F₂ population, cranium centroid size is also
80 negatively associated with curvature from the tip of the beak to the back of the braincase and, to
81 a lesser extent, beak length ($R^2=0.073$, $p<0.001$, Supplemental Figure 2B). Taken together, the
82 linear and 3D shape analyses reveal subtle but significant relationships between body and
83 cranium size and craniofacial shape in the RH x OGO cross. By shuffling genetic programs for
84 two generations in an experimental cross, we find that body size, cranium size, and beak shape
85 are modular and separable.

86 Although allometry is an important correlate of shape²³, we focused further analyses on
87 non-allometric craniofacial shape variation. Principal components analysis (PCA) of geometric
88 morphometric shape variables demonstrate that, in the RH x OGO F₂ population, the first two
89 principal components (PCs) together account for 50% of craniofacial shape variation
90 (Supplemental Figure 3A). The principal axis of shape variation (PC1, 39.1% of shape variation)
91 describes compound variation in beak length and braincase volume (Figure 2A, Supplemental
92 Movie 1) and is strongly correlated with linear measurements of beak length ($R^2=0.64$, $p<2.2e-$

93 16, Supplemental Figure 3B). PC2 (10.9% of shape variation) is defined almost exclusively by
94 changes in braincase shape (Supplemental Figure 3C, Supplemental Movie 2).

95 Similar to previous findings in domestic pigeons and wild birds^{20,24}, 3D beak and
96 braincase shape are strongly integrated in the RH x OGO F₂ population (r-PLS=0.923, p<0.001,
97 Supplemental Figure 2B). Along the PC1 axis, all F₂ individuals are confined to a morphospace
98 defined by the cross founders, but cluster closer to the RH than the OGO (Figure 2B). This
99 result is reminiscent of our analysis of pigeon beak curvature, in which F₂ individuals derived
100 from a straight-beaked Pomeranian Pouter and curved-beaked Scanderoon more closely
101 resembled the Pomeranian Pouter and never achieved the extreme craniofacial curvature of the
102 Scanderoon²⁴. Therefore, two different genetic crosses using four different pigeon breeds
103 suggest that the most exaggerated versions of craniofacial traits require coordination of multiple
104 genetic factors.

105

106 *Identification of a major-effect beak length QTL on the Z chromosome*

107 Next, we used the PC1 scores, which primarily describe variation in beak length, to
108 perform genome-wide QTL scans. A single major-effect QTL on the Z-chromosome linkage
109 group was strongly associated with PC1 and explained more than half of phenotypic variance in
110 the RH x OGO cross (log likelihood ratio (LOD)=23.72, percent variance explained
111 (PVE)=53.2%, Figure 2C). Nearly identical results were obtained when beak length residuals
112 were used for QTL mapping (Supplemental Figure 4). The identification of a major-effect QTL
113 on the Z-chromosome is consistent with results from classical genetic studies that pointed to a
114 sex-linked regulator of pigeon beak length³⁻⁵.

115 We next used the peak marker to estimate QTL effects. Within the F₂ population, male
116 Z^{RH}/Z^{RH} homozygotes and female Z^{RH}/W hemizygotes had the highest PC1 scores (longest
117 beaks) and were not statistically different from one another (Figure 2D). Male Z^{RH}/Z^{OGO}
118 heterozygotes had intermediate PC1 scores (Figure 2D), suggestive of an incompletely

119 dominant pattern of inheritance. In contrast, female Z^{OGO}/W hemizygotes had dramatically lower
120 PC1 scores (shorter beaks) than all other F_2 individuals carrying the RH allele (Figure 2D).
121 Although the structure of our experimental cross did not generate homozygous Z^{OGO}/Z^{OGO} males
122 in the F_2 generation, previous classical genetic studies have demonstrated that, in short-beaked
123 pigeon breeds, body size is sex-associated but beak length is not^{5,25}. Therefore, we predict that
124 the beaks of Z^{OGO}/Z^{OGO} males would be indistinguishable from hemizygous Z^{OGO}/W females,
125 although we cannot rule out the possibility that an additional copy of the OGO allele could result
126 in even shorter beaks in Z^{OGO}/Z^{OGO} males.

127 In summary, our results support the model that pigeon beak length is a polygenic trait
128 controlled largely by one sex-linked factor. Additional minor-effect QTL are likely modifying beak
129 length in the RH x OGO cross, some of which may be detectable in a larger F_2 population or an
130 F_3 generation that includes Z^{OGO}/Z^{OGO} males.

131

132 *A ROR2 coding variant is associated with beak length across diverse domestic pigeon breeds*

133 The beak length QTL represents a relatively large (3.6-Mb) genomic region that includes
134 several genes expressed during pigeon craniofacial development (Supplemental Figure 5,
135 Supplemental Table 3), thus limiting our ability to pinpoint the specific gene(s) and mutation(s)
136 that regulate beak length in the RH x OGO cross. In addition, because the mapping population
137 was derived from just two birds that represent a fraction of the morphological diversity across
138 pigeon breeds, we have no way of knowing if the beak length QTL we identified is relevant
139 beyond the RH x OGO cross. Short beaks are characteristic of numerous related pigeon breeds
140 that belong to the Owl family, but have also been selected for in a variety of unrelated non-Owl
141 breeds²⁶⁻²⁸. Pigeon breeders might have repeatedly selected the same standing variant in
142 different breeds, independent variants of the same gene in different breeds, or different genes
143 altogether in different breeds.

144 To distinguish between independent and shared genetic origins of short beaks, we
145 scanned for genomic variants associated with beak length across diverse pigeon breeds by
146 comparing resequenced genomes of 56 short-beaked individuals from 31 (7 Owl and 24 non-
147 Owl) breeds to 121 genomes from 58 medium- or long-beaked breeds and feral pigeons (Figure
148 3A-B). We then searched for genomic regions that were differentiated between these groups
149 using two related differentiation statistics (wcF_{ST} ²⁹ and pF_{ST} ³⁰). A ~293-kb segment on the Z-
150 chromosome scaffold ScoHet5_445.1 stood out as significantly differentiated between the short-
151 and medium/long-beaked groups (top 0.1% by wcF_{ST} ; Figure 3C-D, Supplemental Figure 6) and
152 was located within the genomic interval identified in our QTL scan. In the peak differentiated
153 region, short-beaked pigeons displayed elevated levels of haplotype homozygosity relative to
154 medium/long-beaked individuals, providing further support for widespread positive selection on
155 this locus in short-beaked breeds (Figure 3E). Thus, the short beak allele identified in our QTL
156 mapping experiments is not specific to either the OGO cross founder or the Owl family. Instead,
157 the short beak allele on the Z-chromosome likely arose once and was repeatedly selected in
158 different breeds.

159 The single most significantly-differentiated SNP genome wide ($wcF_{ST}=0.88$, $pF_{ST}=0$) is
160 located at scaffold position ScoHet5_445.1:6568443. The non-reference allele causes a
161 missense substitution in the seventh exon of *ROR2* ($ROR2^{C1087T}$, hereafter the *Ku2* allele⁵) in
162 short-beaked pigeons. *ROR2* encodes a noncanonical Wnt receptor with well-established roles
163 in cell polarity and motility in multiple embryonic tissues, including the neural crest³¹. This gene
164 is required for normal craniofacial development: in humans, homozygous mutations in *ROR2*
165 cause autosomal recessive Robinow syndrome, a severe skeletal dysplasia characterized by
166 extensive abnormalities, including a prominent forehead (frontal bossing), wideset eyes
167 (hypertelorism), and a broad, short nose^{8,9}. In mice, *Ror2* knockout or knock-in of Robinow-
168 associated mutations disrupts endochondral bone development and causes profound skeletal
169 abnormalities, including craniofacial outgrowth defects³²⁻³⁴. Likewise, the OGO and

170 morphologically similar pigeon breeds have reduced craniofacial outgrowths in the form of short
171 beaks.

172 Within the short-beaked group, 98% of pigeons (45/46) were homozygous or
173 hemizygous for the *Ku2* allele; only the Chinese Nasal Tuft, a breed that can have a short- or
174 medium-length beak³⁵, was heterozygous. In contrast, 93% (97/104) of medium-beaked birds
175 were homozygous, hemizygous, or heterozygous for the ancestral allele (Figure 3F). A genome-
176 wide scan for putatively damaging coding variants predicted that the *Ku2* allele is both highly
177 deleterious and associated with short beaks (VAAST³⁶ top-ranked feature, score=64.37, p=4e-
178 8). At the amino acid level, the *Ku2* allele causes an arginine-to-cysteine transition in the ROR2
179 extracellular kringle fold, a cysteine-rich, disulfide-bonded domain that is unlikely to tolerate
180 mutations due to its small size and complex folding³⁷. The precise number and spacing of
181 cysteine residues in the kringle domain are deeply conserved in vertebrate ROR2 and
182 invertebrate Ror homologs (Figure 3G), suggesting that the ectopic cysteine residue introduced
183 by the *Ku2* mutation may have a substantial impact on disulfide bond formation and kringle
184 domain folding. Although the precise function of the ROR2 kringle domain remains unclear, it is
185 thought to mediate protein-protein interactions and may modulate the affinity of the adjacent
186 Frizzled-like ligand-binding domain for WNT5A^{38,39}.

187 Like the pigeon *Ku2* allele, the majority of known Robinow-associated missense
188 mutations in human patients are clustered in the kringle and Frizzled-like extracellular domains.
189 All of the characterized disease variants cause increased ROR2 protein retention in the
190 endoplasmic reticulum, suggesting that the extracellular domain must be properly folded before
191 transport to the plasma membrane^{37,40}. Based on available evidence, we hypothesize that the
192 *Ku2* allele disrupts ROR2 protein folding in short-beaked pigeons, resulting in craniofacial
193 outgrowth anomalies similar to Robinow syndrome in humans.

194

195 *ROR2 and WNT5A are expressed during pigeon craniofacial morphogenesis*

196 In chicken and mouse embryos, *ROR2* expression is widespread with regions of strong
197 expression in the facial prominences, dorsal root ganglia, and limb buds^{31,41,42}. Using RNA-seq,
198 we found that both *ROR2* and *WNT5A* are also strongly expressed in short- and medium-
199 beaked pigeon facial primordia (n=5 each), with higher expression in the frontonasal and
200 maxillary prominences (upper beak) relative to the mandibular prominence (lower beak; Figure
201 4A-B). Neither *ROR2* nor *WNT5A* is differentially expressed between short- and medium-
202 beaked embryos at the pigeon equivalent of chicken stage HH29 (Ref. 43, Figure 4A-B), an
203 early embryonic stage at which distinct craniofacial morphologies are evident among avian
204 species⁴⁴.

205 Spatial expression of *ROR2* is broad during early pigeon facial development (HH21-29),
206 with higher levels in the FNP and lateral nasal prominences (LNP) at HH25 and HH29 (Figure
207 4C-E). *WNT5A* expression domains overlap with *ROR2*, but are more spatially restricted to the
208 regions of the facial primordia that will grow out to form the beak (Figure 4F-H), similar to mouse
209 and chicken^{45,46}. Thus, *ROR2* and *WNT5A* are expressed together in pigeons in a spatial and
210 temporal manner that is consistent with their role as regulators of craniofacial morphogenesis.
211 The lack of differential *ROR2* expression in short- and medium-beaked pigeon embryos
212 implicates the *Ku2* coding mutation, rather than differences in the regulation of expression, in
213 the development of the short beak phenotype.

214

215 *Pigeons model vertebrate evolution and disease*

216 Several developmental pathways have been implicated in the evolution of beak diversity
217 in other birds, including Darwin's finches, Great tits, and Black-bellied seedcrackers¹²⁻¹⁶,
218 Although *ROR2* has a well-established role in mammalian craniofacial development, to our
219 knowledge, this is the first example of a member of the noncanonical Wnt signaling pathway
220 regulating craniofacial development and diversity in birds. This finding contrasts with other
221 examples of recurrent evolution of derived traits via changes in the same genes in pigeons and

222 other species, including head crests (*EPHB2*, also in ringneck doves ^{27,47}), feathered feet
223 (*PITX1* and *TBX5*, also in chickens ^{30,48}), and plumage color patterning (*NDP*, also in crows ^{49–}
224 ⁵¹). Considering the deep evolutionary conservation of developmental pathways that regulate
225 craniofacial morphogenesis, our findings raise the possibility that noncanonical Wnt signaling is
226 modulated in other cases of avian craniofacial variation. We did not identify noncanonical Wnt
227 pathway genes in our recent study of the genetic basis of pigeon beak elaboration ²⁴,
228 suggesting that distinct genetic programs underlie reduction and exaggeration of the same
229 tissues and structures.

230 The identification of *ROR2* as a putative regulator of beak length adds to a growing list of
231 genes that underlie morphological variation in the domestic pigeon and are associated with
232 human diseases, including congenital defects and cancer ^{30,50,52,53}. In addition, prior work in
233 pigeons has predicted the molecular basis of diverse morphological traits in other wild and
234 domestic species ^{27,30,47,49–51}. Thus, the pigeon is an exceptional model to interrogate the genetic
235 underpinnings of vertebrate evolution, development, and disease.

236

237 **Acknowledgments**

238 We are grateful to Nathan Young and Rich Schneider for generously sharing their time and
239 expertise related to geometric morphometrics, craniofacial biology, and avian embryology. We
240 thank all past and present members of the Shapiro Lab, including Rebecca Bruders, Alexa
241 Davis, Emily Maclary, Anna Vickrey, and Ryan Wauer for help with animal husbandry, technical
242 assistance, and advice. We are grateful to Emily Maclary for comments on the manuscript. We
243 thank members of the Utah Pigeon Club and National Pigeon Association for sample
244 contributions. We acknowledge the University of Utah Preclinical Imaging Core Facility,
245 especially Tyler Thompson, for micro-CT imaging; the Center for High Performance Computing
246 at the University of Utah for computing resources; the University of Utah High-Throughput

247 Genomics Shared Resource for RNA library preparation and sequencing; and the University of
248 Minnesota Genomics Core for GBS library preparation and sequencing.

249

250 **Author Contributions**

251 Conceptualization, E.F.B. and M.D.S.; Methodology, E.F.B. and M.D.S.; Software, C.H. and
252 M.Y; Investigation, E.F.B. and H.F.V.; Resources, C.H. and M.Y; Formal Analysis, E.F.B.;
253 Writing – Original Draft, E.F.B. and M.D.S.; Writing – Review & Editing, E.F.B., H.F.V., and
254 M.D.S.; Funding Acquisition, E.F.B. and M.D.S.; Visualization, E.F.B.; Supervision, M.D.S.

255

256 **Declaration of Interests**

257 The authors declare no competing interests.

258

259 **Figure Legends**

260 **Figure 1. Beak length variation in a pigeon F₂ intercross.** (A) Representative image of the
261 medium beak Racing Homer (RH) breed. (B) 3D surface model of the craniofacial skeleton of
262 the male RH founder. (C) Representative image of the short beak Old German Owl (OGO)
263 breed. (D) Surface model of the craniofacial skeleton of the female OGO founder. (E) Raw beak
264 length (measured in arbitrary units) vs. total body mass (measured in grams) in the RH x OGO
265 cross. Gray line indicates linear model from beak length ~ mass regression. (F) Distribution of
266 residuals from beak length ~ mass regression. For (E-F), black dots denote RH x OGO F₂
267 individuals, red triangle is OGO founder, blue square is RH founder. Image credits: Sydney
268 Stringham (A), Brian McCormick (B).

269

270 **Figure 2. A major-effect QTL on the Z-chromosome is associated with principal
271 component 1 (PC1) in the RH x OGO F2 population.** (A) Visualizations of geometric
272 morphometric PC1 minimum and maximum shapes three ways: warped 3D surface meshes

273 (left), wireframes showing displacement of landmarks from mean shape (center), and heatmaps
274 displaying regional shape variation (right). For warped meshes and wireframes, shape changes
275 are magnified 1.5x to aid visualization. (B) PCA plot of PC1 vs. PC2. (C) Genome-wide QTL
276 scan for PC1 reveals significant QTL on Z linkage group. (D) PC1 effect plot estimated from
277 QTL peak marker. Letters denote significance groups; RH = allele from RH founder, OGO =
278 allele from OGO founder.

279

280 **Figure 3. Comparison of short beak and medium/long beak pigeon genomes reveals**
281 **ROR2 coding variant.** (A-B) Representative images of individuals representing short beak (A)
282 and medium or long beak (B) pigeon breeds. (A) Short beak pigeons, from left to right: English
283 Short Face Tumbler, African Owl, Oriental Frill, Budapest Tumbler. (B) Medium/long beak
284 pigeons, from left to right: West of England, Cauchois, Scandaroon, Show King. (C) Genome-
285 wide scan for allele frequency differentiation between short beak (n=56) and medium/long beak
286 (n=121) pigeons. (D) Region of peak F_{ST} on ScoHet5_445.1; black horizontal bars represent
287 four genes in the region. For (C-D), genomic scaffolds are colored in gray and ordered by
288 genetic position in RH x OGO linkage map; black dots indicate SNPs that are significantly
289 differentiated by pF_{ST} (Bonferroni-corrected p-value < 0.05); red dots are significant SNPs
290 located on scaffold ScoHet5_445.1; dashed horizontal line represents threshold for genome-
291 wide top 0.1% of differentiated SNPs by wcF_{ST} ; arrow points to ScoHet5_445.1:6568443, the
292 most differentiated SNP ($F_{ST}=0.88$) genome-wide. (E) Extended haplotype homozygosity in F_{ST}
293 peak region; dotted vertical line indicates position of ScoHet5_445.1:6568443; smoothed lines
294 represent local regression fitting ⁵⁴. (F) Histogram of genotypes at ScoHet5_445.1:6568443 in
295 short beak and medium/long beak groups. (G) Amino acid alignment of kringle domain from
296 vertebrate ROR2 and invertebrate Ror homologs. The *Ku2* allele causes an arginine-to-cysteine
297 substitution in short beak pigeon breeds.

298

299 **Figure 4. ROR2 and WNT5A are expressed in pigeon facial primordia.** (A-B) *ROR2* (A) and
300 *WNT5A* (B) mRNA expression in facial primordia that will form the upper and lower beak from
301 HH29 short and medium beak pigeon embryos. Each individual embryo is displayed in a
302 different color. (C-H) Whole-mount *in situ* hybridization for *ROR2* (C-E) and *WNT5A* (F-H) in
303 medium beak pigeon embryos at HH21, HH25, and HH29. *ROR2* is broadly expressed in facial
304 primordia at all stages. *WNT5A* is strongly expressed in the FNP and at the lateral edges of the
305 MXP and LNP, with increased expression at the edge of the MDP at HH29. Letters indicate
306 embryonic tissues/structures: e=eye, fnp=frontonasal prominence, l=lateral nasal prominence,
307 mdp=mandibular prominence, mxp=maxillary prominence.

308

309 **Supplemental Figure 1. Pigeon craniofacial landmark atlas.** Landmarks are indicated by
310 blue discs.

311

312 **Supplemental Figure 2. Allometry and integration in the RH x OGO cross.** (A) Cranium
313 centroid size ~ body size (mass) linear regression. (B) Cranium shape ~ centroid size linear
314 regression. (B) Beak vs. braincase PLS1 shapes. Minimum and maximum shapes are depicted
315 as wireframes and/or warped meshes along corresponding axis.

316

317 **Supplemental Figure 3. Geometric morphometric analysis of craniofacial skeleton shape**
318 **in RH x OGO cross.** (A) Principal components (PCs) that together account for 90% of shape
319 variation in craniofacial skeleton. (B) Scatter plot of beak length residual vs. PC1 score for all
320 RH x OGO F₂ individuals. (C) Minimum and maximum PC2 shapes depicted as warped mesh
321 (left), wireframe showing landmark displacement (center), or heatmap indicating regional shape
322 changes (right). For mesh and wireframe models, shape change is magnified 1.5x to aid
323 visualization.

324

325 **Supplemental Figure 4. QTL scan using beak length residuals.** (A) Genome-wide QTL scan
326 for beak length using residuals from beak length ~ body mass linear regression. (B) LOD
327 support interval is nearly identical to PC1 QTL interval (displayed in Figure 2D). Genes in
328 interval on ScoHet5_445.1 are displayed at bottom and color-coded by expression level. (C)
329 Plot of QTL effects, using peak marker highlighted by black dot in (B).

330

331 **Supplemental Figure 5. PC1 QTL support interval.** (A) LOD support interval for QTL on Z.
332 Markers in interval are denoted with dots and labeled with genomic scaffold name
333 (ScoHet5_445.1 or ScoHet5_227) and position (in Mb); black dot indicates QTL peak marker
334 (ScoHet5_445.1:6.57-Mb), which was used to estimate QTL effects. (B) Genes in QTL interval,
335 color-coded by mRNA expression level in facial primordia derived from HH29 RH embryos.
336 *ROR2* is located directly under QTL peak.

337

338 **Supplemental Figure 6. Allele frequency differentiation (F_{ST}) and extended haplotype
339 homozygosity (EHH) on scaffold ScoHet5_445.1 in short and medium/long beak pigeons.**
340 (A) F_{ST} on ScoHet5_445.1. Boxed region indicates ~293-kb peak region displayed in Figure 3D-
341 E. (B) EHH on ScoHet5_445.1. Smoothed lines represent local regression fitting; dotted vertical
342 line indicates position of ScoHet5_445.1:6568443.

343

344 **Supplemental Movie 1. PC1 shape variation.** Minimum to maximum, magnified 1.5x.

345 **Supplemental Movie 2. PC2 shape variation.** Minimum to maximum, magnified 1.5x.

346 **Supplemental Table 1. Description of skull and jaw landmarks.**

347 **Supplemental Table 2. Landmark pairs used for skull and jaw linear measurements.**

348 **Supplemental Table 3. Genes in the PC1 QTL interval.**

349

350 **STAR Methods**

351 **Resource Availability**

352 *Lead Contact*

353 Further information and requests for resources and reagents should be directed to and will be
354 fulfilled by the Lead Contact, Michael Shapiro (mike.shapiro@utah.edu).

355

356 *Materials Availability*

357 Plasmids generated to synthesize RNA *in situ* hybridization probes against pigeon *ROR2* and
358 *WNT5A* are available upon request.

359

360 *Data and Code Availability*

361 Whole genome sequencing and RNA-sequencing datasets generated for this study have been
362 deposited to the NCBI SRA database under BioProject PRJNA680754. Additional short-beaked
363 genomes are available under BioProject PRJNA513877 (SRR8420387-SRR8420391,
364 SRR8420393, SRR8420394, SRR8420397).

365

366 **Experimental Model and Subject Details**

367 *Columba livia*

368 Pigeons were utilized in accordance with protocols approved by the University of Utah
369 Institutional Animal Care and Use Committee (protocols 10-05007, 13-04012, and 19-
370 02011). Further information is provided throughout the Method Details section.

371

372 **Method Details**

373 *RH x OGO F₂ intercross and 3D imaging*

374 A F₂ intercross was established between a male Racing Homer (RH) and a female Old German
375 Owl (OGO). F₁ hybrids (n=15) were interbred to generate a F₂ mapping population. F₂ offspring
376 that reached 6 months of age (n=145) were euthanized and basic biometrics (e.g. mass) were

377 recorded. All F₂ offspring and cross founders were submitted to the University of Utah
378 Preclinical Imaging Core Facility for micro-CT imaging. For each bird, a whole-body scan was
379 performed on a Siemens Inveon micro-CT using the following parameters: voxel size=94 ,
380 photon voltage=80 kV, source current=500 A, exposure time=200 ms. Scans were
381 reconstructed using a Feldkamp algorithm with Sheep-Logan filter and a calibrated beam
382 hardening correction.

383

384 *Surface model generation and landmarking*

385 Surface model generation and landmarking were performed as described ²⁴. Briefly, a substack
386 containing the cranium was extracted from the whole-body DICOM file stack in ImageJ v1.52q,
387 exported as a NifTI file (*.nii), and imported into Amira v6.5.0 (Thermo Fisher Scientific). Using
388 the Segmentation Editor threshold feature, the cranial skeleton was segmented from soft tissue
389 and exported as a HxSurface binary (*.surf) file. Surface meshes were converted to Polygon
390 (Stanford) ASCII (*.ply) files using i3D Converter v3.80 and imported into IDAV Landmark Editor
391 v3.0 (UC Davis) for landmarking. We applied a set of landmarks (Supplemental Figure 1,
392 Supplemental Tables 1-2) to the braincase (n=29 landmarks) and upper beak (n=20) of all F₂
393 individuals and the cross founders. Landmark coordinates were exported as a NTsys landmark
394 point dataset (*.dta) for geometric morphometric analysis.

395

396 *Blood collection and genomic DNA extraction*

397 Blood samples from adult pigeons used for whole-genome sequencing were collected at local
398 pigeon shows, at breeder's homes, or in the Shapiro lab loft. RH x OGO F₂ offspring were bled
399 at time of fledging (approximately 1 month of age). For each individual, a blood sample was
400 collected from the brachial vein and stored in an EDTA-coated sample tube at -80°C. RNase-

401 treated genomic DNA was extracted using a DNeasy Blood and Tissue Kit and eluted in Buffer
402 EB (Qiagen).

403

404 *Genotyping-by-sequencing (GBS) and linkage map assembly*

405 Genomic DNA samples from RH x OGO cross founders and 171 F₂ offspring were submitted to
406 the University of Minnesota Genomics Core for GBS library prep and sequencing. Genomic
407 DNA samples were digested with ApeKI (NEB), then ligated with T4 ligase (NEB) and phased
408 adaptors with CWG overhangs. The ligated samples were purified with SPRI beads and
409 amplified for 18 PCR cycles with 2X NEB Taq Master Mix to add barcodes. Libraries were
410 purified, quantified, pooled, size selected for the 624-724 bp library region (480-580 DNA
411 insert), and treated with ExoVII to remove any remaining single stranded material. The final pool
412 was diluted to 1 nM for sequencing on the Illumina NovaSeq 6000 using single-end 1X100
413 reads. Target sequencing volume was ~4.75M reads/sample. Sequencing read quality was
414 assessed with FastQC (Babraham Bioinformatics) and Illumina adapters were trimmed with
415 Cutadapt ⁵⁵. Reads were mapped to the Cliv_2.1 reference assembly ⁵⁶ using Bowtie 2 ⁵⁷.
416 Genotypes were called using the Stacks v2.52 ref_map.pl program, which executes the Stacks
417 pipeline programs gstacks and populations. The following options were passed to populations: -
418 H -r 0.75 --map-type F2 --map-format qt1.

419 The RH x OGO genetic map was constructed with the R package R/qtl v1.46-2 using
420 genotype data from 171 F₂ individuals. Because of differences in segregation patterns,
421 autosomal and Z-linked scaffolds were assembled separately. For autosomal scaffolds, markers
422 with identical genotypes or displaying segregation distortion (chi-square p < 0.005) were
423 eliminated. Preliminary filtering was performed to remove markers missing in more than 20%
424 (34/170) of F₂ individuals. Pairwise recombination fractions were calculated and a preliminary
425 genetic map was estimated using the est.rf and est.map functions, respectively. The
426 dropmarker and calc.errorlod functions were used with the parameter (error.prob = 0.005) to

427 identify problematic markers and likely genotyping errors, which were eliminated from the
428 genetic map. Linkage groups were formed using the function *formLinkageGroups* with
429 parameters (max.rf = 0.25, min.lod = 6). For the Z-chromosome, the same workflow was carried
430 out, except that distorted markers were not removed. Preliminary marker ordering was done for
431 all linkage groups using the *orderMarkers* function with the parameter (window size = 7). Final
432 marker ordering was completed manually based on calculated recombination fractions and LOD
433 scores. The *compareorder* function was used to test alternative marker orders; changes in
434 marker ordering that resulted in an increased LOD score and decreased linkage group length
435 were retained. The final RH x OGO genetic map is composed of 6128 markers (5553
436 autosomal, 575 Z-linked) on 35 linkage groups (34 autosomal, 1 Z-linked) with a genotyping rate
437 of 90.1%.

438

439 *Whole-genome resequencing*

440 For the current study, we resequenced genomes for 33 pigeons from 24 short-beaked breeds:
441 African Owl, Australian Tumbler, Berlin Short Face Tumbler, Budapest Tumbler, Canario
442 Cropper, Chinese Nasal Tuft, Classic Old Frill, Damascene, Egyptian Swift, English Long Face
443 Tumbler, English Short Face Tumbler, Granadino Pouter, Hamburg Sticken, Helmet, Italian Owl,
444 Long Face Muff Tumbler, Nun, Old German Owl, Oriental Frill, Rafeno Pouter, Russian
445 Tumbler, Taganrog Tumbler, Temeschburger Schecker, Uzbek Tumbler. We also resequenced
446 29 pigeons from 24 medium- or long-beaked breeds: Berlin Long Faced Tumbler, Dragoon,
447 English Carrier, English Magpie, Scanderoon, Racing Homer, Danzig Highflier, Schalkaldener
448 Mohrenkopf, Fairy Swallow, Hungarian Giant House Pigeon, Crested Saxon Field Color Pigeon,
449 Saint, Franconian Trumpeter, American Highflier, Bokhara Trumpeter, Komorner Tumbler,
450 Brunner Pouter, Mindian Fantail, Naked Neck, Turkish Tumbler, Norwich Cropper, Miniature
451 American Crest, Rhine Ringbeater, Vienna MF Tumbler.

452 Genomic DNA samples were submitted to the High-Throughput Genomics and
453 Bioinformatic Analysis Shared Resource at the University of Utah for library preparation and
454 sequencing. DNA libraries were prepared using the Illumina TruSeq DNA PCR-Free Sample
455 Preparation Kit with an average insert size of 350 bp. 125-cycle paired-end sequencing was
456 performed on an Illumina HiSeq 2500 instrument (3-4 libraries/lane).

457

458 *Embryonic tissue isolation and RNA extraction*

459 Pigeon eggs were collected from Racing Homer (medium beak) and Oriental Frill (short beak)
460 breeding pairs and incubated to embryonic day 6 (Hamburger-Hamilton (HH) stage 28-29, ⁵⁸).
461 Facial prominences that form the upper beak (frontonasal and maxillary, FNP+MXP) and lower
462 beak (mandibular, MDP) were dissected and stored separately in RNAlater (ThermoFisher
463 Scientific) at -80°C. Additional tissue was harvested from each embryo and used for DNA
464 extraction and sex determination following a previously published PCR-based assay ⁵⁹. Total
465 RNA was extracted from embryonic tissue samples using the RNeasy Mini Kit with RNase-Free
466 DNase Set and a TissueLyser LT (Qiagen).

467

468 *RNA-sequencing*

469 Total RNA from FNP+MXP and MDP samples from HH28-29 female Racing Homer (n=5) and
470 Oriental Frill (n=5) embryos was submitted to the High-Throughput Genomics and Bioinformatic
471 Analysis Shared Resource at the University of Utah for library preparation and sequencing. RNA
472 sample quality was assessed using the RNA ScreenTape Assay (Agilent). For each sample, a
473 stranded sequencing library was prepared using the TruSeq Stranded mRNA Sample Prep Kit
474 with oligo(dT) selection (Illumina). 125-cycle paired-end sequencing was performed on an
475 Illumina HiSeq 2500 instrument (12 libraries/lane). An average of 23.4 million reads was
476 generated for each sample.

477

478 *ROR2 multiple sequence alignment*

479 Amino acid sequences for vertebrate ROR2 and invertebrate ROR homologs were downloaded
480 from Ensembl (ensembl.org) or NCBI (ncbi.nlm.nih.gov/gene). Clustal Omega multiple
481 sequence alignments were performed and visualized with the R package msa v1.18.0⁶⁰.

482

483 *Whole-mount RNA in situ hybridization (ISH)*

484 ISH probe templates were generated by PCR amplification of a portion of pigeon *ROR2* (692 bp
485 amplicon) or *WNT5A* (783 bp amplicon) from a pooled cDNA library generated from HH21,
486 HH25, and HH29 Racing Homer embryos using the following primer sets: ROR2-forward: 5'-
487 GGAACCGACAGGTTCTACCA-3', ROR2-reverse: 5'-TGCTTCGTCCATCTGAAGTG-3',
488 WNT5A-forward: 5'-CATAGTGGCTCTGGCCATT-3', WNT5A-reverse: 5'-
489 CCCCGACTGTTGAGTTTCAT-3'. *ROR2* and *WNT5A* amplicons were cloned into pGEM-T
490 Easy (Promega) and confirmed by Sanger sequencing. Antisense and sense RNA probes were
491 generated by *in vitro* transcription as previously described⁶¹. For *ROR2*, pGEM-*ROR2* was
492 digested with Ncol or Sall and transcribed with SP6 or T7 RNA polymerase, respectively. For
493 *WNT5A*, pGEM-*WNT5A* was digested with Kpn1 or Nco1 and transcribed with T7 or SP6 RNA
494 polymerase, respectively.

495 Racing Homer embryos used for ISH were dissected from eggs at the desired embryonic
496 stage and fixed overnight in 4% paraformaldehyde at 4°C on a shaking table. Embryos were
497 subsequently dehydrated into 100% MeOH and stored at -20°C. Whole-mount ISH was
498 performed following a protocol optimized for avian embryos
499 (geisha.arizona.edu/geisha/protocols.jsp). For each experiment, antisense or sense probes
500 were applied to stage-matched embryos.

501

502 **Quantification and Statistical Analysis**

503 *Linear measurement analysis*

504 For each F_2 individual and the cross founders, beak and braincase length were determined by
505 calculating the linear distance between landmark pairs (beak: landmarks 1 and 2; braincase:
506 landmarks 1 and 3, ²⁴) using the *interlmkdist* function from the R package geomorph v3.3.1 ^{62–64}.
507 Raw beak length measurements were fit to a linear regression model (beak length ~ body
508 mass) and residuals were calculated in R v3.6.3 ⁶⁵.

509

510 *Geometric morphometrics*

511 Geometric morphometric analyses were performed in geomorph as described ²⁴. The NTsys
512 landmark point dataset was imported with the *readland.nts* function. Missing landmarks were
513 estimated using the function *estimate.missing(method = "TPS")*. Bilateral symmetry analysis
514 was performed via the *bilat.symmetry(iter = 1)* function and the symmetrical component of
515 shape variation was extracted. A Generalized Procrustes Analysis was performed using the
516 *gpagen* function. To analyze allometry, a linear model (shape ~ centroid size) was fit using the
517 *procD.lm* function and residuals were used for analysis of allometry-free shape. Principal
518 components analysis was performed using the *gm.prcomp* function. Integration of beak and
519 braincase shape was analyzed using the *two.b.pls* function.

520 Shape changes were visualized with geomorph and the R package Morpho v2.8
521 (<https://github.com/zarquon42b/Morpho>). The geomorph function *plotRefToTarget* was used to
522 generate wireframes. Surface mesh deformations, heatmaps, and movies were generated in
523 Morpho with the *tps3d*, *shade3d*, *meshDist*, and *warpmovie3d* functions. For all mesh-based
524 visualizations, deformations were applied to a reference mesh, which was generated by warping
525 a RH x OGO F_2 mesh to the mean shape.

526

527 *QTL mapping*

528 QTL mapping was performed using the R package R/qtl v1.46-2 ⁶⁶. Single-QTL genome scans
529 were performed using the *scanone* function with Haley-Knott regression and sex as a covariate.

530 The 5% genome-wide significance threshold was calculated by running *scanone* with 1000
531 permutation replicates. For each QTL, the 1.5-LOD support interval was calculated with the
532 *lodint* function, percent variance explained (PVE) was calculated with the *fitqtl* function, and QTL
533 effects were estimated via the *plotPXG* function. We compared phenotypic means in RH x OGO
534 F_2 genotypic groups at peak markers via one-way ANOVA and Tukey Test for pairwise
535 comparisons in R. Genes within QTL intervals were identified using a custom R script and
536 visualized using the R packages *ggplot2* v3.3.0⁵⁴ and *ggenes* v0.4.0
537 (<https://github.com/wilcox/ggenes>).

538

539 *Variant calling and comparative genomic analyses*

540 Variant calling was performed with FastQForward⁶⁷, which wraps the BWA short read aligner⁶⁸
541 and Sentieon (sentieon.com) variant calling tools to generate aligned BAM files (*fastq2bam*) and
542 variant calls in VCF format (*bam2gvcf*). Sentieon is a commercialized GATK equivalent pipeline
543 that allows users to follow GATK best practices using the Sentieon version of each tool
544 (broadinstitute.org/gatk/guide/best-practices) and
545 (support.sentieon.com/manual/DNAseq_usage/dnaseq/). FastQForward manages distribution of
546 the workload to these tools on a compute cluster to allow for faster data-processing than when
547 calling these tools directly, resulting in runtimes as low as a few minutes per sample. Raw
548 sequencing reads from 54 newly resequenced individuals (described in Whole-genome
549 resequencing section) were aligned to the Cliv_2.1 reference assembly⁵⁶ using *fastq2bam*.
550 Variant calling was performed for each newly resequenced individual, as well as 132 previously
551 resequenced individuals^{27,30,50,69}, using *bam2gvcf* and individual genome variant call format
552 (gVCF) files were created. Joint variant calling was performed on a total of 186 individuals using
553 the Sentieon GVCFTyper algorithm. The resulting VCF file was used for all subsequent genomic
554 analyses.

555 Genome-wide Weir and Cockerham's F_{ST} (wcF_{ST}) and probabilistic F_{ST} (pF_{ST}) were
556 calculated using the GPAT++ toolkit within the VCFLIB software library (github.com/vcflib) as
557 previously described^{27,30,50,69}. Extended haplotype homozygosity (EHH) was calculated for
558 genomic scaffold ScoHet5_445.1 using the GPAT++ sequenceDiversity tool. Putatively
559 deleterious variants were identified using the Variant Annotation, Analysis, and Search Tool
560 (VAAST2,³⁶), which was implemented as previously described²⁷. For all comparative genomic
561 analyses, pigeons were binned into the following phenotypic groups:

562 Short beak (56 individuals, 31 breeds): African Owl, Australian Tumbler, Bacska
563 Tumbler, Berlin Short Face Tumbler, Budapest Tumbler, Canario Cropper, Catalonian Tumbler,
564 Chinese Nasal Tuft, Chinese Owl, Classic Old Frill, Damascene, Egyptian Swift, English Long
565 Face Tumbler, English Short Face Tumbler, Granadino Pouter, Hamburg Sticken, Helmet,
566 Italian Owl, Komorner Tumbler, Long Face Tumbler, Nun, Old German Owl, Oriental Frill,
567 Portuguese Tumbler, Rafeno Pouter, Russian Tumbler, Spanish Barb, Syrian Dewlap,
568 Taganrog Tumbler, Temeschburger Schecke, Uzbek Tumbler.

569 Medium or long beak (121 individuals, 58 breeds and feral): American Highflier,
570 American Show Racer, Archangel, Armenian Tumbler, Berlin Long Face Tumbler, Birmingham
571 Roller, Bokhara Trumpeter, Brunner Pouter, Carneau, Crested Saxon Field Color Pigeon,
572 Cumulet, Danish Tumbler, Danzig Highflier, Dragoon, English Carrier, English Magpie, English
573 Pouter, English Trumpeter, Fairy Swallow, Fantail, Feral, Franconian Trumpeter, Frillback,
574 German Beauty, Hungarian Giant House Pigeon, Ice Pigeon, Indian Fantail, Iranian Tumbler,
575 Jacobin, King, Lahore, Laugher, Lebanon, Marchenero Pouter, Mindian Fantail, Miniature
576 American Crest, Modena, Mooke, Naked Neck, Norwich Cropper, Old Dutch Capuchin,
577 Oriental Roller, Parlor Roller, Polish Lynx, Pomeranian Pouter, Pygmy Pouter, Racing Homer,
578 Rhine Ringbeater, Runt, Saint, Saxon Monk, Saxon Pouter, Scandaroon, Schalkaldener
579 Mohrenkopf, Shakhsharli, Starling, Turkish Tumbler, Vienna Medium Face Tumbler, West of
580 England.

581

582 *RNA-seq analysis*

583 Analysis of RNA-seq data was performed as previously described ⁷⁰. Briefly, sequencing read
584 quality was assessed with FastQC (Babraham Bioinformatics). Illumina adapters were trimmed
585 and reads were aligned to the pigeon Cliv_2.1 reference assembly (Holt et al., 2018) using
586 STAR v2.5.0a ⁷¹ using the 2-pass mode. GTF annotation files were used to guide spliced read
587 alignments. Mapped reads were assigned to genes using featureCounts from the Subread
588 package version 1.5.1. Transcript abundance (TPM) was quantified using Salmon v1.3.0 ⁷².
589 Differential expression analyses were performed with the R package DESeq2 version 1.12.4
590 (Love et al., 2014).

591

592

593 **References**

- 594 1. Twigg, S.R.F., and Wilkie, A.O.M. (2015). New insights into craniofacial malformations.
595 *Hum. Mol. Genet.* 24, R50–R59.
- 596 2. Fish, J.L. (2016). Developmental mechanisms underlying variation in craniofacial disease
597 and evolution. *Developmental Biology* 415, 188–197.
- 598 3. Christie, W., and Wriedt, C. (1924). Die Vererbung von Zeichnungen, Farben und anderen
599 Charakteren bei Tauben. *Z.Ver-erbungslehre* 32, 233–298.
- 600 4. Hollander, W.F. (1983). *Origins and Excursions in Pigeon Genetics: A Compilation (The Ink*
601 *Spot)*.
- 602 5. Sell, A. (2012). *Pigeon Genetics: Applied Genetics in the Domestic Pigeon* (Sell Publishing).
- 603 6. Topczewski, J., Dale, R.M., and Sisson, B.E. (2011). Planar cell polarity signaling in
604 craniofacial development. *Organogenesis* 7, 255–259.
- 605 7. Mayor, R., and Theveneau, E. (2014). The role of the non-canonical Wnt-planar cell polarity
606 pathway in neural crest migration. *Biochem J* 457, 19–26.
- 607 8. Afzal, A.R., Rajab, A., Fenske, C.D., Oldridge, M., Elanko, N., Ternes-Pereira, E., Tüysüz,
608 B., Murday, V.A., Patton, M.A., Wilkie, A.O.M., et al. (2000). Recessive Robinow syndrome,
609 allelic to dominant brachydactyly type B, is caused by mutation of ROR2. *Nat Genet* 25,
610 419–422.
- 611 9. van Bokhoven, H., Celli, J., Kayserili, H., van Beusekom, E., Balci, S., Brussel, W., Skovby,
612 F., Kerr, B., Percin, E.F., Akarsu, N., et al. (2000). Mutation of the gene encoding the ROR2
613 tyrosine kinase causes autosomal recessive Robinow syndrome. *Nat Genet* 25, 423–426.
- 614 10. Tokita, M., Yano, W., James, H.F., and Abzhanov, A. (2017). Cranial shape evolution in
615 adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian
616 honeycreepers. *Phil. Trans. R. Soc. B* 372, 20150481.
- 617 11. Navalón, G., Marugán-Lobón, J., Bright, J.A., Cooney, C.R., and Rayfield, E.J. (2020). The
618 consequences of craniofacial integration for the adaptive radiations of Darwin's finches and
619 Hawaiian honeycreepers. *Nat Ecol Evol* 4, 270–278.
- 620 12. Bosse, M., Spurgin, L.G., Laine, V.N., Cole, E.F., Firth, J.A., Gienapp, P., Gosler, A.G.,
621 McMahon, K., Poissant, J., Verhagen, I., et al. (2017). Recent natural selection causes
622 adaptive evolution of an avian polygenic trait. *Science* 358, 365–368.
- 623 13. vonHoldt, B.M., Kartzinel, R.Y., Huber, C.D., Le Underwood, V., Zhen, Y., Ruegg, K.,
624 Lohmueller, K.E., and Smith, T.B. (2018). Growth factor gene IGF1 is associated with bill
625 size in the black-bellied seedcracker *Pyrenestes ostrinus*. *Nat Commun* 9, 4855.
- 626 14. Abzhanov, A. (2004). Bmp4 and Morphological Variation of Beaks in Darwin's Finches.
627 *Science* 305, 1462–1465.

628 15. Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R., and Tabin, C.J. (2006).
629 The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
630 442, 5.

631 16. Mallarino, R., Grant, P.R., Grant, B.R., Herrel, A., Kuo, W.P., and Abzhanov, A. (2011). Two
632 developmental modules establish 3D beak-shape variation in Darwin's finches. *Proceedings
633 of the National Academy of Sciences* 108, 4057–4062.

634 17. Lamichhaney, S., Berglund, J., Almén, M.S., Maqbool, K., Grabherr, M., Martinez-Barrio, A.,
635 Promerová, M., Rubin, C.-J., Wang, C., Zamani, N., et al. (2015). Evolution of Darwin's
636 finches and their beaks revealed by genome sequencing. *Nature* 518, 371–375.

637 18. Lamichhaney, S., Han, F., Berglund, J., Wang, C., Almen, M.S., Webster, M.T., Grant, B.R.,
638 Grant, P.R., and Andersson, L. (2016). A beak size locus in Darwins finches facilitated
639 character displacement during a drought. *Science* 352, 470–474.

640 19. Baptista, L.F., Gómez, J.E.M., and Horblit, H.M. (2009). DARWIN'S PIGEONS AND THE
641 EVOLUTION OF THE COLUMBIFORMS: RECAPITULATION OF ANCIENT GENES. 23.

642 20. Young, N.M., Linde-Medina, M., Fondón, J.W., Hallgrímsson, B., and Marcucio, R.S. (2017).
643 Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. *Nat
644 Ecol Evol* 1, 0095.

645 21. Des Moore (2018). Judging Racing Pigeons. Des Moore's Pigeon Domain.
646 <http://desmoore.tripod.com/id56.html>.

647 22. Old German Owl Club Standard (2019). Old German Owl Club.
648 <http://ogoc.org/standard.htm>.

649 23. Hallgrímsson, B., Katz, D.C., Aponte, J.D., Larson, J.R., Devine, J., Gonzalez, P.N., Young,
650 N.M., Roseman, C.C., and Marcucio, R.S. (2019). Integration and the Developmental
651 Genetics of Allometry. *Integrative and Comparative Biology* 59, 1369–1381.

652 24. Boer, E. F., Maclary, E. T., and Shapiro, M. D. (2021). Complex genetic architecture of
653 three-dimensional craniofacial shape variation in domestic pigeons.

654 25. Wexelsen, H. (1937). Size inheritance in pigeons. *Journal of Experimental Zoology* 76, 161–
655 186.

656 26. Stringham, S.A., Mulroy, E.E., Xing, J., Record, D., Guernsey, M.W., Aldenhoven, J.T.,
657 Osborne, E.J., and Shapiro, M.D. (2012). Divergence, convergence, and the ancestry of
658 feral populations in the domestic rock pigeon. *Curr Biol* 22, 302–8.

659 27. Shapiro, M.D., Kronenberg, Z., Li, C., Domyan, E.T., Pan, H., Campbell, M., Tan, H., Huff,
660 C.D., Hu, H., Vickrey, A.I., et al. (2013). Genomic diversity and evolution of the head crest in
661 the rock pigeon. *Science* 339, 1063–7.

662 28. Pacheco, G., van Grouw, H., Shapiro, M.D., Gilbert, M.T.P., and Vieira, F.G. (2020).
663 Darwin's Fancy Revised: An Updated Understanding of the Genomic Constitution of Pigeon
664 Breeds. *Genome Biology and Evolution* 12, 136–150.

665 29. Weir, B.S., and Cockerham, C.C. (1984). Estimating F-Statistics for the Analysis of
666 Population Structure. *Evolution* 38, 1358.

667 30. Domyan, E.T., Kronenberg, Z., Infante, C.R., Vickrey, A.I., Stringham, S.A., Bruders, R.,
668 Guernsey, M.W., Park, S., Payne, J., Beckstead, R.B., et al. (2016). Molecular shifts in limb
669 identity underlie development of feathered feet in two domestic avian species. *Elife* 5,
670 e12115.

671 31. Stricker, S., Rauschenberger, V., and Schambony, A. (2017). ROR-Family Receptor
672 Tyrosine Kinases. In *Current Topics in Developmental Biology* (Elsevier), pp. 105–142.

673 32. DeChiara, T.M., Kimble, R.B., Poueymirou, W.T., Rojas, J., Masiakowski, P., Valenzuela,
674 D.M., and Yancopoulos, G.D. (2000). Ror2, encoding a receptor-like tyrosine kinase, is
675 required for cartilage and growth plate development. *Nat Genet* 24, 271–274.

676 33. Schwabe, G.C., Trepczik, B., Süring, K., Brieske, N., Tucker, A.S., Sharpe, P.T., Minami, Y.,
677 and Mundlos, S. (2004). Ror2 knockout mouse as a model for the developmental pathology
678 of autosomal recessive Robinow syndrome: Developmental Model for Robinow Syndrome.
679 *Dev. Dyn.* 229, 400–410.

680 34. Raz, R., Stricker, S., Gazzero, E., Clor, J.L., Witte, F., Nistala, H., Zabski, S., Pereira, R.C.,
681 Stadmeyer, L., Wang, X., et al. (2008). The mutation ROR2W749X, linked to human BDB, is
682 a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints
683 and modeling recessive Robinow syndrome. *Development* 135, 1713–1723.

684 35. Mosca, F., and Ipsom, J.P. (2005). Standard of the Chinese Nasal Tuft.
685 [https://www.angelfire.com/ga3/pigeongenetics/nasaltuftstandard.html/](https://www.angelfire.com/ga3/pigeongenetics/nasaltuftstandard.html).

686 36. Hu, H., Huff, C.D., Moore, B., Flygare, S., Reese, M.G., and Yandell, M. (2013). VAAST 2.0:
687 improved variant classification and disease-gene identification using a conservation-
688 controlled amino acid substitution matrix. *Genet Epidemiol* 37, 622–634.

689 37. Chen, Y., Bellamy, W.P., Seabra, M.C., Field, M.C., and Ali, B.R. (2005). ER-associated
690 protein degradation is a common mechanism underpinning numerous monogenic diseases
691 including Robinow syndrome. *Human Molecular Genetics* 14, 2559–2569.

692 38. Oishi, I., Suzuki, H., Onishi, N., Takada, R., Kani, S., Ohkawara, B., Koshida, I., Suzuki, K.,
693 Yamada, G., Schwabe, G.C., et al. (2003). The receptor tyrosine kinase Ror2 is involved in
694 non-canonical Wnt5a/JNK signalling pathway: Role of Ror2 in Wnt5a signalling pathway.
695 *Genes to Cells* 8, 645–654.

696 39. Li, Y., Han, X., Xu, W., Rao, Z., and Li, X. (2019). Purification and characterization of the
697 extracellular region of human receptor tyrosine kinase like orphan receptor 2 (ROR2).
698 *Protein Expression and Purification* 158, 74–80.

699 40. Ali, B.R., Jeffery, S., Patel, N., Tinworth, L.E., Meguid, N., Patton, M.A., and Afzal, A.R.
700 (2007). Novel Robinow syndrome causing mutations in the proximal region of the frizzled-
701 like domain of ROR2 are retained in the endoplasmic reticulum. *Hum Genet* 122, 389–395.

702 41. Matsuda, T., Nomi, M., Ikeya, M., Kani, S., Oishi, I., Terashima, T., Takada, S., and Minami,
703 Y. (2001). Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse
704 development. *Mechanisms of Development* **105**, 153–156.

705 42. Stricker, S., Verhey Van Wijk, N., Witte, F., Brieske, N., Seidel, K., and Mundlos, S. (2006).
706 Cloning and expression pattern of chicken *Ror2* and functional characterization of truncating
707 mutations in Brachydactyly type B and Robinow syndrome. *Dev. Dyn.* **235**, 3456–3465.

708 43. Hamburger, V., and Hamilton, H.L. (1951). A series of normal stages in the development of
709 the chick embryo. *J. Morphol.* **88**, 49–92.

710 44. Smith, F.J., Percival, C.J., Young, N.M., Hu, D., Schneider, R.A., Marcucio, R.S., and
711 Hallgrímsson, B. (2015). Divergence of craniofacial developmental trajectories among avian
712 embryos: Craniofacial Trajectories Among Avian Embryos. *Dev. Dyn.* **244**, 1158–1167.

713 45. Geetha-Loganathan, P., Nimmagadda, S., Antoni, L., Fu, K., Whiting, C.J., Francis-West,
714 P., and Richman, J.M. (2009). Expression of WNT signalling pathway genes during chicken
715 craniofacial development. *Dev. Dyn.* **238**, 1150–1165.

716 46. Bult, C.J., Blake, J.A., Smith, C.L., Kadin, J.A., Richardson, J.E., and Mouse Genome
717 Database Group (2019). Mouse Genome Database (MGD) 2019. *Nucleic Acids Res* **47**,
718 D801–D806.

719 47. Vickrey, A.I., Domyan, E.T., Horvath, M.P., and Shapiro, M.D. (2015). Convergent Evolution
720 of Head Crests in Two Domesticated Columbids Is Associated with Different Missense
721 Mutations in EphB2. *Mol Biol Evol* **32**, 2657–2664.

722 48. Li, J., Lee, M., Davis, B.W., Lamichhaney, S., Dorshorst, B.J., Siegel, P.B., and Andersson*,
723 L. (2020). Mutations Upstream of the TBX5 and PITX1 Transcription Factor Genes Are
724 Associated with Feathered Legs in the Domestic Chicken. *Molecular Biology and Evolution*
725 **37**, 2477–2486.

726 49. Poelstra, J.W., Vijay, N., Hoeppner, M.P., and Wolf, J.B.W. (2015). Transcriptomics of
727 colour patterning and coloration shifts in crows. *Mol Ecol* **24**, 4617–4628.

728 50. Vickrey, A.I., Bruders, R., Kronenberg, Z., Mackey, E., Bohlender, R.J., Maclary, E.T.,
729 Maynez, R., Osborne, E.J., Johnson, K.P., Huff, C.D., et al. (2018). Introgression of
730 regulatory alleles and a missense coding mutation drive plumage pattern diversity in the
731 rock pigeon. *Elife* **7**.

732 51. Knief, U., Bossu, C.M., Saino, N., Hansson, B., Poelstra, J., Vijay, N., Weissensteiner, M.,
733 and Wolf, J.B.W. (2019). Epistatic mutations under divergent selection govern phenotypic
734 variation in the crow hybrid zone. *Nat Ecol Evol* **3**, 570–576.

735 52. Guernsey, M.W., Ritscher, L., Miller, M.A., Smith, D.A., Schöneberg, T., and Shapiro, M.D.
736 (2013). A Val85Met mutation in melanocortin-1 receptor is associated with reductions in
737 eumelanin pigmentation and cell surface expression in domestic rock pigeons (*Columba*
738 *livia*). *PLoS One* **8**, e74475.

739 53. Domyan, E.T., Guernsey, M.W., Kronenberg, Z., Krishnan, S., Boissy, R.E., Vickrey, A.I.,
740 Rodgers, C., Cassidy, P., Leachman, S.A., Fondon, J.W., 3rd, et al. (2014). Epistatic and

741 combinatorial effects of pigmentary gene mutations in the domestic pigeon. *Curr Biol* 24,
742 459–64.

743 54. Wickham, H. (2016). *ggplot2: elegant graphics for data analysis* Second edition. (Springer).

744 55. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
745 reads. *EMBnet j.* 17, 10.

746 56. Holt, C., Campbell, M., Keays, D.A., Edelman, N., Kapusta, A., Maclary, E., E, T.D., Suh, A.,
747 Warren, W.C., Yandell, M., et al. (2018). Improved Genome Assembly and Annotation for
748 the Rock Pigeon (*Columba livia*). *G3 (Bethesda)* 8, 1391–1398.

749 57. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat
750 Methods* 9, 357–359.

751 58. Hamburger, V., and Hamilton, H.L. (1992). A series of normal stages in the development of
752 the chick embryo. 1951. *Dev Dyn* 195, 231–72.

753 59. Fridolfsson, A.-K., and Ellegren, H. (1999). A Simple and Universal Method for Molecular
754 Sexing of Non-Ratite Birds. *Journal of Avian Biology* 30, 116.

755 60. Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C., and Hochreiter, S. (2015). msa: an R
756 package for multiple sequence alignment. *Bioinformatics, btv494*.

757 61. Boer, E.F., Howell, E.D., Schilling, T.F., Jette, C.A., and Stewart, R.A. (2015). Fascin1-
758 Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest
759 Cells. *PLoS Genet* 11, e1004946.

760 62. Adams, D.C., Collyer, M.L., and Kaliontzopoulou, A. (2020). Geomorph: Software for
761 geometric morphometric analyses. R package version 3.2.1.

762 63. Collyer, M.L., and Adams, D.C. (2018). RRPP: An R package for fitting linear models to
763 high-dimensional data using residual randomization. *Methods Ecol Evol* 9, 1772–1779.

764 64. Collyer, M.L., and Adams, D.C. (2020). RRPP: Linear Model Evaluation with Randomized
765 Residuals in a Permutation Procedure, R package version 0.5.2.

766 65. R Core Team (2020). R: A Language and Environment for Statistical Computing (R
767 Foundation for Statistical Computing).

768 66. Broman, K.W., Wu, H., Sen, S., and Churchill, G.A. (2003). R/qtl: QTL mapping in
769 experimental crosses. *Bioinformatics* 19, 889–890.

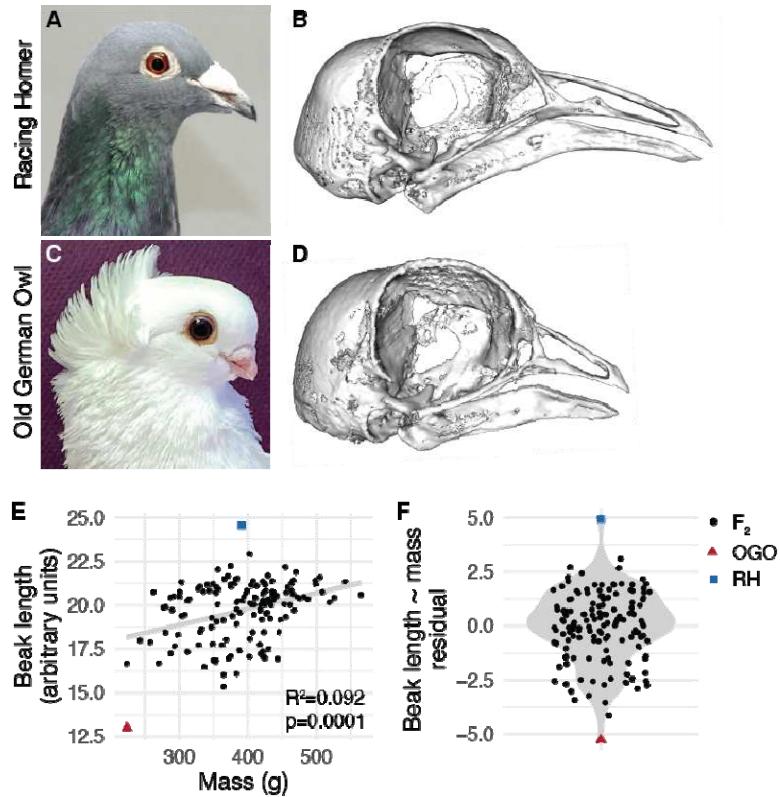
770 67. Carson Holt FastQForward.

771 68. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
772 transform. *Bioinformatics* 25, 1754–1760.

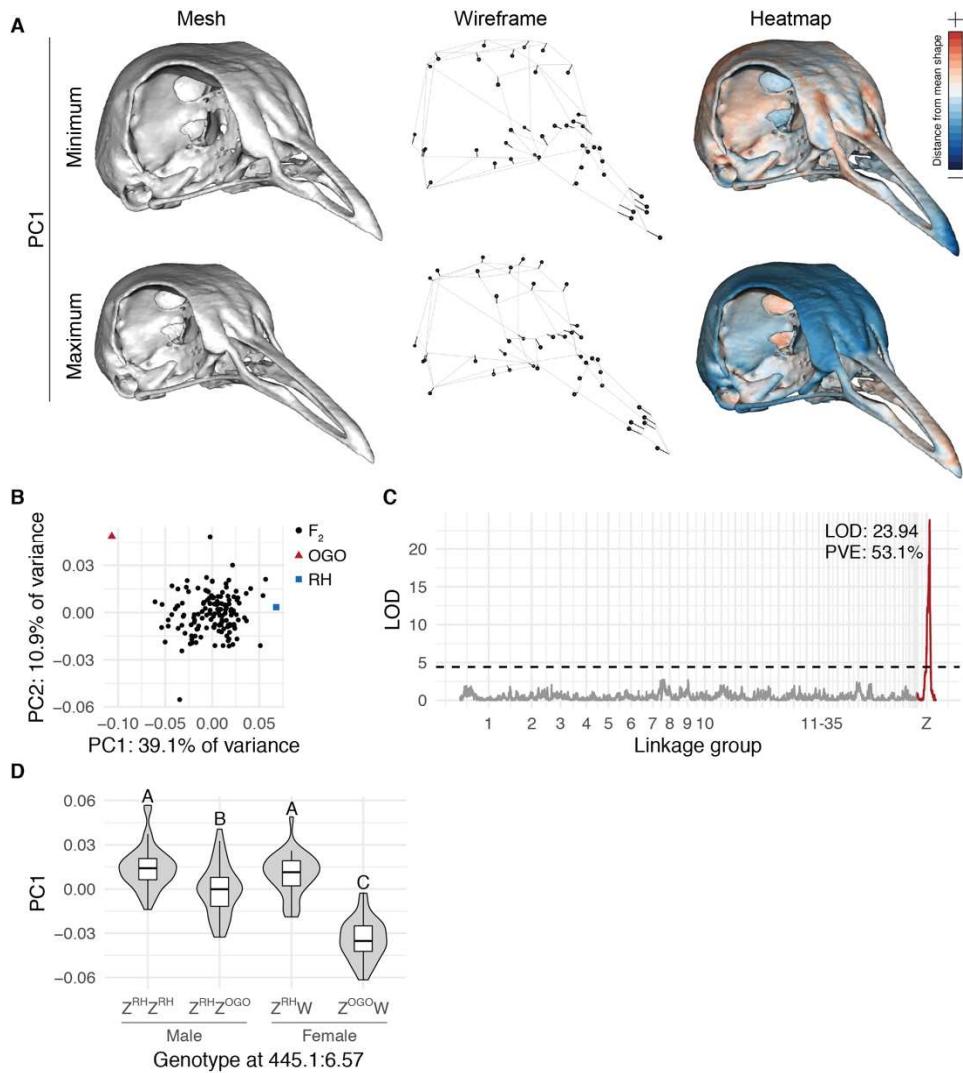
773 69. Bruders, R., Van Hollebeke, H., Osborne, E.J., Kronenberg, Z., Maclary, E., Yandell, M.,
774 and Shapiro, M.D. (2020). A copy number variant is associated with a spectrum of
775 pigmentation patterns in the rock pigeon (*Columba livia*). *PLoS Genet* 16, e1008274.

776 70. Boer, E.F., Van Hollebeke, H.F., Park, S., Infante, C.R., Menke, D.B., and Shapiro, M.D.
777 (2019). Pigeon foot feathering reveals conserved limb identity networks. *Dev Biol* **454**, 128–
778 144.

779 71. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
780 Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner.
781 *Bioinformatics* **29**, 15–21.

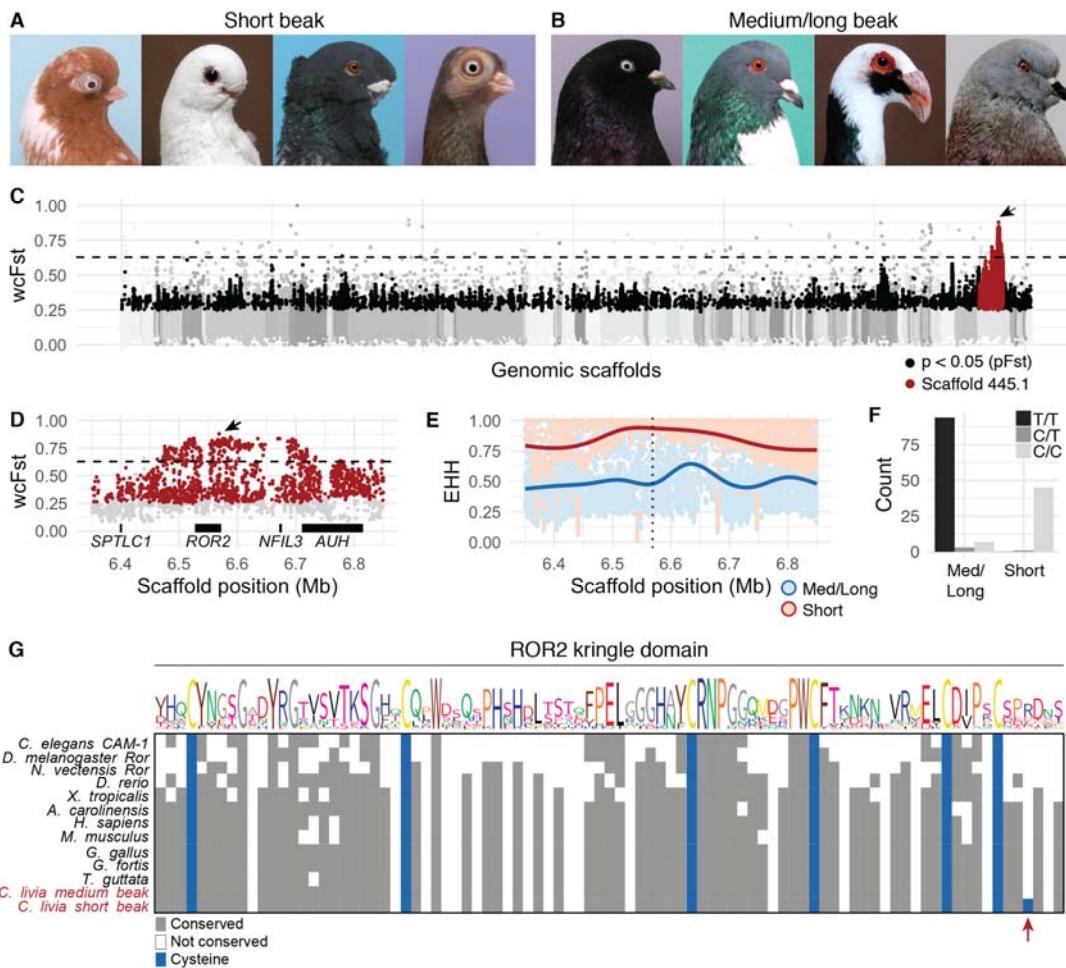

782 72. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides
783 fast and bias-aware quantification of transcript expression. *Nat Methods* **14**, 417–419.

784


785

786

787



788
789 **Figure 1. Beak length variation in a pigeon F_2 intercross.** (A) Representative image of the
790 medium beak Racing Homer (RH) breed (image credit: Sydney Stringham). (B) 3D surface
791 model of the craniofacial skeleton of the male RH founder. (C) Representative image of the
792 short beak Old German Owl (OGO) breed (image credit: Brian McCormick). (D) Surface model
793 of the craniofacial skeleton of the female OGO founder. (E) Raw beak length (measured in
794 arbitrary units) vs. total body mass (measured in grams) in the RH x OGO cross. Gray line
795 indicates linear model from beak length ~ mass regression. (F) Distribution of residuals from
796 beak length ~ mass regression. For (E-F), black dots denote RH x OGO F_2 individuals, red
797 triangle is OGO founder, blue square is RH founder.

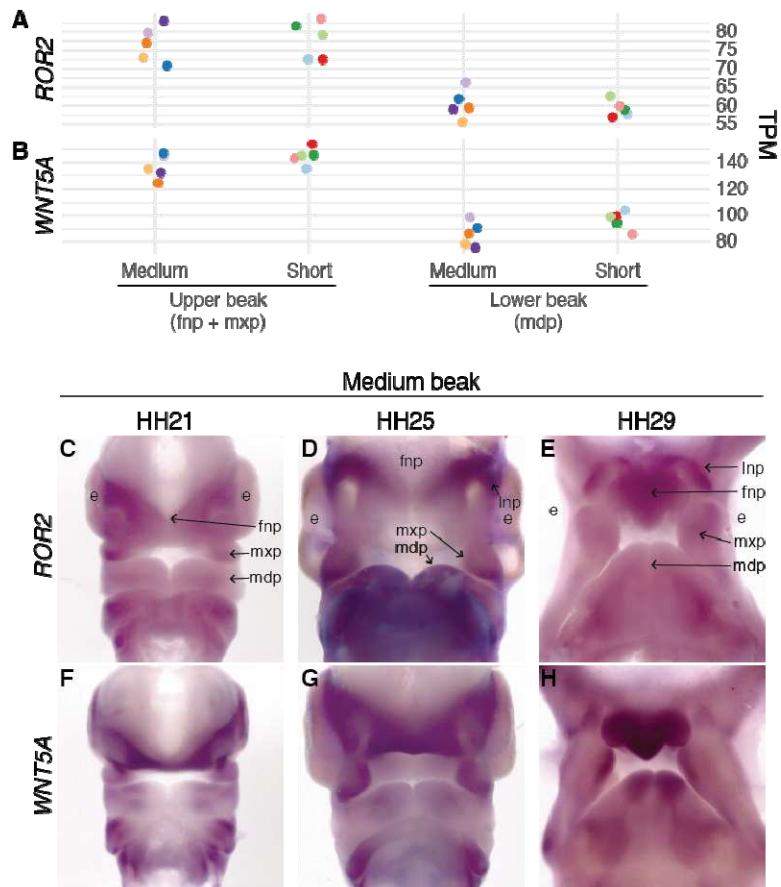
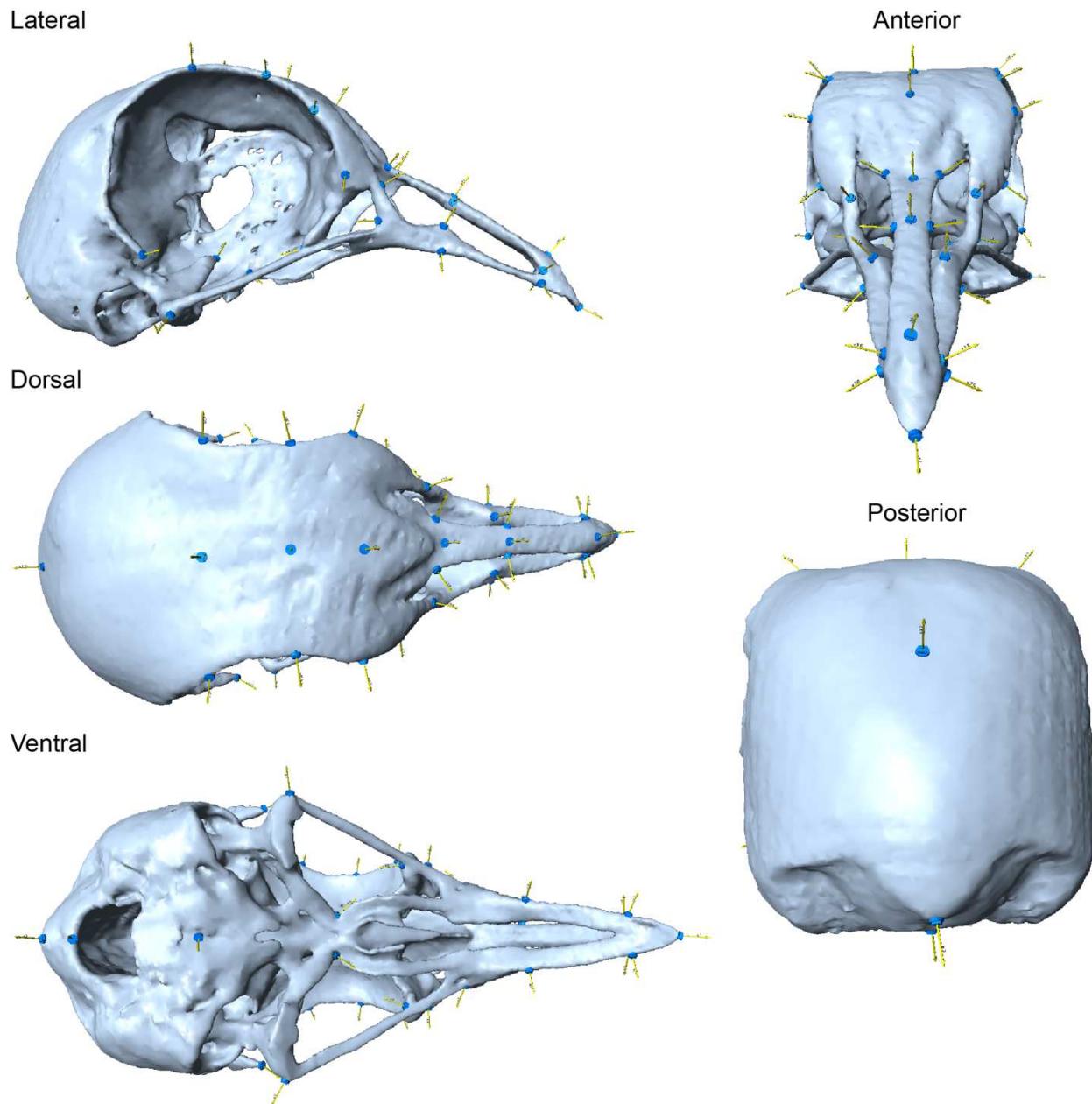
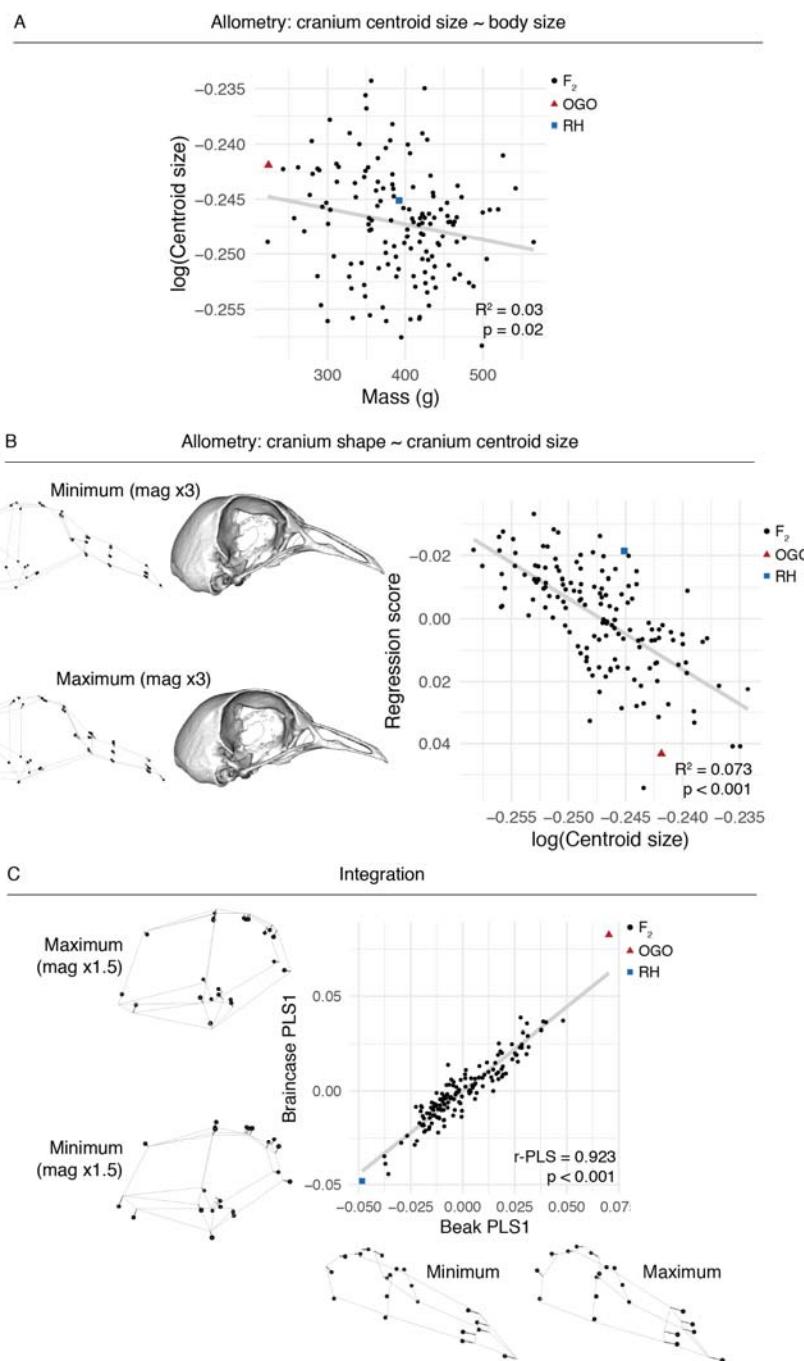

798
799
800
801
802
803
804
805
806
807

Figure 2. A major-effect QTL on the Z-chromosome is associated with principal component 1 (PC1) in the RH x OGO F_2 population. (A) Visualizations of geometric morphometric PC1 minimum and maximum shapes three ways: warped 3D surface meshes (left), wireframes showing displacement of landmarks from mean shape (center), and heatmaps displaying regional shape variation (right). For warped meshes and wireframes, shape changes are magnified 1.5x to aid visualization. (B) Plot of PC1 vs. PC2. (C) Genome-wide QTL scan for PC1 reveals a significant QTL on the Z linkage group. (D) PC1 effect plot estimated from QTL peak marker. Letters denote significance groups; RH = allele from RH founder, OGO = allele from OGO founder.

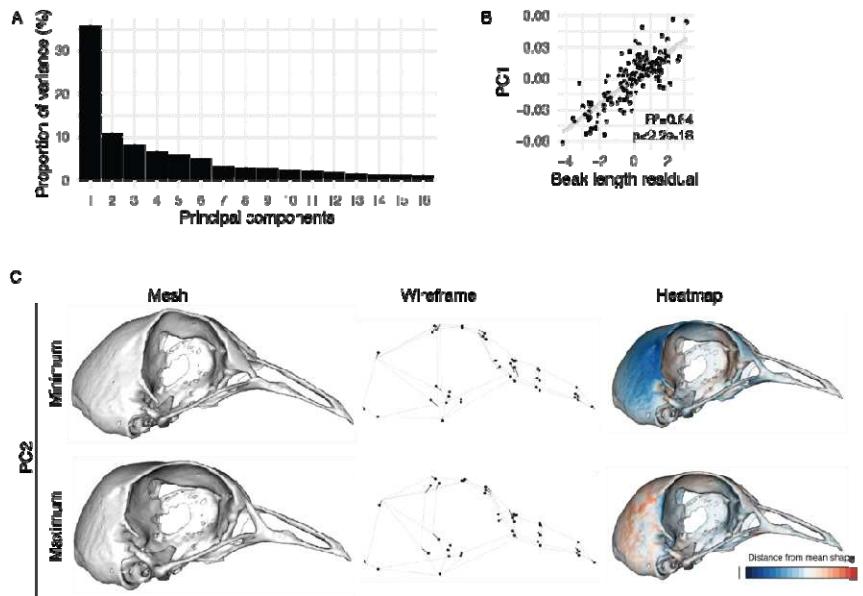


808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

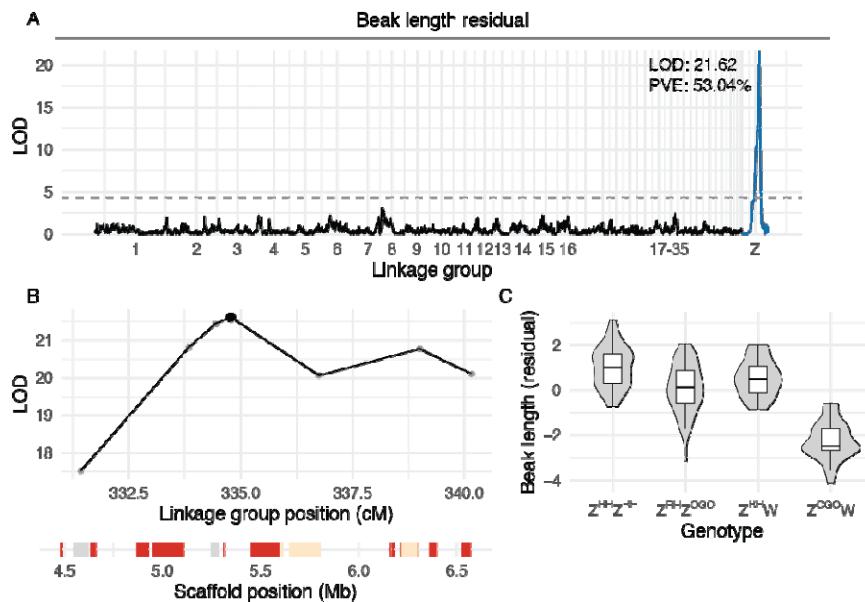
Figure 3. Comparison of short beak and medium/long beak pigeon genomes reveals ROR2 coding variant. (A-B) Representative images of individuals representing short beak (A) and medium or long beak (B) pigeon breeds (image credit: Thomas Hellmann). (A) Short beak pigeons, from left to right: English Short Face Tumbler, African Owl, Oriental Frill, Budapest Tumbler. (B) Medium/long beak pigeons, from left to right: West of England, Caucos, Scandaroon, Show King. (C) Genome-wide scan for allele frequency differentiation between short beak ($n=56$) and medium/long beak ($n=121$) pigeons. (D) Region of peak allelic differentiation on ScoHet5_445.1; black horizontal bars represent four genes in the region. For (C-D), genomic scaffolds are colored in gray and ordered by genetic position in RH x OGO linkage map; black dots indicate SNPs that are significantly differentiated by pF_{ST} (Bonferroni-corrected p -value < 0.05); red dots are significant SNPs located on scaffold ScoHet5_445.1; dashed horizontal line represents threshold for genome-wide top 0.1% of differentiated SNPs by wcF_{ST} ; arrow points to ScoHet5_445.1:6568443, the most differentiated SNP ($wcF_{ST}=0.88$) genome-wide. (E) Extended haplotype homozygosity in peak differentiated region; dotted vertical line indicates position of ScoHet5_445.1:6568443; smoothed lines represent local regression fitting⁵⁴ (F) Histogram of genotypes at ScoHet5_445.1:6568443 in short beak and medium/long beak groups. (G) Amino acid alignment of kringle domain from vertebrate ROR2 and invertebrate Ror homologs. The Ku2 allele causes an arginine-to-cysteine substitution in short beak pigeon breeds (indicated by red arrow).



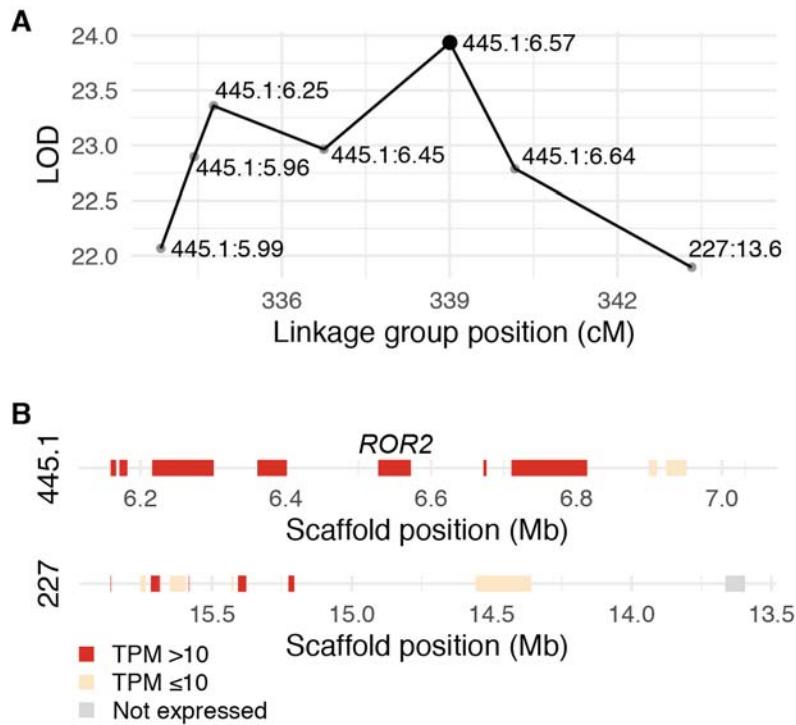
828
829 **Figure 4. *ROR2* and *WNT5A* expression in pigeon facial primordia.** (A-B) *ROR2* (A) and
830 *WNT5A* (B) mRNA expression in facial primordia that will form the upper and lower beak from
831 HH29 short and medium beak pigeon embryos. Each individual embryo is displayed in a
832 different color. TPM, transcripts per million reads of mRNA-seq data. (C-H) Whole-mount *in situ*
833 hybridization for *ROR2* (C-E) and *WNT5A* (F-H) in medium beak pigeon embryos at HH21,
834 HH25, and HH29. *ROR2* is broadly expressed in facial primordia at all stages. *WNT5A* is
835 strongly expressed in the frontonasal prominence and at the lateral edges of the maxillary and
836 lateral nasal prominences, with increased expression at the edge of the mandibular prominence
837 at HH29. Letters indicate embryonic tissues/structures: e=eye, fnp=frontonasal prominence,
838 l=lateral nasal prominence, mdp=mandibular prominence.
839

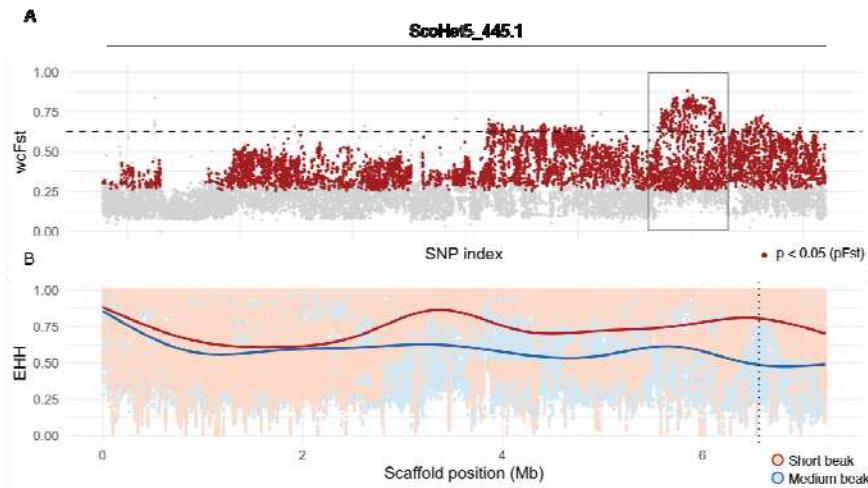

840
841
842 **Supplemental Figure 1. Pigeon craniofacial landmark atlas.** Landmarks are indicated by
843 blue discs.
844

845



846


847 **Supplemental Figure 2. Allometry and integration in the RH x OGO cross.** (A) Cranium
848 centroid size ~ body size (mass) linear regression. (B) Cranium shape ~ centroid size linear
849 regression. (B) Beak vs. braincase PLS1 shapes. Minimum and maximum shapes are depicted
850 as wireframes and/or warped meshes along corresponding axis.


851
852 **Supplemental Figure 3. Geometric morphometric analysis of craniofacial skeleton shape**
853 **in RH x OGO cross.** (A) Principal components (PCs) that together account for 90% of shape
854 variation in craniofacial skeleton. (B) Scatter plot of beak length residual vs. PC1 score for all
855 RH x OGO F₂ individuals. (C) Minimum and maximum PC2 shapes depicted as warped mesh
856 (left), wireframe showing landmark displacement (center), or heatmap indicating regional shape
857 changes (right). For mesh and wireframe models, shape change is magnified 1.5x to aid
858 visualization.

859
860 **Supplemental Figure 4. QTL scan using beak length residuals.** (A) Genome-wide QTL scan
861 for beak length using residuals from beak length ~ body mass linear regression. (B) LOD
862 support interval is nearly identical to PC1 QTL interval (displayed in Figure 2D). Genes in
863 interval on ScoHet5_445.1 are displayed at bottom and color-coded by expression level. (C)
864 Plot of QTL effects, using peak marker highlighted by black dot in (B).
865

866
867
868 **Supplemental Figure 5. PC1 QTL support interval.** (A) LOD support interval for QTL on Z.
869 Markers in interval are denoted with dots and labeled with genomic scaffold name
870 (ScoHet5_445.1 or ScoHet5_227) and position (in Mb); black dot indicates QTL peak marker
871 (ScoHet5_445.1:6.57-Mb), which was used to estimate QTL effects. (B) Genes in QTL interval,
872 color-coded by mRNA expression level in facial primordia derived from HH29 RH embryos.
873 *ROR2* is located directly under QTL peak.
874

875

876 **Supplemental Figure 6. Allele frequency differentiation (F_{ST}) and extended haplotype**
877 **homozygosity (EHH) on scaffold ScoHet5_445.1 in short and medium/long beak pigeons.**
878 (A) F_{ST} on ScoHet5_445.1. Boxed region indicates ~293-kb peak region displayed in Figure 3D-E.
879 (B) EHH on ScoHet5_445.1. Smoothed lines represent local regression fitting; dotted vertical
880 line indicates position of ScoHet5_445.1:6568443.

881

882

883 **Supplemental Movie 1. PC1 shape variation.** Minimum to maximum, magnified 1.5x.

884

885 **Supplemental Movie 2. PC2 shape variation.** Minimum to maximum, magnified 1.5x.

886

887

888