

1 **Can offsetting the energetic cost of hibernation restore an active season phenotype in
2 grizzly bears (*Ursus arctos horribilis*)?**

3

4 Heiko T. Jansen^{1*}, Brandon Evans Hutzenbiler¹, Hannah R. Hapner², Madeline L. McPhee¹,
5 Anthony M. Carnahan², Joanna L. Kelley², Michael W. Saxton², Charles T. Robbins^{2,3}

6

7 ¹ Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington
8 State University, Pullman, WA 99164, USA

9

10 ² School of Biological Sciences, College of Arts and Sciences, Washington State University,
11 Pullman, WA 99164, USA

12

13 ³ School of the Environment, College of Agricultural, Human and Natural Resource Sciences,
14 Washington State University, Pullman, WA 99164, USA

15

16 *** Correspondence:**

17 Heiko T. Jansen, PhD

18 heiko@wsu.edu

19

20

21 **Conflict of Interest:**

22

23 The authors declare that the research was conducted in the absence of any commercial or
24 financial relationships that could be construed as a potential conflict of interest.

25

26 **Keywords:**

27

28 Bear, hibernation, metabolism, circadian rhythm, cell culture, adipocyte

29

30

31

32 **Author Contributions:**

33

34 HTJ, CTR and JLK obtained funding; HTJ, CTR and BEH designed the study; HTJ, CTR, BEH,
35 HRH, AMC, JLK and MWS performed the oral glucose tolerance tests, blood and tissue
36 sampling; BEH, MLM and HRH performed the metabolic flux analyses and serum assays; HTJ,
37 BEH and HRH analyzed the data; all authors contributed to the writing and editing of the
38 manuscript. HTJ approved the final manuscript version for submission.

39

40

41

42

43 **Funding:**

44

45 Funding was obtained from the International Association for Bear Research and Management
46 and the following Washington State University endowments: Raili Korkka Brown Bear Fund,
47 Bear Research and Conservation Fund and Nutritional Ecology Fund.

48

49

50 **Acknowledgements:**

51

52 We are grateful to Tim Laske at Medtronic (Minneapolis, MN) for the gift of Reveal LINQ
53 monitors used in the current study, to the many volunteers working at the WSU Bear Center and
54 to Jessie McCleary, Nina Woodford and Gaylynn Clyde of the WSU Office of the Campus
55 Veterinarian.

56

57 **ABSTRACT:**

58 Hibernation is characterized by suppression of many physiological processes. To determine if
59 this state is reversible in a non-food caching species, we fed hibernating grizzly bears (*Ursus*
60 *arctos horribilis*) glucose for 10 days to replace 53% or 100% of the estimated minimum daily
61 energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (β -
62 hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By
63 contrast, free-fatty acids and indices of metabolic rate, such as general activity, heart rate, and
64 strength of the daily heart rate rhythm and insulin sensitivity were restored to roughly 50% of
65 active season levels. Body temperature was unaffected by feeding. To determine the contribution
66 of adipose to these metabolic effects of glucose feeding we cultured bear adipocytes collected at
67 the beginning and end of the feeding and performed metabolic flux analysis. We found a roughly
68 33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding
69 was 40% lower in hibernation cells compared to fed cells or active cells cultured at 37°C, thereby
70 confirming the temperature independence of metabolic rate. The partial suppression of
71 circulating FFA with feeding likely explains the incomplete restoration of insulin sensitivity and
72 other metabolic parameters in hibernating bears. Further suppression of metabolic function is
73 likely an active process. Together, the results provide a highly controlled model to examine the
74 relationship between nutrient availability and metabolism on the hibernation phenotype in bears.

75

76

77

78

79

80

81

82

83

84

85

86

87

88 **INTRODUCTION:**

89 The ability to hibernate or express torpor (a shorter period of metabolic suppression and body
90 temperature reduction) may have evolved multiple times and suggests that different cellular
91 mechanisms can produce this phenotype (Geiser, 1998; Geiser, 2004). Hibernation in rodents has
92 long captured the attention of physiologists due to the extreme changes that occur seasonally in
93 metabolism, body temperature, and body mass (Carey et al., 2003; Mohr et al., 2020; Nelson et
94 al., 1983; Storey and Storey, 1990). However, hibernating brown bears (*Ursus arctos*) exhibit a
95 very different phenotype from what occurs during rodent hibernation (Harlow et al., 2002;
96 Hellgren, 1998; Jansen et al., 2016; Lane et al., 2012; Lin et al., 2012; Lohuis et al., 2005;
97 Nelson et al., 1983; Robbins et al., 2012; Toien et al., 2011; Ware et al., 2012). Thus,
98 comparative studies provide an ideal opportunity to explore the different genetic, physiological,
99 biochemical and environmental underpinnings of hibernation.

100

101 For virtually all hibernators climate change and other anthropogenic factors present new
102 challenges, and it is important to determine if these factors could alter, or even eliminate, the
103 expression of this ancestral phenotype (Geiser, 1998; Geiser, 2013; Lane et al., 2012). One
104 extensively studied factor promoting hibernation is the amount and quality of food (Florant and
105 Healy, 2012; Frank et al., 2008; Harlow and Frank, 2001; Siutz et al., 2017; Vuarin and Henry,
106 2014). Bears and many other seasonal hibernators undergo extreme annual mass gains due to
107 increasing adiposity prior to hibernation (Carey et al., 2003; Dark, 2005). Along with this high
108 level of adiposity preceding the onset of hibernation, hibernating bears reduce their activity
109 levels by more than 90% (Robbins et al., 2012; Ware et al., 2012), develop insulin resistance
110 (Kamine et al., 2012a; McCain et al., 2013; Palumbo et al., 1983; Rigano et al., 2017), and
111 reduce their heart rate by as much as 90% relative to the active state while maintaining a relative
112 high body temperature in comparison to rodents (Laske et al., 2017; Nelson et al., 2010; Toien et
113 al., 2011).

114

115 Although the impact of food availability on torpor in heterothermic endotherms has been
116 extensively studied (see Review by Vuarin and Henry, 2014), several aspects such as the lack of
117 discrete torpor-arousal bouts, large body mass, and birth of young in the den, are unique to bears.
118 Thus, to further explore the genetic and physiological controls of bear hibernation, we sought to

119 develop an experimental paradigm whereby some or all aspects of hibernation could be reversed.
120 To this end we reasoned that by feeding a single nutrient, glucose, rather than a complex diet, we
121 could relate energy supply to energy demand via alterations in metabolic profiles and physiology
122 during hibernation. Similarly, if the cellular changes that are triggered by consuming a single
123 nutrient were preserved in cells from a critical tissue such as adipose, we then would have a
124 robust system of three metabolic states (e.g., hibernation, fed-hibernation, and fed-active) to
125 explore many basic aspects of hibernation both in vivo and in vitro. The present study was
126 therefore performed to test the hypothesis that glucose feeding is capable of reversing the
127 hibernation phenotype in bears.

128

129 **METHODS:**

130 Animals

131 Grizzly bears (*Ursus arctos horribilis*, Linnaeus 1758, n=11) were housed at the Washington
132 State University Bear Research, Education and Conservation Center (WSU Bear Center,
133 Pullman, Washington, USA) in accordance with the Bear Care and Colony Health Standard
134 Operating Procedures approved by the Washington State Institutional Animal Care and Use
135 Committee based on U.S. Department of Agriculture guidelines and in accordance with current
136 animal care and use guidelines approved by the American Society of Mammalogists (Sikes et al.,
137 2011), protocols #04952, #06546 and #06468. The bears in the facility hibernate from November
138 to mid-to-late March. Bears of both sexes were used with ages ranging from 3-15 years when the
139 study began. Diet and feeding schedules during April-October (active season) were similar to
140 those described previously (Rigano et al., 2017). Bears were monitored continuously using video
141 cameras mounted in each den, outdoor run and outdoor exercise yard.

142

143 Feeding during hibernation

144 Bears at the WSU Bear Center are trained for blood sampling year-round using honey diluted
145 12.5-25% with water (v:v) (Joyce-Zuniga et al., 2016; Ware et al., 2013). Bears are highly
146 motivated to receive honey during blood sampling based on positive-reinforcement training and
147 can be sampled without the use of sedatives or other drugs even during hibernation (Joyce-
148 Zuniga et al., 2016). Thus, feeding glucose (dextrose, Sigma-Aldrich, St. Louis, MO) during
149 hibernation is a simple extension of this approach. The amount of dextrose fed was calculated to

150 replace the estimated daily energy lost based on the least observed metabolic rate (LOMR) of
151 hibernating grizzly bears using equation 1.

152 1)
$$Y=4.8X^{1.09}$$
 (Robbins et al., 2012)

153 where *Y* is least observed metabolic rate (kcal/day) and *X* is body weight (kg)

154

155 We chose two levels of energy replacement based on the LOMR: 53% (n=7) and 100% (n=6).
156 The 53% level was fed in January (mid-hibernation) 2017-2018 and corresponds to a $1\text{g/kg}^{-1}\text{day}^{-1}$
157 glucose which is the standard dose used for our oral glucose tolerance tests oGTT (see below)
158 and used to confirm the insulin resistance of hibernating bears (Rigano et al., 2017). The 100%
159 level (range $1.82\text{-}1.93\text{ gkg}^{-1}$ depending on bear weight) was fed in January 2018-2019. Four
160 bears served as unfed controls. For both feeding trials, glucose was diluted in water to the same
161 concentration, warmed to approximately 22°C and fed once daily at 9AM for 10 consecutive
162 days. The volume of dextrose fed daily was based on the mass measured at the start of
163 hibernation minus the predicted mass loss that occurred since the beginning of hibernation
164 (Robbins et al., 2012). The 10-day feeding duration was chosen to allow for comparisons of
165 glucose disposal (see below) and for sufficient recovery of energetic and metabolic parameters
166 without obscuring hibernation altogether. The timeline for feeding and related procedures is
167 shown in Fig. S1.

168

169 Tissue and blood sampling

170 Fat biopsies were obtained using a 6mm biopsy punch after bears were anesthetized with a
171 combination of tiletamine HCl/zolazepam HCl (Telazol®; Zoetis, Florham Park, NJ) and
172 dexmedetomidine (Zoetis) as described previously (Rigano et al., 2017). At this time larger
173 volumes of blood samples were also collected (~150ml) from the jugular vein into 10ml Tiger-
174 Top tubes (BD Vacutainer SST tubes) for use in cell culture experiments. Blood was allowed to
175 clot, centrifuged within 3-4h, aliquoted and the serum was frozen at -80°C until assayed or used
176 for cell culture (see below). Serum included: hibernation (pre-feeding; HIBS), serum from fed
177 bears (DEXS), serum from active season bears (ACTS). Glucose determinations were made in
178 the trained unanesthetized bears (fed group only) in 1 cc syringes while individual bears were
179 briefly housed in a movable crate described previously (Joyce-Zuniga et al., 2016; Rigano et al.,
180 2017).

181

182 Oral glucose tolerance tests (oGTT)

183 Bears in the fed group were administered an oGTT using a standard 1gkg⁻¹ dose of glucose to
184 infer the relative state of insulin sensitivity as previously described (Rigano et al., 2017). All
185 oGTT were performed at the end of the 10-day feeding trial only in unanesthetized (fed) bears to
186 avoid excessive glucose exposure and the confounding influence of anesthetics on glucose
187 disposal and other physiological parameters (Kamine et al., 2012b; Nelson and Robbins, 2010).
188 To track the ongoing changes in insulin sensitivity during feeding periods we collected blood
189 samples from a peripheral metatarsal vein before (0min) and 120min after glucose feeding from
190 day 0 (pre-feeding, i.e., hibernation) until day nine (Fig. S1). Since our bears are trained with
191 honey for blood sampling without the use of anesthesia and honey feeding would confound the
192 blood glucose determinations following glucose administration, we used a non-caloric substitute
193 (Stevia extract, 8ml diluted in 500ml water) to collect the second (i.e., 120min) blood sample
194 during the 10-day feeding procedure and for the second and subsequent (15, 30, 60, 120 min)
195 blood samples collected during the oGTT. The amount of Stevia extract was kept to a minimum
196 in an effort to reduce volume effects. All blood glucose determinations were made in duplicate
197 immediately after collection using a calibrated Accu-Chek Aviva glucometer (Roche, Basel,
198 Switzerland).

199

200 Serum metabolites, insulin and glucagon

201 Serum collected at the time of biopsy before feeding began (i.e., mid hibernation) and at the time
202 of the second biopsy was assayed for glycerol, free fatty acids (FFA) and ketones (β -
203 hydroxybutyrate) using commercial kits (Cayman Chemical, Ann Arbor, MI) according to the
204 manufacturer's instructions. All samples were run in duplicate and corrected for assay blanks
205 where appropriate. Serum insulin and glucagon were determined using a commercial
206 porcine/canine ELISA (Alpco, Salem, NH) and multi-species EIA (Phoenix, Burlingame, CA),
207 respectively, as described previously (Rigano et al., 2017).

208

209 Heart rate and core body temperature

210 As seasonal changes in heart rate closely follow those of metabolic rate in bears, heart rate can
211 serve as a useful proxy (Nelson and Robbins, 2010; Toien et al., 2011). We used five bears (4 fed

212 and 1 unfed) and implanted them with small cardiac monitors developed for human heart patients
213 (Reveal LINQ, Medtronic, Minneapolis, MN; 4.0 mm X 7.2 mm X 44.8 mm; 2.4 grams) which
214 were capable of recording heart rate at 2 min intervals and body temperature at 4h intervals
215 continuously for up to two years. For implantation bears were anesthetized as described above
216 with a combination of Telazol and dexmedetomidine and surgically prepared using standard
217 procedures. Devices were implanted subcutaneously in left peristernal locations with surgical
218 sutures used to close the puncture sites. All bears were monitored closely for signs of irritation
219 and/or rejection. Data from Dec 2017 to late Feb 2018 (53% feeding) and from Nov 2018 to Mar
220 2019 (100% feeding) were analyzed for this study as described below.

221

222 Heart rate and body temperature analysis

223 Heart rate data were analyzed to determine the effect of feeding on overall metabolic status by
224 comparing mean values for the 10 days prior to feeding (and before biopsy), the 10 days of
225 feeding and for the 10 days after feeding ended (also after biopsy and 5-day recovery).
226 Additionally, to examine the impact of feeding on daily (circadian) heart rate rhythms, we
227 quantified the strength of the daily heart rate rhythm (%) and its period (hr) using custom Matlab
228 scripts described previously (Jansen et al., 2016). Circadian rhythm strength is defined as the
229 proportion of variance (range 0-100) in the 12-64 h period frequency band and was determined
230 from the discrete wavelet transforms (Jansen et al., 2016). Body temperature data were not
231 analyzed for rhythm strength or period given the long (4h) sampling interval. Only 10-day mean
232 body temperature data were analyzed for feeding effects.

233

234 Activity determinations

235 General movements (hereafter referred to as ‘activity’) were scored manually daily during the 10
236 days prior to feeding, during the 10-day feeding period and then for 50 days after glucose
237 feeding using video recordings of each den. Four, 1h blocks (between 0700-0800h, 1100-1200h,
238 1500-1600h and 2300-2400/0000h) were analyzed each day. Each hourly block was then divided
239 into 6, 10min epochs. For each epoch an observer recorded an ‘activity’ bout if a bear stood on
240 all four legs, walked, sat up or reared on its hind legs. Then, the proportion of the 1h block each
241 bear spent active was calculated. The average percent time spent standing for each hourly epoch

242 for all fed and unfed bears was then calculated and analyzed over course of the study to allow for
243 statistical analysis of daily and long-term trends.

244

245 Adipocyte cell culture

246 Mesenchymal stem cells from grizzly bears were obtained from subcutaneous gluteal fat using
247 6mm punch biopsies during late May (active season; ACT), early January (pre fed; HIB) and late
248 January (post fed, dextrose; DEX). Samples were enzymatically dissociated using Liberase-TM
249 (Sigma-Aldrich) to obtain the stromal vascular fraction (SVF), plated in 12-well culture plates,
250 expanded and cryopreserved as described by Gehring (Gehring et al., 2016). For oxygen
251 consumption and glucose uptake experiments, cryopreserved cells were thawed, seeded for
252 culture (2500-7000 cells per well) in Seahorse XFp Miniplates (Agilent, Santa Clara, CA, see
253 below) or 96-well culture plates and then differentiated into mature adipocytes according to
254 minor modifications of our previously published protocols (Gehring et al., 2016; Rigano et al.,
255 2017). Briefly, SVF cells were grown in 89% low glucose (5.55mM) DMEM (ThermoFisher,
256 Waltham, MA) containing glutaMAX, 10% fetal bovine serum (FBS; Atlanta Biological now
257 Bio-Techne, Minneapolis, MN) and 1% PSA antibiotic/antimycotic (100 units ml⁻¹ penicillin,
258 100µg ml⁻¹ streptomycin and 0.25 µg ml⁻¹ amphotericin B) until approximately 80-90%
259 confluent - usually 2-3 days. Differentiation into mature adipocytes was induced with medium
260 containing DMEM, 1% PSA, 10% serum (either bear active (ACTS), hibernation (HIBS), or post
261 fed hibernation (DEXS) serum pooled from individual bears 1:1) or FBS, 861nM insulin, 1nM
262 triiodothyronine (T3), 0.5mM IBMX, 1.1µM dexamethasone, 0.5 µM rosiglitazone and 125 µM
263 indomethacin for two days, producing changes associated with adipogenesis (Gehring et al.,
264 2016). Differentiation medium was then removed and replaced with a maintenance medium
265 containing low glucose (5.5mM) DMEM, 1% PSA, 10% bear serum or FBS, 861nM insulin,
266 1nM T3 and 0.5 µM rosiglitazone for two days, followed by the same medium composition with
267 1.0 µM rosiglitazone for an additional four days. Cells were assayed eight days post induction of
268 differentiation.

269

270 Cellular Glucose Uptake

271 We quantified glucose uptake by measuring the difference in medium glucose concentrations
272 before and after insulin stimulation using a standard glucometer. The same protocol was

273 followed to grow cells in 96-well culture plates, as described above. In these experiments, low
274 glucose DMEM containing 1% PSA and +/- insulin (1000nM) was applied for 12h to cells
275 grown for 8 days post induction of differentiation in different serum conditions described above
276 Prior to the insulin application, cells were washed 1x with PBS and cultured in low glucose
277 DMEM w/ 1% PSA without serum overnight.

278

279 Oxygen consumption and glycolysis determinations

280 Cryopreserved cells from hibernating, fed and active season bears were thawed and plated in 8-
281 well Seahorse XFp Miniplates (Agilent) and processed as described above. Phenotype tests were
282 carried out as described by the manufacturer's instructions, with minor modifications to optimize
283 our protocol. On the day of metabolic measurements, the cell culture medium was removed, the
284 cells were washed twice and replaced with assay medium (Seahorse Base Media (103193-100)
285 containing 5.5mM glucose, 4mM glutamine and 2mM pyruvate, pH 7.4). Plates and assay
286 medium were then placed into a 37C incubator without CO₂ for 60 min to allow for pH
287 stabilization and outgassing (Pike Winer and Wu, 2014). During this time, the sensor cartridges
288 were loaded with a combination of 2uM oligomycin and 1uM FCCP to assess the cellular
289 phenotype and placed in Seahorse XFp analyzer (Agilent) to be equilibrated/calibrated prior to
290 the assay run. Then, just before loading the miniplates, one final medium change was performed
291 using outgassed medium. At the completion of the preparatory steps, the XFp cell Miniplate was
292 loaded into the XFp analyzer for the determination of mitochondrial respiration based on oxygen
293 consumption rates (OCR) and glycolytic flux based on extracellular acidification rates (ECAR)
294 (Pike Winer and Wu, 2014). Basal ECAR (mpH/min) and OCR (pmol/min) were determined in
295 six cycles defined by a two-minute mixing, zero-minute wait and a two-minute measure for a
296 total duration of 24 minutes. After the sixth basal read, a stress mixture containing 2uM
297 oligomycin and 1uM FCCP was injected into each well. Stressed ECAR and OCR were then
298 determined using the same cycle parameters as basal conditions (total assay duration 48
299 minutes). All experiments were performed at 37°C as the operating temperature of our XFp
300 analyzer was not adjustable. Total protein was determined for each well at the completion of
301 each experiment using a Pierce BCA assay; all rates are reported per min/per μ g protein. Values
302 represent the average across seven individual bears, with 2-4 technical replicates (n) per bear per

303 treatment (HIB FBS (3), HIB ACTS (2), HIB DEXS (3), HIB HIBS (4), ACT FBS (2), ACT
304 ACTS (4)).

305

306 **Statistical analysis**

307 All data were analyzed for treatment and time course effects using Prism v.8.0 (Graphpad
308 Software, San Diego, CA). One- or two-way ANOVA or mixed effects models were used to
309 compare pre-feeding, feeding and post-feeding data. OCAR and ECAR results were compared
310 using one-way ANOVA of normalized data. Metabolite data were analyzed using paired t-test.
311 Post-hoc analyses were performed (where appropriate) using Holm-Šidák correction for multiple
312 comparisons. Bear, Bear x Day (or time) and Bear x Feeding level were used a random effect
313 and Geisser-Greenhouse correction was applied in all mixed effects models.

314

315

316 **RESULTS:**

317 **1. Glucose utilization**

318 *a. oGTT*

319 The characteristic elevation of blood glucose at 120 min following an oral glucose challenge and
320 indicative of insulin resistance was partially reversed by feeding glucose during hibernation,
321 $F(1,6)=121.8$, $P<0.0001$. Once feeding began, the blood glucose at 120 min began a progressive
322 decline over the ten days (Fig. 1). The decline was less pronounced in the 100% feeding group
323 (main effect of feeding level – $F(1,6)=13.35$, $P=0.0107$). However, by day nine the 120 min
324 blood glucose concentrations were similar between 53% and 100% fed groups and reached an
325 intermediate concentration relative to the pre-feeding 0- and 120-min values (Fig. 1). oGTT
326 performed at the conclusion of the ten-day feeding period confirmed the increase in glucose
327 disposal. However, there were no significant differences between feeding levels (Fig. 2A; main
328 effect of feeding level – $F(1,39)=0.102$, $P=0.751$). When compared to active season glucose
329 profiles from June 2019, the blood concentrations at 120 min from dextrose-fed bears were not
330 different from active season values but were significantly lower than pre-feeding hibernation
331 levels in 2019 ($t(18)=3.385$, $P=0.0196$; Blue line in Fig. 2A).

332

333 Serum insulin exhibited similar trends to blood glucose prior to feeding (Fig. 2B). We found no
334 significant differences in insulin profiles between 53% and 100% feeding levels ($F(1,31)=0.096$,
335 $P=0.793$). However, these profiles differed significantly from those in June 2019 (active season;
336 time x season interaction – $F(8,62)=3.056$, $P=0.0058$).

337

338 *b. Cellular glucose uptake*

339 An overall effect of insulin ($F(1,48)=22.39$, $P<0.0001$), serum ($F(3,48)=11.09$, $P<0.0001$ and
340 interaction was revealed ($F(3,48)=5.019$, $P=0.0042$) in hibernation adipocytes (Fig. 3 HIB
341 CELLS). However, post-hoc analysis revealed that the enhanced insulin response was due solely
342 to cells cultured in active season serum (ACTS; $t(48)=5.658$, $P<0.0001$). Cells from fed bears
343 (Fig. 3 DEX CELLS) also exhibited an overall effect of insulin-stimulated glucose uptake
344 ($F(1,48)=72.27$, $P<0.0001$), serum ($F(3,48)=6.115$, $P=0.0013$ and interaction ($F(3,48)=3.077$,
345 $P=0.0362$). In contrast to hibernation cells, cells from fed bears responded to insulin under all
346 serum conditions. The effect (fold-change from baseline) was greatest in cells incubated in serum
347 from fed bears (DEXS; approximately 6.5-fold); this response was greater than in fed cells
348 cultured in ACTS (approximately 4-fold) or hibernation cells cultured in ACTS (approximately
349 3-fold).

350

351 **2. Serum indices of metabolic status**

352 Daily glucose feeding for 10 days resulted in significant decreases in serum glycerol, FFA and β -
353 hydroxybutyrate concentrations compared to pre-feeding levels (Table 1). However, these
354 reductions did not differ with level of glucose feeding (glycerol – $F(1,10)=0.5605$, $P=0.2400$;
355 FFA – $F(1,10)=0.9270$, $P=0.3583$; β -hydroxybutyrate – $F(1,10)=0.3786$, $P=0.5521$). Pre-feeding
356 levels were similar to those in unfed bears while post-feeding levels were similar to those in the
357 active season (Table 1). Glucagon concentrations were unaffected by feeding (not shown).

358

359 **3. General activity**

360 Very low levels of activity were observed in all hibernating bears prior to the beginning of
361 feeding (Fig. 4). A blunted, yet clearly evident daily rhythm of activity was present in fed and
362 unfed bears (Fig. 4C,D). Since hourly pre-feeding data were only available for 1500h in the 53%

363 group (2017-2018), direct comparisons between glucose groups were not possible. Nevertheless,
364 activity levels were at their lowest in both groups of bears prior to the beginning of feeding.

365

366 Daily glucose feeding resulted in significant increases in activity at 0700, 1200 and 1500h (Fig.
367 4). The effect of feeding on activity was evident for up to 50 days post feeding in both 53% and
368 100% groups. However, at 50 days post-feeding, the increase in activity coincided with the
369 natural increase in activity as seen in the unfed bears prior to the end of hibernation. The increase
370 was still nearly twice that of the unfed bears.

371

372 **4. Heart rate and body temperature**

373 The heart rate of hibernating bears prior to any manipulations ranged from 10 to 13 beats per min
374 (bpm) in fed bears (Fig. 5). Upon feeding, heart rate increased significantly ($F(1,12)=5.101$;
375 $P=0.043$); however, no significant difference between feeding levels was found ($F(1,12)=0.002$;
376 $P=0.962$). Heart rate was elevated in both 53% and 100% groups for the duration of monitoring
377 or until hibernation ended (Fig. 6). By contrast, heart rate of the unfed bear remained low until
378 March when it began a progressive increase (Fig. 6, 100%). A similar increasing trend was
379 observed for all of the fed bears. All bears exhibited an increase in heart rate at the time of
380 biopsy (arrows, Fig. 6), but this returned to roughly pre-biopsy levels within about five days (i.e.
381 during the recovery period). We observed several transient heart rate excursions in the unfed
382 bear (e.g., on 1/11/2018, Fig. 6, 53%) when other bears were being fed. These transients were
383 likely due to brief disturbance as all bears were housed in the same facility, but in different pens.
384 Heart rate returned to low, hibernation levels in the unfed bear once feeding of the other bears
385 ended (Fig. 6A).

386

387 Body temperature remained low in all bears and was not significantly affected by feeding
388 (mean \pm SEM; 53%: Pre- $32.91\pm0.40^\circ\text{C}$, Post- $33.97\pm0.44^\circ\text{C}$; 100%: Pre- $33.17\pm0.38^\circ\text{C}$, Post-
389 $34.62\pm0.96^\circ\text{C}$; $F(1,12)=4.438$; $P=0.0569$). Body temperature also did not differ between levels
390 of glucose fed ($F(1,12)=0.5774$, $P=0.462$).

391

392 The strength of the daily heart rate rhythm was low (mean range 14-18%) before glucose feeding
393 but increased significantly in strength to >40% during feeding (Fig. 7); $F(2,18)=44.29$,

394 P<0.0001. Rhythm strength was then reduced in the 10 days following feeding and was
395 significantly lower in the 100% fed group compared to the 53% group ($t(18)=3.090$, $P=0.0188$)
396 (Fig. 7). A significant interaction between experimental phase and feeding level was also
397 observed $F(2,18)=6.985$, $P=0.0057$. No effect on rhythm period (peak-to-peak interval) was
398 observed (mean rhythm period = 24.0h).

399

400 **5. Cellular energetics**

401 *a. Mitochondrial respiration*

402 Serum source significantly influenced oxygen consumption under baseline (non-stressed)
403 conditions ($F(3,16)=15.70$, $P<0.0001$) (Fig. 8, Fig. S3). Hibernation cells cultured in matching
404 serum (i.e., hibernation, HIBS) exhibited the lowest oxygen consumption rates (0.337 pmol O₂
405 min⁻¹ μg protein⁻¹) and this rate was 41.8% lower than ACTS (0.478 pmol O₂ min⁻¹ μg⁻¹ protein;
406 $t(16)=3.152$, $P=0.0184$). Culturing the hibernation cells with serum from fed bears (DEXS, 53%)
407 significantly increased oxygen consumption by 33.6% (0.451 pmol O₂ min⁻¹ μg⁻¹ protein;
408 $t(16)=2.538$, $P=0.0434$). All hibernation cells cultured in bear serum exhibited lower
409 mitochondrial respiration rates compared to cells cultured with FBS ($P\leq 0.0088$). Serum affected
410 oxygen consumption under stressed conditions ($F(3,16)=6.503$, $P=0.0044$). Post-hoc analysis
411 revealed that only FBS ($P\leq 0.0166$) contributed to the main effect since none of the bear serum
412 treatments differed significantly from one another.

413

414 *b. Glycolytic flux*

415

416 Hibernation cells cultured with matching (HIBS) serum exhibited the lowest glycolytic flux (Fig.
417 8, Fig. S3; 0.104 mpH min⁻¹ μg⁻¹ protein). Under baseline conditions, serum significantly
418 affected medium acidification of hibernation cells ($F(3,16)=8.132$, $P=0.0016$). Cells cultured
419 with ACTS exhibited a significantly (33.5%) greater glycolytic flux compared to HIBS
420 ($t(16)=3.188$, $P=0.0283$). By contrast, neither FBS nor DEXS caused significant changes in
421 glycolytic flux (i.e. rightward shift) compared to HIBS. No significant differences in stress
422 responses for any cell:serum combination were observed ($F(3,16)=2.302$, $P=0.116$).

423

424

425 **DISCUSSION:**

426 Hibernation in bears, as in many other species, is a period of energy conservation when food is
427 scarce. The evolution of this process likely involved numerous physiological adaptations for
428 hibernation to be a successful survival strategy (see reviews by (Carey et al., 2003; Geiser, 1998;
429 Geiser, 2013; Melvin and Andrews, 2009). All of the physiological changes that occur during
430 hibernation are eventually reversed once animals exit the den and begin to feed. In an attempt to
431 better understand the processes involved in hibernation, we asked if it was possible to reverse the
432 hibernation state by feeding hibernating bears a single macronutrient, glucose. Three physiologic
433 systems were interrogated in this study: 1) glucose homeostasis, 2) energetics and metabolism
434 and 3) circadian rhythms. The results demonstrate that the systems studied exhibited partial or
435 complete reversal with glucose feeding. This approach could be useful in identifying the critical
436 factors necessary to sustain hibernation in bears and perhaps other species.

437

438 We found that blood glucose concentrations at two hours after glucose feeding, irrespective of
439 the amount of glucose fed, returned to levels intermediate to those of hibernation and active
440 seasons suggesting that insulin resistance was partially reversed. This partial reversal is similar to
441 findings in fasted diabetic humans (Cahill et al., 1966). We did not find a significant effect of
442 glucose feeding at the highest level on the insulin:glucose ratio, which has been used as proxy of
443 insulin resistance (Turner et al., 1979) ($t(9)=2.003$, $P=0.0762$). This is perhaps not surprising as
444 bears exhibit little evidence of hyperglycemia in hibernation (Rigano et al., 2017; Welinder et al.,
445 2016). A similar lack of significant effect of feeding on insulin:glucose ratios in black bears fed
446 over the winter was observed previously (McCain et al., 2013). Despite the many differences in
447 diet and duration between these two studies, the similar results suggest that factors other than
448 diet are primarily responsible for driving changes in insulin sensitivity. Interestingly, although
449 we found no changes in insulin:glucose ratios in January with feeding, when we performed
450 oGTTs in March (late hibernation) and compared those results with those obtained in June
451 (active season; long-term fed bears) (Fig. S2) we saw large differences in insulin:glucose ratios
452 at baseline ($\times 1000$ = March – 0.7, June – 1.2). These results are of similar magnitude and
453 direction to those reported in fasted humans (Cahill et al., 1970). Our results therefore reveal a
454 previously unknown feature of the insulin resistance in hibernating bears, namely, that it

455 progressively increases throughout hibernation. A similar progressive change has been observed
456 in elephant seal pups over several months of fasting (Olmstead et al., 2017).

457

458 Elevated circulating FFA have been strongly associated with obesity and insulin resistance in
459 humans (see Review by Boden, 2008)). The reductions in circulating FFA we observed would be
460 consistent with a restoration of insulin sensitivity. However, the suppression was not complete
461 and remained at about 50% greater than active levels. By contrast, the reductions in ketone
462 production were essentially complete and are not unlike those observed in marmots stimulated to
463 feed during hibernation (Tokuyama et al., 1991). These results together highlight the inherent
464 flexibility of metabolic systems in hibernators in response to nutrients. Combined with the
465 observed changes in whole body glucose disposal following single nutrient feeding, this should
466 make the identification of cellular and molecular mediators more straightforward.

467

468 Certainly, many effects can be attributed to defects in the insulin signaling pathway (Dresner et
469 al., 1999). Because we previously reported reductions in expression of genes in the insulin
470 signaling pathway occur normally during hibernation (Jansen et al., 2019) we would predict that
471 glucose feeding would reverse those changes. For example, we previously found that expression
472 of the extracellular matrix protein MMP-2, a matrix metalloproteinase was increased in adipose
473 tissue (Jansen et al., 2019). MMP-2 has been linked to elevated FFA and insulin resistance via its
474 ability to cleave the extracellular domain of the insulin receptor (Delano and Schmid-
475 Scho□Nbein, 2008). Additionally, several integrin-related proteins are known to interact with
476 the insulin receptor, such as integrin-linked kinase (ILK) (Williams et al., 2015). We recently
477 found the *ILK* expression was significantly reduced in adipose of hibernating bears (Jansen et al.,
478 2019). Other metabolic pathways involving ketones acting alone or together with fatty acids have
479 also been proposed to confer insulin resistance via disruption of fatty acid oxidation in the
480 mitochondria (Schooneman et al., 2013). Key intermediates in this cascade are the acylcarnitines
481 which are elevated in hibernating bears (Welinder et al., 2016). Acylcarnitines act in the
482 mitochondria via the enzyme carnitine acetyl-CoA transferase (CrAT) (Muoio et al., 2012).
483 *CrAT* gene expression was significantly lower in hibernating bear adipose (Jansen et al., 2019)
484 and in diabetic humans (Muoio et al., 2012). It remains to be determined if changes in the
485 expression of these genes occurs after feeding bears.

486

487 Results from our in vitro studies confirmed that adipocytes from fed bears exhibited an enhanced
488 response to insulin. This could not be explained by differences in serum concentrations of
489 glucose or insulin concentrations as these were not different at baseline before or after feeding
490 (Fig. 2). Along the same lines, the failure of hibernating cells to respond to insulin could not be
491 explained by differences in serum insulin concentrations. However, it is possible that longer
492 exposure to glucose could impact the concentrations of insulin and glucose and thereby sensitize
493 the cells to insulin. A more likely explanation is that other serum factors are important for
494 determining insulin sensitivity, metabolism and energetics. In addition to the effects of different
495 sera we also found evidence for cell autonomous effects. For example, glucose uptake was much
496 greater in hibernating cells cultured with active season serum compared to fed cells cultured in
497 fed serum (Fig. 3). This is similar to our previous observations where hibernation cells cultured
498 with active season serum responded more to insulin than active season cells cultured in matching
499 serum (Rigano et al., 2017). It will be important to fully characterize the gene expression
500 changes in cultured adipocytes under similar and contrasting serum conditions to identify the
501 players involved.

502

503 It is well established that hibernation is characterized by reductions in acitivity levels and longer
504 torpor bouts in response to the absence of food. Furthermore, the number and duration of torpor
505 bouts can be influenced by diet (Dark, 2005; Frank et al., 2008; Vuarin and Henry, 2014). These
506 effects during hibernation have usually been studied in food-storing hibernators. In several
507 studies higher amounts of polyunsaturated fats (PUFA) in food caches resulted in the shortening
508 of hibernation duration (Munro et al., 2005; Siutz et al., 2017) and supports the hypothesis that
509 increased energy intake shortens hibernation duration. Other studies in bears found no effect of
510 PUFA (Rivet et al., 2017) or were inconclusive in lemurs (Faherty et al., 2017). To our
511 knowledge, a pure carbohydrate has not been administererd in hibernation to determine if it can
512 reverse the hibernation state. We found that glucose feeding caused dramatic and prolonged
513 increases in general activity levels, despite being induced by less than two weeks of feeding
514 glucose at a level necessary to offset the lowest predicted cost of hibernation. Along with this we
515 saw a prolonged, roughly 30%, increase in heart rate after feeding. As heart rate is a proxy for
516 metabolic rate, the increase is indicative of increased energy expenditure after feeding.

517
518 A controversial aspect of hibernation physiology, namely, the role and importance of circadian
519 rhythms has received relatively little attention in bears (Harlow et al., 2004; Jansen et al., 2016;
520 Körtner and Geiser, 2000; Ruby, 2003; Toien et al., 2015; Ware et al., 2012; Williams et al.,
521 2011). Since bears hibernate at elevated body temperature, questions regarding the integrity and
522 function of circadian rhythms are relevant to our understanding of hibernation. The most striking
523 aspect of the circadian rhythm in hibernating bears is not that it is absent, but that it persists,
524 although at very low amplitude (Jansen et al., 2016). Given the reduction in metabolic rate (up to
525 75%) during hibernation in bears (Toien et al., 2011; Watts and Cuyler, 1988; Watts and Jonkel,
526 1988), it is likely that the reduction in circadian amplitude we observed for heart rate prior to
527 feeding is a reflection of decreased energetic demand, nutrient status, or both (Jansen et al.,
528 2016; Ware et al., 2012), although environmental influences cannot be ruled out (Evans et al.,
529 2016). Intriguingly, a role for nutrient status in the operation of the circadian clock has been
530 proposed for numerous species ranging from yeast to mice to maintain the temporal separation of
531 incompatible cellular process (Wang et al., 2015). Thus, the increase in rhythm strength during
532 feeding supports this the hypothesis that circadian clocks are directly responsive to nutrient
533 availability. Our cultured adipocyte model system could lead to new approaches for studying
534 links between circadian rhythms and energetics.

535
536 Somewhat surprisingly, the effects of glucose on most parameters were virtually identical
537 regardless of the level of energy replacement. This suggests that there is a ceiling (i.e., 53% of
538 LOMR) beyond which no further increases are possible and that the remainder is due to an active
539 metabolic suppression. However, feeding lower amounts of glucose and/or feeding for longer
540 periods would be needed to confirm this. Alternatively, other dietary factors such as protein or
541 essential fatty acids may be required for full restoration to occur. This seems somewhat unlikely
542 however, as circulating glycerol and β -hydroxybutyrate concentrations were suppressed to
543 summer active levels with only 53% glucose (Table 1) (Graesli et al., 2015; Rigano et al., 2017).
544 Thus, the most parsimonious explanation for our findings is that fatty acid oxidation was
545 inhibited to a maximum of ~50% allowing the ingested glucose to become an alternate metabolic
546 fuel, while the remaining ~50% of fatty acid metabolism was maintained to suppress insulin

547 sensitivity, hence glucose utilization. Altogether, these results reveal a high degree of metabolic
548 flexibility and coordination of physiological processes occurring in hibernating bears.

549

550 Metabolic flux analyses revealed a greater than 40% reduction in oxygen consumption and
551 suppression of glycolysis rates in hibernation cells compared to active season cells under season-
552 matching serum conditions. The metabolic suppression occurred at 37°C and thus provides
553 external validation of the proposed independence between temperature and metabolic
554 suppression proposed for bears (Toien et al., 2011). Additionally, the greater distance between
555 basal and stressed levels of mitochondrial respiration of hibernation cells cultured in hibernation
556 serum reveals that hibernation cells have a greater metabolic potential than active season cells or
557 cells from fed bears. This would be predicted if fatty acid oxidation is the primary fuel source as
558 fatty oxidation yields more ATP. Glucose feeding diminished this potential and supports the
559 metabolic switch in fuel use. In summary, it will be possible now to model certain aspects of
560 hibernation “in a dish” for more detailed dissection of the cellular and molecular pathways
561 involved.

562

563 **LIMITATIONS AND PROSPECTS**

564 The number of animals used to monitor heart rate was too low to enable statistical analysis.
565 Thus, future studies should include more unfed bears. We also were not able to perform
566 comparisons of glucose uptake and metabolic flux analysis for both levels of glucose feeding.
567 However, given the similarity in the results for all other measures we predict those outcomes
568 would be similar. The potential that the ‘ceiling’ effect proposed was due to factors unrelated to
569 glucose, such as gut distention, seems unlikely for two reasons. First, even unfed bears in our
570 facility drink water (unpublished observations), thus gut distention is a normal part, albeit small,
571 of hibernation in captive bears given ad libitum access to water. Second, we observed increases
572 in metabolic rate in vitro in cells from fed bears. Although we didn’t have both feeding groups to
573 evaluate, this suggest changes are independent of the gut.

574

575 We have demonstrated that several features of the physiology of bear hibernation can be reversed
576 with glucose feeding. This was supported by increases in metabolic rate, circadian rhythm
577 strength and the partial restoration of insulin sensitivity. Where applicable, in vitro studies

578 mirrored these findings. Taken together, this ability to study the processes controlling bear
579 hibernation both *in vivo* and in highly controlled cell cultures provides a new model system to
580 understand hibernation.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602 **REFERENCES:**

603 **Boden, G.** (2008). Obesity and free fatty acids. *Endocrinol Metab Clin North Am* **37**, 635-46.

604 **Cahill, G., Jr., Felig, P., Owen, O. and Wahren, J.** (1970). Metabolic adaptation to prolonged
605 starvation in man. *Nord Med* **83**, 89.

606 **Cahill, G. F., Jr., Herrera, M. G., Morgan, A. P., Soeldner, J. S., Steinke, J., Levy, P. L.,**
607 **Reichard, G. A., Jr. and Kipnis, D. M.** (1966). Hormone-fuel interrelationships during fasting.
608 *J Clin Invest* **45**, 1751-69.

609 **Carey, H. V., Andrews, M. T. and Martin, S. L.** (2003). Mammalian hibernation: cellular and
610 molecular responses to depressed metabolism and low temperature. *Physiological Reviews*.

611 **Dark, J.** (2005). Annual lipid cycles in hibernators: integration of physiology and behavior.
612 *Annu Rev Nutr* **25**, 469-97.

613 **Delano, F. A. and Schmid-Schoenbein, G. W.** (2008). Proteinase Activity and Receptor
614 Cleavage. *Hypertension* **52**, 415-423.

615 **Dresner, A., Laurent, D., Marcucci, M., Griffin, M. E., Dufour, S., Cline, G. W., Slezak, L.**
616 **A., Andersen, D. K., Hundal, R. S., Rothman, D. L. et al.** (1999). Effects of free fatty acids
617 on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. *J Clin Invest*
618 **103**, 253-9.

619 **Evans, A. L., Singh, N. J., Friebe, A., Arnemo, J. M., Laske, T. G., Fröbert, O., Swenson,**
620 **J. E. and Blanc, S.** (2016). Drivers of hibernation in the brown bear. *Frontiers in Zoology* **13**.

621 **Faherty, S. L., Campbell, C. R., Hilbig, S. A. and Yoder, A. D.** (2017). The effect of body
622 mass and diet composition on torpor patterns in a Malagasy primate (*Microcebus murinus*). *J*
623 *Comp Physiol B* **187**, 677-688.

624 **Florant, G. L. and Healy, J. E.** (2012). The regulation of food intake in mammalian
625 hibernators: a review. *J Comp Physiol B* **182**, 451-67.

626 **Frank, C. L., Karpovich, S. and Barnes, B. M.** (2008). Dietary fatty acid composition and the
627 hibernation patterns in free-ranging arctic ground squirrels. *Physiol Biochem Zool* **81**, 486-95.

628 **Gehring, J. L., Rigano, K. S., Evans Hutzenbiler, B. D., Nelson, O. L., Robbins, C. T. and**
629 **Jansen, H. T.** (2016). A protocol for the isolation and cultivation of brown bear (*Ursus arctos*)
630 adipocytes. *Cytotechnology* **68**, 2177-91.

631 **Geiser, F.** (1998). Evolution of daily torpor and hibernation in birds and mammals: importance
632 of body size. *Clin Exp Pharmacol Physiol* **25**, 736-9.

633 **Geiser, F.** (2004). Metabolic rate and body temperature reduction during hibernation and daily
634 torpor. *Annu. Rev. Physiol.* **66**, 239-274.

635 **Geiser, F.** (2013). Hibernation. *Curr Biol* **23**, R188-93.

636 **Graesli, A. R., Evans, A. L., Fahlman, A., Bertelsen, M. F., Blanc, S. and Arnemo, J. M.**
637 (2015). Seasonal variation in haematological and biochemical variables in free-ranging subadult
638 brown bears (*Ursus arctos*) in Sweden. *BMC Vet Res* **11**, 301.

639 **Harlow, H., Lohuis, T., Anderson-Sprecher, R. and Beck, T.** (2004). Body surface
640 temperature of hibernating black bears may be related to periodic muscle activity. *Journal of*
641 *Mammalogy* **85**, 414-419.

642 **Harlow, H. J. and Frank, C. L.** (2001). The role of dietary fatty acids in the evolution of
643 spontaneous and facultative hibernation patterns in prairie dogs. *J Comp Physiol B* **171**, 77-84.

644 **Harlow, H. J., Lohuis, T., Grogan, R. G. and Beck, T. D. I.** (2002). Body mass and lipid
645 changes by hibernating reproductive and nonreproductive black bears (*Ursus americanus*).
646 *Journal of Mammalogy* **83**, 1020-1025.

647 **Hellgren, E. C.** (1998). Physiology of hibernation in bears. *Ursus*, 467-477.

648 **Jansen, H. T., Leise, T., Stenhouse, G., Pigeon, K., Kasworm, W., Teisberg, J., Radandt,**

649 **T., Dallmann, R., Brown, S. and Robbins, C. T.** (2016). The bear circadian clock doesn't
650 'sleep' during winter dormancy. *Frontiers in Zoology* **13**.

651 **Jansen, H. T., Trojahn, S., Saxton, M. W., Quackenbush, C. R., Evans Hutzenbiler, B. D.,**

652 **Nelson, O. L., Cornejo, O. E., Robbins, C. T. and Kelley, J. L.** (2019). Hibernation induces
653 widespread transcriptional remodeling in metabolic tissues of the grizzly bear. *Communications*
654 *Biology* **2**, 336.

655 **Joyce-Zuniga, N. M., Newberry, R. C., Robbins, C. T., Ware, J. V., Jansen, H. T. and**

656 **Nelson, O. L.** (2016). Positive Reinforcement Training for Blood Collection in Grizzly Bears
657 (*Ursus arctos horribilis*) Results in Undetectable Elevations in Serum Cortisol Levels: A
658 Preliminary Investigation. *Journal of Applied Animal Welfare Science* **19**, 210-215.

659 **Kamine, A., Shimozuru, M., Shibata, H. and Tsubota, T.** (2012a). Changes in blood glucose
660 and insulin responses to intravenous glucose tolerance tests and blood biochemical values in
661 adult female Japanese black bears (*Ursus thibetanus japonicus*). *Jpn J Vet Res* **60**, 5-13.

662 **Kamine, A., Shimozuru, M., Shibata, H. and Tsubota, T.** (2012b). Effects of intramuscular
663 administration of tiletamine-zolazepam with and without sedative pretreatment on plasma and
664 serum biochemical values and glucose tolerance test results in Japanese black bears (*Ursus*
665 *thibetanus japonicus*). *Am J Vet Res* **73**, 1282-9.

666 **Körtner, G. and Geiser, F.** (2000). The temporal organization of daily torpor and hibernation:
667 circadian and circannual rhythms. *Chronobiology international* **17**, 103-128.

668 **Lane, J. E., Kruuk, L. E., Charmantier, A., Murie, J. O. and Dobson, F. S.** (2012). Delayed
669 phenology and reduced fitness associated with climate change in a wild hibernator. *Nature* **489**,
670 554-7.

671 **Laske, T. G., Iaizzo, P. A. and Garshelis, D. L.** (2017). Six Years in the Life of a Mother Bear
672 - The Longest Continuous Heart Rate Recordings from a Free-Ranging Mammal. *Sci Rep* **7**,
673 40732.

674 **Lin, D. C., Hershey, J. D., Mattoon, J. S. and Robbins, C. T.** (2012). Skeletal muscles of
675 hibernating brown bears are unusually resistant to effects of denervation. *Journal of*
676 *Experimental Biology* **215**, 2081-2087.

677 **Lohuis, T. D., Beck, T. D. I. and Harlow, H. J.** (2005). Hibernating black bears have blood
678 chemistry and plasma amino acid profiles that are indicative of long-term adaptive fasting.
679 *Canadian Journal of Zoology* **83**, 1257-1263.

680 **McCain, S., Ramsay, E. and Kirk, C.** (2013). The Effects of Hibernation and Captivity on
681 Glucose Metabolism and Thyroid Hormones in American Black Bear (*Ursus Americanus*).
682 *Journal of Zoo and Wildlife Medicine* **44**, 324-332.

683 **Melvin, R. G. and Andrews, M. T.** (2009). Torpor induction in mammals: recent discoveries
684 fueling new ideas. *Trends in Endocrinology & Metabolism* **20**, 490-498.

685 **Mohr, S. M., Bagriantsev, S. N. and Gracheva, E. O.** (2020). Cellular, Molecular, and
686 Physiological Adaptations of Hibernation: The Solution to Environmental Challenges. *Annual*
687 *Review of Cell and Developmental Biology* **36**, 315-338.

688 **Munro, D., Thomas, D. W. and Humphries, M. M.** (2005). Torpor patterns of hibernating
689 eastern chipmunks *Tamias striatus* vary in response to the size and fatty acid composition of
690 food hoards. *Journal of Animal Ecology* **74**, 692-700.

691 **Muoio, D. M., Noland, R. C., Kovalik, J. P., Seiler, S. E., Davies, M. N., DeBalsi, K. L.,**

692 **Ilkayeva, O. R., Stevens, R. D., Kheterpal, I., Zhang, J. et al.** (2012). Muscle-specific

693 deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility.
694 *Cell Metabolism* **15**, 764-77.

695 **Nelson, O. L. and Robbins, C. T.** (2010). Cardiac function adaptations in hibernating grizzly
696 bears (*Ursus arctos horribilis*). *Journal of Comparative Physiology B-Biochemical Systemic and*
697 *Environmental Physiology* **180**, 465-473.

698 **Nelson, O. L., Robbins, C. T. and Bentjen, S.** (2010). Upregulation of beta 1, beta 2 and beta
699 3 adrenergic receptor expression in the hibernating bear myocardium: A role for
700 cardioprotection? *FASEB Journal* **24**.

701 **Nelson, R. A., Folk, G. E., Pfeiffer, E. W., Craighead, J. J., Jonkel, C. J. and Steiger, D. L.**
702 (1983). Behavior, biochemistry, and hibernation in black, grizzly and polar bears. In *Int. Conf.*
703 *Bear Res. and Manage.*, vol. 5, pp. 284-290. Madison, Wisconsin.

704 **Olmstead, K. I., La Frano, M. R., Fahrmann, J., Grapov, D., Viscarra, J. A., Newman, J.**
705 **W., Fiehn, O., Crocker, D. E., Filipp, F. V. and Ortiz, R. M.** (2017). Insulin induces a shift in
706 lipid and primary carbon metabolites in a model of fasting-induced insulin resistance.
707 *Metabolomics* **13**.

708 **Palumbo, P. J., Wellik, D. L., Bagley, N. A. and Nelson, R. A.** (1983). Insulin and Glucagon
709 Responses in the Hibernating Black Bear. *Bears: Their Biology and Management* **5**, 291-296.

710 **Pike Winer, L. S. and Wu, M.** (2014). Rapid analysis of glycolytic and oxidative substrate
711 flux of cancer cells in a microplate. *PLoS One* **9**, e109916.

712 **Rigano, K. S., Gehring, J. L., Hutzbiler, B. D. E., Chen, A. V., Nelson, O. L., Vella, C.**
713 **A., Robbins, C. T. and Jansen, H. T.** (2017). Life in the fat lane: seasonal regulation of insulin
714 sensitivity, food intake, and adipose biology in brown bears. *Journal of Comparative*
715 *Physiology B-Biochemical Systems and Environmental Physiology* **187**, 649-676.

716 **Rivet, D. R., Nelson, O. L., Vella, C. A., Jansen, H. T. and Robbins, C. T.** (2017). Systemic
717 effects of a high saturated fat diet in grizzly bears (*Ursus arctos horribilis*). *Canadian Journal of*
718 *Zoology-Revue Canadienne De Zoologie* **95**, 797-807.

719 **Robbins, C. T., Lopez-Alfaro, C., Rode, K. D., Toien, O. and Nelson, O. L.** (2012).
720 Hibernation and seasonal fasting in bears: the energetic costs and consequences for polar bears.
721 *Journal of Mammalogy* **93**, 1493-1503.

722 **Ruby, N. F.** (2003). Hibernation: when good clocks go cold. *Journal of Biological Rhythms* **18**,
723 275-286.

724 **Schooneman, M. G., Vaz, F. M., Houten, S. M. and Soeters, M. R.** (2013). Acylcarnitines:
725 reflecting or inflicting insulin resistance? *Diabetes* **62**, 1-8.

726 **Sikes, R. S., Gannon, W. L. and Mammalogists, A. S.** (2011). Guidelines of the American
727 Society of Mammalogists for the use of wild mammals in research. *Journal of Mammalogy* **92**,
728 235-253.

729 **Siutz, C., Nemeth, M., Wagner, K. H., Quint, R., Ruf, T. and Millesi, E.** (2017). Effects of
730 food store quality on hibernation performance in common hamsters. *PLoS One* **12**, e0185913.

731 **Storey, K. B. and Storey, J. M.** (1990). Metabolic rate depression and biochemical adaptation
732 in anaerobiosis, hibernation and estivation. *Q Rev Biol* **65**, 145-74.

733 **Toien, O., Blake, J. and Barnes, B. M.** (2015). Thermoregulation and energetics in hibernating
734 black bears: metabolic rate and the mystery of multi-day body temperature cycles. *J Comp*
735 *Physiol B* **185**, 447-61.

736 **Toien, O., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C. and Barnes, B. M.** (2011).
737 Hibernation in black bears: independence of metabolic suppression from body temperature.
738 *Science* **331**, 906-9.

739 **Tokuyama, K., Galantino, H. L., Green, R. and Florant, G. L.** (1991). Seasonal glucose
740 uptake in marmots (*Marmota flaviventris*): the role of pancreatic hormones. *Comp Biochem
741 Physiol A Comp Physiol* **100**, 925-30.

742 **Turner, R. C., Holman, R. R., Matthews, D., Hockaday, T. D. and Peto, J.** (1979). Insulin
743 deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution
744 by feedback analysis from basal plasma insulin and glucose concentrations. *Metabolism* **28**,
745 1086-96.

746 **Vuarin, P. and Henry, P. Y.** (2014). Field evidence for a proximate role of food shortage in
747 the regulation of hibernation and daily torpor: a review. *J Comp Physiol B* **184**, 683-97.

748 **Wang, G. Z., Hickey, S. L., Shi, L., Huang, H. C., Nakashe, P., Koike, N., Tu, B. P.,
749 Takahashi, J. S. and Konopka, G.** (2015). Cycling Transcriptional Networks Optimize Energy
750 Utilization on a Genome Scale. *Cell Rep* **13**, 1868-80.

751 **Ware, J. V., Nelson, O. L., Robbins, C. T., Carter, P. A., Sarver, B. A. and Jansen, H. T.**
752 (2013). Endocrine rhythms in the brown bear (*Ursus arctos*): Evidence supporting selection for
753 decreased pineal gland size. *Physiol Rep* **1**, e00048.

754 **Ware, J. V., Nelson, O. L., Robbins, C. T. and Jansen, H. T.** (2012). Temporal organization
755 of activity in the brown bear (*Ursus arctos*): roles of circadian rhythms, light, and food
756 entrainment. *American Journal of Physiology-Regulatory Integrative and Comparative
757 Physiology* **303**, R890-R902.

758 **Watts, P. and Cuyler, C.** (1988). Metabolism of the Black Bear under Simulated Denning
759 Conditions. *Acta Physiologica Scandinavica* **134**, 149-152.

760 **Watts, P. D. and Jonkel, C.** (1988). Energetic Cost of Winter Dormancy in Grizzly Bear.
761 *Journal of Wildlife Management* **52**, 654-656.

762 **Welinder, K. G., Hansen, R., Overgaard, M. T., Brohus, M., Sonderkaer, M., von Bergen,
763 M., Rolle-Kampczyk, U., Otto, W., Lindahl, T. L., Arinell, K. et al.** (2016). Biochemical
764 Foundations of Health and Energy Conservation in Hibernating Free-ranging Subadult Brown
765 Bear *Ursus arctos*. *Journal of Biological Chemistry* **291**, 22509-22523.

766 **Williams, A. S., Kang, L. and Wasserman, D. H.** (2015). The extracellular matrix and insulin
767 resistance. *Trends in Endocrinology & Metabolism* **26**, 357-366.

768 **Williams, C. T., Barnes, B. M. and Buck, C. L.** (2011). Daily body temperature rhythms
769 persist under the midnight sun but are absent during hibernation in free-living arctic ground
770 squirrels. *Biology Letters*.

771

772

773

774

775

776

777

778

779

780

781

782

783 **Table 1.** Impact of glucose feeding on mean (\pm SEM) serum concentrations of lipolysis products
784 and ketones in hibernating bears (n=6)[†]. Bears were fed glucose to replace 53% or 100% of the
785 predicted cost of hibernation (see Methods for details). Data from unfed hibernating bears (n=4;
786 2019) and fed active season bears (n=11) are shown for comparison.

787

	Glycerol (μ mol/L)		FFA (μ mol/L)		β -hydroxybutyrate (μ mol/L)	
	53%	100%	53%	100%	53%	100%
Pre-feeding	122.38 (15.81)	155.49 (20.31)	376.47 (22.92)	446.93 (43.87)	507.83 (10.82)	510.67 (19.07)
Post-feeding	65.69 ^b (10.21)	57.65 ^b (13.25)	167.2 ^a (5.48)	178.86 ^a (25.93)	183.67 ^b (15.96)	162.71 ^b (28.71)
Unfed	109.24 (19.65)		346.81 (80.26)		437.13 (51.4)	
Active	48.86 (15.09)		82.02 (24.01) [*]		131 (10.6)	

788

789 a - P<0001 vs. Pre-feeding

790 b - P<0.05 vs Pre-feeding

791 * - different from Post-feeding, P<0.01

792 [†] - One bear was removed from the study in 2019 (100% group).

793

794

795

796

797

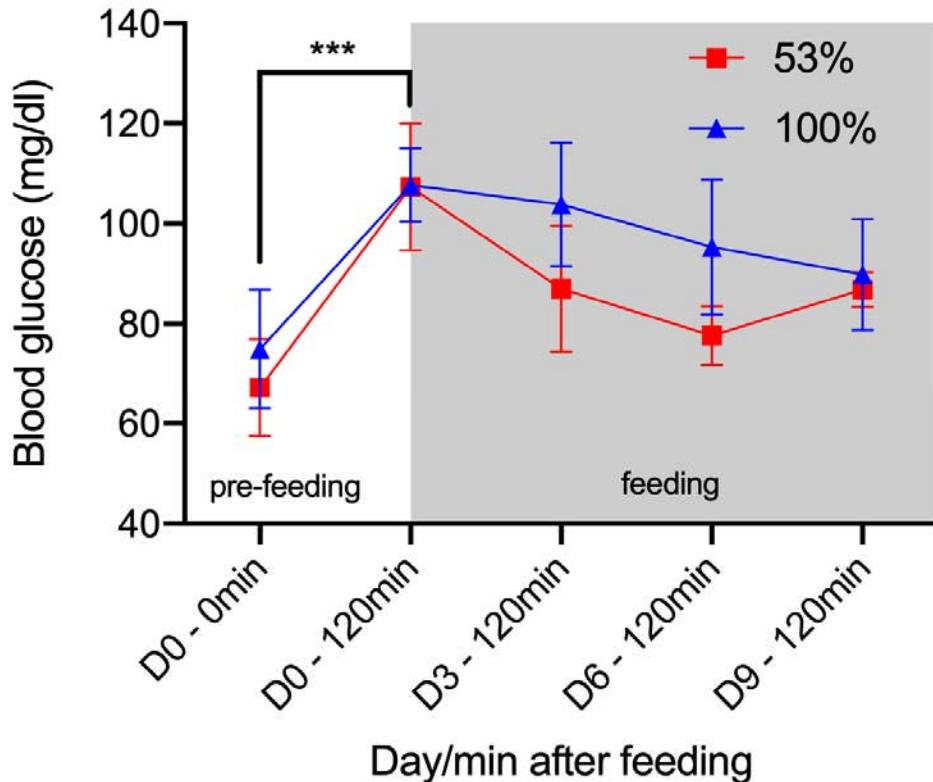
798

799

800

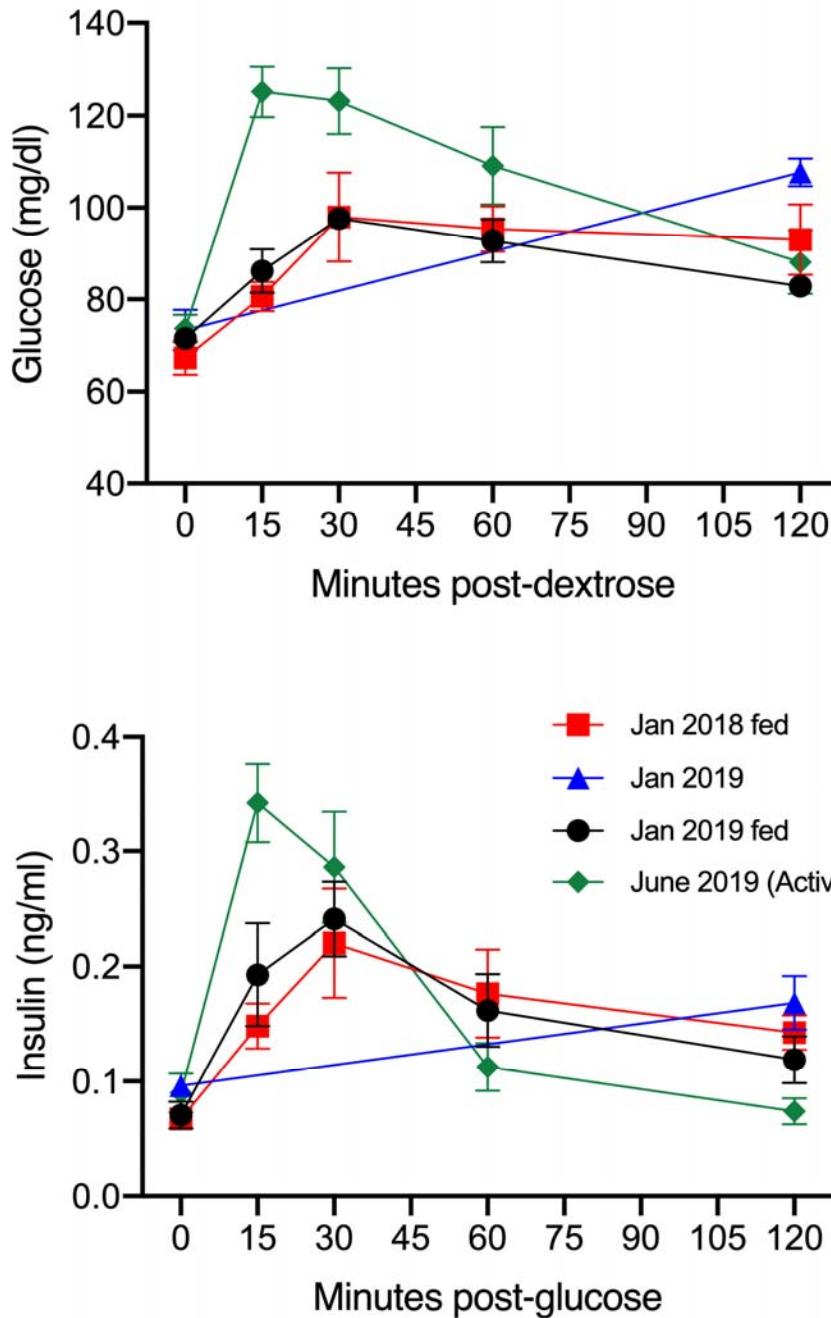
801

802


803

804 **Supplementary Material:**

805 Supplementary figures are included


806 **FIGURE 1.** Blood glucose concentrations (mean \pm SD) in trained (unanesthetized) hibernating
807 bears before feeding glucose (day 0) and during feeding on days 3, 6, and 9. Only 120 min
808 samples were collected from trained bears during feeding to minimize any effect of disturbance.

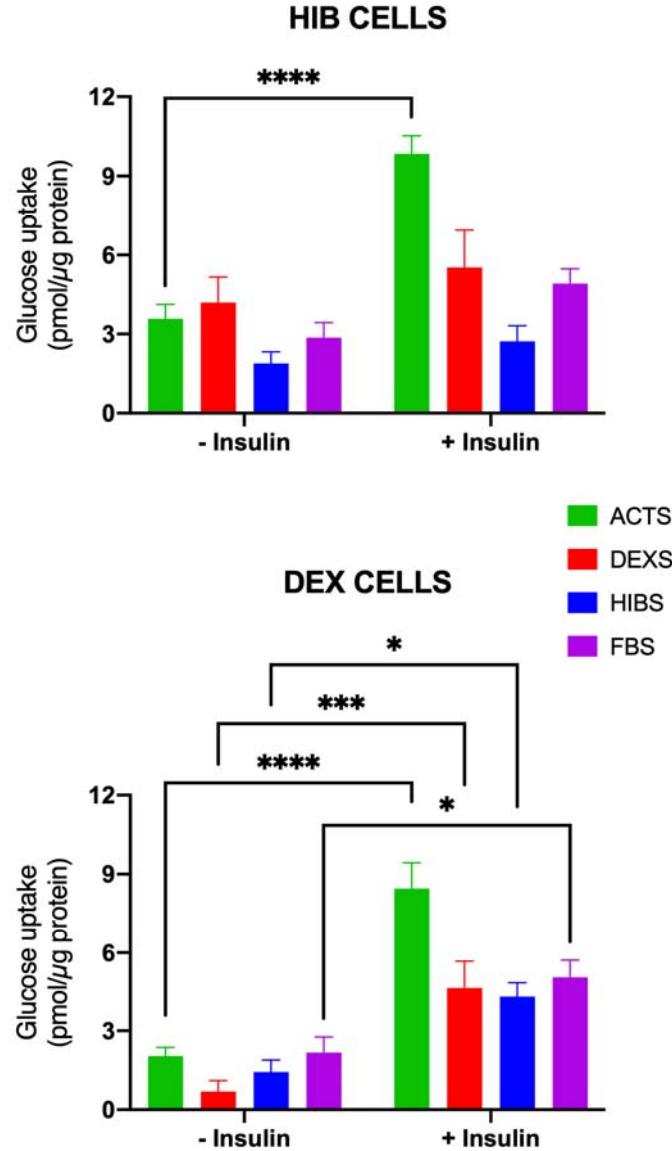
809

821 **FIGURE 2.** Mean \pm SEM blood glucose and insulin concentrations prior to (0 min) and during an
822 oral glucose tolerance test (1g/kg glucose). Active and hibernation seasons are shown for
823 comparison. The pre-feeding hibernation glucose data shown in blue are the same as shown in
824 Fig. 1.

825

826

827


828

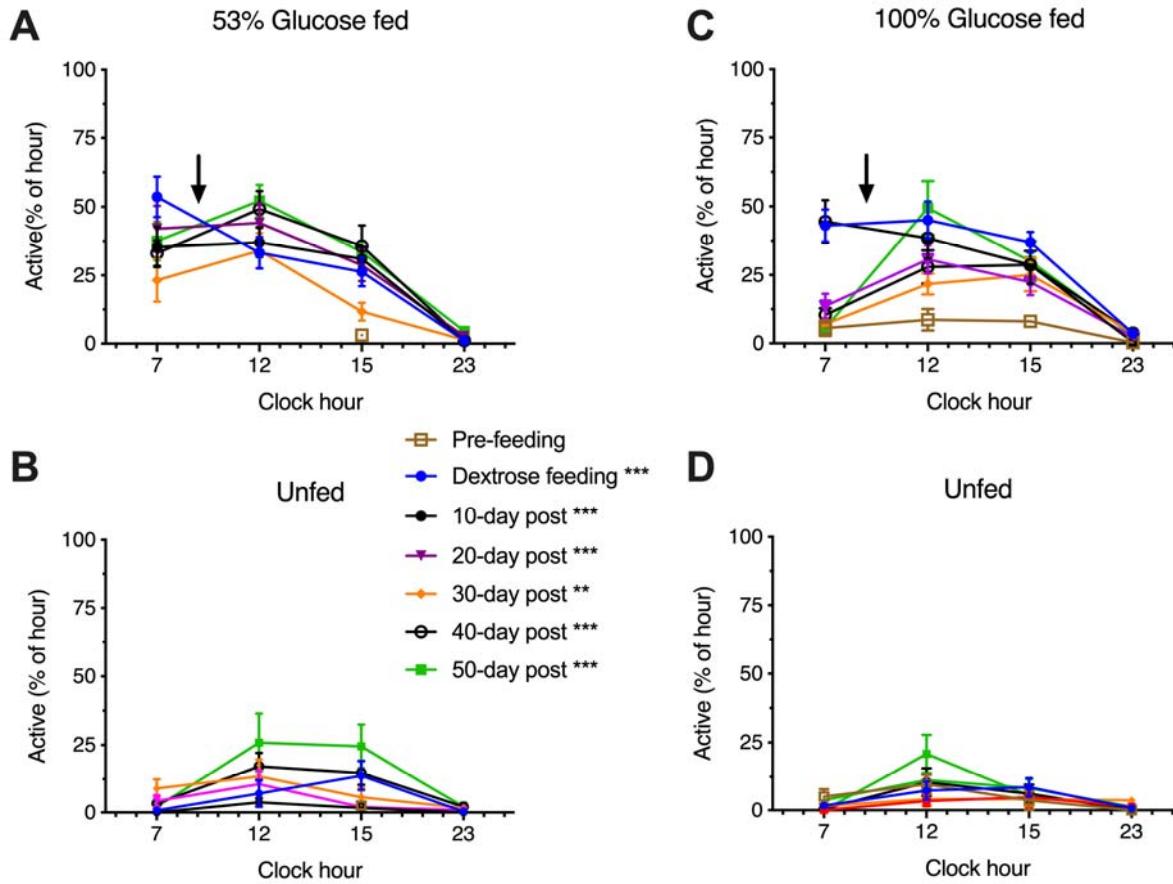
829

830 **FIGURE 3.** Twelve-hour glucose uptake (mean \pm SEM) by bear adipocytes in hibernation (pre-
831 feeding, HIB CELLS) and cells from fed bears (DEX CELLS) without or with insulin (1000nM)
832 and under different serum conditions (ACTS-active season serum; DEXS-fed serum (53% fed);
833 HIBS-hibernation serum or FBS). *P<0.05, ***P<0.001, ****P<0.0001.

834

835

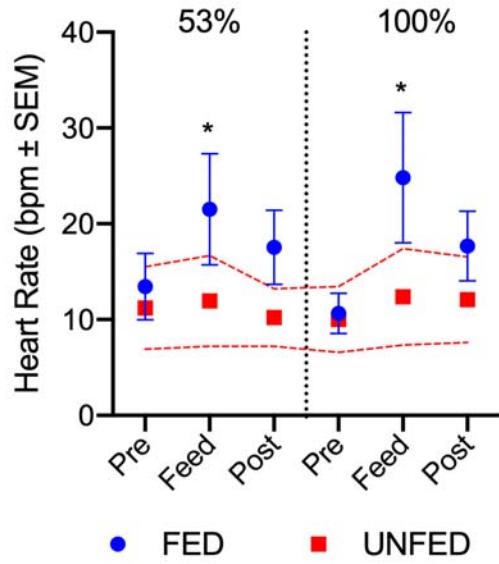
836


837

838

839

840

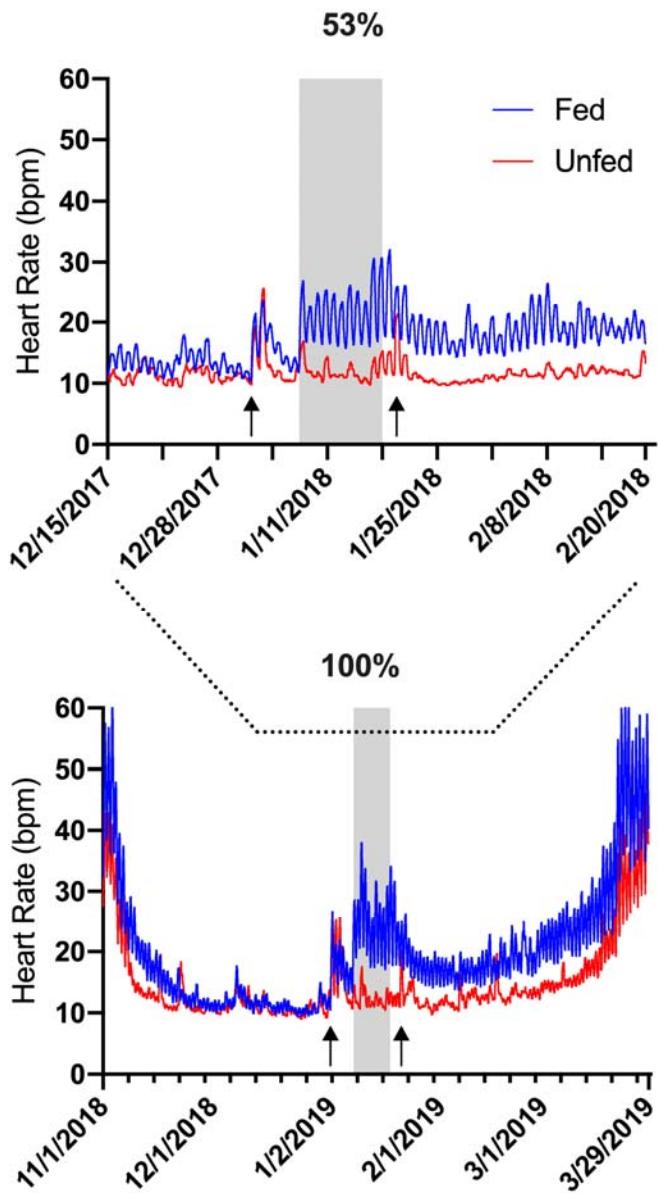

841 **FIGURE 4.** Daily mean (\pm SEM) activity (% of each hour standing) in 10-day blocks for fed
842 (A,C) and unfed bears (B,D). Arrows indicate time of feeding (9AM) during the 10-day dextrose
843 feeding phase. ** $P < 0.01$ vs. unfed; *** $P < 0.001$ vs. unfed. n=7 (53%), n=6 (100%). P-values
844 are the same for 53% and 100% feeding groups.
845

846
847
848
849
850

851 **FIGURE 5.** Mean heart rates in bears (N=4) fed two different levels of energy replacement. The
852 red dashed line represents the 95% confidence interval for a single unfed bear. Each point
853 represents a 10-day average collected prior to feeding (Pre), during feeding (Feed), and after
854 feeding stopped (Post). * P<0.05 vs. Pre.

855

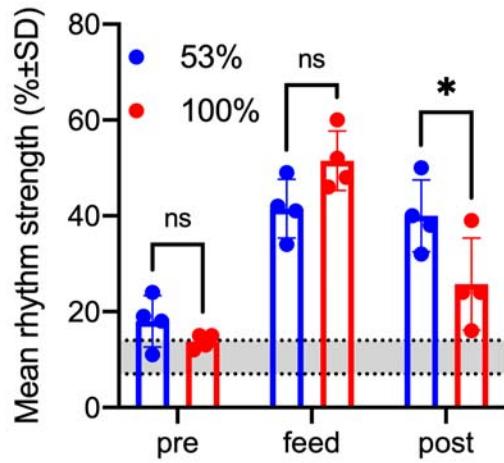
856


857

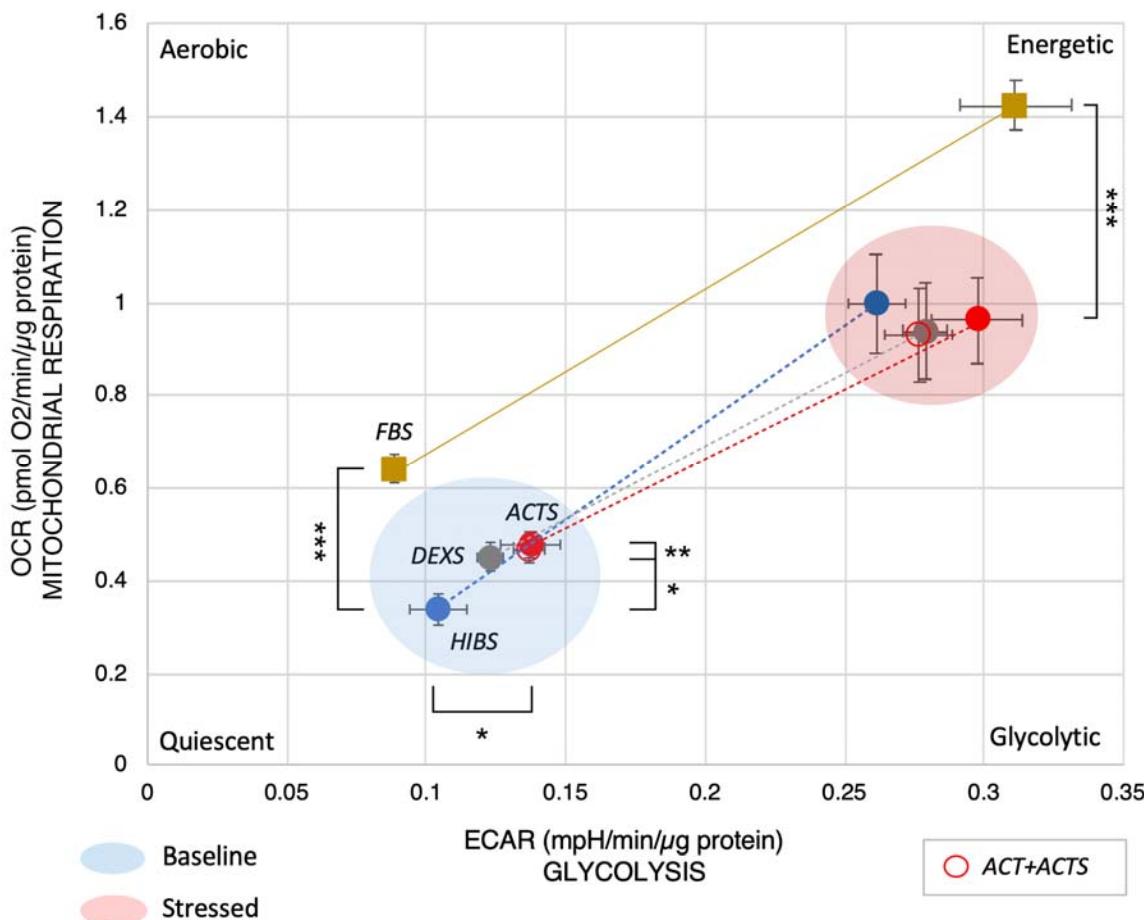
858

859

860 **FIGURE 6.** Heart rate data for bears fed two levels of energy replacement (blue, N=4) and a
861 single unfed bear (red). 2 min data are plotted as 200 point moving averages to visualize long-
862 term trends more easily. The same unfed bear (red) is shown in both panels and in two
863 consecutive years. Dashed line between graphs shows the recording period of the first study in
864 relation to the second. Arrows indicate biopsy dates.


865

866
867
868
869
870
871


872 **FIGURE 7.** Strength (%) of the daily heart rate rhythm before (pre), during (feed), and after
873 (post) glucose feeding. Gray shading represents the range of heart rate rhythm strength for the
874 unfed bear.

875

884 **FIGURE 8.** Cell phenotype of bear adipocytes obtained from hibernating bears and cultured in
885 the presence of different serum combinations (10%): HIBS - hibernation serum (prior to
886 feeding); DEXS - serum from fed bears; ACTS - serum from active season bears (Jun-Jul); FBS
887 – fetal bovine serum. Active season cells cultured with active season serum are shown for
888 comparison but were not included in the analysis. * $P \leq 0.05$; ** $P \leq 0.01$, *** $P \leq 0.001$. Results
889 are representative of three separate experiments.

890

891
892
893

894 **SUPPLEMENTAL FIGURES**

895

896 **FIGURE S1.** Timeline of procedures for feeding study.

897

Jan. 2018, 2019

HIBERNATION

898

899

900

901

902

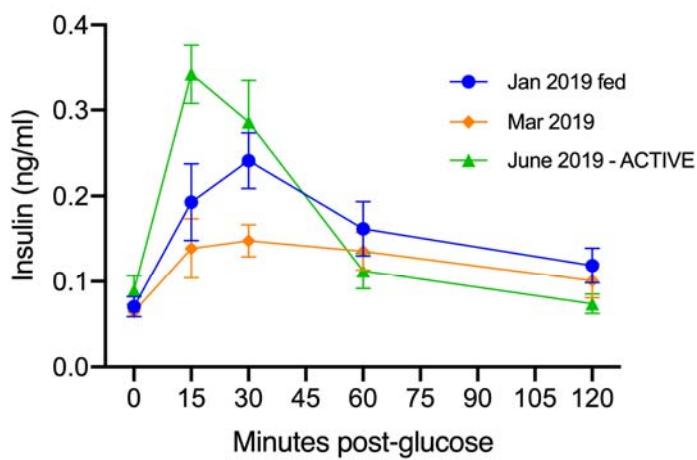
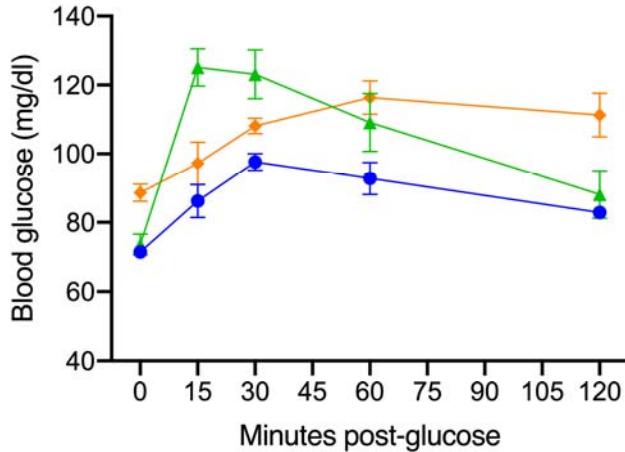
903

904

905

906

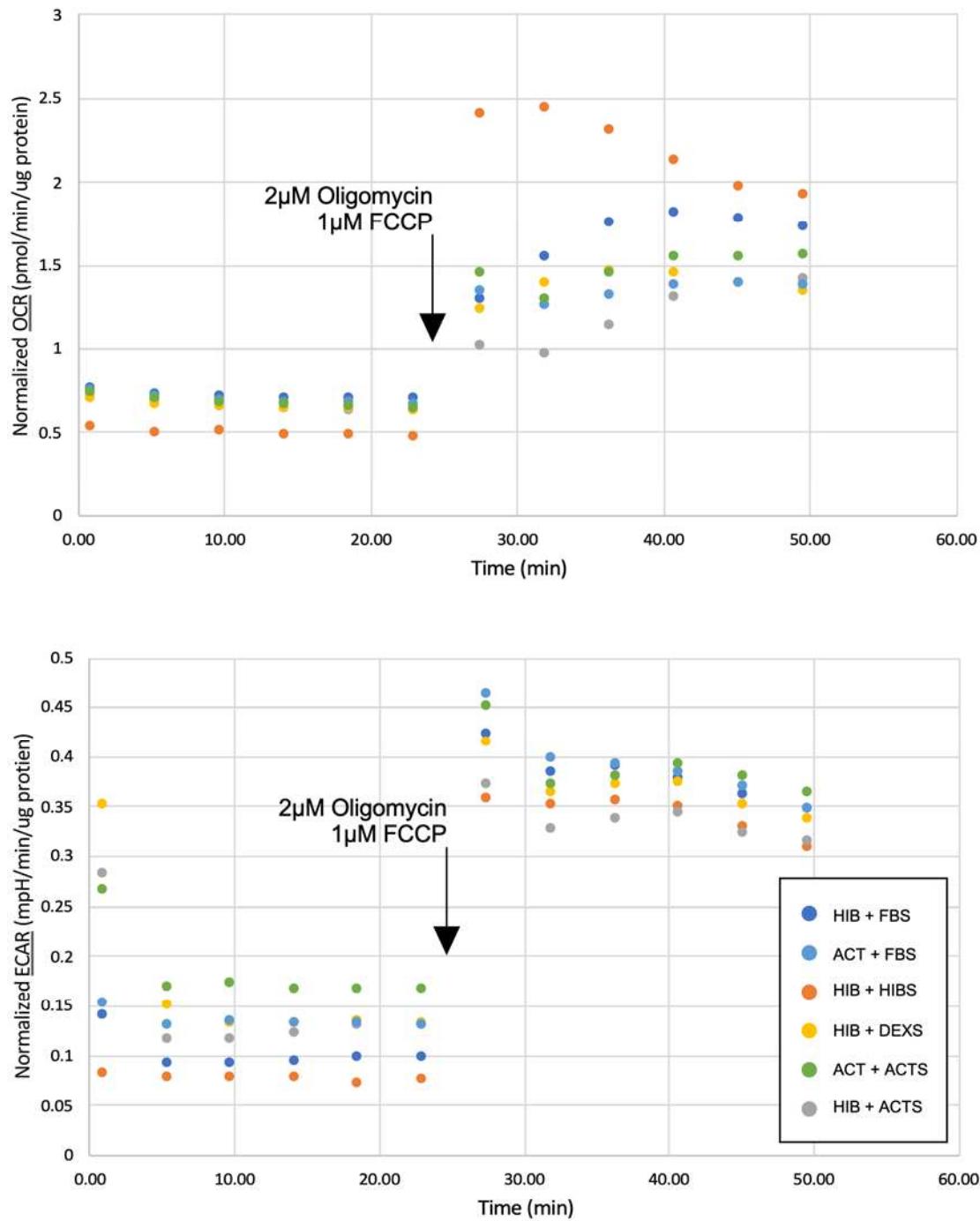
907



908

909

910

911


912 **FIGURE S2.** Oral glucose tolerance test results for bears sampled in late hibernation (March
913 2019) compared to January (2019 post-feeding) and June 2019 (active season). January and June
914 data are the same shown in Fig. 2 of the main text. Values are means \pm SEM.
915

916
917
918

919 **FIGURE S3.** Representative traces of OCR and ECAR measurements in the Seahorse XFp flux
920 analyzer (Agilent, San Diego, CA) from an adipocyte culture under different serum conditions
921 (see Methods for details). All results are from the same bear.

922

923
924