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Definitions

MAVE: multiplexed assays of variant effects. DMS: deep mutational scanning. VUS: Variant of
Uncertain Significance. Genotype: The specific point mutation present (R280H, WT, H20fs, etc).
Genotype class: WT, Benign, or Pathogenic (aka what is designated by the model). Labeled
Cell Population: Used for training the models. Unlabeled Cell Population: admixtures of labeled
cells (like benign + pathogenic) or in screening, where the researchers are completely blind to
the identity of individual cells. ROC: Receiver Operator Curve. AUC: Area under the curve.
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Abstract

Most human genetic variation is classified as VUS - variants of uncertain
significance. While advances in genome editing have allowed innovation in pooled
screening platforms, many screens deal with relatively simple readouts (viability,
fluorescence) and cannot identify the complex cellular phenotypes that underlie most
human diseases. In this paper, we present a generalizable functional genomics platform
that combines high-content imaging, machine learning, and microraft isolation in a new
method termed “Raft-Seq”. We highlight the efficacy of our platform by showing its
ability to distinguish pathogenic point mutations of the mitochondrial regulator MFN2,
even when the cellular phenotype is subtle. We also show that our platform achieves its
efficacy using multiple cellular features, which can be configured on-the-fly. Raft-Seq
enables a new way to perform pooled screening on sets of mutations in biologically
relevant cells, with the ability to physically capture any cell with a perturbed phenotype

and expand it clonally, directly from the primary screen.
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Graphical Abstract. Here, we address the need to evaluate the impact of numerous
genetic variants. This manuscript depicts the methods of using machine learning on a
biologically relevant phenotype to predict specific point mutations, followed by physically
capturing those mutated cells.
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Background

The explosion of functional genomics in the past decade * has enabled a
massive shift in the study of the underlying genetics of human pathology. Even so, it is
difficult to connect specific genetic mutations to disrupted cellular phenotypes,
necessitating a detailed phenotyping-based functional genomics platform that can both
screen large numbers of genetic perturbations/variants—so called multiplexed assays of
variant effects (MAVE) >—and work alongside new methods of generating variant
libraries, such as deep mutational scanning (DMS) °.

Genetic perturbation screens have generally relied on simple phenotypes
conducive to enrichment analysis *, Fluorescence-Assisted Cell Sorting >/, or
phenotypes measurable by sequencing #°. For more complex phenotyping, high-

content imaging/screening (HCI/HCS) **~*°

Is performed in an arrayed format for genetic
perturbation screens 72!, but these are difficult to scale and infeasible for combinatorial
screens. There are platforms that use an imaging-based approach in pooled genetic
perturbation screens, and have been demonstrated on relatively simple phenotypes %
24 or on precise phenotypes that were known in advance *"°.

Although some platforms do isolate individual cells ?°, most genetic perturbation
screens use a population-level measurement as their endpoint. The main challenge for
such screens that operate on the single-cell level is mapping the perturbation back to
each cell post sequencing. For screens where the phenotype is measurable through
sequencing, the perturbagen can be found simultaneously with the phenotype with

single-cell resolution®*°, and newer methods have incorporated more advanced

sequencing techniques to find additional data, such as surface protein presence. In
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imaging, a cell’s position within a microscopic field of view is the unique piece of
identifying information used to map phenotype to perturbation. Some platforms use in

27,28

situ sequencing to generate sequencing results that contain positional data to a

specific cell 1%, Other platforms use a digital micromirror device to photoactivate
endogenous fluorophores in specific cells which are then put through FACS-seq 22>,
However, a platform that can be integrated into existing next-generation sequencing
(NGS) pipelines would be more accessible and robust.

In this paper, we present Raft-Seq, a pooled screening platform that predicts
individual cell perturbations from high-content imaging and machine learning. Raft-Seq
improves on other platforms in several important ways: 1, it uses a microraft plate 332
for context-aware isolation of identified cells; 2, it can use vital dyes or stains, SO no
genetic modification of the cell is required other than the perturbation itself; 3, it is
largely phenotype-agnostic, needing only knowledge of the broad physiology
beforehand for stain selection and initial feature filtering; 4, it uses machine learning to
identify perturbed cells, allowing the identification of complex cell-autonomous
phenotypes; 5, it selects cells with high viability and clonability, directly from the primary
screen.

Here, we use the Raft-Seq platform to examine the neurologically relevant
mutations in the MFN2 gene, which protects against cellular stress from damaged
mitochondria by regulating mitochondrial fission and fusion 3. Clinically relevant MFN2
mutations (pathogenic variants) primarily result in Charcot-Marie-Tooth Disease (CMT),

the most common inherited neuromuscular disorder characterized by peripheral

neuropathy with impairment of the central nervous system 7. We find that the
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phenotype caused by pathogenic MFN2 variants is distinct, but the difference is not
adequately described by a single measurement/feature, necessitating a more complex
feature analysis. Following the findings from the single perturbation experiments, we
targeted a gRNA library across the MFN2 coding region to identify anomalous

phenotypes caused by these mutations.

Results

MFNZ2 Mutants

We generated cell lines that each contain MFN2 cDNA with single point
mutations through lentiviral infection. The mutants studied consisted of six clinically
relevant pathogenic MFN2 variants *° and five control variants annotated as “benign”
from ClinVar *° (Figure 1a). Twelve lentiviral transfer plasmids—one plasmid for each
mutated cDNA and one for wild type cDNA—were used to package lentivirus that was
infected into U20S to create twelve cell lines.

To investigate the phenotypes caused by the MFN2 variants, we assessed
mitochondria and mitochondrial membrane potential using MitoTracker and TMRM,
respectively **. The cells were imaged using a high-throughput fluorescent confocal
microscope and intracellular features were measured using Cytiva’s IN Carta analysis
software. A visual comparison of the MFN2 cell lines demonstrates subtle phenotypic
differences among them (Figure 1b), specifically, perinuclear aggregation of
mitochondria in the cells containing the pathogenic mutations. Box plots for a subset of
the features are shown in Figure 1c. The mean mitochondrial puncta count in the wild-

type and benign cell lines is consistent, while the values for the pathogenic cell lines
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were lower and more variable. A higher average variation in TMRM intensity within a
single cell was also observed in the pathogenic mutants, all suggesting mitochondrial
aggregation and disrupted mitochondrial membrane potential. Additional feature
histograms are shown in Figure S1. Although there are significant differences in the
population of mutants as a whole, there is no single feature that can separate more than
a small fraction of the cells.

We next tested whether multiple features could distinguish the pathogenic-variant
cells. UMAP dimensionality reduction was performed on the full set of cellular image-
based features (Figure 1d). Most pathogenic mutant cells are separable from wild
type/benign cells in the dimensionality reduction, though some mutants (L76P and
R94Q) are more distinct (Figure S2), which is consistent with the individual feature
data. The UMAP reduction shows that using data from multiple features may more
reliably distinguish cells with pathogenic mutants. Thus, to screen individual cells based
on subtle phenotypes caused by these pathogenic mutations, we designed an HCS
platform with machine learning capabilities that can use information from multiple image

features.
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Figure 1. Isogenic MFN2 Mutant Cell Lines Characterization: a. Table of the mutants used.
b. Confocal images of mutant cells at two magnifications (blue = nuclear staining by Hoechst,
green = mitochondria staining by MitoTracker). Subtle mitochondrial differences can be
observed amongst the mutant populations. Known pathogenic mutants display peri-nuclear
aggregation of mitochondria and a lack of mitochondrial spreading. In comparison, wild-type
cells show ample mitochondrial spreading. c. Box plots of two features: Mitochondrial count
(based on MitoTracker staining) and coefficient of variation in mitochondrial potential (TMRM
intensity). Histograms are colored by genotype class (Benign/Pathogenic/WT). d. Scatter plot of
UMAP reduction using a set of 26 features measured with TMRM or MitoTracker staining. Each
dot represents a single cell, colored by its genotype class (WT/benign/pathogenic).

Experimental Workflow

The overall workflow of Raft-Seq can be summarized in five steps: perturbation,
imaging, model building, isolation, and sequencing (Figure 2a). In the first step, we
introduce a genetic perturbation, either endogenous (e.g., CRISPR gRNA library) or

exogenous (e.g., plasmid overexpression library with mutagenesis). The cells are then

seeded onto a microraft plate, stained, and imaged on a high-throughput confocal
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microscope. From the cell-feature matrix obtained from feature extraction, we generate
many supervised learning models, used to predict whether there is a discernible
perturbation in each cell. Several different model types are employed (Methods:
Machine Learning and Model Generation), which are then evaluated and deployed to
determine cells to be isolated. Isolation is performed using the Cell MicroSystems Air
Instrument, where rafts containing cells of interest are automatically transferred with a
magnet to a well of a 96-well plate. The cells on the isolated rafts are then genotyped to
determine the perturbation present. The genotyping pipeline is performed on single
cells, not pooled genetic material.

As a preliminary test of raft-based imaging and isolation, we performed Raft-Seq
on cells with dual genome-encoded RFP and GFP that had been given a gRNA to
knock-out either RFP or GFP. These cells were plated on a microraft plate as a mixture
and were imaged. Cells that were given the guide targeting RFP would be expected to
appear green, since GFP would continue to be expressed and vice-versa. Using
fluorescent marker intensity, we predicted the guide presence, isolated those cells,
performed single-cell DNA sequencing to look for the edited genomic targets, and
determined the true genotype. The correspondence between the predicted guide and
the true guide was near perfect (Accuracy = 98.8%, n = 162) and comparable to a flow-
based single-cell sequencing method run in parallel (Figure 1b and Supplemental

Methods).
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Figure 2. Raft-Seq Experimental Workflow a. A perturbagen library, primarily a lentiviral
gRNA or plasmid overexpression library, is introduced to cells, which are then seeded onto a
microraft plate. The plate is imaged, and cell feature data are then extracted from the resulting
images and used to build machine learning models. The trained model then selects rafts to
either be isolated into a PCR plate for immediate analysis or a tissue culture plate for clonal
expansion. Following isolation, the cells are genotyped. b. Pie charts showing the composition
of cells identified as either expressing GFP or RFP, after being separated by either the raft-
based approach or flow cytometry. The color represents the expected appearance of the cells
based on genotype (green = contains RFP gRNA, red = contains GFP gRNA), and the
fractions/percentages are the amount in each group that is correctly identified. c. Performance
evaluation workflow. The blue and red wells represent the labeled cell populations and the
purple well represents the unlabeled population that is a mixture between the two. Following
imaging, models are trained and tested on the labeled wells, and the one with the clearest
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delineation between the two classes is selected. That model is used to select rafts that are then
isolated and single cell genotyped. The comparison between the prediction scores and the true
genotype class generates a receiver operator characteristic curve to evaluate model efficacy. d.
Modeling workflow. Each model comprises a feature set and machine learning algorithm,
combinations of which are represented here with different symbols. Each model is evaluated
with training and testing cell data, and the model that shows the largest separation between
classes and is robust on the testing data is used to generate a list of cells (rafts) to pick, along
with their predicted genotype.

Identifying Subtle Mitochondrial Phenotypes in a Mixed-Variant
Pool

To validate the efficacy of Raft-Seq in a more complex screen, we attempted to
separate a mixture of wild-type and mutant cells by reproducibly predicting a given cell’s
genotype based on its phenotype, as determined by a set of features extracted from
imaging data (with no fluorescent reporters). For this experiment, we separated cells
containing pathogenic MFN2 mutations from those containing the wild-type MFN2
CcDNA.

The workflow of this validation experiment is shown in Figure 2c. The goal was
to see if we could identify any of four pathogenic mutants (L76P, R94Q, P251A, R280H)
from WT in an admixture of those cells. In the different wells of the microraft plate, we
plated either 1) MFN2 WT cells, 2) a mixture of the 4 MFN2 mutants (1:1:1:1), 3) a
mixture of the wild-type and pathogenic cells at a wild-type:pathogenic ratio of 90:10,
and 4) a similar mixture at a ratio of 50:50. We distinguished between the first two
groups and the last two by calling the former (1,2) “labeled” and the latter (3,4)
“unlabeled” to clarify for which cell populations the genotype class was known prior to
imaging and analysis. Following application of a nuclear stain, a plasma membrane

stain, and a mitochondrial stain (Methods: Staining), the cells were imaged and their
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features computed. Next, we designed classification models that best distinguished the
labeled populations (MFN2 WT vs. MFN2 mutants). General modeling workflow is
shown in Figure 2d. We used a variety of model algorithms (types) and cell features
sets, preferentially choosing features that correlated with genotype class. For model
selection, we trained each model on-the-fly using plate-spanning sets of feature data.
For each set of predictions for each model, we graphed the ranked prediction score
(Figure 2d: Evaluation). If a model appropriately distinguished between the labeled
populations, it would assign a score near 1 to the pathogenic mutant cells and a score
near O to the wild-type cells, and the ranked prediction score curves will be widely
separated. We then selected the model with the largest separation between the labeled
populations in both the training and testing wells (lack of separation in the testing wells
indicated overfitting or sensitivity to batch effects) (Figure 2d).

Using the selected model, we chose cells for isolation from the unlabeled wells
with additional control cells picked from the labeled wells. Over 1000 cells were then
individually isolated into wells of several 96-well PCR plates (384 labeled, 758
unlabeled). From there, the cells underwent amplicon library construction, multiplexing,
and NGS, from which their genotypes were ascertained.

With the knowledge of each cell’s genotype (nwt=159, Ni76p=61, Nroag=74,
Np2s1a=41, Nrogon=6), we found the total accuracy of our on-the-fly predictions to be
72.4% (50:50 =75.7%, and 10:90= 64.5%). Therefore, when training with only WT vs. a
mixture of MFN2 mutants, we could predict that individual cells were mutant from an
admixture in which we were completely blind to the real genotype using only the subtle

mitochondrial phenotype (Figure 3a). As expected, when trying to identify mutants that
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were the vast minority (in the 10:90 admixture), the model does correctly identify
pathogenic mutant cells, but the type Il error is large. Figure 3b shows further
breakdown of all unlabeled wells by specific mutant and by whether the model correctly
identified it as a pathogenic mutant (per-mutant metrics are not available in this
experiment since we did not train on individual classes of mutants). The mutations most
successfully recovered were R94Q and L76P, agreeing with the previous data showing
those mutants as having a more severe phenotype. We recovered a similar number of
false negatives of the P251A and R280H mutants, despite fewer overall numbers of
each mutant, indicating that these mutants likely have a weaker phenotype—Ileading to
a less confident prediction and exclusion from the list of cells to isolate—rather than less
penetrance. To check the model quality, we evaluated the Receiver Operating
Characteristic (ROC) curves and the resulting area under the curve (AUC) Figure 3c.
The curves in red show the ROC of our model—for the cells picked from labeled (AUC =
0.94) and unlabeled (AUC = 0.74) populations.

We also took a larger view and assessed the quality of all models generated, not
just the one used to select cells for isolation. Figure 3d shows a scatterplot of AUCs
(labeled populations vs. unlabeled populations) and Figure 3e shows the AUC
distribution of all models applied to unlabeled populations. Importantly, the majority of
models had discriminatory ability. This entire experiment was repeated successfully
using a mixture of all six mutants, and histograms and scatterplots of the models

generated are shown in Figure S3.
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Figure 3. Raft-Seq Proof-of-Principle Results against MFN2 Pathogenic Mutations. a.
Confusion bar charts of predicted genotype vs. true genotype for the main model from cells in
the WT/Pathogenic mixture. The top bar chart represents all cells isolated from the mixture,
while the bottom two are a breakdown of the first according to whether the cells were isolated
from the well containing 50% or 90% wild-type cells. b. A bar chart of picked mutants separated
by allele and counting the final status of individual cells. c. ROC Curves generated using the
best model identified a posteriori separated by data generated from cells picked from control
pure wells (upper) and from mix wells (lower). The red curves are the experimental results and
the grey curves are a control generated by random shuffling of labels. d. A scatterplot showing
the performance of all 290 models in detecting mutants in a mixture of wild type cells and four
pathogenic mutants. Each point represents a single model and its position is determined by its
ability to distinguish cells in the labeled control wells and cells in the mixed wells. The vertical
and horizontal lines represent the AUCs of the model that was used to choose cells for isolation.
e. A histogram of AUCs for models detecting mutants in a mixture of wild-type cells and four
pathogenic mutants. On top, a histogram of AUCs generated from randomly assigning models is
shown as a comparison.
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Identification of Weak Pathogenic MFN2 Mutants

Our pipeline also has the ability to recognize relatively weak phenotypes. As
shown earlier, of the six pathogenic mutants, the R280H and P251A appear most like
benign mutants and wild type (Figure 2c). Despite the subtle phenotype, we recovered
R280H cells in the experiment above (Figure 3b), though comparably fewer than cells
with other mutations. Given those results, we explored the ability of Raft-Seq to isolate
cells with the R280H mutation compared against MFN2 wild type. Figure 4a shows
images of R280H mutation-harboring cells in the microraft plate. As a baseline
measurement against more conventional methods of cell separation, we ran separate
samples of a MFN2 WT and R280H mutant cell lines each stained with MitoTracker
through flow cytometry (Figure 4b). While there is variation between the two in the
MitoTracker intensity, there is too much overlap to separate a mixture (Figure S4 AUC
= 0.60).

We then followed the Raft-Seq process described above, replacing the mixture of
MFN2 mutants with just R280H mutant cells, and therefore training the models directly
on the weaker phenotype. Additionally, the experiment was done with different culture
densities and cross-compared to confirm that culture conditions had no ‘residual
phenotype’ that impacted the models prediction. Figures 4c and 4d show histogram
and scatterplots for the resulting models in this experiment and that Raft-Seq
discriminated between the R280H mutant and the MFN2 wild type (AUC of picked
model 0.72, best models > 0.8, nwt = 265, Nroson = 205). We also ran a similar
experiment comparing the P251A pathogenic mutant cell line—the other pathogenic

mutation with a weaker phenotype—to the D221= benign mutant cell line. Cells
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containing the synonymous substitution D221= act as another control for point
mutations instead of using WT. Figure S5 shows that the resulting model, when applied
to a mixture of the cell lines, was able to discriminate between the two (AUC = 0.8,
Np221= = 103, npasia = 65). The AUCs mentioned above apply to all the unlabeled cells
that were physically picked. If we limit our results to cells whose class the model is
increasingly confident about, then the accuracy of the model gets increasingly better
(Figure 4e, f). For cells that the model is at least 80% confident about (prediction score
= 0.8 or £ 0.2), we get high AUCs and accuracies in both the R280H/WT and
P251A/D221= experiments (AUC = 0.94,0.98 Acc = 0.88,0.92 n=17,24).

We have shown that Raft-Seq can accurately predict genotypes from strong
mitochondrial point mutants as well as weak mutants in MFN2 and predict them as part
of a mixed culture where there was no a priori knowledge of individual cell’'s genotypes.
The model’s predictions were realistically tested by isolating single cells and genotyping

them to reveal the method's accuracy.
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Figure 4. Raft-Seq can Predict MFN2 WT and MFN2 R280H mutant cells which have nearly
undetectable Phenotypic Differences. a. Images of the R280H mutant and MFN2 WT cell line
in the microraft plate. b. Side-by-side flow cytometry scatter plots of the MFN2 WT and R280H

mutant cell (GFP was present equally in both cell lines). c. Scatterplot showing the performance
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of all 433 models in detecting mutants in a mixture of wild type cells and the R280H mutant. d. A
histogram of AUCs for models detecting mutants in a mixture of wild-type cells and the R280H
mutant. On top, a histogram of AUCs generated from randomly assigned models for
comparison. e,f. Accuracies and confusion bar charts of the predictions from the un-labeled
wells, when only picking cells with prediction scores 20.9 (<0.1), 20.8 (=0.2), and =0.7 (<0.3). e.
uses the model to predict R280H against WT MFN2, while f. uses the model to predict P251A
against D221=.

Modeling Analysis

Multi-feature models were necessary for accurate predictions, warranting
exploration into the importance of individual features and the performance impact
associated with them. Using data from the experiment containing wild-type MFN2 cDNA
and four pathogenic mutants, we generated additional models by varying the number of
features used, sampling from the 8 features in the pick model (Table S1). Histograms
showing the distributions of the AUCs, separated by the number of features are shown
in Figure 5a. When more features are added, the models can better distinguish
between the populations of cells. We also examined the importance of individual
features in building models (Figure 5b-d). We used the original feature data (Figure 1)
and generated Kruskal-Wallis % for each feature between the wild type and pathogenic
mutant cells from labeled populations. A ranking of the 16 features associated with the
highest 12 are shown in Figure 5b. We compared the resulting AUCs from models built
off each specific feature alone (Figure 5c), and to the resulting AUCs from models built
from the 16 features minus one (Figure 5d). Importantly, we find that single features are
not the key to discriminating these clinically relevant pathogenic MFN2 point mutants.

Instead, small numbers of relevant features can inform a useful model.
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Figure 5. MFN2 Genotype Prediction does not depend on specific features. a. Histograms
of AUCs resulting from models built from combinations of a set of 8 features used when picking,
arranged in panels split by the number of features used in each subset. b. Bar chart of the
Kruskall-Wallis 12 values for the 16 features with the highest values. “Mito” and “Nuc” indicate
features measured from mitochondrial and nuclear stains, respectively. c. Bar chart of the AUCs
resulting from models built out of each individual feature. Note that the most significant feature
was unable to produce a good model alone. d. Bar charts of the AUCs resulting from models
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built using all but one feature (leaving 15 features). All AUCs listed indicate the performance of
the model trained from labeled data on their ability to predict unlabeled cells in admixed
conditions.

Scanning Mutagenesis with MFN2 VUS

While the previous experiments were done by over-expressing a mutant MFN2
cDNA, we also sought to study editing of an endogenous gene. As a proof of concept
for endogenous mutations, we first used an existing U20S line with mutations in the
mitochondrial primase PRIMPOL *? and found that it alters mitochondrial morphology.
We then followed the Raft-Seq process described above and verified that the platform
performs well for an endogenous genetic perturbation (AUC 0.90, data not shown). We
next tested Raft-Seq against a series of (mostly VUS) mutations in MFN2. We
constructed a CRISPR-Cas9 gRNA library targeting different exonic regions of MFN2
(CRISPR tiling *®) on sites near known ClinVar variants (Figure 6a). The library was
delivered by lentivirus to U20S cells with a dox-inducible Cas9 construct, and the cell
population was split in two, with only half receiving doxycycline. DNA samples were
collected at intervals over a ten-day period for survival screening, and a DrugZ analysis
** revealed no significant representation differences (Figure S6)—so while
mitochondrial changes are observed, those don’t result in large viability shifts.

Then in a Raft-Seq screening experiment, 40,000 cells were imaged, and
mitochondrial anomaly detection models were trained on the feature data of -Dox (no
Cas9) cells and deployed to the data of +Dox (Cas9 induced) cells to infer which cells
had abnormal mitochondrial phenotypes. Unlike previous modeling techniques, training
data of known mutants was not included. The most highly anomalous cells had some

feature similarity to the strong pathogenic mutants (Figure S7). We selected 1,659 cells
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for isolation, which we then genotyped to identify the gRNA for each cell (Figure 6b).
The result is a rich dataset where each of the single cells are measured for phenotypic
features (from confocal imaging) and the corresponding gRNA. Since individual gRNAs
have different efficiency, we presumed that frameshift edits to MFN2 would be more
likely to result in the strongest phenotypes. We compared each cell’s mitochondrial
anomaly score to the probability of the gRNA inducing a frameshift mutation (calculated
with Indelphi *°). We find that nearly all gRNAs with a high anomaly score also had a
high predicted frameshift mutation rate (Figure 6c, p-Value at 3 frameshift thresholds:
90% = 0.0013 [n 42], 80% = 0.05 [n 111], 70% = 0.37 [n 39]).

Next, we harnessed the capabilities of Raft-Seq to analyze a library of perturbed
cell lines. We took the same population of MFN2 gRNA library-infected cells and chose
cells for isolation based on individually identified mitochondrial morphology using a
parallel pipeline. We captured the cells intact and alive into tissue culture plates and
grew them clonally as isogenic lines. This allowed enough genomic material to do two
rounds of sequencing—first to find the gRNA present in each cell and second to
examine the gRNA target site—and use the cells for downstream analyses. Most of the
isogenic lines with Cas9 edits were in the UTRs, while 6 affected the protein (Table S2).
For example, the isogenic H20fs/WT had a gRNA targeted to the first translated exon,
which resulted in 7bp deletion then a frameshift. We analyzed the isogenic cells
(arrayed) to quantitatively assess the level of mitochondrial abnormality (Figure 6e).
Three dozen of the individual mitochondrial or TMRM features (Table S3), as well as all
multi-feature models, showed significant differences between the set of WT clones and

the mutated clones (Figure S8).
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We performed additional validation experiments on two of the clones, one UTR-
mutant and one coding-mutant (Figure 6f). We found that these isogenic endogenous
mutations were separatable from a WT clone in our Raft-Seq mix assay (AUC = 0.90,
Figure S9). We also analyzed the set of MFN2 isogenic lines using the Seahorse XF
assay, which analyzes key metabolic processes reflective of mitochondrial health
(Table S4). Both the H20fs/WT and the L76P mutant had reduced basal oxygen
consumption rate compared to WT, indicating a mitochondrial deficit from the mutations
(Figure 69). Overall, we showed pooled cellular screening with Raft-Seq and its ability
to generate isogenic lines with mutant phenotypes, including novel mutations that have

not previously been studied.
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and their closest gRNA cut sites (upward facing triangles). The upper line shows the entire
genomic context of the MFN2 gene, while the lower inset magnifies the variants and gRNA cut
sites for exon 6. Lines indicate the ‘partner’ gRNAs for each ClinVar mutation, where thicker
lines indicate closest association. b. Scatterplot of genotyped cells. x and y axes are the number
of models placing that cell in the top 5% or 10% of all cells, respectively. A sample of cells are
labeled with the fluorescent image taken during the screen and the gRNA present within the cell
(labeled by the nucleotide position before the start codon [B], within the coding region [C], or
after the stop codon [P], also see Table S5). c. Scatterplot of predicted frameshift frequency vs.
mitochondrial anomaly score for all the gRNAs recovered from the screen. d. Established
isogenic lines of U20S cells with the specific MFN2 variant(s) rank ordered based on their
phenotypes. More “WT-like” phenotypes (likely benign) are shown to the left while more
“mutant-like” phenotypes (likely pathogenic) are shown on the right. Bars show average with
95% confidence intervals (n=18-32 well/plate replicates, L76P mutant is shown in yellow and
the parental control clone WT 3E5 is shown in black). e. Example images of isogenic U20S
cells with either a control gRNA that didn’t cut, 5’UTRins A04 isogenic line, or H20fs/WT
isogenic line. The frameshift-mutant (H20fs/WT) has similar mitochondrial aggregation to the
L76P mutant (Figure 1), while the UTR mutant has a distinct but subtle mitochondrial
morphology. f. Metabolic analysis of OCR (oxygen consumption rate) for WT, L76P, and the
H20fs/WT lines. OCR is measured in four phases, first basal, then mitochondrial toxins
Oligomycin (ATP synthase inhibitor), FCCP (uncoupler), and Rotenone (electron transport
inhibitor).

Discussion

We have developed a method, Raft-Seq, to efficiently screen many genetic
variants based on their impact on a cell's phenotype. We have shown that it can
effectively discriminate between wild-type cells and cells containing different pathogenic
point mutations of the MFN2 and PRIMPOL genes. Though we utilize a particular
individual model for the selection of cells for isolation, we found that most of the models
that we generate can identify pathogenic mutant cells. Since our feature selection
process is only mildly dictated by the actual phenotype that we are looking for, our
ability to predict a cell's genotype comes from quickly generating complex
computational models. This will enable the pipeline to exploit many more phenotypes

that the scientific literature is not yet familiar with, therefore making almost any gene in
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the genome amenable to this functional screening and thus enable the re-cataloging of
VUS as benign or pathogenic.

We developed Raft-Seq primarily as a screening platform to work in concert with
Deep Mutational Scanning *¢, a method for creating a library of every single possible
mutation in a gene. Our results show that such a screen would correctly call pathogenic
variants, since we were able to recover pathogenic MFN2 mutants from a mixture with
wild-type cells. However, our results also show some limitations. For one, based on the
accuracy difference between the two unlabeled wells which were at different
proportions, our ability to recover pathogenic variants appears to decrease the smaller
proportion of pathogenic variants present. This would indicate that such a screen would
perform significantly better on genes for which mutations are more likely to resultin a
pathogenic variant, but this could be countered with a higher n. Second, we were able
to identify several mutants (L76P, R94Q)—which had more extreme phenotypes—more
frequently than other mutants, meaning that a scaled-up screen would most likely result
similarly, and more extreme variants would be overrepresented. However, because we
were able to identify the weaker mutants (R280H, P251A) with relative ease when they
were not mixed with any other mutants, we can assume that overrepresentation of
specific variants is not due to the absolute strength of the resulting phenotype. Instead,
it is due to the relative strength when compared to other variants. Penetrance may also
play a role since weaker phenotypes may have a strong phenotype in some cells but
have low penetrance in the population.

We were also able to see how Raft-Seq would perform in the discovery of novel

variants and morphology. Our anomaly detection models were able to identify similar
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mitochondrial features to the pathogenic variant cells, and this anomalous morphology
correlated with a high predicted frameshift frequency from the gRNA contained in the
cell. Lastly, we used Raft-Seq to generate isogenic cell lines directly from the primary
screen. We analyzed these clonal/isogenic lines to find consistent mitochondrial
phenotypes and blunted metabolic responses. This process presents a large gain over
other phenotyping screens, since we can generate cell lines that can be fully genotyped
and assayed further, while being able to track that line to the specific image and
features from the original screen.

Since Raft-Seq isolates cells for sequencing individually rather than in pools, we
have a few advantages over other platforms. For one, we find the specific genotype of
every isolated cell, rather than perform batch measurements, meaning that we can find
effects of combinations of perturbations. We can also theoretically have as many
categories in our machine learning models as cells, though using more than a handful of
features causes the modeling and analysis to deteriorate, likely due to overfitting (but is
countered by higher n).

An advantage of this approach is the flexibility that comes from using machine
learning to identify phenotypes. Since we can easily combine features for more
accuracy, we can theoretically screen for any visible phenotype, given a strong enough
signal provided by staining or other fluorescence. Unsupervised learning methods, like
clustering, are also possible and allow for a simpler setup since no labeled wells would
be needed.

Since the raft identifies the location of the cell stably over time, we can do on-the-

fly training from the entire experiment, then go back and pick those cells. We have also
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found that Raft-Seq can be used to apply past training (labeled) data to future
experiments. A normalization schema allows for accretion of previous training data to
utilize it in future models (allowing a gain of accuracy in identifying specific phenotypes
over time). Anomaly detection models need previous data, to capture as much “normal”
cell data as possible.

Raft-Seq is slower than flow cell sorting, possibly limiting scalability. All the
image-based techniques require time for imaging, and this system is no exception. As
evidenced by the recent genome-wide screen ?°, the throughput of this system is
comparable, and the number of cells captured by that system is slightly lower over an
experiment of comparable scale. Regardless, even higher throughput is still
advantageous. There are fewer limits in terms of the number of cells able to be imaged,
so by increasing the pool of isolation candidates, cells are selected with a higher level of
confidence. There are two steps in Raft-Seq that are done manually but will soon be
automated. The first is image quality control which can be automated by a convolutional
neural network, similar to the previous microraft experiments *. The second is model
selection, which can be automated by choosing among several model performance
metrics on the labeled data.

We are optimistic that with increased scale, Raft-Seq can be used to sensitively
find variants across a wide breadth of perturbed cellular phenotypes. An increase in
scale would provide more training data to make models more accurate and identify
more cells to which the models assign a high prediction score, which we have shown to
raise overall accuracy. Altogether, we have shown that using various cell lines

(HEK293, U20S, A549), with multiple types of genetic perturbation (endogenous
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disruption with Cas9, overexpression of mutant genes), we can deploy flexible machine
learning (logistic regression, decision trees, SVM, neural networks) from data within an
experiment (on-the-fly) or from previous experiments (pre-trained) to select clinically
relevant point mutations in a screening setting. Since this system captures the cells
individually, we can carefully evaluate many ‘selection criteria’ by generating a variety of
different machine-learning models and finding how well they perform. This technique will
be an important tool in the advancement of precision medicine to identify variants

relevant to disease.

Methods

All custom software can be found at https://gitlab.com/buchserlab/FIVTools

Cell Culture and Transfection

Human osteosarcoma (U20S, ATCC HTB-96) cell lines were maintained in McCoy's 5A
Modified Medium (16600082, Gibco, Gaithersburg, MD, USA) supplemented with 10% fetal
bovine serum (FBS) (16000044, Gibco). Human embryonic kidney (HEK) 293T cells (CRL-
11268, ATCC) were cultured in Dulbecco's Modified Eagle's Medium (11965-092, Gibco,
Gaithersburg, MD, USA) supplemented with 10% FBS (16000044, Gibco, Gaithersburg, MD,
USA), 1% Penicillin-Streptomycin (15140122, Gibco) and 1% non-essential amino acids
(11140050, Gibco).

All cell lines were maintained in T75 tissue culture flasks in an incubator at 37°C, 5%
CO; and they were observed daily for growth and overall health. Once confluent, cells were
passaged using 0.25% Trypsin-EDTA 1x (25200056 Gibco, Gaithersburg, MD, USA) at a sub-

cultivation ratio of 1:10. Live cell counting was performed with the BioRad TC20 automated cell
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counter. Centrifugation of cell cultures was performed at 1200 rpm for 3 minutes. Lentiviral
infection was performed in T75 flasks when cells were 85% confluent. STR profiling, to confirm
cell type, was performed using NGS-based analysis by the Genome Engineering and iPSC
Center (GEIC) at Washington University in St. Louis. Testing for mycoplasma was performed bi-
annually. For all experiments in this paper, either 100x100 or 200x200 micron quad reservoir
plates containing 48,000 (12,000 cells per quad) and 36,000 cells (9,000 cells per quad),
respectively were used. Prior to plating, microraft plates were prepared by rinsing with 1mL PBS
3 times with 3-minute incubation periods. Cells were added in 200ul media to aid in distribution,

then plated and incubated overnight (14-16 hours).

Virus Production and MFN2 Single Mutant Line Creation

MFN2 lentiviral expression plasmids were cloned into the CCIV lentiviral plasmid with a
GFP marker *. In preparation for lentiviral packaging, 8.0 x 10° HEK293T cells were plated into
each well of a six well plate and incubated at 37°C overnight. The cells were then transfected
with TransIT Lenti-transfection reagent (MIR 6600, Mirus Bio, Madison, WI, USA) using an
envelope plasmid (pVSVg: Addgene plasmid # 8454), a packaging plasmid (psPAX2: Addgene
plasmid # 12260), and each individual MFN2 expression plasmid in a mass ratio of 0.5/1/0.5
respectively for a total of 2ug. After 48 hours, media was collected, centrifuged, and sterile
filtered before being concentrated (Lenti-X Concentrator 631232 Takara Bio, Kusatsu, Shiga,
Japan). Concentrated virus was resuspended in 200uL 1xPBS per well, collected, and stored at
-80°C.

To create stable MFN2-mutant expressing lines, T75 flasks containing
6 million U20S cells were infected with 70uL of concentrated lentivirus at an MOI>1 and
polybrene was added (NC9840454 Santa Cruz Biotechnology, Texas) at a final concentration of

10pg/mL. They were then incubated for 24 hours, after which the virus-containing media was
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removed and replaced with fresh, virus-free media. Cells were taken to the Washington
University Siteman Flow Core for fluorescent sorting on the Sony Synergy HAPS1, 100-micron
sorter. Cells were sorted based on viability and GFP expression (since no puromycin selection
was performed, the fluorescent signal from the GFP in the MFN2 plasmid was used to
determine transgene expression). GFP expression levels were compared within and across
generated cell lines to ensure population purity and comparable fluorescent expression levels.
The PRIMPOL KO U20S cell line was received from the Vindigni lab and was produced by the

GEIC.

CRISPR/Cas9 gRNA Library Infection and Induction

A dox-inducible Cas9 (iCas9) U20S cell line was generated via CRISPR-mediated
homology directed repair. The Cas9 protein, gRNA, and donor construct were introduced via
nucleofection. Isogenic iCas9 clones were isolated using the Cell MicroSystems CellRaft Air
System and then propagated for further experiments. Presence of the construct was validated
via junction PCR *' prior to propagation. Puromycin-resistant MFN2 scanning gRNA libraries
were generated and cloned by the Washington University GEIC. Lentivirus was produced (see
Virus Production above) and used to infect iCas9 U20S cells at an MOI of <0.2 followed by
8ug/mL puromycin selection for seven days. The cells were then allowed to grow in fresh media.
At 60-70% confluency, Doxycycline (Cat#: D9891-1G, Millipore Sigma) was added at a final
concentration of 2pug/mL. The cells were incubated at 37°C for 48-60 hours before proceeding

with staining and imaging.

Staining and Microscopy

The following vital dyes were used; DNA labeling/nuclei (Hoechst, Thermo Fisher

H3570), mitochondria (MitoTracker Deep Red, Thermo Fisher M2246), and mitochondrial
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membrane potential (Tetramethyl Rhodamine methyl ester TMRM, Thermo Fisher 134361).
MitoTracker and TMRM were incubated for 40 minutes at concentrations of 0.5 and 1uM
respectively. Hoechst was incubated for 15 minutes at a concentration of 10ug/mL (16.2uM).
Each plate was rinsed twice with culture media prior to imaging. Images were captured using a
20x 0.45 NA objective in the Cytiva INCell 6500HS Confocal microscope. Exposure times for
Hoechst (405 nm) and TMRM (561 nm) averaged 0.15 seconds while MitoTracker Deep Red
(642 nm) averaged 0.05 seconds. Confocality was used in the 405 and 642 wavelengths to
decrease the background fluorescence of the CytoSort raft plate. Each field-of-view overlapped
by 12% of their area. Imaging settings were held constant throughout the course of an
experiment. Following imaging, an extra 500uL of cell culture media was added to the CytoSort

raft plate (additional liquid helps the Cell MicroSystems Air System isolate microrafts).

Image Analysis and Quality Control

Image tracing and feature extraction was performed using Cytiva’s INCarta software.
Mitochondrial puncta were identified (within 20um of the nuclei using the ‘networks’ algorithm)
and quantified for each cell as were a set of texture features. Raft coordinates were recorded for
each cell (using FIVTools/ CalCheck, included in the GitLab repository). Images were also
curated semi-manually (via FIVTools/ CalCheck) to ensure that out-of-focus images were
excluded. The cell feature dataset was joined with the image quality data and raft position
mapping data described above by custom software (via FIVTools/ main window). Post tracing
quality control was performed with each dataset in Tibco Spotfire Analyst. First, aberrant tracing
artifacts were excluded based on nuclear area, nuclear form factor, and proximity to the raft’'s
edge. Next, non-nuclear debris and dead nuclei were excluded by gating on nuclear area,
intensity, and cell intensity. Rafts with too many cells (>6) or a fiduciary marker were excluded.

This filtered set of cells was used as the input for machine learning downstream.
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Machine Learning and Model Generation

After exporting the quality-controlled cell-based feature table, we built a machine
learning model that could distinguish pure populations of WT cells from pathogenic mutant cells.
The models were trained real-time on the day of the experiment since we were working with live
cells which needed to be physically picked within the next few hours to maximize viability. A
variety of machine learning platforms (Microsoft AzureML Studio, Tibco Spotfire, Tibco
Statistica, and H20.ai.) and algorithms were employed to predict an unknown cell’'s genotype
class. Generally, logistic regression was performed in Spotfire and random forests, boosted
trees, support vector machines, gradient boosted machines, and artificial neural networks were
trained in the other platforms. Models were evaluated on labeled populations that were withheld
during training. Based upon model performance on the testing dataset, a model was selected
and deployed to the unlabeled cell populations. Starting with the strongest prediction scores, a

list of cells with raft locations was generated.

Cell Capture and DNA Extraction

Cells were isolated using the Cell MicroSystems CellRaft Air System. CytoSort raft
plates were received from Cell Microsystems (Durham, North Carolina). Given a list of raft
coordinates, the Air System used a needle to eject each individual raft and transfer the raft to a
semi skirted 96-well PCR plate (1402-9200, USA Scientific) via a magnetic wand. Each well of
the PCR plate contained 5L extraction buffer (molecular grade water with 20mM Tris-HCI (pH
8.0), 2mM EDTA, 200 pug/mL Proteinase K, and 0.2% TritonX-100). Raft isolation was confirmed
twice through post ejection imaging of the raft location and through visual inspection using a
Leica SBAPO dissection scope. Genomic DNA was extracted in a thermocycler immediately

following raft isolation by incubating at 65°C for 15 minutes then 95°C for 5 minutes.
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Single-Cell DNA Amplification

Amplification of single-cell DNA prior to library preparation consists of two separate
amplifications. An initial preamplification is conducted using extracted DNA with KOD Hot Start
DNA Polymerase (71842-4, Millipore Sigma, Burlington, MA, USA) according to manufacturer’s
instructions using all 5L of extracted DNA in a total reaction volume of 20uL. Pre-amplified
product was processed through an AMPure XP (Catalog: A63882, Beckman Coulter, Brea, CA,
USA) bead clean up according to the manufacturer’s instructions using 10mM Tris-HCI pH 8.5
as elution buffer. The second amplification uses the cleaned template and BioLine MyTag HS
Red Mix 2x (C755G97,Meridian Life Sciences, Memphis, TN, USA), according to manufacturer’'s
instructions, including 5% by volume DMSO. Primers in the second amplification contained
universal 5’ tags to be compatible with lllumina library preparation (Forward tag: 5'-
CACTCTTTCCCTACACGACGCTCTTCCGATCT-3', Reverse tag: 5-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3").

For amplification of MFN2 cDNA, primers amplifying the entire cDNA were used in the
first amplification step, followed by multiplexed amplification of two specific regions containing
the relevant mutations. Genotyping of the RFP-GFP cells used multiplexed primers that
amplified specific regions in both the RFP and GFP regions. All primers are listed below in table

2.

Sequence (Excluding tags, where PCR
Name necessary) Stage

PMFEN2.AIll.F GCTCTTCTCTCGATGCAACTCT
PMFEN2.AIlL.R GCAGGTACTGGTGTGTGAAC
PMFN2.1.F CACATGGCTGAGGTGAATGC
pPMFNZ2.1.R GCAGGAAGCAATTGGTGGTG

N N N P

PMFN2.2.F CTCAGAGTCCACCCTGATGC


https://doi.org/10.1101/2021.03.12.434746
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434746; this version posted May 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PMFN2.2.R CACTTGAAAGCCTTCTGCGAG 2

RFP.F GTTCATGCGCTTCAAGGTGC 1,2
RFP.R CAAGTAGTCGGGGATGTCGG 1,2
GFP.F TGAAGTTCATCTGCACCACCG 1,2
GFP.R TCGCCCTCGAACTTCACCTC 1,2
PRIMPOL.F GCAACCCAGTTTTGAAACCA 1,2
PRIMPOL.R TCGATGTCCAGCTTTCCTCT 1,2
gRNA.F CTTGTGGAAAGGACGAAACACC 1,2
gRNA.R TTGTGGATGAATACTGCCATTTGT 1,2

Table 2. Genotyping Primers.
lllumina Library Preparation

These methods are expanded from Connelly et al. and Bell et al. After amplification with
universal primers, each plate was amplified with specific forward and reverse Illlumina index
primers that indicate the PCR plate position and a unique plate ID. PCR amplification was
performed with BioLine MyTag HS Red Mix 2x (C755G97,Meridian Life Sciences, Memphis, TN,
USA) according to the manufacturer’s protocol, pooled, and then cleaned using AMPure XP
bead (A63882, Beckman Coulter Life Sciences, Indianapolis, IN,USA) cleanup procedure in the
original amplification. DNA was quantitated on a NanoDrop One Spectrophotometer (Thermo
Scientific, ND-ONE-W) before being submitted to the Center for Genome Sciences and
Systems Biology (Washington University) to generate 2x250 reads on the Illlumina MiSeq

platform.
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Sequencing Analysis

lllumina paired reads were demultiplexed by the core facility and FastQ files were
returned. The rest of the analysis was performed with laboratory software available on Gitlab
(FIVTools/ LA, “Library Aligner”). Reads were joined and trimmed, then aligned with small
sequence fragments at the genetic sites of interest containing the sequence to mutant or WT
alleles. The result was a ‘counts’ table that gave the number of reads containing each 20-mer
for each well. 20-mer search fragments are listed below in Table 3. After accounting for isolation

and genomic amplification errors, around 80% of the isolated cells genotypes were captured.

20-mer (relevant

NETILS mutations/deletions bolded)
MFEN2_V69 TGGACCCCGTTACCACAGAA
MFEN2_V69F TGGACCCCTTTACCACAGAA
MFEN2_L76 ACAGGTTCTGGACGTCAAAG
MFEN2_L76P ACAGGTTCCGGACGTCAAAG
MEN2_R94 TGCTGGCTCGGAGGCACATG
MFENZ2_R94Q TGCTGGCTCAGAGGCACATG
MEN2_D221 CTGGATGCTGATGTGTTTGT
MFEN2_D221= CTGGATGCTGACGTGTTTGT
MEN2_P251 CTCTCCCGGCCAAACATCTT
MFN2_P251A CTCTCCCGGGCAAACATCTT
MEN2_R280 CATGGAGCGTTGTACCAGCT
MFN2_R280H CATGGAGCATTGTACCAGCT
MEN2_W740 AAAGCCGGTTGGTTGGACAG
MFN2 W740S AAAGCCGGTTCGTTGGACAG
RFP_guide GGCCACGAGTTCGAGATCGA
RFP_control AAGGTGCGGATGGAGGGCAG
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GFP_guide TGCCCGAAGGCTACGTCCAG
GFP_control CTACCCCGACCACATGAAGC
PRIMPOL_WT GATAGCGCTCCAGAGACAAC

PRIMPOL_del = GATAGCGCTCCAGAGAAACA
Table 3. 20-mer fragments.

For MFN2 cDNA genotyping, each mutation locus was given a %mutant score
calculated as the number of mutant reads divided by total number of reads at that locus. Cells
were designated as wildtype if no locus had >50% mutant score, otherwise they were
designated as a specific mutant based on which locus had the highest mutant score (ambiguous
cells were excluded). Lastly, a flat file was exported containing each picked raft and its assigned
genotype.

Using our custom software (FIVTools/ AUC), we joined the modeling and genotyping flat
files to find overall accuracy and generate ROC curves for each model. We also generated
‘noise’ ROC curves by shuffling the assigned genotypes. Prediction scores between 0.4 and 0.6
were filtered out (scores near 0.5 meant the specific model was unable to classify these cells).

For the data presented in Figure 4e,d, this threshold was further adjusted.

Isogenic Line Production

For clonal cell growth, single live cells were isolated by the Cell Microsystems Air
System into 96-well tissue culture plates (TPP 92096), containing 200l of media per well. As
the isogenic lines grew, the entirety of each well was passaged into a plate of larger size (96 to
24 10 12 to 6 well plates from TPP) after reaching ~50% confluency. It took 2 weeks to go from
single-cell to 50% confluency in the 96-well plate, and during that time wells were checked for
contamination and media level every 2 days. After the cells were plated in the 6-well plate, one
third of the cell suspension was taken through DNA extraction for genotyping. One third was

frozen down for long term storage, and the remaining third was kept for downstream
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experiments. The entire process took ~2 months to go from single cells to frozen
stocks/genotyping data. Genomic DNA samples were initially genotyped to determine the
gRNAC(s) present (as described in the preceding sections). Following identification of specific
gRNAC(s), primers were designed by identifying regions containing gRNA target sites and finding
primers that encompassed those regions (Table S5). The genomic DNA samples were then
amplified and genotyped a second time using the primer set(s) specific to the target regions in

the sample.

Metabolic Analysis

All metabolic analyses were conducted using an Agilent SeahorseXF96 extracellular flux
analyzer. Cell culture microplates (Agilent 102601-100) were seeded with 50,000 cells 24 hours
prior to running the assay. Sensor cartridges (Agilent 102601-100) were hydrated with sterile
water and incubated, along with XF calibrant (Agilent 100840-000), in a non-CO, incubator 24
hours prior to use. Complete Seahorse assay medium (Agilent 103680-100) was made
immediately prior to running the assay according to the manufacturer's instructions. 160uL of XF
calibrant was added to the entirety of the plate. The cell culture microplate and sensor cartridge
were then incubated at 37°C in a non-CO, incubator. All assays performed used the Seahorse
XF Cell Mito Stress Test Kit (Agilent 103015-100) with Oligomycin 1.5uM, FCCP 1.0uM,
Rotenone/Antimycin A 0.5uM, compounds were reconstituted and diluted using complete seahorse
medium on the day of the assay. Cell number normalization was performed through image-based

counting of cells prior to running the assay (using the InCell as described above).
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Supplementary Methods

Cell Picking

Each raft has a four-character alphanumeric coordinate (Raft ID). Fiduciary markers located at
fixed locations on the raft plate (shown below) in conjunction with custom software (FIVTools >

Cal Check, Calibration) were used to locate individual rafts for map generation (see Image

Analysis and Quality Control).

Cropped example field of CytoSort raft plate:
Alphanumeric fiduciary markers are etched
on every 10 rafts (e.g. GOLO), and dot
fiduciary markers are etched on every 5 rafts.
Rafts with fiduciary markers are highlighted

with red outlines.

HEK293 Cell Nucleofection

SF cell line solution stock was prepared from the Lonza SF Cell line 4D-Nucleofector LV Kit XL
(V4LC-2520) kit by combining 82uL of SF Cell Line Nucleofector™ Solution with 18pL
Supplement 1. 20uL of stock solution was then combined with 2uL 1mg/mL Cas9 protein (QB3
MacroLab) and 2uL 1mg/mL gRNA. The complexes were incubated on the benchtop for 10

minutes. Cell suspensions of 2x10° cells were placed in 1.5 mL microcentrifuge tubes and spun
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down. Supernatant was carefully removed avoiding the cell pellet. The cells were rinsed in 1x
PBS and centrifuged a second time. Supernatant was carefully removed, and the cells were
resuspended in the final combined SF cell line solution and transferred to a nucleofector
cuvette, found in the nucleofector kit. The cuvette was placed in the Lonza 4D-Nucleofector
Unit. (Lonza AAF-1002X, AAF-1002B) and nucleofected with Pulse code CM130. Nucleofected
material was added to a prewarmed 6 well plate with 5mL of DMEM media in each well.
Nucleofected cells were incubated for 48 hours for recovery. The cell line solution is not healthy

for the cells, so speed is a priority upon resuspension in cell line solution.

RFP-GFP Cell Perturbation and Isolation

A HEK293 cell line expressing both RFP and GFP (Gentarget #SC009) was used in this
experiment. Cells were then nucleofected with a gRNA targeting GFP
(TGCCCGAAGGCTACGTCCAG) or RFP (GGCCACGAGTTCGAGATCGA) and Cas9. All
gRNAs were ordered from Synthego. Nucleofection was conducted using a Lonza 4D-
Nucleofector Unit. (Lonza AAF-1002X, AAF-1002B). Following the Raft-Seq workflow, cells
were imaged and the guide presence was predicted by a combination of RFP and GFP intensity
features. Cells were selected and isolated into 96-well plates. Alternatively, cells were sorted
using a Sony SH800S cell sorter individually by their RFP and GFP fluorescence. Cells were
then genotyped and designated as being given the RFP or GFP guide if the locus that the

respective guide targets had been altered.

Modeling Considerations

We implement several specific design criteria during the experimental setup and model
selection. First, the ‘pure’ samples are split into testing wells and training wells so that we can

decrease overfitting during model selection. For most of the experiments presented herein, our
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training datasets comprised two of the three labeled population wells of each type—the two
wells must come from different plates—and use the remaining two labeled wells as “testing
sets”. We split the data by well rather than randomly assigning cells from all pure population
wells to mitigate the influence of batch effects during modeling. It is important to note that the
actual data used for ultimate validation of the models will be the identities of the perturbagen in
the unlabeled cell population. These are independent of the model scores of the pure
populations, so we do not have to be concerned about hyperparameter overfitting from
examining the testing data. Second, the testing wells are spread across different plates to
hopefully account for batch effects. Since training data and testing data technically come from
separate samples, we observed several odd phenomena such as prediction quality improving
for testing data. These phenomena would most likely not be observed if the model-generating
data were truly randomized, but we felt it was important to retain any variance caused by batch
effects, since batch effects present a large and consistent obstacle to cell imaging analysis
(Caicedo et al.).

Relatedly, we make sure not to create any artificial batch effects generated by
inconsistencies in the screening process. All stains used are prepared as a single batch to be
used across plates. All imaging and feature extraction settings are kept constant across each
plate in a screening experiment.

Another aspect of model design that we consider is the exclusion of ‘leaky’ variables, or
variables that happen to correlate with the data labels. Since our labeled data exists on specific
positions of the plate, including a variable that is effectively a proxy for cell position would render
the model useless on unlabeled data. We have found that several variables that are in the
standard output of IN Carta feature extraction are leaky, such as features measured on a global
basis, and we exclude them before starting the modeling process.

We also face a time constraint in our modeling pipeline. This time constraint is caused

by the necessity of the locations of cells on the plate staying constant between imaging and
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isolation. Though we can fix the cells, a modeling pipeline based on that assumption would limit
our ability to perform Raft-Seq for the isolation of live cells. Optimally, we complete feature
selection, modeling, and raft selection within six hours of imaging, and continue on to isolation.

This of course, requires a lot of computational power.
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Supplementary Data
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Figure S1: Box plots of important features extracted from TMRM and MitoTracker staining.
Histograms are colored by whether the cell was wild type (unmodified wild type or modified with
a wild type MFN2 cDNA), contained MFN2 cDNA containing a benign mutant, or contained
MFN2 cDNA containing a pathogenic mutant. Features that showed no apparent difference
between mutants were omitted.
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Figure S2: Scatter plot for cell feature data UMAPSs, highlighted by cell genotype. In blue, U20S
WT refers to cells uninfected with lentivirus, while MEN2 WT refers to cells infected with
lentivirus containing the wild type MFN2 gene. Otherwise, the highlighted genotype refers to the
mutation present in the introduced MFN2 gene (red pathogenic, green benign).


https://doi.org/10.1101/2021.03.12.434746
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434746; this version posted May 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Randomized Assignment 1.00 1 ] :
0.04 ; . :-"
0.03 "
0.02 5 0.751 |
0.01 o '
& 0.00 2 ; .
§ 03 04 05 06 07 08 ® 0504 =====-=~=~- s
3 Model Assignment g !
™
W 0.04 q 0.25 4 I
0.03 :
0.02 |
0.01 0.00- !
0.00 . : | : ;
03 04 05 06 07 08 000 025 050 075 1.00
AUC AUC (Unlabeled)

Figure S3 Model AUCs for identifying a mixture of wild type and six pathogenic mutant
cell lines: Left: A histogram of AUCs for models detecting mutants in the unlabeled population
of wild-type cells and mutants. On top, a histogram of AUCs generated from randomly assigning
models is shown as a comparison. Right: A scatterplot showing the performance of 610 models
in detecting mutants in a mixture of wild type cells and four pathogenic mutants. Each point
represents a model and its position is determined by its ability to distinguish cells in the pure
control wells and cells in the mixed wells.
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Figure S4 Modeled ROC from flow cytometry: ROC Curve based on flow data for MFN2 WT
vs. MFN2 R280H mutants on the PerCP-Cy5.5-A-Compensated channel.
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Figure S5 Results from Raft-Seq between P251A Pathogenic and D221= Benign: ROC
Curves which were generated using the best model, separated by data that was generated from
cells picked from wells in the labeled cell population (upper) and from the unlabeled cell
population (lower). The red curves are for the models in question and the grey curves are those
for control models generated by random shuffling of labels.
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Figure S6 Fitness consequences of MFN2 mutations. a,b) U20S stable lines containing
R94Q, L76P, mutations, or the WT control line were grown in separate wells or evenly mixed
together. This was done at 2 densities 75,000 (a) and 150,000 (b) cells / well of a 6-well plate
and cells were allowed to grow for 4 days. Cells grown independently were harvested into the
same tube (so all subsequent steps would be together). All cells were taken through the
genotyping pipeline using the same primers as above, then the reads were counted, and the
proportion of each cell type measured. ¢,d) A similar experiment was performed with the
scanning MFN2-targeted gRNAs, under Dox (c) to induce Cas9 cutting, or under control
conditions (d) with the gRNAs, but no Dox (and therefore no Cas9 cutting). Samples were taken
initially, then at 3 and 7 days after Dox induction. Bulk timepoint samples were processed
through the genotyping pipeline and reads were counted for each gRNA.
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Figure S7. Isogenic Feature Comparison. We compared the distributions of the important
features identified earlier for anomalous cells and strong pathogenic mutants (L76P & R94Q) by
normalizing each to the distribution of the non-anomalous and benign mutants, respectively.
Some of the features covaried between pathogenic and anomalous, and this pattern was
stronger than in the non-anomalous (pathogenic vs. non-anomalous r? -0.02, vs anomalous r?
0.001, neither significant). Red is for the distribution in the pathogenic cells; purple is for the
anomalous cells. Background grey shading indicates the base distribution for the non-
anomalous/benign cells. Bar width and ranges correspond to 0.687¢ in both directions, covering
50% of the data. Anomalous cells are the top 0.5% highest anomaly-detection scores from 152
models.
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Figure S8: MFN2 | sogenic Lines carrying mutations are distinct from WT. Decision Jungles were
trained on either WT vs. Known KO clones (A) or known mutants and known un-cut clones (B) with
either 16, 12, or 8 features per model. Each model had arandom set of featuresit could usein training.
Then, the model was deployed and the Kruskall-Wallis p-Vaue comparing the model scores of the
UTR/Coding mutants with the WT clones was assessed (these p-values are displayed as -log10 on either
side of the graph).
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Figure S9. Endogenous MFN2 Mutant Line Can Be Effectively Separated from a Non-
Cutting Control. a) U20S cells with were screened against the MFN2 gRNA library using Raft-
Seq, and single cells were picked for isogenic growth. One line, 5 UTR Ins A04, was used here
in a Raft-Seq experiment to compare its ability to separate against an un-cut control. The model
was trained in AzureMLStudio (two class decision jungle) with 5 features (Nuclei Area,
Mitotracker Intensity Kurtosis, Skewness, Energy and TMRM Intensity Entropy). b) Ranked
histogram comparing single cells from labeled wells (where only the mutant or control were
plated) against their prediction probabilities from the 5-feature model. Cells from the control
(labeled) wells, and mixture well (20% mutant, 80% control) were picked and genotyped. c¢)
ROC curves for the labeled (control) well (n=77). d) ROC curve from the wells with a mixture of
the two cell types. The model performed with an AUC = 0.9, accuracy of 88%, precision 69% (n
= 490 cells). Red curves are the real data while the gray curves were generated from sets of
data where the link between the true genotype and the prediction probability were scrambled
(noise models).
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Feature Stain

Mito Total Area Mitotracker Red
Nuclei Low Grey Level Run Mitotracker Red
Emphasis

Mito Intensity Mitotracker Red
Cells Entropy Mitotracker Red
Nuclei Intensity CV Mitotracker Red
Cells Skewness Mitotracker Red
Cells Total Intensity (Cyto) Mitotracker Red
Cells Intensity Spreading Mitotracker Red

Table S1: Table of the 8 features used for cell isolation and random feature assembly with the
corresponding stain.
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Clone Name Mutation Type DNA Cut gRNA Sequence Ex I/I+C
"H20 Frameshift/ | ' ' [
H20fWT WT Coding  g.chr1:11989226_11989232del CACATGG AAATAAGAGACACATGGCTG 2 0.376
V459 Frameshift
V459fsWT IWT Coding  g.chr1:12004594_12004595insC CCCTTCTCCAGTAGTCCTCA 12 046
g.chr1:12006581_12006608del CCCCACTGCCA
P588fs/PQG590 | P588fs / CAGGGCTCGCTCACCCA, ACTGCCACAGGGCTCGCTCA/CA
del/WT PQG590del / WT  Coding | g.chr1:12006588_12006596del GCCACAGGG ~ CTGCCACAGGGCTCGCTC 16 031
LEH710dd / 1+
LEH710de/WT WT Coding  g.chr1:12009648 1200965606l ACCTGGAGC CACCCGGGAGAACCTGGAGC 18 0.24
Exon 15,
VS507del/PV50 |V S507del/PV506 g.chr1:12005732_12005737del CTGTGT,
6del del Coding  g.chr1:12005731_12005736de CCTGTG GTGTCTGTGCGGAGTCAGAT 15 0
Exon 186, g.chr1:12006655_12006664de TCCAGGACC,
SRT612del/S61  SRT612del / g.chr1:12006662_12006665del CCT,
5del/S615fs S615del / S615fs | Coding | g.chr1:12006662_12006672del CCTCCATGGG ~ GGACCTCCATGGGCATTCTT 16 0
' [ " g.chr1:11980300_11980309del GAGGCGTAAG, [ ]
0.chr1:11980302_11980332del GGCGTAAGGAG
TAGGCGGGGCGAGCCGGCTG,
5UTRde 5 UTR Deletion g.chr1:11980312_11980340del GACTCGGGTCG
A2P2-B05 (3var) UTR | GCCGAGCGGGGCGGATGA* GCAGAGGCGTAAGGAGTAGG 1 0
5UTRde/WT 5 UTR Deletion
A3P1-E02 [ 2+ WT UTR  g.chr1:11980421 11980431del CTGGGGTGGCG CTGGGGTGGCGCTCGCTGGT 1 038
0.chr1:11980347_11980348insAAG,
5'UTRins 5'UTR Insertion g.chr1:11980348_11980349insCCC,
A1P2-A04 (3var) UTR  g.chr1:11980349 11980350insGGTC CCAGCTCACCCGGGTCGAGG 1 0
5UTRde/WT 5 UTR Deletion
A1P1-FO8 /2WT UTR  g.chr1:11980421_11980431del CTGGGGTGGCG CCTGGGGTGGCGCTCGCTGG 1 035
5UTRde/WT 5 UTR Déletion
A2P1-D02 /2WT UTR  g.chr1:11980421 11980431del CTGGGGTGGCG CCTGGGGTGGCGCTCGCTGG 1 034
5UTRde/WT 5 UTR Deletion
A3P2-A05 [2WT UTR  g.chr1:11980421_11980431del CTGGGGTGGCG CCTGGGGTGGCGCTCGCTGG 1 036
5UTRde 5' UTR Déeletion,
A3P3-C09 NoWT UTR  g.chr1:11980286_11980288delGTC AGTCGCGGGGCAGCAGAGGC 1 0
5'UTRdel 5'UTR Deletion,
A3P3-D05 NoWT UTR  g.chr1:11980414_11980419del CCTCCC CCCCCTGGGGTGGCGCTCGC 1 0
' ' ' .chr1:12012466_12012472del ACACAGG, [
3UTRdel g.chr1:12012468_12012472del ACAGG,
A2P3-E04 3 UTRDdetion UTR  g.chrl:12012689T>C CACAGGACAGCTGGAGAATG 19 0
3 UTR Deletion g.chr1:12013130_12013170del CCACTTCACAG
SUTRde/WT (2 different) /1 CATGTCAGGGAAAATCACTGTCACACAATT GGCCACTTCACAGCATGTCA/GG
A2P1-A08 WT UTR , g.chr1:12013195delA GCCACTTCACAGCATGTC 19 0.09
3'UTR Indel (2
3UTRins different, No g.chr1:12013045_12013046insT,
A2P1-C06 WT) UTR  g.chr1:12013195delA TCAGTCTGTCCTGTTGTGTG 19 0
3UTRde/WT 3 UTR Deletion
A2P2-C04 /1WT UTR  g.chr1:12013094 12013104de TGTTCCCGGCG ATGCTGTGGGTGGATGTTCC 19 023
0.chr1:12012811_12012828del GTGAGAAAAGC
3'UTR Deletion AGTTTGG,
3UTRdd (2 different) No g.chr1:12012815_12012830del GAAAAGCAGTT
A2P2-E05 WT UTR  TGGGT CTGTGTGAGAAAAGCAGTTT 19 0
3UTRdel/WT 3 UTR Deletion g.chr1:12012692_12012724del CCACCCTCCCTG
A2P3-A04 IWT UTR  ATCTCCAGAACCTTCGACTGA TCGACTGACCCCCTTGTCTT 19 026
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3UTRde/WT  Exon19, 3 UTR

A1P1-C06 Deletion (large) UTR  g.chr1:12012447 [large del] TCCACTTGGCCTCGTTCTGC 19 032
WT A3P2-F10 WT WT CCTGGGGTGGCGCTCGCTGG 05
WT A2P3-G09  WT WT CCTGGGGTGGCGCTCGCTGG 0.48
WT A2P2-F12  WT WT CCTGGGGTGGCGCTCGCTGG 0.46
WT A3P3-C08 WT WT CTGGGGTGGCGCTCGCTGGT 0.51
WT A2P2-FO5 WT WT AAGGTGGGGACGTTGGTGGC 0.52
WT A2P3-G12 WT WT AGAAGAAGATCAATGGCATT 0.49
WT A3P3-D08 WT WT ATTGCTTCCTGCGGGTAGAG 0.52
WT 3E5 WT WT WT Parental Clone N/A 0.5

Table S2;: MFN2 | sogenic mutant line infor mation table. The U20S isogenic lines were
genotyped to determine the gRNA and the editing consequence of Cas9 cutting. The table shows the
‘Clone Name' used in other parts of the paper as well as the longer mutation definition for the clone and
the specific genomic mutation. Also listed is the sequence of the gRNA used, the exon where the cut was
located, and the % of intact target reads as a ratio with a control (constant) sequence, where O = al alleles
aremutant, and 0.5 = all alelesare WT. Variant calling was performed after paired end reads were

merged using the fastg-join method from ea-tool s (https:/github.com/ExpressionAnalysis/ea-utils). Merged fastq files

were then aligned using BWA-mem (Dpoi:10.1093/bicinformaticsbtp324). Annotated variant call files were

produced using Picard Tools (http://broadinstitute.github.io/picard/) and the Genome Analysis Tool Kit (po:

10.1101/201178).
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Mitochondrial Feature KW p-value
CELLSENTROPY WVT 2.72E-17
CELLSENTROPY WVM 4.40E-16
CELLSKURTOSISWVT 2.62E-15
CELLSENERGY WVT 8.06E-15
CELLSKURTOSISWVM 2.06E-13
CELLS SKEWNESSWVM 3.11E-13
CELLSINTENSITY (CYTO) WVM 3.10E-12
CELLSENERGY WVM 1.59E-10
CELLSINTENSITY (CELL) WVM 1.64E-10
CELLSINTENSITY (CYTO) WVT 2.42E-10
CELLSGREY LEVEL NON UNIFORMITY WVM 2.60E-10
CELLSRUN LENGTH NON UNIFORMITY WVT 3.41E-10
NUCLEI ENTROPY WVT 4.33E-10
CELLSRUN LENGTH NON UNIFORMITY WVM 4.78E-10
CELLSLOW GREY LEVEL RUN EMPHASISWVT 7.24E-10
CELLSINTENSITY (CELL) WVT 2.49E-09
CELLS SKEWNESSWVT 6.26E-09
NUCLEI ENERGY WVT 9.21E-09
CELLSTOTAL INTENSITY (CYTO) WVT 2.23E-08
CELLSTOTAL INTENSITY (CELL) WVT 1.21E-07
NUCLEI ENTROPY WVM 2.66E-07
CELLSTOTAL INTENSITY (CYTO) WVM 9.80E-07
CELLSTOTAL INTENSITY (CELL) WVM 3.76E-06
NUCLEI LOW GREY LEVEL RUN EMPHASISWVT 7.18E-06
CELLSGREY LEVEL NON UNIFORMITY WVT 8.21E-06
NUCLEI RUN LENGTH NON UNIFORMITY WVT 2.34E-05
CELLSMAX INTENSITY WVT 3.08E-05
NUCLEI GREY LEVEL NON UNIFORMITY WVM 5.76E-05
NUCLEI TOTAL INTENSITY WVT 1.00E-04
NUCLEI SKEWNESSWVM 2.04E-04
CELLSLOW GREY LEVEL RUN EMPHASISWVM 4.76E-04
NUCLEI INTENSITY WVT 5.42E-04
NUCLEI TOTAL INTENSITY WVM 5.72E-04
NUCLEI MAX INTENSITY WVT 5.93E-04
NUCLEI INTENSITY WVM 8.27E-04

Table S3: Individual mitochondrial featuresthat distinguish the isogenic mutants from un-cut
clones. The name of the engineered feature and the Kruskal -Wallis p-Value distinguishing the single
feature’ s mean difference between the cut isogenic clones (UTR or coding), and the WT isogenic clones.
WVM refersto Mitotracker and WVT refersto TMRM. Features with Level in the name are texture-
based features.


https://doi.org/10.1101/2021.03.12.434746
http://creativecommons.org/licenses/by-nc-nd/4.0/

available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434746; this version posted May 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Clone Baseline FCCP Oligomycin ROT/AA
iCas9-3E5 1(0.99/1) 2.02 (2/2.04) 0.39(0.38/0.39)  0.27 (0.27/0.27)
WT A2P2-F12 1.02 (L.0V1.03) 15(143/158)  0.44(0.42/0.46) 0.25 (0.24/0.25)
WT A2P3-G12 0.8(0.79/0.81)  1.69(1.66/1.72)  0.34(0.34/0.34)  0.26 (0.26/0.27)
WT A3P3-C08 0.77 (0.77/0.78)  1.52(1.46/1.58)  0.27(0.27/0.27)  0.21(0.21/0.21)
WT A3P3-D08 1.02 (LOY/1.02) 1.86(L.78/1.95) 0.42(0.41/0.43) 0.29 (0.29/0.3)
3UTRde/WT A2P3-A04 | 0.97 (0.95/0.98)  2.02 (2/2.04) 0.32(0.32/0.32)  0.21(0.21/0.22)
5'UTRdel A2P2-B05 0.95(0.93/0.97) 2.11(1.97/2.25) 0.33(0.33/0.33)  0.22 (0.21/0.22)
5'UTRins A1P2 0.88(0.88/0.89) 1.77(1.74/1.8)  0.34(0.34/0.34)  0.25 (0.25/0.25)
3'UTRdel A2P3-E04 0.87 (0.86/0.88)  1.99(1.98/2.01) 0.34(0.34/0.35) 0.2 (0.2/0.21)
3UTRde/WT A2P1-A08 | 0.74 (0.73/0.76)  1.48(1.45/1.5)  0.29(0.28/0.29)  0.19 (0.19/0.2)
3'UTRdel A2P2-E05 0.72(0.71/0.72)  1.6(158/1.62)  0.26(0.25/0.26)  0.19 (0.18/0.19)
MFN2 L76P 0.7 (0.7/0.72) 1.2(1.18/1.21)  0.28(0.28/0.28) 0.2 (0.2/0.2)
H20fs/WT 0.68 (0.67/0.68) 1.29(1.28/1.31)  0.28(0.28/0.28)  0.21 (0.21/0.21)
V459f/WT 0.6(0.59/0.61)  1.05(L0V/1.09) 0.22(0.2/0.22) 0.15 (0.15/0.15)
V S507del/PV506del 0.56 (0.55/0.58) 1 (0.97/1.03) 0.23(0.23/0.24)  0.17 (0.17/0.17)
3'UTRdel/WT A2P2-C04 | 0.55(0.54/0.56)  1.07 (1.05/1.08)  0.18(0.18/0.18)  0.11(0.11/0.11)
5'UTRdel A3P3-C09 0.44 (0.43/045) 0.77(0.73/0.8)  0.15(0.15/0.16)  0.09 (0.09/0.1)
SRT612del/S615del/S615fs | 0.31 (0.31/0.32) 053 (0.51/0.54)  0.14 (0.14/0.14) 0.1 (0.1/0.1)
3'UTRde/WT A1P1-C06 | 0.2(0.2/0.2) 0.27 (0.26/0.28)  0.09 (0.09/0.09)  0.06 (0.05/0.06)

Table S4: Metabalic testing results on the U20S MFN2 mutant isogenic cell lines. The * Clone Name’
for each isogenic lineis given, the average and upper/lower 95% confidence intervals (in parentheses) of

the OCR (pMoles/min) normalized to parental WT control (iCas9-3E5). The 4 columns indicate baseline
OCR vsthe OCR &fter adding the named toxins. Mutant clones are sorted so that normal basal activity is

listed first with more disrupted activity listed further down, row borders are used as avisual aid only.

Table S5: Separate Excel File.
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