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Definitions 
MAVE: multiplexed assays of variant effects. DMS: deep mutational scanning. VUS: Variant of 
Uncertain Significance. Genotype: The specific point mutation present (R280H, WT, H20fs, etc). 
Genotype class: WT, Benign, or Pathogenic (aka what is designated by the model). Labeled 
Cell Population: Used for training the models. Unlabeled Cell Population: admixtures of labeled 
cells (like benign + pathogenic) or in screening, where the researchers are completely blind to 
the identity of individual cells. ROC: Receiver Operator Curve. AUC: Area under the curve. 
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Abstract 
Most human genetic variation is classified as VUS - variants of uncertain 

significance. While advances in genome editing have allowed innovation in pooled 

screening platforms, many screens deal with relatively simple readouts (viability, 

fluorescence) and cannot identify the complex cellular phenotypes that underlie most 

human diseases. In this paper, we present a generalizable functional genomics platform 

that combines high-content imaging, machine learning, and microraft isolation in a new 

method termed “Raft-Seq”. We highlight the efficacy of our platform by showing its 

ability to distinguish pathogenic point mutations of the mitochondrial regulator MFN2, 

even when the cellular phenotype is subtle. We also show that our platform achieves its 

efficacy using multiple cellular features, which can be configured on-the-fly. Raft-Seq 

enables a new way to perform pooled screening on sets of mutations in biologically 

relevant cells, with the ability to physically capture any cell with a perturbed phenotype 

and expand it clonally, directly from the primary screen. 
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Graphical Abstract. Here, we address the need to evaluate the impact of numerous 
genetic variants. This manuscript depicts the methods of using machine learning on a 
biologically relevant phenotype to predict specific point mutations, followed by physically 
capturing those mutated cells.  
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Background 
 

The explosion of functional genomics in the past decade 1 has enabled a 

massive shift in the study of the underlying genetics of human pathology. Even so, it is 

difficult to connect specific genetic mutations to disrupted cellular phenotypes, 

necessitating a detailed phenotyping-based functional genomics platform that can both 

screen large numbers of genetic perturbations/variants—so called multiplexed assays of 

variant effects (MAVE) 2—and work alongside new methods of generating variant 

libraries, such as deep mutational scanning (DMS) 3.  

Genetic perturbation screens have generally relied on simple phenotypes 

conducive to enrichment analysis 4, Fluorescence-Assisted Cell Sorting 5–7, or 

phenotypes measurable by sequencing 8–10. For more complex phenotyping, high-

content imaging/screening (HCI/HCS) 11–15 is performed in an arrayed format for genetic 

perturbation screens 16–21, but these are difficult to scale and infeasible for combinatorial 

screens. There are platforms that use an imaging-based approach in pooled genetic 

perturbation screens, and have been demonstrated on relatively simple phenotypes 22–

24 or on precise phenotypes that were known in advance 17,25.  

Although some platforms do isolate individual cells 26, most genetic perturbation 

screens use a population-level measurement as their endpoint. The main challenge for 

such screens that operate on the single-cell level is mapping the perturbation back to 

each cell post sequencing. For screens where the phenotype is measurable through 

sequencing, the perturbagen can be found simultaneously with the phenotype with 

single-cell resolution8,10, and newer methods have incorporated more advanced 

sequencing techniques to find additional data, such as surface protein presence10. In 
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imaging, a cell’s position within a microscopic field of view is the unique piece of 

identifying information used to map phenotype to perturbation. Some platforms use in 

situ sequencing 27,28 to generate sequencing results that contain positional data to a 

specific cell 17,29. Other platforms use a digital micromirror device to photoactivate 

endogenous fluorophores in specific cells which are then put through FACS-seq 23,25,30. 

However, a platform that can be integrated into existing next-generation sequencing 

(NGS) pipelines would be more accessible and robust. 

In this paper, we present Raft-Seq, a pooled screening platform that predicts 

individual cell perturbations from high-content imaging and machine learning. Raft-Seq 

improves on other platforms in several important ways: 1, it uses a microraft plate 31–33 

for context-aware isolation of identified cells; 2, it can use vital dyes or stains, so no 

genetic modification of the cell is required other than the perturbation itself; 3, it is 

largely phenotype-agnostic, needing only knowledge of the broad physiology 

beforehand for stain selection and initial feature filtering; 4, it uses machine learning to 

identify perturbed cells, allowing the identification of complex cell-autonomous 

phenotypes; 5, it selects cells with high viability and clonability, directly from the primary 

screen. 

Here, we use the Raft-Seq platform to examine the neurologically relevant 

mutations in the MFN2 gene, which protects against cellular stress from damaged 

mitochondria by regulating mitochondrial fission and fusion 34. Clinically relevant MFN2 

mutations (pathogenic variants) primarily result in Charcot-Marie-Tooth Disease (CMT), 

the most common inherited neuromuscular disorder characterized by peripheral 

neuropathy with impairment of the central nervous system 35–38. We find that the 
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phenotype caused by pathogenic MFN2 variants is distinct, but the difference is not 

adequately described by a single measurement/feature, necessitating a more complex 

feature analysis. Following the findings from the single perturbation experiments, we 

targeted a gRNA library across the MFN2 coding region to identify anomalous 

phenotypes caused by these mutations.  

Results 

MFN2 Mutants 

We generated cell lines that each contain MFN2 cDNA with single point 

mutations through lentiviral infection. The mutants studied consisted of six clinically 

relevant pathogenic MFN2 variants 39 and five control variants annotated as “benign” 

from ClinVar 40 (Figure 1a). Twelve lentiviral transfer plasmids—one plasmid for each 

mutated cDNA and one for wild type cDNA—were used to package lentivirus that was 

infected into U2OS to create twelve cell lines. 

To investigate the phenotypes caused by the MFN2 variants, we assessed 

mitochondria and mitochondrial membrane potential using MitoTracker and TMRM, 

respectively 41. The cells were imaged using a high-throughput fluorescent confocal 

microscope and intracellular features were measured using Cytiva’s IN Carta analysis 

software. A visual comparison of the MFN2 cell lines demonstrates subtle phenotypic 

differences among them (Figure 1b), specifically, perinuclear aggregation of 

mitochondria in the cells containing the pathogenic mutations. Box plots for a subset of 

the features are shown in Figure 1c. The mean mitochondrial puncta count in the wild-

type and benign cell lines is consistent, while the values for the pathogenic cell lines 
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were lower and more variable. A higher average variation in TMRM intensity within a 

single cell was also observed in the pathogenic mutants, all suggesting mitochondrial 

aggregation and disrupted mitochondrial membrane potential. Additional feature 

histograms are shown in Figure S1. Although there are significant differences in the 

population of mutants as a whole, there is no single feature that can separate more than 

a small fraction of the cells. 

We next tested whether multiple features could distinguish the pathogenic-variant 

cells. UMAP dimensionality reduction was performed on the full set of cellular image-

based features (Figure 1d). Most pathogenic mutant cells are separable from wild 

type/benign cells in the dimensionality reduction, though some mutants (L76P and 

R94Q) are more distinct (Figure S2), which is consistent with the individual feature 

data. The UMAP reduction shows that using data from multiple features may more 

reliably distinguish cells with pathogenic mutants. Thus, to screen individual cells based 

on subtle phenotypes caused by these pathogenic mutations, we designed an HCS 

platform with machine learning capabilities that can use information from multiple image 

features. 
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Figure 1. Isogenic MFN2 Mutant Cell Lines Characterization: a. Table of the mutants used. 
b. Confocal images of mutant cells at two magnifications (blue = nuclear staining by Hoechst, 
green = mitochondria staining by MitoTracker). Subtle mitochondrial differences can be 
observed amongst the mutant populations. Known pathogenic mutants display peri-nuclear 
aggregation of mitochondria and a lack of mitochondrial spreading. In comparison, wild-type 
cells show ample mitochondrial spreading. c. Box plots of two features: Mitochondrial count 
(based on MitoTracker staining) and coefficient of variation in mitochondrial potential (TMRM 
intensity). Histograms are colored by genotype class (Benign/Pathogenic/WT). d. Scatter plot of 
UMAP reduction using a set of 26 features measured with TMRM or MitoTracker staining. Each 
dot represents a single cell, colored by its genotype class (WT/benign/pathogenic). 
 

Experimental Workflow 

The overall workflow of Raft-Seq can be summarized in five steps: perturbation, 

imaging, model building, isolation, and sequencing (Figure 2a). In the first step, we 

introduce a genetic perturbation, either endogenous (e.g., CRISPR gRNA library) or 

exogenous (e.g., plasmid overexpression library with mutagenesis). The cells are then 

seeded onto a microraft plate, stained, and imaged on a high-throughput confocal 
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microscope. From the cell-feature matrix obtained from feature extraction, we generate 

many supervised learning models, used to predict whether there is a discernible 

perturbation in each cell. Several different model types are employed (Methods: 

Machine Learning and Model Generation), which are then evaluated and deployed to 

determine cells to be isolated. Isolation is performed using the Cell MicroSystems Air 

Instrument, where rafts containing cells of interest are automatically transferred with a 

magnet to a well of a 96-well plate. The cells on the isolated rafts are then genotyped to 

determine the perturbation present. The genotyping pipeline is performed on single 

cells, not pooled genetic material. 

As a preliminary test of raft-based imaging and isolation, we performed Raft-Seq 

on cells with dual genome-encoded RFP and GFP that had been given a gRNA to 

knock-out either RFP or GFP. These cells were plated on a microraft plate as a mixture 

and were imaged. Cells that were given the guide targeting RFP would be expected to 

appear green, since GFP would continue to be expressed and vice-versa. Using 

fluorescent marker intensity, we predicted the guide presence, isolated those cells, 

performed single-cell DNA sequencing to look for the edited genomic targets, and 

determined the true genotype. The correspondence between the predicted guide and 

the true guide was near perfect (Accuracy = 98.8%, n = 162) and comparable to a flow-

based single-cell sequencing method run in parallel (Figure 1b and Supplemental 

Methods). 
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Figure 2. Raft-Seq Experimental Workflow a. A perturbagen library, primarily a lentiviral 
gRNA or plasmid overexpression library, is introduced to cells, which are then seeded onto a 
microraft plate. The plate is imaged, and cell feature data are then extracted from the resulting 
images and used to build machine learning models. The trained model then selects rafts to 
either be isolated into a PCR plate for immediate analysis or a tissue culture plate for clonal 
expansion. Following isolation, the cells are genotyped. b. Pie charts showing the composition 
of cells identified as either expressing GFP or RFP, after being separated by either the raft-
based approach or flow cytometry. The color represents the expected appearance of the cells 
based on genotype (green = contains RFP gRNA, red = contains GFP gRNA), and the 
fractions/percentages are the amount in each group that is correctly identified. c. Performance 
evaluation workflow. The blue and red wells represent the labeled cell populations and the 
purple well represents the unlabeled population that is a mixture between the two. Following 
imaging, models are trained and tested on the labeled wells, and the one with the clearest 
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delineation between the two classes is selected. That model is used to select rafts that are then 
isolated and single cell genotyped. The comparison between the prediction scores and the true 
genotype class generates a receiver operator characteristic curve to evaluate model efficacy. d. 
Modeling workflow. Each model comprises a feature set and machine learning algorithm, 
combinations of which are represented here with different symbols. Each model is evaluated 
with training and testing cell data, and the model that shows the largest separation between 
classes and is robust on the testing data is used to generate a list of cells (rafts) to pick, along 
with their predicted genotype. 

 

Identifying Subtle Mitochondrial Phenotypes in a Mixed-Variant 
Pool 
 

To validate the efficacy of Raft-Seq in a more complex screen, we attempted to 

separate a mixture of wild-type and mutant cells by reproducibly predicting a given cell’s 

genotype based on its phenotype, as determined by a set of features extracted from 

imaging data (with no fluorescent reporters). For this experiment, we separated cells 

containing pathogenic MFN2 mutations from those containing the wild-type MFN2 

cDNA.  

The workflow of this validation experiment is shown in Figure 2c. The goal was 

to see if we could identify any of four pathogenic mutants (L76P, R94Q, P251A, R280H) 

from WT in an admixture of those cells. In the different wells of the microraft plate, we 

plated either 1) MFN2 WT cells, 2) a mixture of the 4 MFN2 mutants (1:1:1:1), 3) a 

mixture of the wild-type and pathogenic cells at a wild-type:pathogenic ratio of 90:10, 

and 4) a similar mixture at a ratio of 50:50. We distinguished between the first two 

groups and the last two by calling the former (1,2) “labeled” and the latter (3,4) 

“unlabeled” to clarify for which cell populations the genotype class was known prior to 

imaging and analysis. Following application of a nuclear stain, a plasma membrane 

stain, and a mitochondrial stain (Methods: Staining), the cells were imaged and their 
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features computed. Next, we designed classification models that best distinguished the 

labeled populations (MFN2 WT vs. MFN2 mutants). General modeling workflow is 

shown in Figure 2d. We used a variety of model algorithms (types) and cell features 

sets, preferentially choosing features that correlated with genotype class. For model 

selection, we trained each model on-the-fly using plate-spanning sets of feature data. 

For each set of predictions for each model, we graphed the ranked prediction score 

(Figure 2d: Evaluation). If a model appropriately distinguished between the labeled 

populations, it would assign a score near 1 to the pathogenic mutant cells and a score 

near 0 to the wild-type cells, and the ranked prediction score curves will be widely 

separated. We then selected the model with the largest separation between the labeled 

populations in both the training and testing wells (lack of separation in the testing wells 

indicated overfitting or sensitivity to batch effects) (Figure 2d).  

Using the selected model, we chose cells for isolation from the unlabeled wells 

with additional control cells picked from the labeled wells. Over 1000 cells were then 

individually isolated into wells of several 96-well PCR plates (384 labeled, 758 

unlabeled). From there, the cells underwent amplicon library construction, multiplexing, 

and NGS, from which their genotypes were ascertained.  

With the knowledge of each cell’s genotype (nWT=159, nL76P=61, nR94Q=74, 

nP251A=41, nR280H=6), we found the total accuracy of our on-the-fly predictions to be 

72.4% (50:50 =75.7%, and 10:90= 64.5%). Therefore, when training with only WT vs. a 

mixture of MFN2 mutants, we could predict that individual cells were mutant from an 

admixture in which we were completely blind to the real genotype using only the subtle 

mitochondrial phenotype (Figure 3a). As expected, when trying to identify mutants that 
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were the vast minority (in the 10:90 admixture), the model does correctly identify 

pathogenic mutant cells, but the type II error is large. Figure 3b shows further 

breakdown of all unlabeled wells by specific mutant and by whether the model correctly 

identified it as a pathogenic mutant (per-mutant metrics are not available in this 

experiment since we did not train on individual classes of mutants). The mutations most 

successfully recovered were R94Q and L76P, agreeing with the previous data showing 

those mutants as having a more severe phenotype. We recovered a similar number of 

false negatives of the P251A and R280H mutants, despite fewer overall numbers of 

each mutant, indicating that these mutants likely have a weaker phenotype—leading to 

a less confident prediction and exclusion from the list of cells to isolate—rather than less 

penetrance. To check the model quality, we evaluated the Receiver Operating 

Characteristic (ROC) curves and the resulting area under the curve (AUC) Figure 3c. 

The curves in red show the ROC of our model—for the cells picked from labeled (AUC = 

0.94) and unlabeled (AUC = 0.74) populations.  

We also took a larger view and assessed the quality of all models generated, not 

just the one used to select cells for isolation. Figure 3d shows a scatterplot of AUCs 

(labeled populations vs. unlabeled populations) and Figure 3e shows the AUC 

distribution of all models applied to unlabeled populations. Importantly, the majority of 

models had discriminatory ability. This entire experiment was repeated successfully 

using a mixture of all six mutants, and histograms and scatterplots of the models 

generated are shown in Figure S3.  
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Figure 3. Raft-Seq Proof-of-Principle Results against MFN2 Pathogenic Mutations. a. 
Confusion bar charts of predicted genotype vs. true genotype for the main model from cells in 
the WT/Pathogenic mixture. The top bar chart represents all cells isolated from the mixture, 
while the bottom two are a breakdown of the first according to whether the cells were isolated 
from the well containing 50% or 90% wild-type cells. b. A bar chart of picked mutants separated 
by allele and counting the final status of individual cells. c. ROC Curves generated using the 
best model identified a posteriori separated by data generated from cells picked from control 
pure wells (upper) and from mix wells (lower). The red curves are the experimental results and 
the grey curves are a control generated by random shuffling of labels. d. A scatterplot showing 
the performance of all 290 models in detecting mutants in a mixture of wild type cells and four 
pathogenic mutants. Each point represents a single model and its position is determined by its 
ability to distinguish cells in the labeled control wells and cells in the mixed wells. The vertical 
and horizontal lines represent the AUCs of the model that was used to choose cells for isolation. 
e. A histogram of AUCs for models detecting mutants in a mixture of wild-type cells and four 
pathogenic mutants. On top, a histogram of AUCs generated from randomly assigning models is 
shown as a comparison.  
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Identification of Weak Pathogenic MFN2 Mutants 

Our pipeline also has the ability to recognize relatively weak phenotypes. As 

shown earlier, of the six pathogenic mutants, the R280H and P251A appear most like 

benign mutants and wild type (Figure 2c). Despite the subtle phenotype, we recovered 

R280H cells in the experiment above (Figure 3b), though comparably fewer than cells 

with other mutations. Given those results, we explored the ability of Raft-Seq to isolate 

cells with the R280H mutation compared against MFN2 wild type. Figure 4a shows 

images of R280H mutation-harboring cells in the microraft plate. As a baseline 

measurement against more conventional methods of cell separation, we ran separate 

samples of a MFN2 WT and R280H mutant cell lines each stained with MitoTracker 

through flow cytometry (Figure 4b). While there is variation between the two in the 

MitoTracker intensity, there is too much overlap to separate a mixture (Figure S4 AUC 

= 0.60). 

We then followed the Raft-Seq process described above, replacing the mixture of 

MFN2 mutants with just R280H mutant cells, and therefore training the models directly 

on the weaker phenotype. Additionally, the experiment was done with different culture 

densities and cross-compared to confirm that culture conditions had no ‘residual 

phenotype’ that impacted the models prediction. Figures 4c and 4d show histogram 

and scatterplots for the resulting models in this experiment and that Raft-Seq 

discriminated between the R280H mutant and the MFN2 wild type (AUC of picked 

model 0.72, best models > 0.8, nWT = 265, nR280H = 205). We also ran a similar 

experiment comparing the P251A pathogenic mutant cell line—the other pathogenic 

mutation with a weaker phenotype—to the D221= benign mutant cell line. Cells 
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containing the synonymous substitution D221= act as another control for point 

mutations instead of using WT. Figure S5 shows that the resulting model, when applied 

to a mixture of the cell lines, was able to discriminate between the two (AUC = 0.8, 

nD221= = 103, nP251A = 65). The AUCs mentioned above apply to all the unlabeled cells 

that were physically picked. If we limit our results to cells whose class the model is 

increasingly confident about, then the accuracy of the model gets increasingly better 

(Figure 4e, f). For cells that the model is at least 80% confident about (prediction score 

≥ 0.8 or ≤ 0.2), we get high AUCs and accuracies in both the R280H/WT and 

P251A/D221= experiments (AUC = 0.94,0.98 Acc = 0.88,0.92 n=17,24). 

We have shown that Raft-Seq can accurately predict genotypes from strong 

mitochondrial point mutants as well as weak mutants in MFN2 and predict them as part 

of a mixed culture where there was no a priori knowledge of individual cell’s genotypes. 

The model’s predictions were realistically tested by isolating single cells and genotyping 

them to reveal the method's accuracy.  
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Figure 4. Raft-Seq can Predict MFN2 WT and MFN2 R280H mutant cells which have nearly 
undetectable Phenotypic Differences. a. Images of the R280H mutant and MFN2 WT cell line 
in the microraft plate. b. Side-by-side flow cytometry scatter plots of the MFN2 WT and R280H 
mutant cell (GFP was present equally in both cell lines). c. Scatterplot showing the performance 
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of all 433 models in detecting mutants in a mixture of wild type cells and the R280H mutant. d. A 
histogram of AUCs for models detecting mutants in a mixture of wild-type cells and the R280H 
mutant. On top, a histogram of AUCs generated from randomly assigned models for 
comparison. e,f. Accuracies and confusion bar charts of the predictions from the un-labeled 
wells, when only picking cells with prediction scores ≥0.9 (≤0.1), ≥0.8 (≤0.2), and ≥0.7 (≤0.3). e. 
uses the model to predict R280H against WT MFN2, while f. uses the model to predict P251A 
against D221=. 
 

Modeling Analysis 

Multi-feature models were necessary for accurate predictions, warranting 

exploration into the importance of individual features and the performance impact 

associated with them. Using data from the experiment containing wild-type MFN2 cDNA 

and four pathogenic mutants, we generated additional models by varying the number of 

features used, sampling from the 8 features in the pick model (Table S1). Histograms 

showing the distributions of the AUCs, separated by the number of features are shown 

in Figure 5a. When more features are added, the models can better distinguish 

between the populations of cells. We also examined the importance of individual 

features in building models (Figure 5b-d). We used the original feature data (Figure 1) 

and generated Kruskal-Wallis �2 for each feature between the wild type and pathogenic 

mutant cells from labeled populations. A ranking of the 16 features associated with the 

highest �2 are shown in Figure 5b. We compared the resulting AUCs from models built 

off each specific feature alone (Figure 5c), and to the resulting AUCs from models built 

from the 16 features minus one (Figure 5d). Importantly, we find that single features are 

not the key to discriminating these clinically relevant pathogenic MFN2 point mutants. 

Instead, small numbers of relevant features can inform a useful model. 
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Figure 5. MFN2 Genotype Prediction does not depend on specific features. a. Histograms 
of AUCs resulting from models built from combinations of a set of 8 features used when picking, 
arranged in panels split by the number of features used in each subset. b. Bar chart of the 
Kruskall-Wallis �2 values for the 16 features with the highest values. “Mito” and “Nuc” indicate 
features measured from mitochondrial and nuclear stains, respectively. c. Bar chart of the AUCs 
resulting from models built out of each individual feature. Note that the most significant feature 
was unable to produce a good model alone. d. Bar charts of the AUCs resulting from models 
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built using all but one feature (leaving 15 features). All AUCs listed indicate the performance of 
the model trained from labeled data on their ability to predict unlabeled cells in admixed 
conditions. 

Scanning Mutagenesis with MFN2 VUS 

While the previous experiments were done by over-expressing a mutant MFN2 

cDNA, we also sought to study editing of an endogenous gene. As a proof of concept 

for endogenous mutations, we first used an existing U2OS line with mutations in the 

mitochondrial primase PRIMPOL 42 and found that it alters mitochondrial morphology. 

We then followed the Raft-Seq process described above and verified that the platform 

performs well for an endogenous genetic perturbation (AUC 0.90, data not shown). We 

next tested Raft-Seq against a series of (mostly VUS) mutations in MFN2. We 

constructed a CRISPR-Cas9 gRNA library targeting different exonic regions of MFN2 

(CRISPR tiling 43) on sites near known ClinVar variants (Figure 6a). The library was 

delivered by lentivirus to U2OS cells with a dox-inducible Cas9 construct, and the cell 

population was split in two, with only half receiving doxycycline. DNA samples were 

collected at intervals over a ten-day period for survival screening, and a DrugZ analysis 

44 revealed no significant representation differences (Figure S6)—so while 

mitochondrial changes are observed, those don’t result in large viability shifts. 

Then in a Raft-Seq screening experiment, 40,000 cells were imaged, and 

mitochondrial anomaly detection models were trained on the feature data of -Dox (no 

Cas9) cells and deployed to the data of +Dox (Cas9 induced) cells to infer which cells 

had abnormal mitochondrial phenotypes. Unlike previous modeling techniques, training 

data of known mutants was not included. The most highly anomalous cells had some 

feature similarity to the strong pathogenic mutants (Figure S7). We selected 1,659 cells 
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for isolation, which we then genotyped to identify the gRNA for each cell (Figure 6b). 

The result is a rich dataset where each of the single cells are measured for phenotypic 

features (from confocal imaging) and the corresponding gRNA. Since individual gRNAs 

have different efficiency, we presumed that frameshift edits to MFN2 would be more 

likely to result in the strongest phenotypes. We compared each cell’s mitochondrial 

anomaly score to the probability of the gRNA inducing a frameshift mutation (calculated 

with Indelphi 45). We find that nearly all gRNAs with a high anomaly score also had a 

high predicted frameshift mutation rate (Figure 6c, p-Value at 3 frameshift thresholds: 

90% = 0.0013 [n 42], 80% = 0.05 [n 111], 70% = 0.37 [n 39]). 

Next, we harnessed the capabilities of Raft-Seq to analyze a library of perturbed 

cell lines. We took the same population of MFN2 gRNA library-infected cells and chose 

cells for isolation based on individually identified mitochondrial morphology using a 

parallel pipeline. We captured the cells intact and alive into tissue culture plates and 

grew them clonally as isogenic lines. This allowed enough genomic material to do two 

rounds of sequencing—first to find the gRNA present in each cell and second to 

examine the gRNA target site—and use the cells for downstream analyses. Most of the 

isogenic lines with Cas9 edits were in the UTRs, while 6 affected the protein (Table S2). 

For example, the isogenic H20fs/WT had a gRNA targeted to the first translated exon, 

which resulted in 7bp deletion then a frameshift. We analyzed the isogenic cells 

(arrayed) to quantitatively assess the level of mitochondrial abnormality (Figure 6e). 

Three dozen of the individual mitochondrial or TMRM features (Table S3), as well as all 

multi-feature models, showed significant differences between the set of WT clones and 

the mutated clones (Figure S8).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2022. ; https://doi.org/10.1101/2021.03.12.434746doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.434746
http://creativecommons.org/licenses/by-nc-nd/4.0/


We performed additional validation experiments on two of the clones, one UTR-

mutant and one coding-mutant (Figure 6f). We found that these isogenic endogenous 

mutations were separatable from a WT clone in our Raft-Seq mix assay (AUC = 0.90, 

Figure S9). We also analyzed the set of MFN2 isogenic lines using the Seahorse XF 

assay, which analyzes key metabolic processes reflective of mitochondrial health 

(Table S4). Both the H20fs/WT and the L76P mutant had reduced basal oxygen 

consumption rate compared to WT, indicating a mitochondrial deficit from the mutations 

(Figure 6g). Overall, we showed pooled cellular screening with Raft-Seq and its ability 

to generate isogenic lines with mutant phenotypes, including novel mutations that have 

not previously been studied. 
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Figure 6. Endogenous Scanning Mutations in MFN2 simulate Variants of Uncertain 
Significance. a. Diagram of coding sequence with ClinVar variants (downward facing triangles) 
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and their closest gRNA cut sites (upward facing triangles). The upper line shows the entire 
genomic context of the MFN2 gene, while the lower inset magnifies the variants and gRNA cut 
sites for exon 6. Lines indicate the ‘partner’ gRNAs for each ClinVar mutation, where thicker 
lines indicate closest association. b. Scatterplot of genotyped cells. x and y axes are the number 
of models placing that cell in the top 5% or 10% of all cells, respectively. A sample of cells are 
labeled with the fluorescent image taken during the screen and the gRNA present within the cell 
(labeled by the nucleotide position before the start codon [B], within the coding region [C], or 
after the stop codon [P], also see Table S5). c. Scatterplot of predicted frameshift frequency vs. 
mitochondrial anomaly score for all the gRNAs recovered from the screen. d. Established 
isogenic lines of U2OS cells with the specific MFN2 variant(s) rank ordered based on their 
phenotypes. More “WT-like” phenotypes (likely benign) are shown to the left while more 
“mutant-like” phenotypes (likely pathogenic) are shown on the right. Bars show average with 
95% confidence intervals (n=18-32 well/plate replicates, L76P mutant is shown in yellow and 
the parental control clone WT 3E5 is shown in black). e. Example images of isogenic U2OS 
cells with either a control gRNA that didn’t cut, 5’UTRins A04 isogenic line, or H20fs/WT 
isogenic line. The frameshift-mutant (H20fs/WT) has similar mitochondrial aggregation to the 
L76P mutant (Figure 1), while the UTR mutant has a distinct but subtle mitochondrial 
morphology. f. Metabolic analysis of OCR (oxygen consumption rate) for WT, L76P, and the 
H20fs/WT lines. OCR is measured in four phases, first basal, then mitochondrial toxins 
Oligomycin (ATP synthase inhibitor), FCCP (uncoupler), and Rotenone (electron transport 
inhibitor). 

Discussion 
We have developed a method, Raft-Seq, to efficiently screen many genetic 

variants based on their impact on a cell’s phenotype. We have shown that it can 

effectively discriminate between wild-type cells and cells containing different pathogenic 

point mutations of the MFN2 and PRIMPOL genes. Though we utilize a particular 

individual model for the selection of cells for isolation, we found that most of the models 

that we generate can identify pathogenic mutant cells. Since our feature selection 

process is only mildly dictated by the actual phenotype that we are looking for, our 

ability to predict a cell’s genotype comes from quickly generating complex 

computational models. This will enable the pipeline to exploit many more phenotypes 

that the scientific literature is not yet familiar with, therefore making almost any gene in 
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the genome amenable to this functional screening and thus enable the re-cataloging of 

VUS as benign or pathogenic. 

We developed Raft-Seq primarily as a screening platform to work in concert with 

Deep Mutational Scanning 46, a method for creating a library of every single possible 

mutation in a gene. Our results show that such a screen would correctly call pathogenic 

variants, since we were able to recover pathogenic MFN2 mutants from a mixture with 

wild-type cells. However, our results also show some limitations. For one, based on the 

accuracy difference between the two unlabeled wells which were at different 

proportions, our ability to recover pathogenic variants appears to decrease the smaller 

proportion of pathogenic variants present. This would indicate that such a screen would 

perform significantly better on genes for which mutations are more likely to result in a 

pathogenic variant, but this could be countered with a higher n. Second, we were able 

to identify several mutants (L76P, R94Q)—which had more extreme phenotypes—more 

frequently than other mutants, meaning that a scaled-up screen would most likely result 

similarly, and more extreme variants would be overrepresented. However, because we 

were able to identify the weaker mutants (R280H, P251A) with relative ease when they 

were not mixed with any other mutants, we can assume that overrepresentation of 

specific variants is not due to the absolute strength of the resulting phenotype. Instead, 

it is due to the relative strength when compared to other variants. Penetrance may also 

play a role since weaker phenotypes may have a strong phenotype in some cells but 

have low penetrance in the population. 

We were also able to see how Raft-Seq would perform in the discovery of novel 

variants and morphology. Our anomaly detection models were able to identify similar 
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mitochondrial features to the pathogenic variant cells, and this anomalous morphology 

correlated with a high predicted frameshift frequency from the gRNA contained in the 

cell. Lastly, we used Raft-Seq to generate isogenic cell lines directly from the primary 

screen. We analyzed these clonal/isogenic lines to find consistent mitochondrial 

phenotypes and blunted metabolic responses. This process presents a large gain over 

other phenotyping screens, since we can generate cell lines that can be fully genotyped 

and assayed further, while being able to track that line to the specific image and 

features from the original screen. 

 Since Raft-Seq isolates cells for sequencing individually rather than in pools, we 

have a few advantages over other platforms. For one, we find the specific genotype of 

every isolated cell, rather than perform batch measurements, meaning that we can find 

effects of combinations of perturbations. We can also theoretically have as many 

categories in our machine learning models as cells, though using more than a handful of 

features causes the modeling and analysis to deteriorate, likely due to overfitting (but is 

countered by higher n).  

An advantage of this approach is the flexibility that comes from using machine 

learning to identify phenotypes. Since we can easily combine features for more 

accuracy, we can theoretically screen for any visible phenotype, given a strong enough 

signal provided by staining or other fluorescence. Unsupervised learning methods, like 

clustering, are also possible and allow for a simpler setup since no labeled wells would 

be needed.  

Since the raft identifies the location of the cell stably over time, we can do on-the-

fly training from the entire experiment, then go back and pick those cells. We have also 
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found that Raft-Seq can be used to apply past training (labeled) data to future 

experiments. A normalization schema allows for accretion of previous training data to 

utilize it in future models (allowing a gain of accuracy in identifying specific phenotypes 

over time). Anomaly detection models need previous data, to capture as much “normal” 

cell data as possible.  

Raft-Seq is slower than flow cell sorting, possibly limiting scalability. All the 

image-based techniques require time for imaging, and this system is no exception. As 

evidenced by the recent genome-wide screen 25, the throughput of this system is 

comparable, and the number of cells captured by that system is slightly lower over an 

experiment of comparable scale. Regardless, even higher throughput is still 

advantageous. There are fewer limits in terms of the number of cells able to be imaged, 

so by increasing the pool of isolation candidates, cells are selected with a higher level of 

confidence. There are two steps in Raft-Seq that are done manually but will soon be 

automated. The first is image quality control which can be automated by a convolutional 

neural network, similar to the previous microraft experiments 33. The second is model 

selection, which can be automated by choosing among several model performance 

metrics on the labeled data.  

 We are optimistic that with increased scale, Raft-Seq can be used to sensitively 

find variants across a wide breadth of perturbed cellular phenotypes. An increase in 

scale would provide more training data to make models more accurate and identify 

more cells to which the models assign a high prediction score, which we have shown to 

raise overall accuracy. Altogether, we have shown that using various cell lines 

(HEK293, U2OS, A549), with multiple types of genetic perturbation (endogenous 
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disruption with Cas9, overexpression of mutant genes), we can deploy flexible machine 

learning (logistic regression, decision trees, SVM, neural networks) from data within an 

experiment (on-the-fly) or from previous experiments (pre-trained) to select clinically 

relevant point mutations in a screening setting. Since this system captures the cells 

individually, we can carefully evaluate many ‘selection criteria’ by generating a variety of 

different machine-learning models and finding how well they perform. This technique will 

be an important tool in the advancement of precision medicine to identify variants 

relevant to disease. 

Methods 
All custom software can be found at https://gitlab.com/buchserlab/FIVTools  

Cell Culture and Transfection 

Human osteosarcoma (U2OS, ATCC HTB-96) cell lines were maintained in McCoy's 5A 

Modified Medium (16600082, Gibco, Gaithersburg, MD, USA) supplemented with 10% fetal 

bovine serum (FBS) (16000044, Gibco). Human embryonic kidney (HEK) 293T cells (CRL-

11268, ATCC) were cultured in Dulbecco's Modified Eagle's Medium (11965-092, Gibco, 

Gaithersburg, MD, USA) supplemented with 10% FBS (16000044, Gibco, Gaithersburg, MD, 

USA), 1% Penicillin-Streptomycin (15140122, Gibco) and 1% non-essential amino acids 

(11140050, Gibco). 

All cell lines were maintained in T75 tissue culture flasks in an incubator at 37°C, 5% 

CO2 and they were observed daily for growth and overall health. Once confluent, cells were 

passaged using 0.25% Trypsin-EDTA 1x (25200056 Gibco, Gaithersburg, MD, USA) at a sub-

cultivation ratio of 1:10. Live cell counting was performed with the BioRad TC20 automated cell 
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counter. Centrifugation of cell cultures was performed at 1200 rpm for 3 minutes. Lentiviral 

infection was performed in T75 flasks when cells were 85% confluent. STR profiling, to confirm 

cell type, was performed using NGS-based analysis by the Genome Engineering and iPSC 

Center (GEiC) at Washington University in St. Louis. Testing for mycoplasma was performed bi-

annually. For all experiments in this paper, either 100x100 or 200x200 micron quad reservoir 

plates containing 48,000 (12,000 cells per quad) and 36,000 cells (9,000 cells per quad), 

respectively were used. Prior to plating, microraft plates were prepared by rinsing with 1mL PBS 

3 times with 3-minute incubation periods. Cells were added in 200µl media to aid in distribution, 

then plated and incubated overnight (14-16 hours). 

Virus Production and MFN2 Single Mutant Line Creation 

MFN2 lentiviral expression plasmids were cloned into the CCIV lentiviral plasmid with a 

GFP marker 39. In preparation for lentiviral packaging, 8.0 x 105 HEK293T cells were plated into 

each well of a six well plate and incubated at 37°C overnight. The cells were then transfected 

with TransIT Lenti-transfection reagent (MIR 6600, Mirus Bio, Madison, WI, USA) using an 

envelope plasmid (pVSVg: Addgene plasmid # 8454), a packaging plasmid (psPAX2: Addgene 

plasmid # 12260), and each individual MFN2 expression plasmid in a mass ratio of 0.5/1/0.5 

respectively for a total of 2µg. After 48 hours, media was collected, centrifuged, and sterile 

filtered before being concentrated (Lenti-X Concentrator 631232 Takara Bio, Kusatsu, Shiga, 

Japan). Concentrated virus was resuspended in 200µL 1xPBS per well, collected, and stored at 

-80°C.  

To create stable MFN2-mutant expressing lines, T75 flasks containing  

 6 million U2OS cells were infected with 70µL of concentrated lentivirus at an MOI>1 and 

polybrene was added (NC9840454 Santa Cruz Biotechnology, Texas) at a final concentration of 

10µg/mL. They were then incubated for 24 hours, after which the virus-containing media was 
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removed and replaced with fresh, virus-free media. Cells were taken to the Washington 

University Siteman Flow Core for fluorescent sorting on the Sony Synergy HAPS1, 100-micron 

sorter. Cells were sorted based on viability and GFP expression (since no puromycin selection 

was performed, the fluorescent signal from the GFP in the MFN2 plasmid was used to 

determine transgene expression). GFP expression levels were compared within and across 

generated cell lines to ensure population purity and comparable fluorescent expression levels. 

The PRIMPOL KO U2OS cell line was received from the Vindigni lab and was produced by the 

GEiC.  

CRISPR/Cas9 gRNA Library Infection and Induction 

A dox-inducible Cas9 (iCas9) U2OS cell line was generated via CRISPR-mediated 

homology directed repair. The Cas9 protein, gRNA, and donor construct were introduced via 

nucleofection. Isogenic iCas9 clones were isolated using the Cell MicroSystems CellRaft Air 

System and then propagated for further experiments. Presence of the construct was validated 

via junction PCR 47 prior to propagation. Puromycin-resistant MFN2 scanning gRNA libraries 

were generated and cloned by the Washington University GEiC. Lentivirus was produced (see 

Virus Production above) and used to infect iCas9 U2OS cells at an MOI of <0.2 followed by 

8µg/mL puromycin selection for seven days. The cells were then allowed to grow in fresh media. 

At 60-70% confluency, Doxycycline (Cat#: D9891-1G, Millipore Sigma) was added at a final 

concentration of 2µg/mL. The cells were incubated at 37°C for 48-60 hours before proceeding 

with staining and imaging. 

Staining and Microscopy 

The following vital dyes were used; DNA labeling/nuclei (Hoechst, Thermo Fisher 

H3570), mitochondria (MitoTracker Deep Red, Thermo Fisher M2246), and mitochondrial 
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membrane potential (Tetramethyl Rhodamine methyl ester TMRM, Thermo Fisher I34361). 

MitoTracker and TMRM were incubated for 40 minutes at concentrations of 0.5 and 1µM 

respectively. Hoechst was incubated for 15 minutes at a concentration of 10µg/mL (16.2µM). 

Each plate was rinsed twice with culture media prior to imaging. Images were captured using a 

20x 0.45 NA objective in the Cytiva INCell 6500HS Confocal microscope. Exposure times for 

Hoechst (405 nm) and TMRM (561 nm) averaged 0.15 seconds while MitoTracker Deep Red 

(642 nm) averaged 0.05 seconds. Confocality was used in the 405 and 642 wavelengths to 

decrease the background fluorescence of the CytoSort raft plate. Each field-of-view overlapped 

by 12% of their area. Imaging settings were held constant throughout the course of an 

experiment. Following imaging, an extra 500µL of cell culture media was added to the CytoSort 

raft plate (additional liquid helps the Cell MicroSystems Air System isolate microrafts). 

Image Analysis and Quality Control 

Image tracing and feature extraction was performed using Cytiva’s INCarta software. 

Mitochondrial puncta were identified (within 20µm of the nuclei using the ‘networks’ algorithm) 

and quantified for each cell as were a set of texture features. Raft coordinates were recorded for 

each cell (using FIVTools/ CalCheck, included in the GitLab repository). Images were also 

curated semi-manually (via FIVTools/ CalCheck) to ensure that out-of-focus images were 

excluded. The cell feature dataset was joined with the image quality data and raft position 

mapping data described above by custom software (via FIVTools/ main window). Post tracing 

quality control was performed with each dataset in Tibco Spotfire Analyst. First, aberrant tracing 

artifacts were excluded based on nuclear area, nuclear form factor, and proximity to the raft’s 

edge. Next, non-nuclear debris and dead nuclei were excluded by gating on nuclear area, 

intensity, and cell intensity. Rafts with too many cells (>6) or a fiduciary marker were excluded. 

This filtered set of cells was used as the input for machine learning downstream. 
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Machine Learning and Model Generation 

After exporting the quality-controlled cell-based feature table, we built a machine 

learning model that could distinguish pure populations of WT cells from pathogenic mutant cells. 

The models were trained real-time on the day of the experiment since we were working with live 

cells which needed to be physically picked within the next few hours to maximize viability. A 

variety of machine learning platforms (Microsoft AzureML Studio, Tibco Spotfire, Tibco 

Statistica, and H2O.ai.) and algorithms were employed to predict an unknown cell’s genotype 

class. Generally, logistic regression was performed in Spotfire and random forests, boosted 

trees, support vector machines, gradient boosted machines, and artificial neural networks were 

trained in the other platforms. Models were evaluated on labeled populations that were withheld 

during training. Based upon model performance on the testing dataset, a model was selected 

and deployed to the unlabeled cell populations. Starting with the strongest prediction scores, a 

list of cells with raft locations was generated. 

Cell Capture and DNA Extraction 

Cells were isolated using the Cell MicroSystems CellRaft Air System. CytoSort raft 

plates were received from Cell Microsystems (Durham, North Carolina). Given a list of raft 

coordinates, the Air System used a needle to eject each individual raft and transfer the raft to a 

semi skirted 96-well PCR plate (1402-9200, USA Scientific) via a magnetic wand. Each well of 

the PCR plate contained 5µL extraction buffer (molecular grade water with 10mM Tris-HCl (pH 

8.0), 2mM EDTA, 200 µg/mL Proteinase K, and 0.2% TritonX-100). Raft isolation was confirmed 

twice through post ejection imaging of the raft location and through visual inspection using a 

Leica S8AP0 dissection scope. Genomic DNA was extracted in a thermocycler immediately 

following raft isolation by incubating at 65°C for 15 minutes then 95°C for 5 minutes.  
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Single-Cell DNA Amplification 

Amplification of single-cell DNA prior to library preparation consists of two separate 

amplifications. An initial preamplification is conducted using extracted DNA with KOD Hot Start 

DNA Polymerase (71842-4, Millipore Sigma, Burlington, MA, USA) according to manufacturer’s 

instructions using all 5µL of extracted DNA in a total reaction volume of 20µL. Pre-amplified 

product was processed through an AMPure XP (Catalog: A63882, Beckman Coulter, Brea, CA, 

USA) bead clean up according to the manufacturer’s instructions using 10mM Tris-HCl pH 8.5 

as elution buffer. The second amplification uses the cleaned template and BioLine MyTaq HS 

Red Mix 2x (C755G97,Meridian Life Sciences, Memphis, TN, USA), according to manufacturer’s 

instructions, including 5% by volume DMSO. Primers in the second amplification contained 

universal 5’ tags to be compatible with Illumina library preparation (Forward tag: 5′-

CACTCTTTCCCTACACGACGCTCTTCCGATCT-3′, Reverse tag: 5′-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′).  

For amplification of MFN2 cDNA, primers amplifying the entire cDNA were used in the 

first amplification step, followed by multiplexed amplification of two specific regions containing 

the relevant mutations. Genotyping of the RFP-GFP cells used multiplexed primers that 

amplified specific regions in both the RFP and GFP regions. All primers are listed below in table 

2. 

 

Name 
Sequence (Excluding tags, where 
necessary) 

PCR 
Stage 

pMFN2.All.F GCTCTTCTCTCGATGCAACTCT 1 

pMFN2.All.R GCAGGTACTGGTGTGTGAAC 1 

pMFN2.1.F CACATGGCTGAGGTGAATGC 2 

pMFN2.1.R GCAGGAAGCAATTGGTGGTG 2 

pMFN2.2.F CTCAGAGTCCACCCTGATGC 2 
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pMFN2.2.R CACTTGAAAGCCTTCTGCGAG 2 

RFP.F GTTCATGCGCTTCAAGGTGC 1, 2 

RFP.R CAAGTAGTCGGGGATGTCGG 1, 2 

GFP.F TGAAGTTCATCTGCACCACCG 1, 2 

GFP.R TCGCCCTCGAACTTCACCTC 1, 2 

PRIMPOL.F GCAACCCAGTTTTGAAACCA 1, 2 

PRIMPOL.R  TCGATGTCCAGCTTTCCTCT 1, 2 

gRNA.F CTTGTGGAAAGGACGAAACACC 1, 2 

gRNA.R TTGTGGATGAATACTGCCATTTGT 1, 2 

   

Table 2. Genotyping Primers. 

Illumina Library Preparation 

These methods are expanded from Connelly et al. and Bell et al. After amplification with 

universal primers, each plate was amplified with specific forward and reverse Illumina index 

primers that indicate the PCR plate position and a unique plate ID. PCR amplification was 

performed with BioLine MyTaq HS Red Mix 2x (C755G97,Meridian Life Sciences, Memphis, TN, 

USA) according to the manufacturer’s protocol, pooled, and then cleaned using AMPure XP 

bead (A63882, Beckman Coulter Life Sciences, Indianapolis, IN,USA) cleanup procedure in the 

original amplification. DNA was quantitated on a NanoDrop One Spectrophotometer (Thermo 

Scientific, ND-ONE-W) before being submitted to the Center for Genome Sciences and 

Systems Biology (Washington University) to generate 2x250 reads on the Illumina MiSeq 

platform. 
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Sequencing Analysis 

Illumina paired reads were demultiplexed by the core facility and FastQ files were 

returned. The rest of the analysis was performed with laboratory software available on Gitlab 

(FIVTools/ LA, “Library Aligner”). Reads were joined and trimmed, then aligned with small 

sequence fragments at the genetic sites of interest containing the sequence to mutant or WT 

alleles. The result was a ‘counts’ table that gave the number of reads containing each 20-mer 

for each well. 20-mer search fragments are listed below in Table 3. After accounting for isolation 

and genomic amplification errors, around 80% of the isolated cells genotypes were captured. 

 

Name 20-mer (relevant 
mutations/deletions bolded) 

MFN2_V69 TGGACCCCGTTACCACAGAA 

MFN2_V69F TGGACCCCTTTACCACAGAA 

MFN2_L76 ACAGGTTCTGGACGTCAAAG 

MFN2_L76P ACAGGTTCCGGACGTCAAAG 

MFN2_R94 TGCTGGCTCGGAGGCACATG 

MFN2_R94Q TGCTGGCTCAGAGGCACATG 

MFN2_D221 CTGGATGCTGATGTGTTTGT  

MFN2_D221= CTGGATGCTGACGTGTTTGT 

MFN2_P251 CTCTCCCGGCCAAACATCTT 

MFN2_P251A CTCTCCCGGGCAAACATCTT 

MFN2_R280 CATGGAGCGTTGTACCAGCT 

MFN2_R280H CATGGAGCATTGTACCAGCT 

MFN2_W740 AAAGCCGGTTGGTTGGACAG 

MFN2_W740S AAAGCCGGTTCGTTGGACAG 

RFP_guide GGCCACGAGTTCGAGATCGA 

RFP_control AAGGTGCGGATGGAGGGCAG 
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GFP_guide TGCCCGAAGGCTACGTCCAG 

GFP_control CTACCCCGACCACATGAAGC 

PRIMPOL_WT GATAGCGCTCCAGAGACAAC 

PRIMPOL_del GATAGCGCTCCAGAGAAACA 

Table 3. 20-mer fragments. 
 

For MFN2 cDNA genotyping, each mutation locus was given a %mutant score 

calculated as the number of mutant reads divided by total number of reads at that locus. Cells 

were designated as wildtype if no locus had >50% mutant score, otherwise they were 

designated as a specific mutant based on which locus had the highest mutant score (ambiguous 

cells were excluded). Lastly, a flat file was exported containing each picked raft and its assigned 

genotype. 

Using our custom software (FIVTools/ AUC), we joined the modeling and genotyping flat 

files to find overall accuracy and generate ROC curves for each model. We also generated 

‘noise’ ROC curves by shuffling the assigned genotypes. Prediction scores between 0.4 and 0.6 

were filtered out (scores near 0.5 meant the specific model was unable to classify these cells). 

For the data presented in Figure 4e,d, this threshold was further adjusted. 

Isogenic Line Production 
For clonal cell growth, single live cells were isolated by the Cell Microsystems Air 

System into 96-well tissue culture plates (TPP 92096), containing 200µl of media per well. As 

the isogenic lines grew, the entirety of each well was passaged into a plate of larger size (96 to 

24 to 12 to 6 well plates from TPP) after reaching ~50% confluency. It took 2 weeks to go from 

single-cell to 50% confluency in the 96-well plate, and during that time wells were checked for 

contamination and media level every 2 days. After the cells were plated in the 6-well plate, one 

third of the cell suspension was taken through DNA extraction for genotyping. One third was 

frozen down for long term storage, and the remaining third was kept for downstream 
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experiments. The entire process took ~2 months to go from single cells to frozen 

stocks/genotyping data. Genomic DNA samples were initially genotyped to determine the 

gRNA(s) present (as described in the preceding sections). Following identification of specific 

gRNA(s), primers were designed by identifying regions containing gRNA target sites and finding 

primers that encompassed those regions (Table S5). The genomic DNA samples were then 

amplified and genotyped a second time using the primer set(s) specific to the target regions in 

the sample. 

Metabolic Analysis 
All metabolic analyses were conducted using an Agilent SeahorseXF96 extracellular flux 

analyzer. Cell culture microplates (Agilent 102601-100) were seeded with 50,000 cells 24 hours 

prior to running the assay. Sensor cartridges (Agilent 102601-100) were hydrated with sterile 

water and incubated, along with XF calibrant (Agilent 100840-000), in a non-CO2 incubator 24 

hours prior to use. Complete Seahorse assay medium (Agilent 103680-100) was made 

immediately prior to running the assay according to the manufacturer's instructions. 160µL of XF 

calibrant was added to the entirety of the plate. The cell culture microplate and sensor cartridge 

were then incubated at 37°C in a non-CO2 incubator. All assays performed used the Seahorse 

XF Cell Mito Stress Test Kit (Agilent 103015-100) with Oligomycin 1.5µM, FCCP 1.0µM, 

Rotenone/Antimycin A 0.5µM, compounds were reconstituted and diluted using complete seahorse 

medium on the day of the assay. Cell number normalization was performed through image-based 

counting of cells prior to running the assay (using the InCell as described above).  
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Supplementary Methods  

Cell Picking 
Each raft has a four-character alphanumeric coordinate (Raft ID). Fiduciary markers located at 

fixed locations on the raft plate (shown below) in conjunction with custom software (FIVTools > 

Cal Check, Calibration) were used to locate individual rafts for map generation (see Image 

Analysis and Quality Control). 

 

Cropped example field of CytoSort raft plate: 

Alphanumeric fiduciary markers are etched 

on every 10 rafts (e.g. G0L0), and dot 

fiduciary markers are etched on every 5 rafts. 

Rafts with fiduciary markers are highlighted 

with red outlines. 

 

 

HEK293 Cell Nucleofection 

SF cell line solution stock was prepared from the Lonza SF Cell line 4D-Nucleofector LV Kit XL 

(V4LC-2520) kit by combining 82µL of SF Cell Line NucleofectorTM Solution with 18µL 

Supplement 1. 20µL of stock solution was then combined with 2µL 1mg/mL Cas9 protein (QB3 

MacroLab) and 2µL 1mg/mL gRNA. The complexes were incubated on the benchtop for 10 

minutes. Cell suspensions of 2x105 cells were placed in 1.5 mL microcentrifuge tubes and spun 
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down. Supernatant was carefully removed avoiding the cell pellet. The cells were rinsed in 1x 

PBS and centrifuged a second time. Supernatant was carefully removed, and the cells were 

resuspended in the final combined SF cell line solution and transferred to a nucleofector 

cuvette, found in the nucleofector kit. The cuvette was placed in the Lonza 4D-Nucleofector 

Unit. (Lonza AAF-1002X, AAF-1002B) and nucleofected with Pulse code CM130. Nucleofected 

material was added to a prewarmed 6 well plate with 5mL of DMEM media in each well. 

Nucleofected cells were incubated for 48 hours for recovery. The cell line solution is not healthy 

for the cells, so speed is a priority upon resuspension in cell line solution. 

RFP-GFP Cell Perturbation and Isolation 

 A HEK293 cell line expressing both RFP and GFP (Gentarget #SC009) was used in this 

experiment. Cells were then nucleofected with a gRNA targeting GFP 

(TGCCCGAAGGCTACGTCCAG) or RFP (GGCCACGAGTTCGAGATCGA) and Cas9. All 

gRNAs were ordered from Synthego. Nucleofection was conducted using a Lonza 4D-

Nucleofector Unit. (Lonza AAF-1002X, AAF-1002B). Following the Raft-Seq workflow, cells 

were imaged and the guide presence was predicted by a combination of RFP and GFP intensity 

features. Cells were selected and isolated into 96-well plates. Alternatively, cells were sorted 

using a Sony SH800S cell sorter individually by their RFP and GFP fluorescence. Cells were 

then genotyped and designated as being given the RFP or GFP guide if the locus that the 

respective guide targets had been altered. 

Modeling Considerations 
We implement several specific design criteria during the experimental setup and model 

selection. First, the ‘pure’ samples are split into testing wells and training wells so that we can 

decrease overfitting during model selection. For most of the experiments presented herein, our 
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training datasets comprised two of the three labeled population wells of each type—the two 

wells must come from different plates—and use the remaining two labeled wells as “testing 

sets”. We split the data by well rather than randomly assigning cells from all pure population 

wells to mitigate the influence of batch effects during modeling. It is important to note that the 

actual data used for ultimate validation of the models will be the identities of the perturbagen in 

the unlabeled cell population. These are independent of the model scores of the pure 

populations, so we do not have to be concerned about hyperparameter overfitting from 

examining the testing data. Second, the testing wells are spread across different plates to 

hopefully account for batch effects. Since training data and testing data technically come from 

separate samples, we observed several odd phenomena such as prediction quality improving 

for testing data. These phenomena would most likely not be observed if the model-generating 

data were truly randomized, but we felt it was important to retain any variance caused by batch 

effects, since batch effects present a large and consistent obstacle to cell imaging analysis 

(Caicedo et al.).  

Relatedly, we make sure not to create any artificial batch effects generated by 

inconsistencies in the screening process. All stains used are prepared as a single batch to be 

used across plates. All imaging and feature extraction settings are kept constant across each 

plate in a screening experiment. 

Another aspect of model design that we consider is the exclusion of ‘leaky’ variables, or 

variables that happen to correlate with the data labels. Since our labeled data exists on specific 

positions of the plate, including a variable that is effectively a proxy for cell position would render 

the model useless on unlabeled data. We have found that several variables that are in the 

standard output of IN Carta feature extraction are leaky, such as features measured on a global 

basis, and we exclude them before starting the modeling process. 

We also face a time constraint in our modeling pipeline. This time constraint is caused 

by the necessity of the locations of cells on the plate staying constant between imaging and 
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isolation. Though we can fix the cells, a modeling pipeline based on that assumption would limit 

our ability to perform Raft-Seq for the isolation of live cells. Optimally, we complete feature 

selection, modeling, and raft selection within six hours of imaging, and continue on to isolation. 

This of course, requires a lot of computational power. 
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Supplementary Data 
 

 
Figure S1: Box plots of important features extracted from TMRM and MitoTracker staining. 
Histograms are colored by whether the cell was wild type (unmodified wild type or modified with 
a wild type MFN2 cDNA), contained MFN2 cDNA containing a benign mutant, or contained 
MFN2 cDNA containing a pathogenic mutant. Features that showed no apparent difference 
between mutants were omitted. 
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Figure S2: Scatter plot for cell feature data UMAPs, highlighted by cell genotype. In blue, U2OS 
WT refers to cells uninfected with lentivirus, while MFN2 WT refers to cells infected with 
lentivirus containing the wild type MFN2 gene. Otherwise, the highlighted genotype refers to the 
mutation present in the introduced MFN2 gene (red pathogenic, green benign). 
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Figure S3 Model AUCs for identifying a mixture of wild type and six pathogenic mutant 
cell lines: Left: A histogram of AUCs for models detecting mutants in the unlabeled population 
of wild-type cells and mutants. On top, a histogram of AUCs generated from randomly assigning 
models is shown as a comparison. Right: A scatterplot showing the performance of 610 models 
in detecting mutants in a mixture of wild type cells and four pathogenic mutants. Each point 
represents a model and its position is determined by its ability to distinguish cells in the pure 
control wells and cells in the mixed wells. 
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Figure S4 Modeled ROC from flow cytometry: ROC Curve based on flow data for MFN2 WT 
vs. MFN2 R280H mutants on the PerCP-Cy5.5-A-Compensated channel.  
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Figure S5 Results from Raft-Seq between P251A Pathogenic and D221= Benign: ROC 
Curves which were generated using the best model, separated by data that was generated from 
cells picked from wells in the labeled cell population (upper) and from the unlabeled cell 
population (lower). The red curves are for the models in question and the grey curves are those 
for control models generated by random shuffling of labels. 
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Figure S6 Fitness consequences of MFN2 mutations. a,b) U2OS stable lines containing 
R94Q, L76P, mutations, or the WT control line were grown in separate wells or evenly mixed 
together. This was done at 2 densities 75,000 (a) and 150,000 (b) cells / well of a 6-well plate 
and cells were allowed to grow for 4 days. Cells grown independently were harvested into the 
same tube (so all subsequent steps would be together). All cells were taken through the 
genotyping pipeline using the same primers as above, then the reads were counted, and the 
proportion of each cell type measured. c,d) A similar experiment was performed with the 
scanning MFN2-targeted gRNAs, under Dox (c) to induce Cas9 cutting, or under control 
conditions (d) with the gRNAs, but no Dox (and therefore no Cas9 cutting). Samples were taken 
initially, then at 3 and 7 days after Dox induction. Bulk timepoint samples were processed 
through the genotyping pipeline and reads were counted for each gRNA.  
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Figure S7. Isogenic Feature Comparison. We compared the distributions of the important 
features identified earlier for anomalous cells and strong pathogenic mutants (L76P & R94Q) by 
normalizing each to the distribution of the non-anomalous and benign mutants, respectively. 
Some of the features covaried between pathogenic and anomalous, and this pattern was 
stronger than in the non-anomalous (pathogenic vs. non-anomalous r2 -0.02, vs anomalous r2 
0.001, neither significant). Red is for the distribution in the pathogenic cells; purple is for the 
anomalous cells. Background grey shading indicates the base distribution for the non-
anomalous/benign cells. Bar width and ranges correspond to 0.687σ in both directions, covering 
50% of the data. Anomalous cells are the top 0.5% highest anomaly-detection scores from 152 
models.  
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Figure S8: MFN2 Isogenic Lines carrying mutations are distinct from WT. Decision Jungles were 
trained on either WT vs. Known KO clones (A) or known mutants and known un-cut clones (B) with 
either 16, 12, or 8 features per model. Each model had a random set of features it could use in training. 
Then, the model was deployed and the Kruskall-Wallis p-Value comparing the model scores of the 
UTR/Coding mutants with the WT clones was assessed (these p-values are displayed as -log10 on either 
side of the graph). 
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Figure S9. Endogenous MFN2 Mutant Line Can Be Effectively Separated from a Non-
Cutting Control. a) U2OS cells with were screened against the MFN2 gRNA library using Raft-
Seq, and single cells were picked for isogenic growth. One line, 5’ UTR Ins A04, was used here 
in a Raft-Seq experiment to compare its ability to separate against an un-cut control. The model 
was trained in AzureMLStudio (two class decision jungle) with 5 features (Nuclei Area, 
Mitotracker Intensity Kurtosis, Skewness, Energy and TMRM Intensity Entropy). b) Ranked 
histogram comparing single cells from labeled wells (where only the mutant or control were 
plated) against their prediction probabilities from the 5-feature model. Cells from the control 
(labeled) wells, and mixture well (20% mutant, 80% control) were picked and genotyped. c) 
ROC curves for the labeled (control) well (n=77). d) ROC curve from the wells with a mixture of 
the two cell types. The model performed with an AUC = 0.9, accuracy of 88%, precision 69% (n 
= 490 cells). Red curves are the real data while the gray curves were generated from sets of 
data where the link between the true genotype and the prediction probability were scrambled 
(noise models).  
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Feature Stain 

Mito Total Area Mitotracker Red 

Nuclei Low Grey Level Run 
Emphasis 

Mitotracker Red 

Mito Intensity Mitotracker Red 

Cells Entropy Mitotracker Red 

Nuclei Intensity CV Mitotracker Red 

Cells Skewness Mitotracker Red 

Cells Total Intensity (Cyto) Mitotracker Red 

Cells Intensity Spreading Mitotracker Red 

 
Table S1: Table of the 8 features used for cell isolation and random feature assembly with the 
corresponding stain. 
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Clone Name Mutation Type DNA Cut gRNA Sequence Ex I/I+C 

H20fs/WT 
H20 Frameshift / 
WT Coding g.chr1:11989226_11989232delCACATGG AAATAAGAGACACATGGCTG 2 0.376 

V459fs/WT 
V459 Frameshift 
/ WT Coding g.chr1:12004594_12004595insC CCCTTCTCCAGTAGTCCTCA 12 0.46 

P588fs/PQG590
del/WT 

P588fs / 
PQG590del / WT Coding 

g.chr1:12006581_12006608delCCCCACTGCCA
CAGGGCTCGCTCACCCA, 
g.chr1:12006588_12006596delGCCACAGGG 

ACTGCCACAGGGCTCGCTCA/CA
CTGCCACAGGGCTCGCTC 16 0.31 

LEH710del/WT 
LEH710del / 1+ 
WT Coding g.chr1:12009648_12009656delACCTGGAGC CACCCGGGAGAACCTGGAGC 18 0.24 

VS507del/PV50
6del 

Exon 15, 
VS507del/PV506
del Coding 

g.chr1:12005732_12005737delCTGTGT, 
g.chr1:12005731_12005736delCCTGTG GTGTCTGTGCGGAGTCAGAT 15 0 

SRT612del/S61
5del/S615fs 

Exon 16, 
SRT612del / 
S615del / S615fs Coding 

g.chr1:12006655_12006664delTCCAGGACC, 
g.chr1:12006662_12006665delCCT, 
g.chr1:12006662_12006672delCCTCCATGGG GGACCTCCATGGGCATTCTT 16 0 

5'UTRdel 
A2P2-B05 

5' UTR Deletion 
(3 var) UTR 

g.chr1:11980300_11980309delGAGGCGTAAG, 
g.chr1:11980302_11980332delGGCGTAAGGAG
TAGGCGGGGCGAGCCGGCTG, 
g.chr1:11980312_11980340delGACTCGGGTCG
GCCGAGCGGGGCGGATGA* GCAGAGGCGTAAGGAGTAGG 1 0 

5'UTRdel/WT 
A3P1-E02 

5' UTR Deletion 
/ 2+ WT UTR g.chr1:11980421_11980431delCTGGGGTGGCG CTGGGGTGGCGCTCGCTGGT 1 0.38 

5'UTRins 
A1P2-A04 

5' UTR Insertion 
(3 var) UTR 

g.chr1:11980347_11980348insAAG, 
g.chr1:11980348_11980349insCCC, 
g.chr1:11980349_11980350insGGTC CCAGCTCACCCGGGTCGAGG 1 0 

5'UTRdel/WT 
A1P1-F08 

5' UTR Deletion 
/ 2 WT UTR g.chr1:11980421_11980431delCTGGGGTGGCG CCTGGGGTGGCGCTCGCTGG 1 0.35 

5'UTRdel/WT 
A2P1-D02 

5' UTR Deletion 
/ 2 WT UTR g.chr1:11980421_11980431delCTGGGGTGGCG CCTGGGGTGGCGCTCGCTGG 1 0.34 

5'UTRdel/WT 
A3P2-A05 

5' UTR Deletion 
/ 2 WT UTR g.chr1:11980421_11980431delCTGGGGTGGCG CCTGGGGTGGCGCTCGCTGG 1 0.36 

5'UTRdel 
A3P3-C09 

5' UTR Deletion, 
No WT UTR g.chr1:11980286_11980288delGTC AGTCGCGGGGCAGCAGAGGC 1 0 

5'UTRdel 
A3P3-D05 

5' UTR Deletion, 
No WT UTR g.chr1:11980414_11980419delCCTCCC CCCCCTGGGGTGGCGCTCGC 1 0 

3'UTRdel 
A2P3-E04 3' UTR Deletion UTR 

g.chr1:12012466_12012472delACACAGG, 
g.chr1:12012468_12012472delACAGG, 
g.chr1:12012689T>C CACAGGACAGCTGGAGAATG 19 0 

3'UTRdel/WT 
A2P1-A08 

3' UTR Deletion 
(2 different) / 1 
WT UTR 

g.chr1:12013130_12013170delCCACTTCACAG
CATGTCAGGGAAAATCACTGTCACACAATT
, g.chr1:12013195delA 

GGCCACTTCACAGCATGTCA/GG
GCCACTTCACAGCATGTC 19 0.09 

3'UTRins 
A2P1-C06 

3' UTR Indel (2 
different, No 
WT) UTR 

g.chr1:12013045_12013046insT, 
g.chr1:12013195delA TCAGTCTGTCCTGTTGTGTG 19 0 

3'UTRdel/WT 
A2P2-C04 

3' UTR Deletion 
/ 1 WT UTR g.chr1:12013094_12013104delTGTTCCCGGCG ATGCTGTGGGTGGATGTTCC 19 0.23 

3'UTRdel 
A2P2-E05 

3' UTR Deletion 
(2 different) No 
WT UTR 

g.chr1:12012811_12012828delGTGAGAAAAGC
AGTTTGG, 
g.chr1:12012815_12012830delGAAAAGCAGTT
TGGGT CTGTGTGAGAAAAGCAGTTT 19 0 

3'UTRdel/WT 
A2P3-A04 

3' UTR Deletion 
/ WT UTR 

g.chr1:12012692_12012724delCCACCCTCCCTG
ATCTCCAGAACCTTCGACTGA TCGACTGACCCCCTTGTCTT 19 0.26 
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3'UTRdel/WT 
A1P1-C06 

Exon 19, 3' UTR 
Deletion (large) UTR g.chr1:12012447 [large del] TCCACTTGGCCTCGTTCTGC 19 0.32 

WT A3P2-F10 WT WT CCTGGGGTGGCGCTCGCTGG 
 

0.5 

WT A2P3-G09 WT WT CCTGGGGTGGCGCTCGCTGG 
 

0.48 

WT A2P2-F12 WT WT CCTGGGGTGGCGCTCGCTGG 
 

0.46 

WT A3P3-C08 WT WT CTGGGGTGGCGCTCGCTGGT 
 

0.51 

WT A2P2-F05 WT WT AAGGTGGGGACGTTGGTGGC 
 

0.52 

WT A2P3-G12 WT WT AGAAGAAGATCAATGGCATT 
 

0.49 

WT A3P3-D08 WT WT ATTGCTTCCTGCGGGTAGAG 
 

0.52 

WT 3E5 WT WT WT Parental Clone N/A 
 

0.5 

 
Table S2: MFN2 Isogenic mutant line information table. The U2OS isogenic lines were 

genotyped to determine the gRNA and the editing consequence of Cas9 cutting. The table shows the 

‘Clone Name’ used in other parts of the paper as well as the longer mutation definition for the clone and 

the specific genomic mutation. Also listed is the sequence of the gRNA used, the exon where the cut was 

located, and the % of intact target reads as a ratio with a control (constant) sequence, where 0 = all alleles 

are mutant, and 0.5 = all alleles are WT. Variant calling was performed after paired end reads were 

merged using the fastq-join method from ea-tools (https://github.com/ExpressionAnalysis/ea-utils). Merged fastq files 

were then aligned using BWA-mem (DOI:10.1093/bioinformatics/btp324). Annotated variant call files were 

produced using Picard Tools (http://broadinstitute.github.io/picard/) and the Genome Analysis Tool Kit (DOI: 

10.1101/201178). 
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Mitochondrial Feature KW p-value 

CELLS ENTROPY WVT 2.72E-17 

CELLS ENTROPY WVM 4.40E-16 

CELLS KURTOSIS WVT 2.62E-15 

CELLS ENERGY WVT 8.06E-15 

CELLS KURTOSIS WVM 2.06E-13 
CELLS SKEWNESS WVM 3.11E-13 

CELLS INTENSITY (CYTO) WVM 3.10E-12 

CELLS ENERGY WVM 1.59E-10 

CELLS INTENSITY (CELL) WVM 1.64E-10 

CELLS INTENSITY (CYTO) WVT 2.42E-10 

CELLS GREY LEVEL NON UNIFORMITY WVM 2.60E-10 

CELLS RUN LENGTH NON UNIFORMITY WVT 3.41E-10 

NUCLEI ENTROPY WVT 4.33E-10 

CELLS RUN LENGTH NON UNIFORMITY WVM 4.78E-10 

CELLS LOW GREY LEVEL RUN EMPHASIS WVT 7.24E-10 

CELLS INTENSITY (CELL) WVT 2.49E-09 

CELLS SKEWNESS WVT 6.26E-09 

NUCLEI ENERGY WVT 9.21E-09 

CELLS TOTAL INTENSITY (CYTO)  WVT 2.23E-08 

CELLS TOTAL INTENSITY (CELL)  WVT 1.21E-07 

NUCLEI ENTROPY WVM 2.66E-07 

CELLS TOTAL INTENSITY (CYTO)  WVM 9.80E-07 
CELLS TOTAL INTENSITY (CELL)  WVM 3.76E-06 

NUCLEI LOW GREY LEVEL RUN EMPHASIS WVT 7.18E-06 

CELLS GREY LEVEL NON UNIFORMITY WVT 8.21E-06 

NUCLEI RUN LENGTH NON UNIFORMITY WVT 2.34E-05 

CELLS MAX INTENSITY WVT 3.08E-05 
NUCLEI GREY LEVEL NON UNIFORMITY WVM 5.76E-05 

NUCLEI TOTAL INTENSITY WVT 1.00E-04 

NUCLEI SKEWNESS WVM 2.04E-04 

CELLS LOW GREY LEVEL RUN EMPHASIS WVM 4.76E-04 

NUCLEI INTENSITY WVT 5.42E-04 

NUCLEI TOTAL INTENSITY WVM 5.72E-04 

NUCLEI MAX INTENSITY WVT 5.93E-04 

NUCLEI INTENSITY WVM 8.27E-04 
 
Table S3: Individual mitochondrial features that distinguish the isogenic mutants from un-cut 
clones. The name of the engineered feature and the Kruskal-Wallis p-Value distinguishing the single 
feature’s mean difference between the cut isogenic clones (UTR or coding), and the WT isogenic clones.  
WVM refers to Mitotracker and WVT refers to TMRM. Features with Level in the name are texture-
based features. 
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 Clone Baseline FCCP Oligomycin ROT/AA 
iCas9-3E5 1 (0.99/1) 2.02 (2/2.04) 0.39 (0.38/0.39) 0.27 (0.27/0.27) 

WT A2P2-F12 1.02 (1.01/1.03) 1.5 (1.43/1.58) 0.44 (0.42/0.46) 0.25 (0.24/0.25) 

WT A2P3-G12 0.8 (0.79/0.81) 1.69 (1.66/1.72) 0.34 (0.34/0.34) 0.26 (0.26/0.27) 

WT A3P3-C08 0.77 (0.77/0.78) 1.52 (1.46/1.58) 0.27 (0.27/0.27) 0.21 (0.21/0.21) 

WT A3P3-D08 1.02 (1.01/1.02) 1.86 (1.78/1.95) 0.42 (0.41/0.43) 0.29 (0.29/0.3) 

3'UTRdel/WT A2P3-A04 0.97 (0.95/0.98) 2.02 (2/2.04) 0.32 (0.32/0.32) 0.21 (0.21/0.22) 

5'UTRdel A2P2-B05 0.95 (0.93/0.97) 2.11 (1.97/2.25) 0.33 (0.33/0.33) 0.22 (0.21/0.22) 

5'UTRins A1P2 0.88 (0.88/0.89) 1.77 (1.74/1.8) 0.34 (0.34/0.34) 0.25 (0.25/0.25) 

3'UTRdel A2P3-E04 0.87 (0.86/0.88) 1.99 (1.98/2.01) 0.34 (0.34/0.35) 0.2 (0.2/0.21) 

3'UTRdel/WT A2P1-A08 0.74 (0.73/0.76) 1.48 (1.45/1.5) 0.29 (0.28/0.29) 0.19 (0.19/0.2) 

3'UTRdel A2P2-E05 0.72 (0.71/0.72) 1.6 (1.58/1.62) 0.26 (0.25/0.26) 0.19 (0.18/0.19) 

MFN2 L76P 0.7 (0.7/0.71) 1.2 (1.18/1.21) 0.28 (0.28/0.28) 0.2 (0.2/0.2) 

H20fs/WT 0.68 (0.67/0.68) 1.29 (1.28/1.31) 0.28 (0.28/0.28) 0.21 (0.21/0.21) 

V459fs/WT 0.6 (0.59/0.61) 1.05 (1.01/1.09) 0.22 (0.21/0.22) 0.15 (0.15/0.15) 

VS507del/PV506del 0.56 (0.55/0.58) 1 (0.97/1.03) 0.23 (0.23/0.24) 0.17 (0.17/0.17) 

3'UTRdel/WT A2P2-C04 0.55 (0.54/0.56) 1.07 (1.05/1.08) 0.18 (0.18/0.18) 0.11 (0.11/0.11) 

5'UTRdel A3P3-C09 0.44 (0.43/0.45) 0.77 (0.73/0.8) 0.15 (0.15/0.16) 0.09 (0.09/0.1) 

SRT612del/S615del/S615fs 0.31 (0.31/0.32) 0.53 (0.51/0.54) 0.14 (0.14/0.14) 0.1 (0.1/0.1) 

3'UTRdel/WT A1P1-C06 0.2 (0.2/0.2) 0.27 (0.26/0.28) 0.09 (0.09/0.09) 0.06 (0.05/0.06) 

 Table S4: Metabolic testing results on the U2OS MFN2 mutant isogenic cell lines. The ‘Clone Name’ 
for each isogenic line is given, the average and upper/lower 95% confidence intervals (in parentheses) of 
the OCR (pMoles/min) normalized to parental WT control (iCas9-3E5). The 4 columns indicate baseline 
OCR vs the OCR after adding the named toxins. Mutant clones are sorted so that normal basal activity is 
listed first with more disrupted activity listed further down, row borders are used as a visual aid only.    
 
Table S5: Separate Excel File.   
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