

Extracellular matrix gene expression signatures as cell type and cell state identifiers

Fabio Sacher¹, Christian Feregrino¹, and Patrick Tschopp^{1*}, Collin Y. Ewald^{2*}

1 Universität Basel, DUV Zoology, Basel CH-4051, Switzerland

2 Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland

*Corresponding authors: collin-ewald@ethz.ch (CYE) and patrick.tschopp@unibas.ch (PT)

Keywords: matrisome, matreotype, cell type, scRNA-seq, limb development

Highlights:

- Cell types produce unique extracellular matrix compositions
- Dynamic extracellular matrix gene expression profiles hold predictive power for cell type and cell state identification

1 **Abstract**

2 Transcriptomic signatures based on cellular mRNA expression profiles can be used to
3 categorize cell types and states. Yet whether different functional groups of genes perform
4 better or worse in this process remains largely unexplored. Here we test the core matrisome
5 - that is, all genes coding for structural proteins of the extracellular matrix - for its ability
6 to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data.
7 We show that even though expressed core matrisome genes correspond to less than 2% of
8 an entire cellular transcriptome, their RNA expression levels suffice to recapitulate
9 important aspects of cell type-specific clustering. Notably, using scRNA-seq data from the
10 embryonic limb, we demonstrate that core matrisome gene expression outperforms random
11 gene subsets of similar sizes and can match and exceed the predictive power of transcription
12 factors. While transcription factor signatures generally perform better in predicting cell
13 types at early stages of chicken and mouse limb development, *i.e.*, when cells are less
14 differentiated, the information content of the core matrisome signature increases in more
15 differentiated cells. Our findings suggest that each cell type produces its own unique
16 extracellular matrix, or matreotype, which becomes progressively more refined and cell
17 type-specific as embryonic tissues mature.

18

19

20 **Introduction**

21 How to define and identify different cell types remains a fundamental challenge in biology
22 [1–4]. Cell types have traditionally been classified based on their morphology and function,
23 by the tissues from where they were isolated, their ontogenetic origin, or their molecular
24 signatures [3]. In recent years, gene expression data from single-cell transcriptomic studies
25 (scRNA-seq) have been used to characterize and fine-tune different cell type classification
26 systems [2,3,5].

27

28 Cellular fate and cell-type-specific gene expression programs are thought to be largely
29 regulated by transcription factors and their corresponding *cis*-regulatory networks [2,4,6].
30 Accordingly, transcription factor expression profiles can be useful in identifying cell types
31 from scRNA-seq data [2,7,8]. Yet other cellular properties can also vary dynamically, in a
32 cell type-specific manner. Hence, we were looking for additional sets of putative
33 ‘biomarker’ genes, to identify cell types and states.

34

35 The extracellular matrix (ECM) has traditionally been thought of as a static protein network
36 surrounding cells and tissues. However, the ECM has recently emerged as a highly dynamic
37 system [9–11]. In fact, transcription and translation of some ECM genes are even coupled
38 to circadian rhythm, highlighting the dynamic nature of ECM composition [12].
39 Experimentally, ECM composition has so far been determined mostly by proteomics assays
40 [13]. More recently, *in-silico* approaches have defined the ‘matrisome’ gene sets
41 representing all genes either forming or remodeling the ECM, as present in a given species’
42 genome [13,14]. The matrisome is divided into two main categories: the core matrisome

43 encompassing all proteins that form the actual ECM (collagens, glycoproteins,
44 proteoglycans) and the matrisome-associated proteins that either bind to the ECM, remodel
45 the ECM, or are secreted from the ECM [13,14].

46

47 Importantly, it has been postulated that each cell type produces its own unique ECM [14–
48 17]. To capture this concept, we have recently defined the ‘matreotype’, an extracellular
49 matrix signature associated with - or caused by - a given cellular identity or physiological
50 status [17]. For instance, cellular status, including metabolic, healthy or pathologic, or aging
51 have been associated with distinct ECM expression patterns (*i.e.*, matreotypes) [14,17–21].
52 Furthermore, cancer-specific cell types can be identified based on their unique ECM
53 composition [13,14,20,22]. This indicates that ECM composition is plastic and adapts to
54 cellular needs or status. Since this is a highly dynamic process, snapshots of unique ECM
55 compositions are reflected in distinct matreotypes.

56

57 Based on this, we hypothesized that ECM gene expression is a dynamic parameter that could
58 hold predictive value to function as a biomarker for cell type and state identification. To
59 test our hypothesis, we re-analyzed publicly available scRNA-seq data and specifically
60 examine ECM gene expression signatures. Unsupervised clustering of scRNA-seq data using
61 the whole transcriptome - or highly variable genes therein - is a common strategy to classify
62 cell types [2,3,5]. Here we use defined transcriptome subsets - namely, expressed
63 transcription factors, core matrisome genes, and random transcriptome subsets of equal size
64 - to re-cluster scRNA-seq data and evaluate the resulting clusters in comparison to the
65 performance of the entire transcriptome. In embryonic data coming from chicken and

66 mouse limbs, we find that the core matrisome has less predictive power in undifferentiated
67 cells, early during development, but outcompetes transcription factors later in development
68 and in more differentiated cell types. Consequently, we propose matreotype gene
69 expression signatures as context-dependent proxies for identifying cell types.

70

71 **Results**

72 **Defining the chicken core matrisome**

73 The matrisome has been defined for humans (1027 genes), mice (1110 genes), zebrafish
74 (1002 genes), planarian (256 genes), *Drosophila* (641 genes), and *C. elegans* (719 genes),
75 where it corresponds to roughly 4% of their protein-coding genes [14,23–26]. In order to
76 expand the number of model organisms amenable to ‘matreotype’ investigation, we first
77 decided to define the chicken matrisome. Using the 1110 mouse and 1027 human
78 matrisome gene lists to perform orthology and InterPro domain searches, we identified 631
79 and 656 chicken matrisome genes, respectively (Supplementary Fig. 1, Supplementary
80 Table 1). In summary, we define the chicken matrisome with 217 core-matrisome genes
81 and 443 associated-matrisome genes (Supplementary Table 1).

82

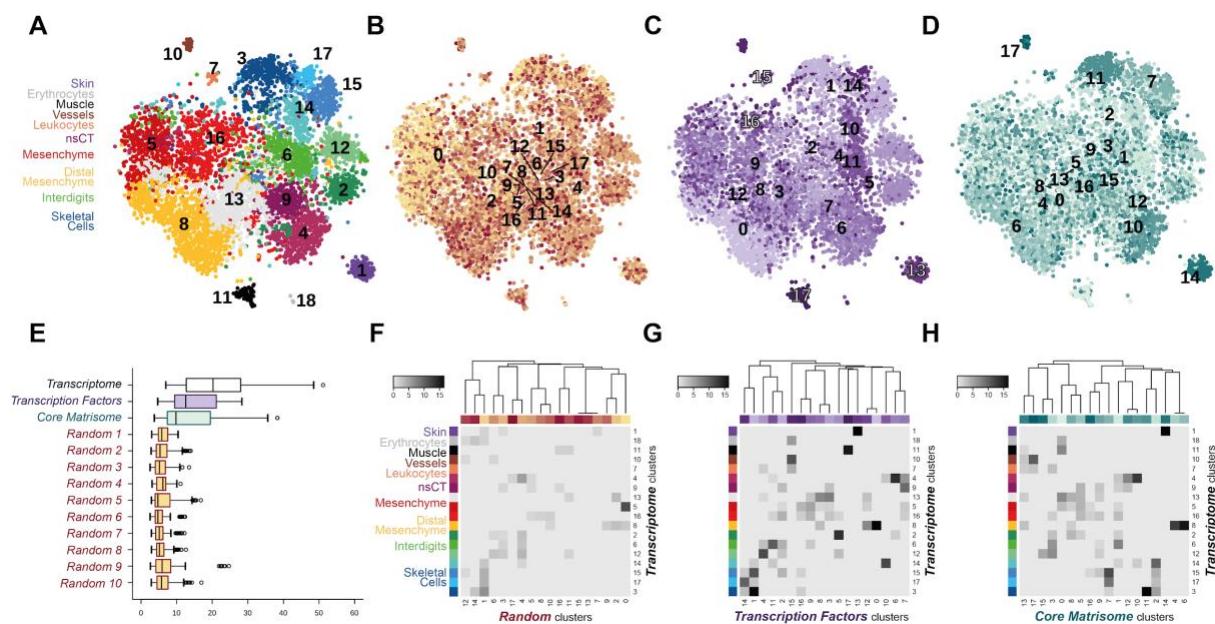
83 **The chicken core matrisome as a molecular signature with cell-type specificity**

84 To evaluate the cell type clustering performance of the ‘chicken core matrisome’, we re-
85 analyzed embryonic stage HH29 (stage 29 Hamburger and Hamilton) [27] chicken hind
86 limb scRNA-seq data [28]. At this point of development, chicken limb progenitor cells have
87 already differentiated into transcriptionally distinct tissue types [28], which is reflected in
88 the separation of our t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality
89 reduction and the superimposed, color-coded clustering information (Fig. 1A). We
90 compared the cell type clustering of the core matrisome to the entire transcriptome and
91 contrasted its performance with highly variably expressed transcription factors -
92 representing a ‘traditional cell type identifier’ - and an equal number of randomly picked
93 genes, to estimate baseline clustering. Of the 217 chicken core matrisome genes, 136 were

94 expressed in our limb scRNA-seq data (Data Source File 1). Accordingly, we picked 136
95 genes randomly, as well as the 136 most variably expressed transcription factors, chosen by
96 maximum variance across all cells in the sample. With these three small subsets of genes -
97 representing only 1.26% of all expressed genes -, we re-clustered our data using the
98 Louvain-Jaccard algorithm. We adjusted the resolution to obtain the same number of
99 clusters as for the entire transcriptome, and plotted the resulting clusters in an unsupervised
100 manner onto a t-SNE plot calculated from the entire transcriptome (Fig. 1B-D). A
101 qualitative inspection of the plots showed that the clusters resulting from a 'random gene
102 set' did not clearly coincide with any clusters identified using the entire transcriptome,
103 suggesting that they failed as transcriptional predictors for any given cell type (Fig. 1A, B).
104 By contrast, 'transcription factor' clusters showed good correspondence to our whole
105 transcriptome clustering (Fig. 1A, C). Intriguingly, we found that the 'core matrisome' was
106 sufficient to identify several cell type clusters (Fig. 1A, D). For example, 'core matrisome'
107 clusters m-7, m-11, m-14, and m-17 corresponded roughly to skeletal progenitors (t-15),
108 joint progenitors (t-3), skin (t-1), and vessel (t-10) clusters, as identified by the entire
109 transcriptome (Fig. 1A, D). Thus, these core matrisome-identified clusters largely reflected
110 cell types of tissues that are embedded in collagen-rich ECMs.

111
112 To quantify the separation among random genes-, transcription factors-, and core
113 matrisome-based clusters, we plotted the distribution of all pairwise Euclidean distances,
114 i.e. distances between all pairs of clusters, and compared them to the entire transcriptome
115 result. Both the 'core matrisome' and the 'transcription factors' clusters clearly
116 outperformed ten iterations of 'randomly-picked' genes subsets of equal size (Fig. 1E).

117 Moreover, using a hypergeometric test, we were able to demonstrate that the probability of
118 cluster overlap - between the entire transcriptome clusters and the three subsets clusters -
119 was substantially higher for 'core matrisome' and the 'transcription factors' clusters (Fig.
120 1F-H). For the 'core matrisome', this was particularly evident for clusters corresponding to
121 cell types known to produce a complex ECM, such as skeletal cells or skin (Fig. 1G).
122 Moreover, even within the same cell type, the matrisome seemed able to distinguish
123 discrete cell states. For example, 'core matrisome' clusters m-4 and m-6 reconstituted
124 'transcriptome' cluster t-8, the distal mesenchyme, indicating that the highly proliferative
125 state of this mesenchymal sub-population is reflected by a distinct 'matreotype' (Fig. 1G).
126 Taken together, our re-clustering analysis of chicken limb scRNA-seq data - using only the
127 expression status of either core matrisome genes, transcription factors, or a random control
128 gene set - indicates the potential of core matrisome gene expression status as a cell type and
129 cell state identifier.



130
131 **Figure 1. Core matrisome and transcription factors re-capitulate entire transcriptome cell**
132 **clusters**

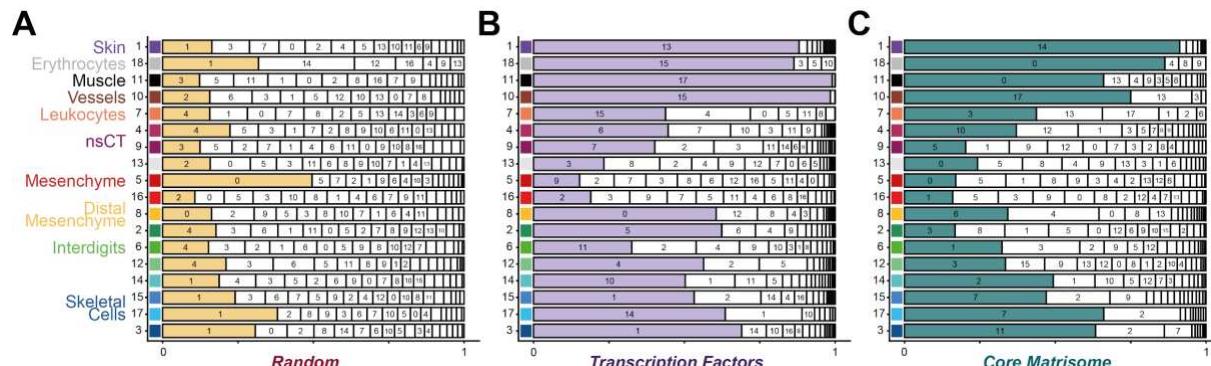
133 (A) tSNE representation of 6823 HH29 chicken hindlimb autopod cells from Feregrino et
134 al., 2019. Colors represent unsupervised clustering results based on the transcriptome (A),
135 a randomly sampled set of genes (B), transcription factors (C), and the core matrisome (D).
136 (E) Boxplot of Euclidean distances between clusters based on average expression of 2000
137 variably expressed genes, calculated for transcriptome, transcription factor, core matrisome,
138 and 10 sets of random gene clusters. (F-H) Heatmap of square root of negative log 10
139 probability of cluster overlap by hypergeometric test between ‘transcriptome’ and ‘random
140 clusters’ (F), ‘transcription’ factor’ (G), and ‘matrisome’ (H). ‘Transcriptome’ clusters are
141 grouped by tissue or cell type. For (A-F) details, see Data Source File 1.

142

143 **Clustering performance and cell type identification by transcription factors and the core**
144 **matrisome**

145 To further assess the potential of such limited gene subsets to reliably identify cell types
146 from scRNA-seq data, we next sought to quantify their ability to recreate our entire
147 transcriptome cluster composition. We did this on a cluster-by-cluster as well as on a cell-
148 by-cell basis. We first plotted - ordered by percentage - the respective cellular contributions
149 of individual gene subset clusters to the 18 entire transcriptome clusters. As expected,
150 ‘random genes’ clusters contributed almost uniformly to the different ‘transcriptome’
151 clusters (Fig. 2A). The median percentage contribution of the single-largest ‘random genes’
152 clusters - highlighted in yellow - was 17%, again reflective of that gene subset’s low
153 information content regarding cell type identification. Certain ‘transcription factor’
154 clusters, however, contributed more than 90% of a given ‘entire transcriptome’ cluster (Fig.
155 2B). For example, ‘transcriptome’ cluster t-11, *i.e.*, “muscle”, was represented to 99% by

156 ‘transcription factor’ cluster tf-17. However, the same “muscle” cluster was only re-
157 captured to 12% by the largest ‘random’ cluster contributor r-3 (compare Fig. 2A to B,
158 ‘transcriptome’ cluster t-11). Likewise, the ‘matrisome’ gene subset also performed better
159 than ‘random’, with the ‘Muscle’ cluster represented to 66% by ‘matrisome’ cluster m-0, or
160 ‘Skin’ recaptured to 91% by cluster m-14 (Fig. 2C). However, when comparing the
161 ‘transcription factor’ and ‘matrisome’ clustering performances within the closely lineage-
162 related lateral plate mesoderm-derived cell types, differences between the two gene subsets
163 emerged. Lateral plate mesoderm-derived tissues in our sample included non-skeletal
164 connective tissue (cl. t-4, t-9), undifferentiated mesenchyme (cl. t-13, t-5, t-16, t-8),
165 interdigital mesenchyme (cl. t-2, t-6, t-12) and skeletal progenitors (cl. t-14, t-15, t-17, t-3).
166 Amongst these, certain cell type clusters contributing to mesenchymal tissues were well
167 defined by their ‘transcription factor’ signature, yet much less so by their ‘matrisome’
168 expression status (e.g. compare cl. t-8, t-2, t-12, Fig. 2B and C). Again, some of these
169 discrepancies might relate to the fact that ‘matrisome’ signatures can also be indicative of
170 different cell states, whereas ‘transcription factors’ profiles assign predominantly to cell
171 types. However, cell types contributing to more differentiated tissues with complex ECM
172 composition were equally well defined by both ‘transcription factor’ and ‘matrisome’ gene
173 expression signatures (e.g., cl. t-4, and t-14, t-15, t-17, t-3).



175 **Figure 2. Relative cluster contributions to transcriptome clusters**

176 (A) Relative contribution of ‘random’ clusters to the ‘transcriptome’ clusters ordered by size.

177 Cluster IDs are indicated where possible and the biggest contribution per transcriptome

178 cluster is highlighted in color. (B) ‘transcription factor’ cluster contributions and (C)

179 ‘matrisome’ cluster contributions are indicated in the same manner. ‘transcriptome’ clusters

180 are grouped by cell type.

181

182 **The core matrisome predicts preferentially ECM-rich cell types in early development**

183 To quantify the ability of all our three gene-input-subsets - ‘random’, ‘transcription factor’,

184 and ‘matrisome’ - to correctly predict cluster membership of our “Gold Standard”

185 transcriptome clustering, we decided to use a binary classification scheme based on pairs of

186 cells being in the same or different clusters [29]. Each pair of cells was classified as either

187 “true positive” (TP: two cells are in the same cluster regardless of the input data used), “true

188 negative” (TN: two cells are in different clusters regardless of input data), “false positive”

189 (FP: two cells are in the same cluster although they are in different clusters in the “Gold

190 Standard”), and “false negative” (FN: two cells are in different clusters although they are in

191 the same cluster in the “Gold Standard”) (Fig. 3A). Based on the cumulative numbers of TP,

192 TN, FP, and FN of these binary cell pair classifications, we then calculated three different

193 indices commonly used to compare different clustering algorithms [29]: the Rand index,

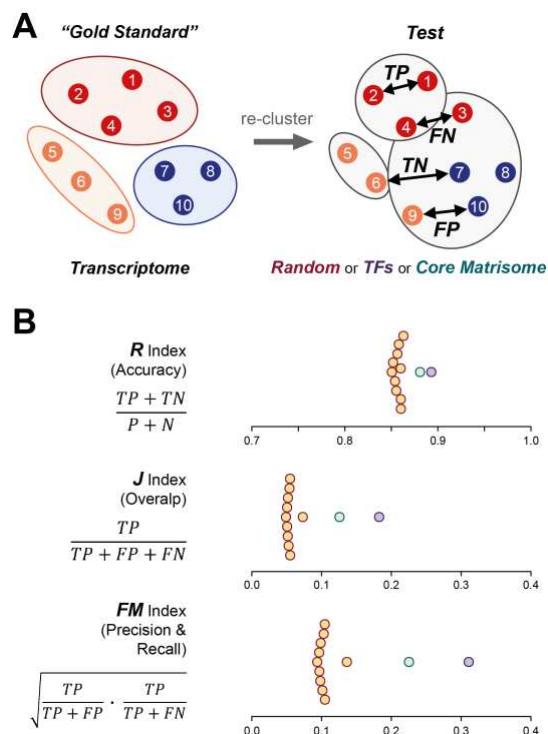
194 also known as accuracy (*R* index), which measured the percentage of correct classifications;

195 the Jaccard index of overlap (*J* index), which was calculated as the intersection of the two

196 sets divided by the union of the two sets; and the Fowlkes-Mallows index (*FM* index),

197 which represented the geometric mean of precision and recall. The closer each of these
198 indices scores to 1, the more similar the respective gene subset clustering can be considered
199 to the transcriptome “Gold Standard” clustering. Regardless of the index used, the ‘core
200 matrisome’ and ‘transcription factor’ gene subsets clearly outperformed ten iterations of
201 ‘random genes’, with ‘transcription factors’ scoring slightly higher than ‘matrisome’ genes
202 (Fig. 3B).

203 Collectively, we demonstrate that both ‘transcription factors’ and ‘matrisome’ genes can be
204 used as cell type identifiers in scRNA-seq data. The extent to which this holds true,
205 however, seems to depend on the tissue type to which the respective cell types contribute,
206 differences in cell state, as well as the ontogenetic state of their differentiation.



208 **Figure 3: Binary classification and re-cluster indices**

209 (A) Each pair of cells in a given ‘Test’ clustering - i.e. ‘Core Matrisome’, ‘Transcription
210 Factor’ or ‘random’ - is classified based on their relationship to the “Gold Standard”

211 clustering, as calculated from the entire transcriptome. (B) Based on those binary
212 classifications the quality of each ‘Test’ clustering is measured with the three indices
213 following Kafieh and Mehridehnavi, 2013. ‘Test’ clustering indices are calculated for
214 transcription factors (purple), core matrisome (green), and 10 random gene set clusterings
215 (yellow). TP: true positive, TN: true negative, FP: false positive, FN: false negative, R: Rand
216 index, J: Jaccard index, FM: Fowlkes-Mallows index.

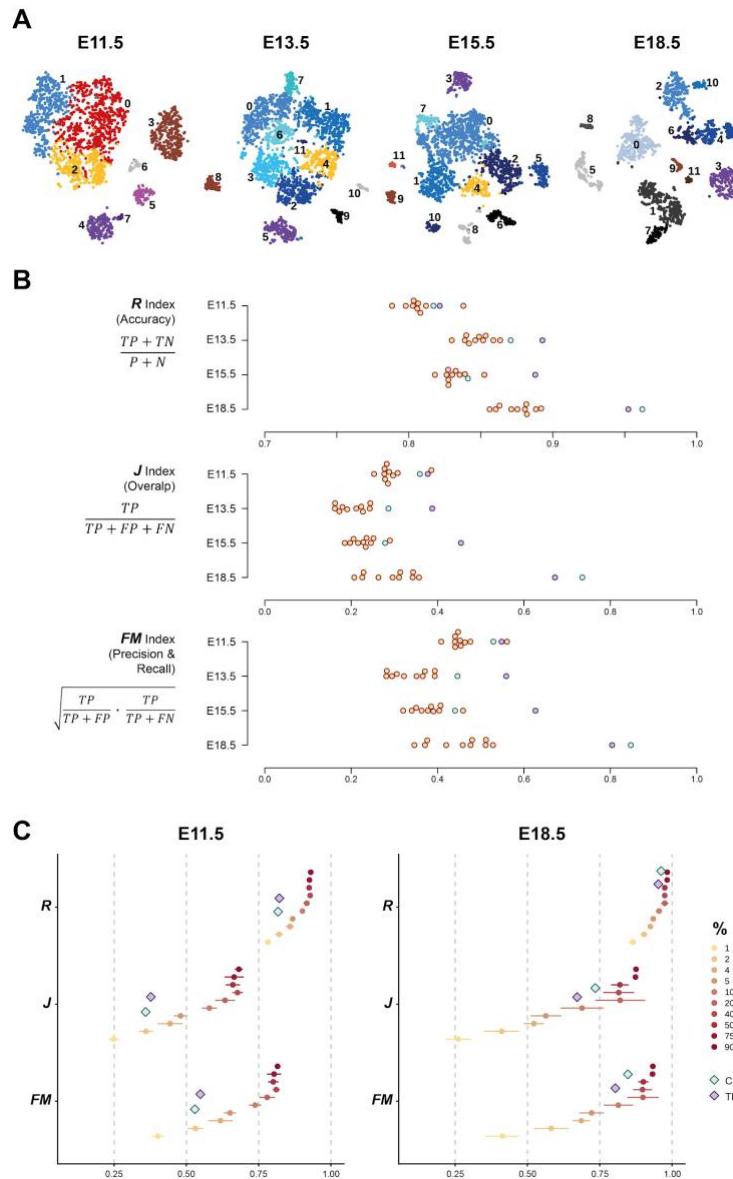
217

218 **Predictive power of ‘core matrisome’ signature depends on developmental differentiation**
219 **and is evolutionarily conserved amongst vertebrates**

220 To determine the effect of developmental progression on the cell type-predictive powers of
221 the matrisome, we next focused our attention on an embryonic scRNA-seq times series. We
222 incorporated a previously published time series of the developing mouse hind limb by Kelly
223 and colleagues into our analysis [30]. In their scRNA-seq data sets, we found 244 to 254 out
224 of the total 274 mouse core-matrisome genes expressed. Initial clustering of single-cell
225 transcriptomes showed - as expected - similar tissue composition as in our chicken hindlimb
226 data, as well as an increase in cell type complexity from the earliest stage E11.5 to E18.5
227 (Fig. 4A, Data Source File 1).

228 Using the clusters identified by the entire transcriptome as a benchmark, we then re-
229 clustered the data using either ‘random’, ‘transcription factor’ or ‘core matrisome’ gene sets
230 of equal size, and compared their performances using the previously introduced indices.
231 Over the course of the sampled developmental time window, the predictive powers of both
232 ‘transcription factor’ and ‘core matrisome’ increased, *i.e.*, more cell pairs were correctly
233 attributed together in a way reflective of the entire transcriptome cell type clustering (Fig.

234 4B). To quantify this effect and relate it to the predictive powers of different fractions of
235 ‘random’ genes from the entire transcriptome, we focused our attention on the two
236 temporal extremes of the time series, E11.5 and E18.5. We randomly sampled increasing
237 numbers of ‘random’ genes - from 1% to 90% of the entire transcriptome, each sampled and
238 re-clustered 5 times - and plotted the spread of their performances in relation to the
239 ‘transcription factor’ and ‘matrisome’ gene subsets (Fig. 4C, D). At E11.5, both ‘transcription
240 factor’ and ‘matrisome’ gene subsets clusterings performed at about the rate of 2% of all
241 genes, randomly selected from the transcriptome (Fig. 4C). At E18.5, however, their
242 predictive powers had increased to a level of more than 10% of the entire transcriptome
243 (Fig. 4D). This is noteworthy, as the number of expressed ‘core matrisome’ genes at that
244 stage corresponds to only 1.28% of the entire transcriptome. Moreover, at these later stages,
245 the ‘matrisome’ genes subset outperformed ‘transcription factors’ in these indices, likely a
246 reflection of the ongoing maturation of tissues with high ECM content.
247 We concluded, as tissues and their ECM mature, the expression status of the core matrisome
248 becomes progressively better at delineating cell types.



251 (A) tSNE representations of four mouse embryo limb data sets of increasing developmental
 252 stages (E11.5 to E18.5, E: embryonic day). Colors and numbers indicate 'transcriptome'
 253 clusters. Cluster annotation in Data source File 1. (B) Rand, Jaccard and Fowlkes-Mallows
 254 indices for all four stages. Colors as in Fig. 3B. (C) Indices of 'matrisome' and 'transcription
 255 factor' clustering (triangles) in E11.5 and 18.5 compared to indices of random gene sets of
 256 increasing size. Gradient indicates the percentage of the whole transcriptome represented

257 by the random gene set. For each percentage, 5 gene sets were sampled independently and
258 used for clustering.

259 **Discussion**

260 Understanding the molecular parameters that define different cell types and states is
261 fundamental to developmental and regenerative biology. Here we show that the expression
262 status of a small subset of genes, the core matrisome, can suffice to identify cell types and
263 states in the developing chick and mouse limb. Even though it corresponds to less than 2%
264 of the entire transcriptome, we demonstrate that core matrisome expression encodes
265 enough information to cluster scRNA-seq data according to cell types, and cell states. The
266 predictive power of the matrisome increases with developmental time, and can even
267 outperform transcription factors in more differentiated cell and tissue types with high ECM
268 content.

269

270 These findings make sense with regards to developmental progression and tissue
271 maturation. During ontogenetic development, transcription factors are thought to guide
272 early differentiation trajectories and eventually specify terminally differentiated cell types
273 [2,4,6]. At later stages of development, the ECM becomes increasingly important,
274 instructing stem cell differentiation and regulating cell and tissue shape, morphogenetic
275 movements, and organogenesis [16]. This holds especially true for tissues with complex
276 ECM composition or high ECM turnover. Consistent with this, we found that in our
277 chicken limb data, skin cells, muscle and skeletal progenitors clusters segregate especially
278 well using core matrisome expression alone (Fig. 1 and 2). The lack of a clear ‘matrisome’-
279 based clustering for some of the other mesenchymal cell populations may indicate a less
280 specialized extracellular matrix, or, alternatively, the presence of different cell states within
281 a cell type, each with its own putatively distinct ‘matreotype’. Moreover, the overall

282 predictive power of the matrisome increases when comparing cell populations in ECM-rich
283 tissues at progressively later stages of development (Fig. 4).

284

285 Previous work using scRNA-seq to determine molecular changes during adipogenesis (day
286 1-7) *in vitro* found that at day 3 the cell clustering was mainly driven by ECM genes, and
287 at day 7 the core matrisome was one of the top ten most differentially expressed gene
288 ontology terms [31]. Beyond development, planarian scRNA-seq revealed that muscles
289 produce most of the matrisome, and inhibiting one key matrisome gene (hemicentin)
290 resulted in severe epidermal ruffling and displacement of cells during homeostatic tissue
291 turnover, suggesting an important role for tissue regeneration [26]. Furthermore, in healthy
292 human lumbar discs, the core matrisome can be used to distinguish primary annulus
293 fibrosus and nucleus pulposus cells based on 90 out of the 274 core matrisome genes being
294 differentially expressed in the opposite direction using scRNA-seq [32]. Similarly, 115
295 matrisome genes are characteristically expressed in the six cell types that make up the
296 human cutaneous neurofibroma microenvironment [33]. Beyond cell type distinction in
297 tissues, a differential expression of matrisome genes can be observed when cells change
298 their state from a healthy to a diseased cell. For instance, differential expression of
299 matrisome genes was one main characteristic of reprogramming from normal fibroblasts,
300 pericytes, and endothelial cells into tumor cells [34]. During cancer progression,
301 deregulation of matrisome genes is a crucial step observed in early and late metastasis [35].
302 Moreover, core matrisome genes help identify circulating tumor cells in the blood using
303 scRNA-seq [36,37]. These results support our conclusion that matrisome gene expression
304 can serve as a key signature to determine individual cell types, as well as cell states.

305

306 This raises the question of why the matrisome is such a good predictor of cell type and state.

307 It is well known that cells can be distinguished based on cell surface receptors [38].

308 However, it is less appreciated that each cell type can synthesize its own ECM that entails

309 it with unique physical properties [15,39,40]. For instance, placing primary preadipocytes

310 into decellularized ECMs derived from subcutaneous, visceral, or brown adipose tissue

311 influences the preadipocytes' terminal differentiation [41]. Hence, the physical properties

312 of ECM seem to be able to dictate cellular fate and drive stem cell differentiation into

313 neurons, muscle, or bone cells [42]. Besides providing instructive cues during development,

314 ECMs can also change cellular status. Placing senescent cells or aged stem cells in a "younger

315 ECM" rejuvenates these old cells to regain proliferative capacities or stem cell potential,

316 respectively [43,44]. Similarly, placing tumor cells into an embryonic ECM reprograms to

317 non-tumorigenic cells [45]. Hence, there is an intrinsic crosstalk between the ECM and the

318 cells it encapsulates. ECMs, or niches, are made and adapted according to the respective

319 cellular needs or states. Disrupting the crosstalk between cancer and cancer-associated

320 fibroblasts, for instance, by a small molecule that inhibits chromatin remodeling and change

321 matrisome gene expression (*i.e.*, altering the matreotype), prevented tumor growth in

322 xenograft mouse models [46]. Although we lack a current understanding of these

323 underlying molecular crosstalk, these snapshots of ECM compositions - or matreotypes -

324 clearly can reflect distinct cellular properties.

325

326 Accordingly, since matreotypes mirror cellular status, they also hold potentially promising

327 prognostic value. For instance, 43 out of the 274 core matrisome genes are significantly

328 upregulated across multiple cancer types, and 9 ECM genes predicted cancer outcome [47].

329 Another classifier similar to the matreotype concept is termed tumor matrisome index,

330 which is based on 29 matrisome genes, reliably predicts low- and high-risk groups and

331 chemotherapy responses for small cell lung cancer patients [48]. Matreotypes reflecting

332 chronological age have been recently used to predict drugs that promote healthy aging [49].

333 Therefore, defining matreotypes has translational value for future biomedical research.

334 Moreover, identifying different subpopulations of a given cell type will be critical to

335 overcome the problem of cellular heterogeneity and aid personalized medical applications.

336

337 In summary, with our scRNA-seq analyses, we provided evidence for a previously

338 postulated concept, namely that 'each cell type produces its unique ECM' [15,17]. While

339 the best molecular proxies for cell-type identification continue to be discussed [1–3], we

340 made the unexpected discovery that expressed core matrisome genes - corresponding to less

341 than 2% of a typical transcriptome - hold enough information to re-cluster scRNA-seq data

342 as well as transcription factor signatures. For more mature cells, the core matrisome

343 embodied substantial predictive value to identify cell types and states. Hence, future work

344 on defining matreotypes of different cell types and states might inform diagnostics and

345 personalized medicine.

346

347 **Materials and Methods**

348 **Matrisome gene lists**

349 Curated matrisome gene lists for mouse and human are available on ‘The Matrisome Project’

350 (<http://matrisome.org/>; [14]. To create a matrisome list for chicken, a union of the human

351 and mouse matrisome lists was used to define chick one-to-one orthologs in the ENSEMBL

352 Galgal5.0 annotation.

353

354 **Single-cell RNA-sequencing data**

355 Previously published single-cell RNA sequencing (scRNA-seq) datasets sampling the

356 chicken embryonic limb [28] and the mouse embryonic limb [30]; stages E11.5 to E18.5

357 were used for all analyses. The raw data is accessible at Gene Expression Omnibus ([GEO](#),

358 <https://www.ncbi.nlm.nih.gov/geo/>), under accession numbers [GSE130439](#) (chicken) and

359 [GSE142425](#) (mouse).

360

361 **Data pre-processing**

362 Raw UMI count tables were used to initiate ‘Seurat objects’ for all mouse samples in R, using

363 package Seurat v3.1.4. Next, low quality cells and outliers were filtered out. Chicken cells

364 with an UMI count higher than 4 times the average UMI count, less than 20 percent of the

365 median UMI count or more than 10 percent mitochondrial or ribosomal content were

366 removed [28]. Mouse cells expressing less than 200, more than 6000 genes, or more than 10

367 percent mitochondrial RNA were removed. All expressed genes were considered.

368 Normalization, identifying the top 2000 variable genes and scaling of the data was applied

369 with Seurat’s built-in functions.

370

371 **Dimensionality reduction**

372 For all chicken and mouse, Seurat objects, principal components analysis was performed on
373 all expressed genes, and significant components were selected as such, if they were located
374 outside of the Marchenko Pastur distribution [50]. The same criterion for significance was
375 applied on all principal component analysis on core matrisome and random subset genes.
376 The cells were visualized with the dimensionality reduction algorithm tSNE [51].
377 'matrisome' and 'random' clusters for all datasets were represented on the same tSNEs
378 generated from the 'transcriptome' principal components. To define a 'gold standard' of
379 scRNAseq-based cell type clustering, k-nearest neighbour (kNN) graphs and Jaccard indices
380 of overlap between a cell and its neighbours were used to create shared nearest neighbour
381 (SNN) graphs, with the Seurat 'FindNeighbors' function using all expressed 'transcriptome'
382 genes. Clusters of cells were then defined by 'FindClusters', by applying Louvain modularity
383 optimization algorithms on SNN graphs. As the number of clusters can be influenced by the
384 resolution parameters, please refer to the supplementary data for detailed parameters of
385 significant dimensions and resolutions used in clustering for all samples. For 'matrisome'-
386 based clustering, all expressed core matrisome genes were considered for clustering. For
387 'random'-based clustering, for ten iterations, randomly picked genes from the whole
388 transcriptome were used such that they matched the number of expressed core matrisome
389 genes, as well as resulting in the same number of individual clusters as the 'transcriptome'
390 and 'matrisome' clustering. The core matrisome genes and transcription factors were
391 excluded from this sampling. After ordering the transcription factors by expression

392 variability, the set of top transcription factors matching the size of the expressed core
393 matrisome was used to recluster the cells.

394

395 **Cluster cell type annotation**

396 Differentially expressed genes between mouse clusters with a minimum natural log fold
397 change of 0.25 were identified using a Wilcoxon rank sum test, and were then used to assign
398 putative celltype identities of each cluster. Only genes expressed in at least 25% of cells in
399 one of the two populations were considered. For all clusters, all and the top five
400 differentially genes per cluster can be found in the Data Source File 1. Chicken clusters had
401 been previously annotated (Feregrino et al., 2019).

402

403 **Distance Boxplots**

404 To assess cluster-to-cluster proximity of 'transcriptome'-, 'matrisome'-, 'random'-, and
405 'transcription factor'- based clustering approaches, Euclidean pairwise distances between
406 each cluster were calculated on the averaged scaled expression per cluster of the top 2000
407 variably expressed genes. The same 2000 genes were used to compare all three clustering
408 approaches.

409

410 **Hypergeometric test**

411 Probabilities of overlap between clusters were calculated with 'phyper'. The
412 hypergeometric test takes into account the size of the reference cluster ('transcriptome') m ,
413 the size of the test cluster ('matrisome', 'random', and 'transcription factors') k , the number

414 of non-tested cells (total number of cells $N-m$) and the size of the overlap x to calculate the
415 probability of the overlap to occur at random. Probabilities were calculated for overlaps
416 between all clusters. Probabilities equal to zero were replaced with the smallest non-zero
417 probability to prevent infinite values after transformation, and probabilities bigger than
418 0.05 were set to 1 for plot aesthetics. ‘Heatmap3’ [52] was used to plot square root negative
419 log 10 transformed probabilities.

420

421 **Visualizing cluster contributions**

422 Barplots were created with ‘ggplot2’ [53].

423 **Indices**

424 The ‘Rand index’, also known as ‘accuracy’, was calculated as following:

$$425 \quad R = \frac{TP + TN}{TP + FP + FN + TN}$$

426 It measures the percentage of correct classifications.

427 The ‘Jaccard index of overlap’ is calculated as intersection over union. It does not take the

428 TN into account, which represent the most classifications and might be confounding in the

429 Rand index:

$$430 \quad J = \frac{TP}{TP + FP + FN}$$

431 At last, the ‘Fowlkes-Mallows index’ is the geometric mean of precision and recall. Precision

432 measures how many positive pairs (cells within the same cluster in the test clustering) are

433 true positives (cells within the same cluster in the gold standard). Recall is the percentage

434 of true positives identified by all actual positives:

435
$$FM = \sqrt{\frac{TP}{TP + FP} * \frac{TP}{TP + FN}}$$

436 All indices range from 0 (no correct classification by the test clustering) to 1 (identical
437 clustering by the test clustering).

438

439 **Comparing 'matrisome' and 'transcription factors' against 'random' subsets of
440 increasing size**

441 The information content of the 'matrisome' and the 'transcription factor' subset was
442 compared to 'random' subsets containing 1, 2, 4, 5, 10, 20, 40, 50, 75, and 90 percent of the
443 E11.5 and E18.5 chicken transcriptomes. For each percentage, five 'random' subsets
444 resulting in the same number of clusters as the 'matrisome' were sampled, clustered, and
445 indices were calculated.

446

447 **Author contributions**

448 FS, CF, PT and CYE designed the study. FS performed all analyses with help from CF. All
449 authors interpreted the data. FS, PT, and CYE wrote the manuscript with comments from
450 CF.

451

452 **Author Information**

453 The authors have no competing interests to declare. Correspondence should be addressed
454 to C. Y. E. and P.T.

455

456 **Acknowledgment**

457 We thank Christian Beisel and the joint Genomics Facility Basel for help with single-cell
458 sequencing, and members of both groups for useful discussions. All calculations were
459 performed at sciCORE (<http://scicore.unibas.ch/>), the scientific computing center at the
460 University of Basel. This work was supported by funding from the Swiss National Science
461 Foundation PP00P3_163898 to CYE, and from the Swiss 3R Competence Centre (3RCC
462 grant OC-2018-005), the Swiss National Science Foundation (SNSF project grant
463 310030_189242), and the University of Basel to PT.

464

465 **References**

466

467 [1] What Is Your Conceptual Definition of “Cell Type” in the Context of a Mature
468 Organism?, *Cell Syst.* 4 (2017) 255–259. <https://doi.org/10.1016/j.cels.2017.03.006>.

469 [2] B. Xia, I. Yanai, A periodic table of cell types, *Development.* 146 (2019) dev169854.
470 <https://doi.org/10.1242/dev.169854>.

471 [3] K.L. McKinley, D. Castillo-Azofeifa, O.D. Klein, Tools and Concepts for Interrogating
472 and Defining Cellular Identity, *Cell Stem Cell.* 26 (2020) 632–656.
473 <https://doi.org/10.1016/j.stem.2020.03.015>.

474 [4] D. Arendt, J.M. Musser, C.V.H. Baker, A. Bergman, C. Cepko, D.H. Erwin, M.
475 Pavlicev, G. Schlosser, S. Widder, M.D. Laubichler, G.P. Wagner, The origin and
476 evolution of cell types, *Nat Rev Genet.* 17 (2016) 744–757.
477 <https://doi.org/10.1038/nrg.2016.127>.

478 [5] M. Crow, J. Gillis, Single cell RNA-sequencing: replicability of cell types., *Curr Opin
479 Neurobiol.* 56 (2019) 69–77. <https://doi.org/10.1016/j.conb.2018.12.002>.

480 [6] The Regulatory Genome, (2006). <https://doi.org/10.1016/b978-0-12-088563-3.x5018-4>.

481 [7] C.H. Holland, J. Tanevski, J. Perales-Patón, J. Gleixner, M.P. Kumar, E. Mereu, B.A.
482 Joughin, O. Stegle, D.A. Lauffenburger, H. Heyn, B. Szalai, J. Saez-Rodriguez, Robustness
483 and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq
484 data, *Genome Biol.* 21 (2020) 36. <https://doi.org/10.1186/s13059-020-1949-z>.

485 [8] F.B. Ardkhani, K. Kattler, T. Heinen, F. Schmidt, D. Feuerborn, G. Gasparoni, K.
486 Lepikhov, P. Nell, J. Hengstler, J. Walter, M.H. Schulz, Prediction of single-cell gene
487 expression for transcription factor analysis., *Gigascience.* 9 (2020) giaa113-.
488 <https://doi.org/10.1093/gigascience/giaa113>.

489 [9] R.O. Hynes, The Extracellular Matrix: Not Just Pretty Fibrils, *Science.* 326 (2009)
490 1216–1219. <https://doi.org/10.1126/science.1176009>.

491 [10] W.P. Daley, S.B. Peters, M. Larsen, Extracellular matrix dynamics in development
492 and regenerative medicine, *J Cell Sci.* 121 (2008) 255–264.
493 <https://doi.org/10.1242/jcs.006064>.

494 [11] C. Bonnans, J. Chou, Z. Werb, Remodelling the extracellular matrix in development
495 and disease., *Nat Rev Mol Cell Biology.* 15 (2014) 786–801.
496 <https://doi.org/10.1038/nrm3904>.

497 [12] J. Chang, R. Garva, A. Pickard, C.-Y.C. Yeung, V. Mallikarjun, J. Swift, D.F. Holmes,
498 B. Calverley, Y. Lu, A. Adamson, H. Raymond-Hayling, O. Jensen, T. Shearer, Q.J. Meng,
499 K.E. Kadler, Circadian control of the secretory pathway maintains collagen homeostasis.,
500 *Nat Cell Biol.* 22 (2020) 74–86. <https://doi.org/10.1038/s41556-019-0441-z>.

501 [13] A. Naba, K.R. Clouser, S. Hoersch, H. Liu, S.A. Carr, R.O. Hynes, The matrisome: in

502 silico definition and in vivo characterization by proteomics of normal and tumor
503 extracellular matrices., Molecular & Cellular Proteomics : MCP. 11 (2012) M111.014647.
504 <https://doi.org/10.1074/mcp.m111.014647>.

505 [14] A. Naba, K.R. Clouser, H. Ding, C.A. Whittaker, S.A. Carr, R.O. Hynes, The
506 extracellular matrix: Tools and insights for the “omics” era., Matrix Biology : Journal of the
507 International Society for Matrix Biology. 49 (2016) 10–24.
508 <https://doi.org/10.1016/j.matbio.2015.06.003>.

509 [15] C. Frantz, K.M. Stewart, V.M. Weaver, The extracellular matrix at a glance., Journal
510 of Cell Science. 123 (2010) 4195–4200. <https://doi.org/10.1242/jcs.023820>.

511 [16] D.A.C. Walma, K.M. Yamada, The extracellular matrix in development,
512 Development. 147 (2020) dev175596. <https://doi.org/10.1242/dev.175596>.

513 [17] C.Y. Ewald, The Matrisome during Aging and Longevity: A Systems-Level Approach
514 toward Defining Matreotypes Promoting Healthy Aging., Gerontology. (2019) 1–9.
515 <https://doi.org/10.1159/000504295>.

516 [18] M.A. Chapman, K. Mukund, S. Subramaniam, D. Brenner, R.L. Lieber, Three distinct
517 cell populations express extracellular matrix proteins and increase in number during
518 skeletal muscle fibrosis, Am J Physiol-Cell Ph. 312 (2017) C131–C143.
519 <https://doi.org/10.1152/ajpcell.00226.2016>.

520 [19] P. Hiebert, M.S. Witecha, M. Cangkrama, E. Haertel, E. Mavrogonatou, M. Stumpe,
521 H. Steenbock, S. Grossi, H.-D. Beer, P. Angel, J. Brinckmann, D. Kletsas, J. Dengjel, S.
522 Werner, Nrf2-Mediated Fibroblast Reprogramming Drives Cellular Senescence by
523 Targeting the Matrisome., Dev Cell. 46 (2018) 145–161.e10.
524 <https://doi.org/10.1016/j.devcel.2018.06.012>.

525 [20] I.N. Taha, A. Naba, Exploring the extracellular matrix in health and disease using
526 proteomics., Essays in Biochemistry. 63 (2019) 417–432.
527 <https://doi.org/10.1042/ebc20190001>.

528 [21] A. Naba, O.M.T. Pearce, A.D. Rosario, D. Ma, H. Ding, V. Rajeeve, P.R. Cutillas, F.R.
529 Balkwill, R.O. Hynes, Characterization of the Extracellular Matrix of Normal and
530 Diseased Tissues Using Proteomics, J Proteome Res. 16 (2017) 3083–3091.
531 <https://doi.org/10.1021/acs.jproteome.7b00191>.

532 [22] A.M. Socovich, A. Naba, The cancer matrisome: From comprehensive
533 characterization to biomarker discovery., Seminars in Cell & Developmental Biology. 89
534 (2019) 157–166. <https://doi.org/10.1016/j.semcd.2018.06.005>.

535 [23] P. Nauroy, S. Hughes, A. Naba, F. Ruggiero, The in-silico zebrafish matrisome: A new
536 tool to study extracellular matrix gene and protein functions., Matrix Biology : Journal of
537 the International Society for Matrix Biology. 65 (2018) 5–13.
538 <https://doi.org/10.1016/j.matbio.2017.07.001>.

539 [24] A.C. Teuscher, E. Jongsma, M.N. Davis, C. Statzer, J.M. Gebauer, A. Naba, C.Y.
540 Ewald, The in-silico characterization of the *Caenorhabditis elegans* matrisome and

541 proposal of a novel collagen classification, *Matrix Biology Plus*. (2019) 1–13.
542 <https://doi.org/10.1016/j.mbplus.2018.11.001>.

543 [25] M.N. Davis, S. Horne-Badovinac, A. Naba, In-silico definition of the *Drosophila*
544 *melanogaster* matrisome, *Matrix Biology Plus*. 4 (2019) 100015.
545 <https://doi.org/10.1016/j.mbplus.2019.100015>.

546 [26] L.E. Cote, E. Simental, P.W. Reddien, Muscle functions as a connective tissue and
547 source of extracellular matrix in planarians, *Nat Commun*. 10 (2019) 1592.
548 <https://doi.org/10.1038/s41467-019-09539-6>.

549 [27] V. Hamburger, H.L. Hamilton, A series of normal stages in the development of the
550 chick embryo, *J Morphol*. 88 (1951) 49–92. <https://doi.org/10.1002/jmor.1050880104>.

551 [28] C. Feregrino, F. Sacher, O. Parnas, P. Tschopp, A single-cell transcriptomic atlas of
552 the developing chicken limb., *Bmc Genomics*. 20 (2019) 401.
553 <https://doi.org/10.1186/s12864-019-5802-2>.

554 [29] R. Kafieh, A. Mehridehnavi, A comprehensive comparison of different clustering
555 methods for reliability analysis of microarray data., *J Medical Signals Sensors*. 3 (2013) 22–
556 30.

557 [30] N.H. Kelly, N.P.T. Huynh, F. Guilak, Single cell RNA-sequencing reveals cellular
558 heterogeneity and trajectories of lineage specification during murine embryonic limb
559 development, *Matrix Biol*. 89 (2020) 1–10. <https://doi.org/10.1016/j.matbio.2019.12.004>.

560 [31] A.K. Ramirez, S.N. Dankel, B. Rastegarpanah, W. Cai, R. Xue, M. Crovella, Y.-H.
561 Tseng, C.R. Kahn, S. Kasif, Single-cell transcriptional networks in differentiating
562 preadipocytes suggest drivers associated with tissue heterogeneity, *Nat Commun*. 11
563 (2020) 2117. <https://doi.org/10.1038/s41467-020-16019-9>.

564 [32] L.M. Fernandes, N.M. Khan, C.M. Trochez, M. Duan, M.E. Diaz-Hernandez, S.M.
565 Presciutti, G. Gibson, H. Drissi, Single-cell RNA-seq identifies unique transcriptional
566 landscapes of human nucleus pulposus and annulus fibrosus cells., *Sci Rep-Uk*. 10 (2020)
567 15263. <https://doi.org/10.1038/s41598-020-72261-7>.

568 [33] J.-P. Brosseau, A.A. Sathe, Y. Wang, T. Nguyen, D.A. Glass, C. Xing, L.Q. Le, Human
569 cutaneous neurofibroma matrisome revealed by single-cell RNA sequencing., *Acta
570 Neuropathologica Commun*. 9 (2021) 11. <https://doi.org/10.1186/s40478-020-01103-4>.

571 [34] A. Sathe, S.M. Grimes, B.T. Lau, J. Chen, C. Suarez, R.J. Huang, G. Poultides, H.P. Ji,
572 Single-Cell Genomic Characterization Reveals the Cellular Reprogramming of the Gastric
573 Tumor Microenvironment, *Clin Cancer Res*. 26 (2020) 2640–2653.
574 <https://doi.org/10.1158/1078-0432.ccr-19-3231>.

575 [35] S. Mitra, K. Tiwari, R. Podicheti, T. Pandhiri, D.B. Rusch, A. Bonetto, C. Zhang, A.K.
576 Mitra, Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian
577 Cancer Progression., *Cancers*. 11 (2019) 1513. <https://doi.org/10.3390/cancers11101513>.

578 [36] D.T. Ting, B.S. Wittner, M. Ligorio, N. Vincent Jordan, A.M. Shah, D.T. Miyamoto,
579 N. Aceto, F. Bersani, B.W. Brannigan, K. Xega, J.C. Ciciliano, H. Zhu, O.C. MacKenzie, J.

580 Trautwein, K.S. Arora, M. Shahid, H.L. Ellis, N. Qu, N. Bardeesy, M.N. Rivera, V.
581 Deshpande, C.R. Ferrone, R. Kapur, S. Ramaswamy, T. Shioda, M. Toner, S. Maheswaran,
582 D.A. Haber, Single-Cell RNA Sequencing Identifies Extracellular Matrix Gene Expression
583 by Pancreatic Circulating Tumor Cells, *Cell Reports*. 8 (2014) 1905–1918.
584 <https://doi.org/10.1016/j.celrep.2014.08.029>.

585 [37] S.B. Lim, T. Yeo, W.D. Lee, A.A.S. Bhagat, S.J. Tan, D.S.W. Tan, W.-T. Lim, C.T. Lim,
586 Addressing cellular heterogeneity in tumor and circulation for refined prognostication., P
587 *Natl Acad Sci Usa*. 116 (2019) 17957–17962. <https://doi.org/10.1073/pnas.1907904116>.

588 [38] D. Bausch-Fluck, U. Goldmann, S. Müller, M. van Oostrum, M. Müller, O.T.
589 Schubert, B. Wollscheid, The in silico human surfaceome., P *Natl Acad Sci Usa*. 115
590 (2018) E10988–E10997. <https://doi.org/10.1073/pnas.1808790115>.

591 [39] T.J. McKee, G. Perlman, M. Morris, S.V. Komarova, Extracellular matrix composition
592 of connective tissues: a systematic review and meta-analysis, *Sci Rep-Uk*. 9 (2019) 10542.
593 <https://doi.org/10.1038/s41598-019-46896-0>.

594 [40] B. Yue, Biology of the Extracellular Matrix, *J Glaucoma*. 23 (2014) S20–S23.
595 <https://doi.org/10.1097/ijg.0000000000000108>.

596 [41] G. Grandl, S. Müller, H. Moest, C. Moser, B. Wollscheid, C. Wolfrum, Depot specific
597 differences in the adipogenic potential of precursors are mediated by collagenous
598 extracellular matrix and Flotillin 2 dependent signaling, *Mol Metab*. 5 (2016) 937–947.
599 <https://doi.org/10.1016/j.molmet.2016.07.008>.

600 [42] A. Kumar, J.K. Placone, A.J. Engler, Understanding the extracellular forces that
601 determine cell fate and maintenance, *Development*. 144 (2017) 4261–4270.
602 <https://doi.org/10.1242/dev.158469>.

603 [43] H.R. Choi, K.A. Cho, H.T. Kang, J.B. Lee, M. Kaeberlein, Y. Suh, I.K. Chung, S.C.
604 Park, Restoration of senescent human diploid fibroblasts by modulation of the
605 extracellular matrix., *Aging Cell*. 10 (2011) 148–157. <https://doi.org/10.1111/j.1474-9726.2010.00654.x>.

606 [44] Y. Sun, W. Li, Z. Lu, R. Chen, J. Ling, Q. Ran, R.L. Jilka, X.-D. Chen, Rescuing
607 replication and osteogenesis of aged mesenchymal stem cells by exposure to a young
608 extracellular matrix., *The FASEB Journal*. 25 (2011) 1474–1485.
609 <https://doi.org/10.1096/fj.10-161497>.

610 [45] M.J.C. Hendrix, E.A. Seftor, R.E.B. Seftor, J. Kasemeier-Kulesa, P.M. Kulesa, L.-M.
611 Postovit, Reprogramming metastatic tumour cells with embryonic microenvironments.,
612 *Nature Reviews. Cancer*. 7 (2007) 246–255. <https://doi.org/10.1038/nrc2108>.

613 [46] K.C. Honselmann, P. Finetti, D.J. Birnbaum, C.S. Monsalve, U.F. Wellner, S.K.S.
614 Begg, A. Nakagawa, T. Hank, A. Li, M.A. Goldsworthy, H. Sharma, F. Bertucci, D.
615 Birnbaum, E. Tai, M. Ligorio, D.T. Ting, O. Schilling, M.L. Biniossek, P. Bronsert, C.R.
616 Ferrone, T. Keck, M. Mino-Kenudson, K.D. Lillemoe, A.L. Warshaw, C.F. Castillo, A.S.
617 Liss, Neoplastic–Stromal Cell Cross-talk Regulates Matrisome Expression in Pancreatic
618

619 Cancer, Mol Cancer Res. 18 (2020) 1889–1902. <https://doi.org/10.1158/1541-7786.mcr-20-0439>.

620

621 [47] A.E. Yuzhalin, T. Urbonas, M.A. Silva, R.J. Muschel, A.N. Gordon-Weeks, A core
622 matrisome gene signature predicts cancer outcome., Brit J Cancer. 118 (2018) 435–440.
623 <https://doi.org/10.1038/bjc.2017.458>.

624 [48] S.B. LIM, S.J. TAN, W.-T. LIM, C.T. LIM, An extracellular matrix-related prognostic
625 and predictive indicator for early-stage non-small cell lung cancer, Nat Commun. 8 (2017)
626 1734. <https://doi.org/10.1038/s41467-017-01430-6>.

627 [49] C. Statzer, E. Jongsma, S.X. Liu, A. Dakhovnik, F. Wandrey, P. Mozharovskyi, F.
628 Zülli, C.Y. Ewald, Youthful and age-related matreotypes predict drugs promoting
629 longevity, BioRxiv. (2021). <https://doi.org/https://doi.org/10.1101/2021.01.26.428242>.

630 [50] K. Shekhar, S.W. Lapan, I.E. Whitney, N.M. Tran, E.Z. Macosko, M. Kowalczyk, X.
631 Adiconis, J.Z. Levin, J. Nemesh, M. Goldman, S.A. McCarroll, C.L. Cepko, A. Regev, J.R.
632 Sanes, Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell
633 Transcriptomics., Cell. 166 (2016) 1308–1323.e30.
634 <https://doi.org/10.1016/j.cell.2016.07.054>.

635 [51] L. van der Maaten, G. Hinton, Visualizing Data using t-SNE, Journal of Machine
636 Learning Research. (2008) 2579–2605.
637 <https://www.jmlr.org/papers/v9/vandermaaten08a.html>.

638 [52] S. Zhao, Y. Guo, Q. Sheng, Y. Shyr, Heatmap3: an improved heatmap package with
639 more powerful and convenient features, Bmc Bioinformatics. 15 (2014) P16.
640 <https://doi.org/10.1186/1471-2105-15-s10-p16>.

641 [53] C. Ginetet, ggplot2: Elegant Graphics for Data Analysis: Book Reviews, J Royal
642 Statistical Soc Ser Statistics Soc. 174 (2011) 245–246. https://doi.org/10.1111/j.1467-985x.2010.00676_9.x.