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Abstract

Transcriptomic signatures based on cellular mRNA expression profiles can be used to
categorize cell types and states. Yet whether different functional groups of genes perform
better or worse in this process remains largely unexplored. Here we test the core matrisome
- that is, all genes coding for structural proteins of the extracellular matrix - for its ability
to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data.
We show that even though expressed core matrisome genes correspond to less than 2% of
an entire cellular transcriptome, their RNA expression levels suffice to recapitulate
important aspects of cell type-specific clustering. Notably, using scRNA-seq data from the
embryonic limb, we demonstrate that core matrisome gene expression outperforms random
gene subsets of similar sizes and can match and exceed the predictive power of transcription
factors. While transcription factor signatures generally perform better in predicting cell
types at early stages of chicken and mouse limb development, ie., when cells are less
differentiated, the information content of the core matrisome signature increases in more
differentiated cells. Our findings suggest that each cell type produces its own unique
extracellular matrix, or matreotype, which becomes progressively more refined and cell

type-specific as embryonic tissues mature.
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Introduction

How to define and identify different cell types remains a fundamental challenge in biology
[1-4]. Cell types have traditionally been classified based on their morphology and function,
by the tissues from where they were isolated, their ontogenetic origin, or their molecular
signatures [3]. In recent years, gene expression data from single-cell transcriptomic studies
(scRNA-seq) have been used to characterize and fine-tune different cell type classification

systems [2,3,5].

Cellular fate and cell-type-specific gene expression programs are thought to be largely
regulated by transcription factors and their corresponding cis-regulatory networks [2,4,6].
Accordingly, transcription factor expression profiles can be useful in identifying cell types
from scRNA-seq data [2,7,8]. Yet other cellular properties can also vary dynamically, in a
cell type-specific manner. Hence, we were looking for additional sets of putative

‘biomarker’ genes, to identify cell types and states.

The extracellular matrix (ECM) has traditionally been thought of as a static protein network
surrounding cells and tissues. However, the ECM has recently emerged as a highly dynamic
system [9-11]. In fact, transcription and translation of some ECM genes are even coupled
to circadian rhythm, highlighting the dynamic nature of ECM composition [12].
Experimentally, ECM composition has so far been determined mostly by proteomics assays
[13]. More recently, in-silico approaches have defined the °‘matrisome’ gene sets
representing all genes either forming or remodeling the ECM, as present in a given species’

genome [13,14]. The matrisome is divided into two main categories: the core matrisome
2


https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=7925012759420945&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:8580e339-c15f-4e99-badb-b808f55ab248,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:782416e4-4987-4e7c-b664-3a138103b78e,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:8f279155-f101-4213-8ba5-a81cb4b2c95d,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:543b460f-c8d7-46a3-91ca-2ac22fd01ed2
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=29569023434182284&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:8f279155-f101-4213-8ba5-a81cb4b2c95d
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=341430707488917&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:8f279155-f101-4213-8ba5-a81cb4b2c95d,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:782416e4-4987-4e7c-b664-3a138103b78e,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:eb36c583-d38c-4931-a01a-12dd81ca635a
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=4110447817797821&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:782416e4-4987-4e7c-b664-3a138103b78e,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:543b460f-c8d7-46a3-91ca-2ac22fd01ed2,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:7b74fdc9-9fec-4bf2-a76d-11f6700b50a0&options=%7B%22manual_text_override%22%3Anull%2C%22items%22%3A%7B%7D%7D
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=9483754166068469&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:6ca451a0-4032-418a-921f-82592821cc34,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:db0d6ee5-5925-450d-b76d-086ca529aaae,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:782416e4-4987-4e7c-b664-3a138103b78e
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=9985407482243354&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:fe321ba5-0199-4b2f-9abf-abe4641fdd50,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:1359260d-c5b1-41e6-8395-1299ef7a0831,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:fed1dff7-0a82-491d-8b01-3e6d12bd3483
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=509610398004868&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:87eb1345-dec4-4d01-93ea-a588c4081bbd
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=392987442476997&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:264d0439-b9e0-49db-a072-e397927f4c27
https://app.readcube.com/library/2cbcb46e-481b-4bc7-a6db-4d4d307cdf46/all?uuid=8213901387213468&item_ids=2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:264d0439-b9e0-49db-a072-e397927f4c27,2cbcb46e-481b-4bc7-a6db-4d4d307cdf46:6c6d8348-c8b4-45df-92b5-d3472db60895
https://doi.org/10.1101/2021.03.11.434939
http://creativecommons.org/licenses/by-nc-nd/4.0/

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434939; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

encompassing all proteins that form the actual ECM (collagens, glycoproteins,
proteoglycans) and the matrisome-associated proteins that either bind to the ECM, remodel

the ECM, or are secreted from the ECM [13,14].

Importantly, it has been postulated that each cell type produces its own unique ECM [14—
17]. To capture this concept, we have recently defined the ‘matreotype’, an extracellular
matrix signature associated with - or caused by - a given cellular identity or physiological
status [17]. For instance, cellular status, including metabolic, healthy or pathologic, or aging
have been associated with distinct ECM expression patterns (z.e., matreotypes) [14,17-21].
Furthermore, cancer-specific cell types can be identified based on their unique ECM
composition [13,14,20,22]. This indicates that ECM composition is plastic and adapts to
cellular needs or status. Since this is a highly dynamic process, snapshots of unique ECM

compositions are reflected in distinct matreotypes.

Based on this, we hypothesized that ECM gene expression is a dynamic parameter that could
hold predictive value to function as a biomarker for cell type and state identification. To
test our hypothesis, we re-analyzed publicly available scRNA-seq data and specifically
examine ECM gene expression signatures. Unsupervised clustering of scRNA-seq data using
the whole transcriptome - or highly variable genes therein - is a common strategy to classify
cell types [2,3,5]. Here we use defined transcriptome subsets - namely, expressed
transcription factors, core matrisome genes, and random transcriptome subsets of equal size
- to re-cluster scRNA-seq data and evaluate the resulting clusters in comparison to the

performance of the entire transcriptome. In embryonic data coming from chicken and
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mouse limbs, we find that the core matrisome has less predictive power in undifferentiated
cells, early during development, but outcompetes transcription factors later in development

and in more differentiated cell types. Consequently, we propose matreotype gene

expression signatures as context-dependent proxies for identifying cell types.
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Results

Defining the chicken core matrisome

The matrisome has been defined for humans (1027 genes), mice (1110 genes), zebrafish
(1002 genes), planarian (256 genes), Drosophila (641 genes), and C. elegans (719 genes),
where it corresponds to roughly 4% of their protein-coding genes [14,23-26]. In order to
expand the number of model organisms amenable to ‘matreotype’ investigation, we first
decided to define the chicken matrisome. Using the 1110 mouse and 1027 human
matrisome gene lists to perform orthology and InterPro domain searches, we identified 631
and 656 chicken matrisome genes, respectively (Supplementary Fig. 1, Supplementary
Table 1). In summary, we define the chicken matrisome with 217 core-matrisome genes

and 443 associated-matrisome genes (Supplementary Table 1).

The chicken core matrisome as a molecular signature with cell-type specificity

To evaluate the cell type clustering performance of the ‘chicken core matrisome’, we re-
analyzed embryonic stage HH29 (stage 29 Hamburger and Hamilton) [27] chicken hind
limb scRNA-seq data [28]. At this point of development, chicken limb progenitor cells have
already differentiated into transcriptionally distinct tissue types [28], which is reflected in
the separation of our t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality
reduction and the superimposed, color-coded clustering information (Fig. 1A). We
compared the cell type clustering of the core matrisome to the entire transcriptome and
contrasted its performance with highly variably expressed transcription factors -
representing a ‘traditional cell type identifier’ - and an equal number of randomly picked

genes, to estimate baseline clustering. Of the 217 chicken core matrisome genes, 136 were
5
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94  expressed in our limb scRNA-seq data (Data Source File 1). Accordingly, we picked 136
95 genesrandomly, as well as the 136 most variably expressed transcription factors, chosen by
96 maximum variance across all cells in the sample. With these three small subsets of genes -
97  representing only 1.26% of all expressed genes -, we re-clustered our data using the
98 Louvain-Jaccard algorithm. We adjusted the resolution to obtain the same number of
99  clusters as for the entire transcriptome, and plotted the resulting clusters in an unsupervised
100 manner onto a t-SNE plot calculated from the entire transcriptome (Fig. 1B-D). A
101  qualitative inspection of the plots showed that the clusters resulting from a ‘random gene
102  set’ did not clearly coincide with any clusters identified using the entire transcriptome,
103 suggesting that they failed as transcriptional predictors for any given cell type (Fig. 1A, B).
104 By contrast, ‘transcription factor’ clusters showed good correspondence to our whole
105  transcriptome clustering (Fig. 1A, C). Intriguingly, we found that the ‘core matrisome’ was
106  sufficient to identify several cell type clusters (Fig. 1A, D). For example, ‘core matrisome’
107  clusters m-7, m-11, m-14, and m-17 corresponded roughly to skeletal progenitors (t-15),
108 joint progenitors (t-3), skin (t-1), and vessel (t-10) clusters, as identified by the entire
109  transcriptome (Fig. 1A, D). Thus, these core matrisome-identified clusters largely reflected
110  cell types of tissues that are embedded in collagen-rich ECMs.
111
112 To quantify the separation among random genes-, transcription factors-, and core
113  matrisome-based clusters, we plotted the distribution of all pairwise Euclidean distances,
114  i.e. distances between all pairs of clusters, and compared them to the entire transcriptome
115 result. Both the ‘core matrisome’ and the ‘transcription factors’ clusters clearly

116  outperformed ten iterations of ‘randomly-picked’ genes subsets of equal size (Fig. 1E).
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117  Moreover, using a hypergeometric test, we were able to demonstrate that the probability of
118  cluster overlap - between the entire transcriptome clusters and the three subsets clusters -
119  was substantially higher for ‘core matrisome’ and the ‘transcription factors’ clusters (Fig.
120  1F-H). For the ‘core matrisome’, this was particularly evident for clusters corresponding to
121 cell types known to produce a complex ECM, such as skeletal cells or skin (Fig. 1G).
122 Moreover, even within the same cell type, the matrisome seemed able to distinguish
123  discrete cell states. For example, ‘core matrisome’ clusters m-4 and m-6 reconstituted
124  ‘transcriptome’ cluster t-8, the distal mesenchyme, indicating that the highly proliferative
125  state of this mesenchymal sub-population is reflected by a distinct ‘matreotype’ (Fig. 1G).

126  Taken together, our re-clustering analysis of chicken limb scRNA-seq data - using only the
127  expression status of either core matrisome genes, transcription factors, or a random control

128  gene set - indicates the potential of core matrisome gene expression status as a cell type and

129  cell state identifier.
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131  Figure 1. Core matrisome and transcription factors re-capitulate entire transcriptome cell

132  clusters
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133 (A) tSNE representation of 6823 HH29 chicken hindlimb autopod cells from Feregrino et
134  al, 2019. Colors represent unsupervised clustering results based on the transcriptome (A),
135 arandomly sampled set of genes (B), transcription factors (C), and the core matrisome (D).
136  (E) Boxplot of Euclidean distances between clusters based on average expression of 2000
137  variably expressed genes, calculated for transcriptome, transcription factor, core matrisome,
138 and 10 sets of random gene clusters. (F-H) Heatmap of square root of negative log 10
139  probability of cluster overlap by hypergeometric test between ‘transcriptome’ and ‘random
140  clusters’ (F), ‘transcription’ factor’ (G), and ‘matrisome’ (H). ‘Transcriptome’ clusters are
141  grouped by tissue or cell type. For (A-F) details, see Data Source File 1.

142

143 Clustering performance and cell type identification by transcription factors and the core
144  matrisome

145  To further assess the potential of such limited gene subsets to reliably identify cell types
146  from scRNA-seq data, we next sought to quantify their ability to recreate our entire
147  transcriptome cluster composition. We did this on a cluster-by-cluster as well as on a cell-
148  by-cell basis. We first plotted - ordered by percentage - the respective cellular contributions
149  of individual gene subset clusters to the 18 entire transcriptome clusters. As expected,
150 ‘random genes’ clusters contributed almost uniformly to the different ‘transcriptome’
151  clusters (Fig. 2A). The median percentage contribution of the single-largest ‘random genes’
152 clusters - highlighted in yellow - was 17%, again reflective of that gene subset’s low
153  information content regarding cell type identification. Certain ‘transcription factor’
154  clusters, however, contributed more than 90% of a given ‘entire transcriptome’ cluster (Fig.

155  2B). For example, ‘transcriptome’ cluster t-11, Ze., “muscle”, was represented to 99% by
8
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156  ‘transcription factor’ cluster tf-17. However, the same “muscle” cluster was only re-
157  captured to 12% by the largest ‘random’ cluster contributor r-3 (compare Fig. 2A to B,
158  ‘transcriptome’ cluster t-11). Likewise, the ‘matrisome’ gene subset also performed better
159  than ‘random’, with the ‘Muscle’ cluster represented to 66% by ‘matrisome’ cluster m-0, or
160  ‘Skin’ recaptured to 91% by cluster m-14 (Fig. 2C). However, when comparing the
161  ‘transcription factor’ and ‘matrisome’ clustering performances within the closely lineage-
162  related lateral plate mesoderm-derived cell types, differences between the two gene subsets
163  emerged. Lateral plate mesoderm-derived tissues in our sample included non-skeletal
164  connective tissue (cl. t-4, t-9), undifferentiated mesenchyme (cl. t-13, t-5, t-16, t-8),
165 interdigital mesenchyme (cl. t-2, t-6, t-12) and skeletal progenitors (cl. t-14, t-15, t-17, t-3).
166  Amongst these, certain cell type clusters contributing to mesenchymal tissues were well
167  defined by their ‘transcription factor’ signature, yet much less so by their ‘matrisome’
168  expression status (e.g. compare cl. t-8, t-2, t-12, Fig. 2B and C). Again, some of these
169  discrepancies might relate to the fact that ‘matrisome’ signatures can also be indicative of
170  different cell states, whereas ‘transcription factors’ profiles assign predominantly to cell
171  types. However, cell types contributing to more differentiated tissues with complex ECM
172 composition were equally well defined by both ‘transcription factor’ and ‘matrisome’ gene
173  expression signatures (e.g., cl. t-4, and t-14, t-15, t-17, t-3).
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175  Figure 2. Relative cluster contributions to transcriptome clusters
176  (A) Relative contribution of ‘random’ clusters to the ‘transcriptome’ clusters ordered by size.
177  Cluster IDs are indicated where possible and the biggest contribution per transcriptome
178  cluster is highlighted in color. (B) ‘transcription factor’ cluster contributions and (C)
179  ‘matrisome’ cluster contributions are indicated in the same manner. ‘transcriptome’ clusters
180  are grouped by cell type.
181
182  The core matrisome predicts preferentially ECM-rich cell types in early development
183  To quantify the ability of all our three gene-input-subsets - ‘random’, ‘transcription factor’,
184 and ‘matrisome’ - to correctly predict cluster membership of our “Gold Standard”
185  transcriptome clustering, we decided to use a binary classification scheme based on pairs of
186  cells being in the same or different clusters [29]. Each pair of cells was classified as either
187  “true positive” (TP: two cells are in the same cluster regardless of the input data used), “true
188  negative” (TN: two cells are in different clusters regardless of input data), “false positive”

189  (FP: two cells are in the same cluster although they are in different clusters in the “Gold

190  Standard”), and “false negative” (FN: two cells are in different clusters although they are in

191  the same cluster in the “Gold Standard”) (Fig. 3A). Based on the cumulative numbers of TP,
192 TN, FP, and FN of these binary cell pair classifications, we then calculated three different
193  indices commonly used to compare different clustering algorithms [29]: the Rand index,
194  also known as accuracy (Rindex), which measured the percentage of correct classifications;
195  the Jaccard index of overlap (/index), which was calculated as the intersection of the two

196  sets divided by the union of the two sets; and the Fowlkes-Mallows index (FM index),

10
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which represented the geometric mean of precision and recall. The closer each of these
indices scores to 1, the more similar the respective gene subset clustering can be considered
to the transcriptome “Gold Standard” clustering. Regardless of the index used, the ‘core
matrisome’ and ‘transcription factor’ gene subsets clearly outperformed ten iterations of
‘random genes’, with ‘transcription factors’ scoring slightly higher than ‘matrisome’ genes
(Fig. 3B).
Collectively, we demonstrate that both ‘transcription factors’ and ‘matrisome’ genes can be

used as cell type identifiers in scRNA-seq data. The extent to which this holds true,

however, seems to depend on the tissue type to which the respective cell types contribute,
differences in cell state, as well as the ontogenetic state of their differentiation.
A “Gold Standard” Test
e o
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Figure 3: Binary classification and re-cluster indices
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(A) Each pair of cells in a given ‘Test’ clustering - i.e. ‘Core Matrisome’, “Transcription

Factor’ or ‘random’ - is classified based on their relationship to the “Gold Standard”
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211 clustering, as calculated from the entire transcriptome. (B) Based on those binary
212 classifications the quality of each “Test’ clustering is measured with the three indices
213 following Kafieh and Mehridehnavi, 2013. ‘Test’ clustering indices are calculated for
214  transcription factors (purple), core matrisome (green), and 10 random gene set clusterings
215  (yellow). TP: true positive, TN: true negative, FP: false positive, FN: false negative, R: Rand
216  index, J: Jaccard index, FM: Fowlkes-Mallows index.
217
218  Predictive power of ‘core matrisome’ signature depends on developmental differentiation
219  and is evolutionarily conserved amongst vertebrates
220  To determine the effect of developmental progression on the cell type-predictive powers of
221  the matrisome, we next focused our attention on an embryonic scRNA-seq times series. We
222 incorporated a previously published time series of the developing mouse hind limb by Kelly
223 and colleagues into our analysis [30]. In their scRNA-seq data sets, we found 244 to 254 out
224  of the total 274 mouse core-matrisome genes expressed. Initial clustering of single-cell
225  transcriptomes showed - as expected - similar tissue composition as in our chicken hindlimb
226  data, as well as as an increase in cell type complexity from the earliest stage E11.5 to E18.5
227  (Fig. 4A, Data Source File 1).
228  Using the clusters identified by the entire transcriptome as a benchmark, we then re-
229  clustered the data using either ‘random’, ‘transcription factor’ or ‘core matrisome’ gene sets
230  of equal size, and compared their performances using the previously introduced indices.
231  Opver the course of the sampled developmental time window, the predictive powers of both
232 ‘transcription factor’ and ‘core matrisome’ increased, i.e., more cell pairs were correctly

233 attributed together in a way reflective of the entire transcriptome cell type clustering (Fig.
12
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234 4B). To quantify this effect and relate it to the predictive powers of different fractions of
235 ‘random’ genes from the entire transcriptome, we focused our attention on the two
236  temporal extremes of the time series, E11.5 and E18.5. We randomly sampled increasing
237  numbers of ‘random’ genes - from 1% to 90% of the entire transcriptome, each sampled and
238  re-clustered 5 times - and plotted the spread of their performances in relation to the
239  ‘transcription factor’ and ‘matrisome’ gene subsets (Fig. 4C, D). At E11.5, both ‘transcription
240  factor’ and ‘matrisome’ gene subsets clusterings performed at about the rate of 2% of all
241  genes, randomly selected from the transcriptome (Fig. 4C). At E18.5, however, their
242 predictive powers had increased to a level of more than 10% of the entire transcriptome
243 (Fig. 4D). This is noteworthy, as the number of expressed ‘core matrisome’ genes at that
244  stage corresponds to only 1.28% of the entire transcriptome. Moreover, at these later stages,
245  the ‘matrisome’ genes subset outperformed ‘transcription factors’ in these indices, likely a
246  reflection of the ongoing maturation of tissues with high ECM content.

247  We concluded, as tissues and their ECM mature, the expression status of the core matrisome

248  becomes progressively better at delineating cell types.

13
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250  Figure 4. Predictive power of the matrisome during murine development

251  (A) tSNE representations of four mouse embryo limb data sets of increasing developmental
252 stages (E11.5 to E18.5, E: embryonic day). Colors and numbers indicate ‘transcriptome’
253  clusters. Cluster annotation in Data source File 1. (B) Rand, Jaccard and Fowlkes-Mallows
254  indices for all four stages. Colors as in Fig. 3B. (C) Indices of ‘matrisome’ and ‘transcription
255  factor’ clustering (triangles) in E11.5 and 18.5 compared to indices of random gene sets of

256  increasing size. Gradient indicates the percentage of the whole transcriptome represented

14


https://doi.org/10.1101/2021.03.11.434939
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434939; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

257 by the random gene set. For each percentage, 5 gene sets were sampled independently and

258  used for clustering.
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259  Discussion
260 Understanding the molecular parameters that define different cell types and states is
261 fundamental to developmental and regenerative biology. Here we show that the expression
262  status of a small subset of genes, the core matrisome, can suffice to identify cell types and
263  states in the developing chick and mouse limb. Even though it corresponds to less than 2%
264  of the entire transcriptome, we demonstrate that core matrisome expression encodes
265 enough information to cluster scRNA-seq data according to cell types, and cell states. The
266  predictive power of the matrisome increases with developmental time, and can even
267  outperform transcription factors in more differentiated cell and tissue types with high ECM
268  content.
269
270 These findings make sense with regards to developmental progression and tissue
271  maturation. During ontogenetic development, transcription factors are thought to guide
272  early differentiation trajectories and eventually specify terminally differentiated cell types
273 [2,4,6]. At later stages of development, the ECM becomes increasingly important,
274  instructing stem cell differentiation and regulating cell and tissue shape, morphogenetic
275 movements, and organogenesis [16]. This holds especially true for tissues with complex
276  ECM composition or high ECM turnover. Consistent with this, we found that in our
277  chicken limb data, skin cells, muscle and skeletal progenitors clusters segregate especially
278  well using core matrisome expression alone (Fig. 1 and 2). The lack of a clear ‘matrisome’-
279  based clustering for some of the other mesenchymal cell populations may indicate a less
280  specialized extracellular matrix, or, alternatively, the presence of different cell states within

281 a cell type, each with its own putatively distinct ‘matreotype’. Moreover, the overall
16
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282  predictive power of the matrisome increases when comparing cell populations in ECM-rich
283  tissues at progressively later stages of development (Fig. 4).

284

285  Previous work using scRNA-seq to determine molecular changes during adipogenesis (day
286 1-7) in vitro found that at day 3 the cell clustering was mainly driven by ECM genes, and
287  at day 7 the core matrisome was one of the top ten most differentially expressed gene
288  ontology terms [31]. Beyond development, planarian scRNA-seq revealed that muscles
289  produce most of the matrisome, and inhibiting one key matrisome gene (hemicentin)
290 resulted in severe epidermal ruffling and displacement of cells during homeostatic tissue
291  turnover, suggesting an important role for tissue regeneration [26]. Furthermore, in healthy
292  human lumbar discs, the core matrisome can be used to distinguish primary annulus
293  fibrosus and nucleus pulposus cells based on 90 out of the 274 core matrisome genes being
294  differentially expressed in the opposite direction using scRNA-seq [32]. Similarly, 115
295 matrisome genes are characteristically expressed in the six cell types that make up the
296  human cutaneous neurofibroma microenvironment [33]. Beyond cell type distinction in
297  tissues, a differential expression of matrisome genes can be observed when cells change
298  their state from a healthy to a diseased cell. For instance, differential expression of
299 matrisome genes was one main characteristic of reprogramming from normal fibroblasts,
300 pericytes, and endothelial cells into tumor cells [34]. During cancer progression,
301 deregulation of matrisome genes is a crucial step observed in early and late metastasis [35].
302 Moreover, core matrisome genes help identify circulating tumor cells in the blood using
303 scRNA-seq [36,37]. These results support our conclusion that matrisome gene expression

304 can serve as a key signature to determine individual cell types, as well as cell states.
17
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305

306  This raises the question of why the matrisome is such a good predictor of cell type and state.
307 It is well known that cells can be distinguished based on cell surface receptors [38].
308 However, it is less appreciated that each cell type can synthesize its own ECM that entails
309 it with unique physical properties [15,39,40]. For instance, placing primary preadipocytes
310 into decellularized ECMs derived from subcutaneous, visceral, or brown adipose tissue
311  influences the preadipocytes' terminal differentiation [41]. Hence, the physical properties
312 of ECM seem to be able to dictate cellular fate and drive stem cell differentiation into
313  neurons, muscle, or bone cells [42]. Besides providing instructive cues during development,
314  ECMs can also change cellular status. Placing senescent cells or aged stem cells in a “younger
315 ECM” rejuvenates these old cells to regain proliferative capacities or stem cell potential,
316  respectively [43,44]. Similarly, placing tumor cells into an embryonic ECM reprograms to
317 non-tumorigenic cells [45]. Hence, there is an intrinsic crosstalk between the ECM and the
318  cells it encapsulates. ECMs, or niches, are made and adapted according to the respective
319  cellular needs or states. Disrupting the crosstalk between cancer and cancer-associated
320 fibroblasts, for instance, by a small molecule that inhibits chromatin remodeling and change
321 matrisome gene expression (ie., altering the matreotype), prevented tumor growth in
322  xenograft mouse models [46]. Although we lack a current understanding of these
323  underlying molecular crosstalk, these snapshots of ECM compositions - or matreotypes -
324  clearly can reflect distinct cellular properties.

325

326  Accordingly, since matreotypes mirror cellular status, they also hold potentially promising

327  prognostic value. For instance, 43 out of the 274 core matrisome genes are significantly
18
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328  upregulated across multiple cancer types, and 9 ECM genes predicted cancer outcome [47].
329  Another classifier similar to the matreotype concept is termed tumor matrisome index,
330 which is based on 29 matrisome genes, reliably predicts low- and high-risk groups and
331 chemotherapy responses for small cell lung cancer patients [48]. Matreotypes reflecting
332  chronological age have been recently used to predict drugs that promote healthy aging [49].
333  Therefore, defining matreotypes has translational value for future biomedical research.
334  Moreover, identifying different subpopulations of a given cell type will be critical to
335 overcome the problem of cellular heterogeneity and aid personalized medical applications.
336

337 In summary, with our scRNA-seq analyses, we provided evidence for a previously
338  postulated concept, namely that ‘each cell type produces its unique ECM’ [15,17]. While
339  the best molecular proxies for cell-type identification continue to be discussed [1-3], we
340 made the unexpected discovery that expressed core matrisome genes - corresponding to less
341  than 2% of a typical transcriptome - hold enough information to re-cluster scRNA-seq data
342 as well as transcription factor signatures. For more mature cells, the core matrisome
343  embodied substantial predictive value to identify cell types and states. Hence, future work
344  on defining matreotypes of different cell types and states might inform diagnostics and
345  personalized medicine.

346
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347  Materials and Methods
348  Matrisome gene lists
349  Curated matrisome gene lists for mouse and human are available on “The Matrisome Project’

350  (http://matrisome.org/; [14]. To create a matrisome list for chicken, a union of the human

351 and mouse matrisome lists was used to define chick one-to-one orthologs in the ENSEMBL
352  Galgal5.0 annotation.

353

354  Single-cell RNA-sequencing data

355  Previously published single-cell RNA sequencing (scRNA-seq) datasets sampling the
356  chicken embryonic limb [28] and the mouse embryonic limb [30]; stages E11.5 to E18.5)

357 were used for all analyses. The raw data is accessible at Gene Expression Omnibus (GEO,

358  https://www.ncbi.nlm.nih.gov/geo/), under accession numbers GSE130439 (chicken) and

359 GSE142425 (mouse).

360

361 Data pre-processing

362 Raw UMI count tables were used to initiate ‘Seurat objects’ for all mouse samples in R, using
363  package Seurat v3.1.4. Next, low quality cells and outliers were filtered out. Chicken cells
364  with an UMI count higher than 4 times the average UMI count, less than 20 percent of the
365 median UMI count or more than 10 percent mitochondrial or ribosomal content were
366 removed [28]. Mouse cells expressing less than 200, more than 6000 genes, or more than 10
367 percent mitochondrial RNA were removed. All expressed genes were considered.
368 Normalization, identifying the top 2000 variable genes and scaling of the data was applied

369  with Seurat’s built-in functions.
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370

371 Dimensionality reduction

372  For all chicken and mouse, Seurat objects, principal components analysis was performed on
373  all expressed genes, and significant components were selected as such, if they were located
374  outside of the Marchenko Pastur distribution [50]. The same criterion for significance was
375 applied on all principal component analysis on core matrisome and random subset genes.
376  The cells were visualized with the dimensionality reduction algorithm tSNE [51].
377 ‘matrisome’ and ‘random’ clusters for all datasets were represented on the same tSNEs
378 generated from the ‘transcriptome’ principal components. To define a ‘gold standard’ of
379  scRNAseq-based cell type clustering, k-nearest neighbour (kNN) graphs and Jaccard indices
380 of overlap between a cell and its neighbours were used to create shared nearest neighbour
381  (SNN) graphs, with the Seurat ‘FindNeighbors’ function using all expressed ‘transcriptome’
382  genes. Clusters of cells were then defined by ‘FindClusters’, by applying Louvain modularity
383  optimization algorithms on SNN graphs. As the number of clusters can be influenced by the
384  resolution parameters, please refer to the supplementary data for detailed parameters of
385  significant dimensions and resolutions used in clustering for all samples. For ‘matrisome’-
386  based clustering, all expressed core matrisome genes were considered for clustering. For
387 ‘random’-based clustering, for ten iterations, randomly picked genes from the whole
388  transcriptome were used such that they matched the number of expressed core matrisome
389  genes, as well as resulting in the same number of individual clusters as the ‘transcriptome’
390 and ‘matrisome’ clustering. The core matrisome genes and transcription factors were

391 excluded from this sampling. After ordering the transcription factors by expression
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392  variability, the set of top transcription factors matching the size of the expressed core
393  matrisome was used to recluster the cells.
394
395  Cluster cell type annotation
396  Differentially expressed genes between mouse clusters with a minimum natural log fold
397  change of 0.25 were identified using a Wilcoxon rank sum test, and were then used to assign
398  putative celltype identities of each cluster. Only genes expressed in at least 25% of cells in
399 ome of the two populations were considered. For all clusters, all and the top five
400 differentially genes per cluster can be found in the Data Source File 1. Chicken clusters had
401  been previously annotated (Feregrino et al., 2019).
402
403  Distance Boxplots
404  To assess cluster-to-cluster proximity of ‘transcriptome’-, ‘matrisome’-, ‘random’-, and
405  ‘transcription factor’- based clustering approaches, Euclidean pairwise distances between
406  each cluster were calculated on the averaged scaled expression per cluster of the top 2000
407  variably expressed genes. The same 2000 genes were used to compare all three clustering
408  approaches.
409
410 Hypergeometric test
411  Probabilities of overlap between clusters were calculated with ‘phyper’. The
412  hypergeometric test takes into account the size of the reference cluster (‘transcriptome’) m,

413  the size of the test cluster (‘matrisome’, ‘random’, and ‘transcription factors’) &, the number
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414  of non-tested cells (total number of cells N-/m) and the size of the overlap xto calculate the

415  probability of the overlap to occur at random. Probabilities were calculated for overlaps
416  between all clusters. Probabilities equal to zero were replaced with the smallest non-zero
417  probability to prevent infinite values after transformation, and probabilities bigger than
418  0.05 were set to 1 for plot aesthetics. ‘Heatmap3’ [52] was used to plot square root negative
419  log 10 transformed probabilities.

420

421  Visualizing cluster contributions

422  Barplots were created with ‘ggplot2’ [53].

423  Indices

424  The ‘Rand index’, also known as ‘accuracy’, was calculated as following:

TP + TN

425 R = Py P+ N+ TN

426 It measures the percentage of correct classifications.
427  The ‘Jaccard index of overlap’ is calculated as intersection over union. It does not take the
428 TN into account, which represent the most classifications and might be confounding in the

429 Rand index:

_ TP
" TP + FP + FN

430 ]

431  Atlast, the ‘Fowlkes-Mallows index’ is the geometric mean of precision and recall. Precision
432  measures how many positive pairs (cells within the same cluster in the test clustering) are
433 true positives (cells within the same cluster in the gold standard). Recall is the percentage

434  of true positives identified by all actual positives:
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TP TP

FM = |5 ¥ FP TP + FN

All indices range from 0 (no correct classification by the test clustering) to 1 (identical

clustering by the test clustering).

Comparing 'matrisome‘ and ‘transcription factors’ against ‘random‘ subsets of
increasing size

The information content of the ‘matrisome’ and the ‘transcription factor’ subset was
compared to ‘random’ subsets containing 1, 2, 4, 5, 10, 20, 40, 50, 75, and 90 percent of the
E11. 5 and E18.5 chicken transcriptomes. For each percentage, five ‘random’ subsets
resulting in the same number of clusters as the ‘matrisome’ were sampled, clustered, and

indices were calculated.
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