

Middle cerebral artery responses to vasoreactivity protocols

Protocol-dependence of middle cerebral artery dilation to modest hypercapnia

Baraa K. Al-Khazraji¹, Sagar Buch³, Mason Kadem⁴, Brad J. Matuszewski², Kambiz Norozi^{5,8},
Ravi S. Menon^{3,6}, and J. Kevin Shoemaker^{2,7}

¹Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON;

²School of Kinesiology, Faculty of Health Sciences;

³Centre for Functional and Metabolic Mapping, Robarts Research Institute;

⁴School of Biomedical Engineering, McMaster University, Hamilton, ON;

⁵Department of Pediatrics, ⁶Department of Medical Biophysics, ⁷Department of

Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University,
London, ON

⁸Department of Pediatric Cardiology, Medical School Hannover, Germany

Correspondence

J. Kevin Shoemaker, PhD

The University of Western Ontario, London, Ontario, Canada, N6A 5K7

Email: kshoemak@uwo.ca

Phone: 519-661-2111, ext: 88157

Middle cerebral artery responses to vasoreactivity protocols

28 **Abstract**

29 There is a need for improved understanding of how different cerebrovascular reactivity (CVR)
30 protocols affect vascular cross-sectional area (CSA) when measures of vascular CSA are not
31 feasible. In human participants, we delivered $\sim\pm 4$ mmHg end-tidal partial pressure of CO₂
32 (PETCO₂) relative to baseline through controlled delivery, and measured changes in middle
33 cerebral artery (MCA) cross-sectional area (CSA; magnetic resonance imaging (7 Tesla MRI)),
34 blood velocity (transcranial Doppler and Phase contrast MRI), and calculated CVR based on
35 steady-state versus a ramp protocol during two protocols: a 3-minute steady-state (+4mmHg
36 PETCO₂) and a ramp (delta of -3 to +4mmHg of PETCO₂). We observed that 1) the MCA did not
37 dilate during the ramp protocol, but did dilate during steady-state hypercapnia, and 2) MCA blood
38 velocity CVR was similar between ramp and steady-state hypercapnia protocols, although
39 calculated MCA blood flow CVR was greater during steady-state hypercapnia than during ramp,
40 the discrepancy due to MCA CSA changes during steady-state hypercapnia. Due to the ability to
41 achieve similar levels of MCA blood velocity CVR as steady-state hypercapnia, the lack of change
42 in MCA cross-sectional area, and the minimal expected change in blood pressure, we propose that
43 a ramp model, across a delta of ~-3 to +4mmHg PETCO₂, may provide one alternative approach
44 to collecting CVR measures in young adults with TCD when CSA measures are not feasible.

45

46 **Keywords**

47 cerebrovascular reactivity, hypercapnia protocols, transcranial Doppler, magnetic resonance
48 imaging, middle cerebral artery dilation

49

50 **Running Title**

51 Middle cerebral artery responses to vasoreactivity protocols

Middle cerebral artery responses to vasoreactivity protocols

Introduction

53 Cerebrovascular reactivity (CVR) studies assess changes in cerebral blood flow to a known
54 vasoreactive stimulus (e.g., changes in end-tidal partial pressure of CO₂; PETCO₂). Measures of
55 CVR are important because attenuated CVR may reflect preclinical vascular pathophysiology and
56 an increased risk of mortality independent from cardiovascular risk factors or stroke incidence (1).
57 The most commonly used technique for CVR measures in humans, transcranial Doppler (TCD)
58 ultrasonography, provides an index of vascular blood flow changes (i.e., blood velocity) because
59 the vascular cross-sectional area (CSA) values required for blood flow calculations (i.e., the
60 product of CSA and blood velocity) are not collected with TCD. Thus, an assumption of an
61 unchanging CSA is typically accepted, raising concern if changes in CSA do occur (2). To
62 circumvent issues related to TCD measures of CVR, some research groups measure all four brain-
63 supply (i.e., carotid and vertebral) arteries outside of the brain (3), or use expensive neuroimaging
64 approaches (4,5).

65 An additional concern regarding quantification of CVR is the potential for changes in central
66 hemodynamics during hypercapnia (elevated PETCO₂) that could elevate cerebral blood flow due
67 to changes in cardiac output (6) and blood pressure (6,7) and not directly due to cerebrovascular
68 dilation (7). Another complicating factor in quantifying CVR between groups is potential variation
69 in large cerebral artery reactivity, particularly when comparing age differences (8). As an example,
70 our group's previous work showed that compared to younger adults, older adults exhibited
71 attenuated changes in large cerebral artery CSA in response to steady-state hypercapnia (9).
72 However, obtaining cerebral artery CSA data requires access to costly MRI or CT systems. We
73 aim to understand protocol designs that provide accurate CVR estimates when using TCD
74 methods. The "*ideal*" velocity based CVR protocols conducted using TCD would require: 1)
75 minimal CSA changes by conducting CVR protocols that result in negligible change in CSA, and
76 2) minimal influence of confounding variables such as blood pressure.

77 In the current study, we tested the hypothesis that a ramp (i.e., linear) CVR protocol within the ± 5
78 mmHg range of relative changes in PETCO₂ would provide minimal changes in CSA while still
79 replicating CVR outcomes from the more standard steady-state hypercapnia CVR protocol. Our
80 rationale for this range of relative changes in PETCO₂ comes from the emerging knowledge of a
81 sigmoidal change in MCA CSA, with minimal changes in hypercapnia, within the -5 to +5 mmHg

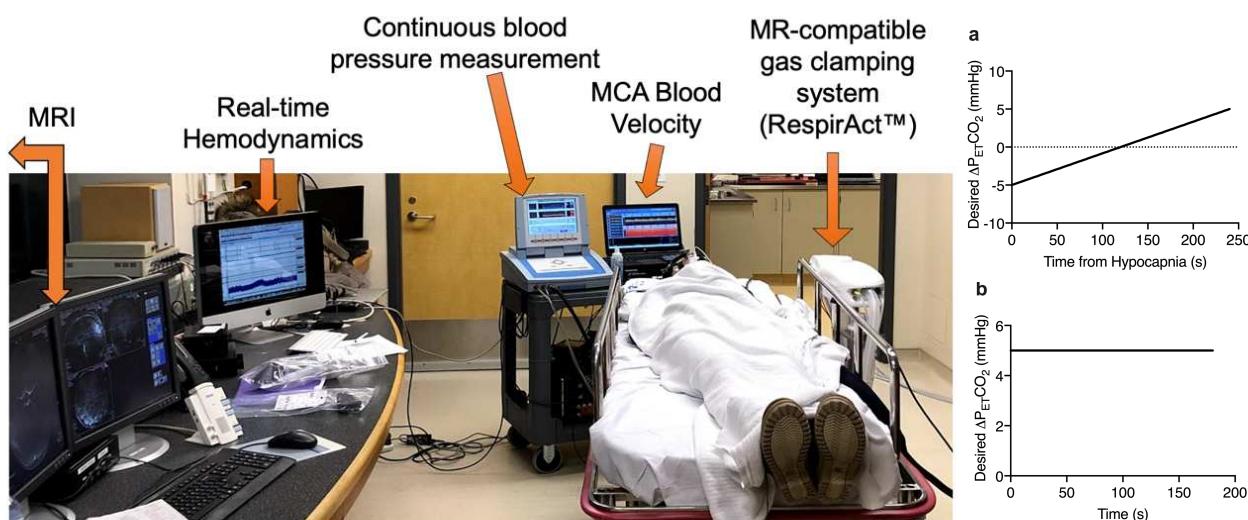
Middle cerebral artery responses to vasoreactivity protocols

82 from resting PETCO₂ (10). We chose a ramp-style CVR protocol to compare to CVR measures
83 from a steady-state hypercapnia protocol (0 to ~5 mmHg) because: 1) the ramp protocol is a well-
84 established protocol for CVR measures (7,11,12), and 2) existing means for calculating CVR from
85 standard steady-state protocols use linear slope methods which simply reduce to a ramp design.
86 We acknowledge that the ramp protocol within the ~Δ±5 mmHg from baseline PETCO₂ range may
87 potentially affect vascular dilation differently than a steady-state hypercapnia protocol as the
88 hypocapnia portion preceding hypercapnia may blunt blood velocity CVR (13). A sub-analysis in
89 our earlier work, however, indicated that order of condition did not affect CSA reactivity in young
90 adults (4). Additionally, existing methods primarily focus on velocity-based CVR without
91 considering CSA, and we wanted to design a CVR protocol that minimized CSA changes (even if
92 it involved hypocapnia) and blood pressure changes while retaining its ability to elevate cerebral
93 blood flow (i.e., changing blood velocity). Other models can be considered but we want to test the
94 ramp protocol as one example of alternative CVR designs that may elicit negligible CSA and BP
95 changes when measuring blood velocity CVR using TCD.

96 To achieve the high temporal resolution of the MCA CSA for the required study, we developed a
97 dynamic anatomical imaging sequence with high-temporal and spatial resolution to capture MCA
98 CSA changes every 14 seconds throughout each vasoreactivity protocol (~±Δ4 mmHg) using 7T
99 magnetic resonance imaging. Our objectives were to assess whether between steady-state and ramp
100 protocols: 1) the MCA CSA increased compared to baseline, 2) blood pressure remained stable
101 throughout duration of the protocol, and 3) MCA blood velocity (via TCD alone), and calculated
102 flow vasoreactivity were similar.

103 Materials and Methods

104 Participants


105 All testing was conducted at the Centre for Functional and Metabolic Mapping at The University
106 of Western Ontario. The Human Subjects Research Ethics Board at the University of Western
107 Ontario (London, Ontario, Canada) approved the experiment protocols herein. Informed consent
108 from 12 healthy subjects (19-25 years of age; 6 males) was obtained prior to scanning. A sample
109 size calculation was based off of our previous work with blood velocity reactivity measured with

Middle cerebral artery responses to vasoreactivity protocols

110 TCD during steady-state hypercapnia (4). Specifically, for a within-subject design, with a Cohen's
111 d of 1.02, alpha level of significance of 0.05, and statistical power of 0.80, we calculated a sample
112 size of 10 and recruited 12 individuals due to our laboratory's expected attrition rate of 10-12%
113 with our neuroimaging studies. Participants were ineligible if they were smokers, pregnant, or had
114 any of the following conditions: Raynaud's disease, respiratory illnesses, diabetes, claustrophobia,
115 history of psychosis, eating disorders, manic or bipolar disorder, major psychiatric conditions, or
116 dependence on alcohol or drugs.

117 **Procedure and data recording**

118 Testing was completed between 10am – 2pm. Participants refrained from exercise, alcohol, drugs,
119 and caffeine within 12 hours prior to testing. We used TCD and MRI to assess the cerebral
120 vasoreactivity in response to steady-state (three minutes) bouts of hypercapnia (HC), and a ramp
121 protocol from hypocapnia to hypercapnia (four minutes) (Fig. 1).

Figure 1 – Experimental protocol schematic. Left: Experimental setup displaying real-time data collection for both transcranial Doppler and MRI sessions. Right, panel a: Ramp hypercapnia protocol with a desired target range of -5 to +5 mmHg from baseline PETCO₂ and a duration of 240 seconds. Right, panel b: Steady-state hypercapnia (SSHC) protocol with a target range of +5 mmHg from baseline PETCO₂ and a duration of 180 seconds. Protocols were executed using the RespirAct™ device with preset protocols programmed with the desired PETCO₂ values.

122 Steady-state and ramp protocols were each conducted twice, once for each of the TCD and MRI
123 portions of the testing sessions and the order of TCD and MRI trials was randomized across
124 participants. Unfortunately, we were unable to randomize the order of CVR protocols as it was
125 difficult to stop and restart the RespirAct™ (Thornhill Research Inc., Toronto, Ontario, Canada)

Middle cerebral artery responses to vasoreactivity protocols

126 without doing extensive recalibration. The desired ventilatory rate was set to 12 breaths/min using
127 a visual metronome for each session and was projected on a screen during the MRI scan. Our goal
128 was to have the protocols fall within the ± 5 mmHg from baseline PETCO₂ range. Following a
129 familiarization period of four minutes, the order and duration of protocols occurred as follows: 1)
130 baseline (1 minute), 2) steady-state hypercapnia (target was +5 mmHg, although only reached
131 $\sim +4$ mmHg; three minutes), 3) recovery (2 minutes) 4) baseline (1 minute), 5) -5 mmHg PETCO₂
132 hypocapnia (brief hyperventilation; target was +5 mmHg, although only reached ~ -3 mmHg) 30
133 seconds), 6) incremental increase (ramp) from ~ -3 mmHg hypocapnia to $\sim +4$ mmHg relative
134 PETCO₂ hypercapnia (four minutes), 7) recovery (two minutes).

135 ***Manipulating target PETCO₂ stimulus***

136 Prior to the MRI scan, participants were fitted with a facemask attached to the RespirAct™ system,
137 a modified sequential gas delivery breathing circuit(13) was used to clamp PETCO₂ levels at the
138 desired +5 or -5 mmHg (depending on protocol). Breathing rate and tidal volumes were calibrated
139 prior to starting the breathing sequence.

140 ***MCA blood velocity and systemic blood pressure***

141 While supine, continuous beat-to-beat arterial blood pressure was monitored using a Finapres®
142 Finometer system, where a finger cuff was placed on the middle phalange of the third finger, and
143 the finger blood pressure was calibrated with an upper arm cuff (Finapres® Medical Systems,
144 Amsterdam, Netherlands). The MCA was insonated with a 2 MHz ultrasound probe placed at the
145 temporal window and the peak blood flow velocity envelope was collected using the Neurovision
146 TCD System (Multigon Industries Inc., NY, USA). All analog data were sampled at 1000 Hz using
147 the PowerLab data acquisition system (ADInstruments, Dunedin, Otago, New Zealand).

148 ***MCA vascular diameter and blood velocity during MRI***

149 A 7 Tesla MRI (Siemens, Magnetom Step 2.3, Erlangen, Germany) system was used to acquire
150 the following datasets: 1) 3D time-of-flight (TOF) with 0.8mm isotropic voxel resolution, echo
151 time (TE)/ repetition time (TR) = 2.59ms/18ms, flip angle (FA) = 15°, bandwidth (BW) =
152 203Hz/pxl; 2) single-slice 2D phase contrast (PC-MRI) for MCA M1 segment blood velocity, with
153 a voxel resolution of $0.3 \times 0.3 \times 1.4$ mm³, TE/TR = 7.72ms/24.3ms, four averages, FA = 20°,
154 velocity-encoding (Venc) = 100cm/s and BW = 250Hz/pxl. During PC-MRI, a Venc value of

Middle cerebral artery responses to vasoreactivity protocols

155 100cm/s was used for all subjects, except for one hypercapnic case, where a Venc of 130cm/s was
156 used to avoid wrap-around artifact; and 3) cross-sectional area of the MCA M1 segment using
157 single-slice 2D turbo spin-echo T1-weighted imaging with $0.5 \times 0.5 \times 1.5 \text{ mm}^3$, TE/TR = 12/750ms,
158 BW = 270Hz/pxl, with an acquisition time of 13-14 seconds. The TOF data were used to locate a
159 straight segment on the right MCA M1 segment with the least curvature. The single-slice PC-MRI
160 and T1-weighted data were then acquired orthogonally to the axis of the selected MCA segment.
161 The T1-weighted data were acquired sequentially in order to monitor the changes in MCA
162 diameter.

163 **Data analysis**

164 Data analysis was carried out offline using custom R scripts (RStudio; v. 2020), GraphPad (V.8),
165 and LabChart Pro (v.8, ADInstruments, Dunedin, Otago, New Zealand).

166 **Transcranial Doppler ultrasound**

167 The MCA blood velocity (via TCD) and MAP were averaged beat-by-beat over the cardiac cycle
168 then were exported at 5 Hz sampling frequency and saved as text files (LabChart Pro v.8,
169 ADInstruments, Dunedin, Otago, New Zealand). During the TCD collection phase of testing, start
170 and end times of each event throughout the experimental breathing protocol were chronicled by
171 comments added in the LabChart file.

172 **Magnetic resonance imaging (MRI; 7 Tesla)**

173 During the MRI collection phase of testing, start and end times of each event were chronicled
174 based on the time associated with the desired PETCO₂ on the exported RespirAct™ data file. For
175 the T1-weighted anatomical MCA images, start and end times for each protocol event were
176 recorded based off the MRI console such that images were lined up offline based on the DICOM
177 image acquisition time. The brain anatomical images were imported into a DICOM reader, OsiriX
178 software (Pixmeo©, Bernex, Switzerland), and MCA cross-sectional area (CSA) was measured by
179 a blinded rater (MK) and compared against an expert rater (BKA).

180 The PC-MRI data were acquired for 30 seconds at baseline and within a ~70-second window
181 following 50-60 seconds from the start of steady-state hypercapnia (as noted on Fig 4, panel J with
182 the PC-MRI text bar). The MCA blood velocity measurements during the MRI session were
183 obtained from PC-MRI data by manually contouring a region-of-interest (ROI) inside the MCA

Middle cerebral artery responses to vasoreactivity protocols

184 lumen. The contours were drawn using the software, signal processing in NMR (SPIN-Research,
185 MR Innovations Inc., Detroit, MI, USA). Care was taken to avoid any peripheral voxels within the
186 MCA lumen. The magnitude PC-MRI data was used to locate the MCA lumen. The peak velocities
187 were calculated for each subject for baseline and hypercapnic states.

188 ***Data extraction***

189 The LabChart text files, the TCD and MRI session RespirAct™ breath-by-breath PETCO₂ values,
190 and the measured CSA were aligned using RStudio (v. 2020) (14) for data extraction from specific
191 epochs as indicated by the event comments in each file. The “print” function in the “magicfor”
192 package in R (15) was used to extract data with each loop iteration for each participant, and
193 variables of interest were exported as .csv files and imported to GraphPad Prism for graphing and
194 analysis.

195 Steady-state condition time courses were baseline corrected by subtracting mean baseline value (-
196 30 to 0 seconds of time window of interest) for each respective variable and plotted as delta values
197 (Fig. 4). For the baselines and steady-state condition, the data were extracted from the following
198 sections within the protocol: 1) 30 seconds baseline prior to onset of hypocapnia prior to the ramp
199 protocol and 2) 30 seconds baseline prior to steady-state hypercapnia, and 3) 60 seconds at the end
200 of steady-state hypercapnia. The ramp slope analysis included the entire hypocapnic to
201 hypercapnic incremental data (see below).

202 ***Ramp protocol***

203 The target PETCO₂ and ramp protocol schematic is shown in Fig. 1, panel a. The target ventilation
204 rate was 12 breaths/minute and participants were coached using a visual metronome. In order to
205 equalize the spacing on the time axis when plotting the achieved PETCO₂ data, the PETCO₂ and
206 corresponding time vectors were resampled to a fixed 12 breaths/minute sampling rate using the
207 base R “approx” function in RStudio. Thus, two time vectors were created: 1) a target time vector
208 that is based off of a 12 breath/minute ventilation rate and 2) a “fixed” time vector that is based
209 off of resampling each participants data to meet the target time vector. The inter-individual
210 differences for the “fixed” time vector are indicated by horizontal error bars (mean ± S.D.; Fig. 3,
211 panels a-b), and the data are plotted and averaged for all participants along the target 12
212 breaths/minute time vector.

Middle cerebral artery responses to vasoreactivity protocols

213 MCA blood velocity and systemic MAP data (in 0.2 second increments or 5 MHz sampling
214 frequency) were plotted from the hypocapnic state to the hypercapnic state during the ramp
215 protocol and averaged at each time point across the 12 participants (Fig. 3 panels c-d). Similarly,
216 the CSA values along the ramp protocol were averaged for each time point across participants
217 (Fig. 3 panel e). Although our goal was to collect 4 minutes of ramp data, the transition point from
218 the nadir of hypocapnia to start of ramp was different for each person and it generally took
219 approximately 2 breaths (~12 seconds) to sync with the desired PETCO₂ for the hypercapnic ramp.
220 Thus, to ensure the same number of samples (n=12) for each time point along the ramp protocol,
221 we only extracted the last 228 seconds of ramp data for all participants (instead of the full 240
222 seconds).

223 ***Steady-state protocol***

224 Data extraction and organization were similar to the ramp protocol except data extraction occurred
225 between the start and end of the three-minute steady-state hypercapnia stimulus. As previously
226 mentioned, the PC-MRI data acquisition commenced 50-60 seconds from start of steady-state
227 hypercapnia. Thus, the continuous T1-anatomical MCA CSA scans were interrupted to allow for
228 PC-MRI imaging (correlation with TCD measures of blood velocity are shown in Fig. 2). PC-MRI
229 data were collected for 11 out of our 12 participants. As there were shifts in PC-MRI data collection
230 start and end times across participants, the upper and lower bounds of these time points are
231 indicated under the “PC-MRI” text bar on Fig. 3 (panel e, bottom row) to indicate to the reader
232 that the mean and S.D. for CSA values in this portion of the protocol do not include all 11
233 participants (i.e., n < 11) for the CSA data.

234 The averaged raw values for the 30 seconds baseline (prior to start of steady-state hypercapnia;
235 indicated as B on x-axis in Fig. 4) and last minute of steady-state hypercapnia (indicated as SSHC
236 on x-axis on Fig. 4) are shown in Fig. 4 for PETCO₂, MCA blood velocity (via TCD) and mean
237 arterial pressure (MAP) during the TCD session and the PETCO₂, MCA blood velocity (via PC-
238 MRI) and MCA CSA during the MRI session.

239 ***MCA blood velocity reactivity calculations***

240 The ramp and steady-state hypercapnia MCA blood velocity cerebrovascular reactivity (CVR)
241 measures are shown in Fig. 5 panel a. For the ramp protocol, the MCA blood velocity slope (Fig.

Middle cerebral artery responses to vasoreactivity protocols

242 3 panel c) and the PETCO₂ (for TCD session; Fig. 3 panel a) slope were calculated for each person
243 and the MCA blood velocity CVR was calculated as:

$$244 \quad \text{MCA Blood Velocity CVR} = \frac{\text{MCA Blood Velocity Slope}}{\text{PETCO}_2 \text{ Slope}} \quad (1)$$

245 For the steady-state hypercapnia protocol, the difference between the average baseline before start
246 of hypercapnia and the average of the last minute of hypercapnia (i.e., the difference between the
247 SSHC and B conditions in Fig. 4) were calculated. For each individual, the MCA blood velocity
248 CVR during the steady-state hypercapnia condition was then calculated as:

$$249 \quad \text{MCA Blood Velocity CVR} = \frac{\Delta \text{MCA Blood Velocity}}{\Delta \text{PETCO}_2} \quad (2)$$

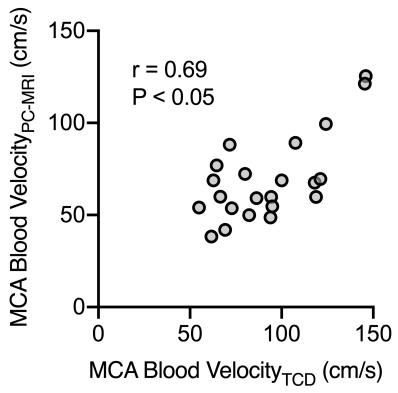
250 *MCA blood flow reactivity calculations*

251 The ramp and steady-state hypercapnia MCA blood flow CVR measures are shown in Fig. 5 panel
252 b. For the ramp protocol, the MCA blood velocity was sectioned into 14 second averages
253 corresponding to each CSA image along the ramp protocol. Each of these averaged MCA blood
254 velocity values were multiplied by the corresponding CSA for the given time point to calculate
255 blood flow at 14 second increments along the ramp protocol. To keep it consistent with the MCA
256 blood velocity CVR measures, the PETCO₂ slopes from the TCD sessions were used as the
257 denominator during CVR calculations. The slopes were calculated for each person and the MCA
258 blood flow CVR was calculated for each individual as:

$$259 \quad \text{MCA Blood Flow CVR} = \frac{\text{MCA Blood Flow Slope}}{\text{PETCO}_2 \text{ Slope}} \quad (3)$$

260 Finally, to compare the MCA blood velocity CVR values and the MCA blood flow CVR values
261 calculated during the steady-state hypercapnia protocol, the percentage change from baseline for
262 each of the MCA blood velocity or blood flow were calculated (Fig. 5, panel c).

263 **Statistical summary**


264 Inter-rater variability was assessed using Bland-Altman analysis for 45 randomly selected images.
265 Pearson's correlation coefficient was used to test the correlation for inter-modality (TCD vs. PC-
266 MRI; Fig. 2) MCA blood velocity measures for both baseline and steady-state hypercapnia states
267 (P < 0.05 was considered to be statistically significant using a two-tailed test). In addition, linear
268 slope analysis was conducted to assess changes in PETCO₂, MAP, MCA CSA, and MCA blood

Middle cerebral artery responses to vasoreactivity protocols

269 velocity variables during the ramp protocol. A probability level of $P < 0.05$ indicates a non-zero
270 slope (the linear fits and p-values are labelled on Fig. 3 panels a-e). One-tailed paired t-tests were
271 conducted to compare variable responses during the steady-state hypercapnia condition versus
272 baseline (Fig. 4). Finally, to compare the MCA blood velocity CVR values and the MCA blood
273 flow CVR values calculated during the steady-state hypercapnia protocol, the percentage change
274 from baseline for each of the MCA blood velocity or blood flow was calculated (Fig. 5).

Results

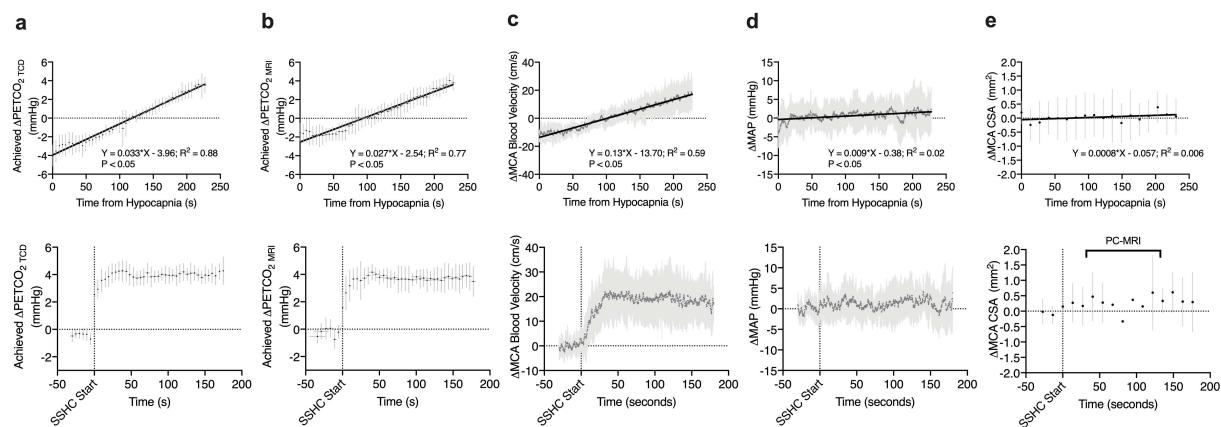

275
276 Our CVR protocols with target PETCO₂ are illustrated in Fig. 1. Inter-rater variability for CSA
277 measures using the Bland-Altman test indicated a bias of 0.15 ± 0.26 mm² (mean \pm S.D.; BKA -
278 MK) and 95% Limits of Agreement from -0.37 to 0.67 mm² (45 randomly selected images). Inter-
279 modality (TCD vs PC-MRI) correlation for MCA blood velocity measures indicated a significant
280 Pearson correlation between baseline and steady-state hypercapnia for each modality ($n = 11$
281 participants, 22 pairs; $r = 0.69$, $P < 0.05$; Fig. 2).

Figure 2 – MCA blood velocity measure comparison between TCD and PC-MRI. Correlation plot comparing MCA blood velocity measured from transcranial Doppler (TCD) and phase contrast magnetic resonance imaging (PC-MRI). Baseline measures for both TCD and MRI sessions and steady-state hypercapnia measure at the ~1-2 minute mark for PC-MRI and in the last minute of steady-state hypercapnia for the TCD session for 22 pairs ($n=11$; $r = 0.69$, $P < 0.05$).

282 Slope analysis during the ramp protocol indicated significant slopes ($P < 0.05$; Fig. 3 panels a - d)
283 for achieved Δ PETCO₂ (mmHg) during TCD ($Y = 0.033*X - 3.96$; $R^2 = 0.88$) and MRI ($Y =$
284 $0.027*X - 2.54$; $R^2 = 0.77$) sessions, with corresponding slopes for Δ MCA blood velocity (cm/s;
285 $Y = 0.13*X - 13.70$; $R^2 = 0.59$) and Δ MAP (mmHg; $Y = 0.009*X - 0.38$; $R^2 = 0.02$). Although
286 significant, the slope for MAP during the ramp protocol indicated an average <2mmHg increase
287 throughout the protocol. The slope of the MCA CSA with time did not show a deviation from 0
288 across the ramp protocol (Fig. 3, panel E; $Y = 0.0008*X - 0.057$; $R^2 = 0.006$).

Middle cerebral artery responses to vasoreactivity protocols

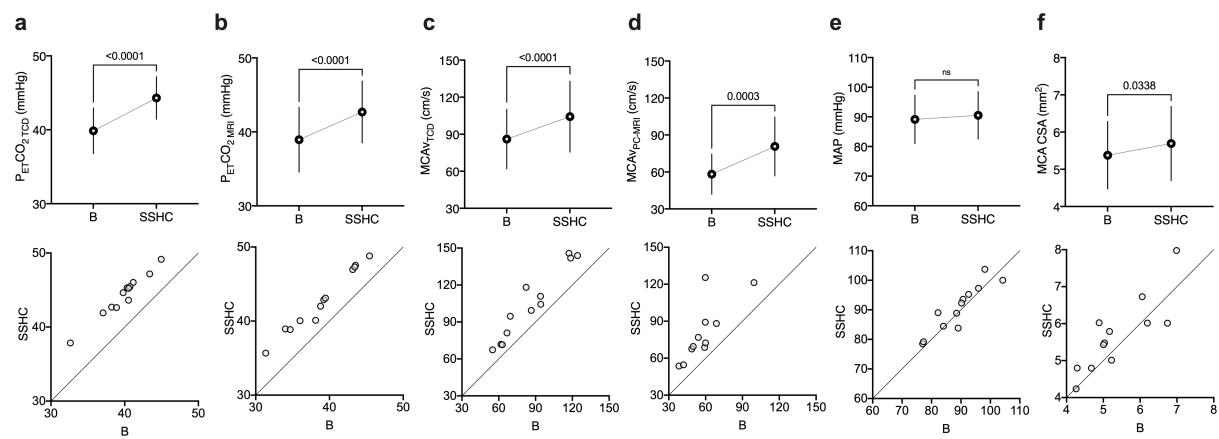


Figure 3 – Measured variables during the ramp and steady-state hypercapnia protocols. Ramp protocol (228 seconds; top row) responses and steady-state hypercapnia (180 seconds; bottom row) for delta changes in each variable from baseline levels are shown. Panel a: achieved PETCO₂ for TCD session, panel b: achieved PETCO₂ for MRI session, panel c: MCA blood velocity in TCD session, panel d: mean arterial pressure (MAP), and panel e: MCA cross-sectional area (CSA). The “PC-MRI” text on panel e bottom row indicates the variable time window in which PC-MRI images were acquired and there was an interruption in the consistent MCA CSA measurements. A 30 second baseline is shown for the steady-state hypercapnia condition (bottom row) and hypercapnia is indicated by SSHC on x-axis with a vertical line. Linear regressions (panels a-e top row) are shown for each variable in the ramp protocol and a significant (non-zero; α level significance 0.05) slope is indicated by $P < 0.05$. $N = 12$ for all variables with data presented as mean \pm S.D.

289 During the steady-state hypercapnia protocol, PETCO₂ increased during steady-state hypercapnia
 290 from baseline with a mean difference of 4.45 mmHg and 95% CI of 4.05 to 4.85 when using TCD
 291 (44.3 \pm 3.1 vs. 39.9 \pm 2.9 mmHg, respectively; $n=12$, $\eta_p^2=0.98$, $P<0.05$; Fig. 4, panel a) and a mean
 292 difference of 3.75 and 95% CI of 3.29 to 4.20 when using MRI (42.7 \pm 4.2 vs. 38.9 \pm 4.4 mmHg,
 293 respectively; $n=12$, $\eta_p^2=0.97$, $P<0.05$; Fig. 4, panel b) sessions. Similarly, MCA blood velocity
 294 increased with steady-state hypercapnia from baseline with a mean difference of 18 cm/s and 95%
 295 CI of 13 to 24 cm/s in the TCD trial (104 \pm 29 vs. 86 \pm 24 cm/s, respectively; $n=12$, $\eta_p^2=0.83$, $P<0.05$;
 296 Fig. 4, panel c) and a mean difference of 22 cm/s and 95% CI of 12 to 33 when using MRI (via
 297 PC-MRI; 79 \pm 15 vs. 59 \pm 9 cm/s, respectively; $n=11$, $\eta_p^2=0.70$, $P<0.05$; Fig. 4 panel e) sessions, and
 298 MCA CSA increased with a mean difference of 0.31 mm² and 95% CI of -0.03 to 0.66 mm² during
 299 the MRI session (5.71 \pm 1.03 vs. 5.34 \pm 0.97 mm², respectively; $n=12$, $\eta_p^2=0.27$, $P<0.05$; Fig. 4,
 300 panel f). The mean difference in MAP between the last minute of steady-state hypercapnia and
 301 baseline was 1.35 mmHg with a 95% CI of -0.82 to 3.5 mmHg which is most compatible with a
 302 negligible change (90 \pm 8 vs. 89 \pm 8 mmHg, respectively; $n=12$; $\eta_p^2=0.14$, Fig. 4, panel e). Calculated
 303 MCA blood flows (product of MCA blood velocity and CSA) increased from baseline to steady-

Middle cerebral artery responses to vasoreactivity protocols

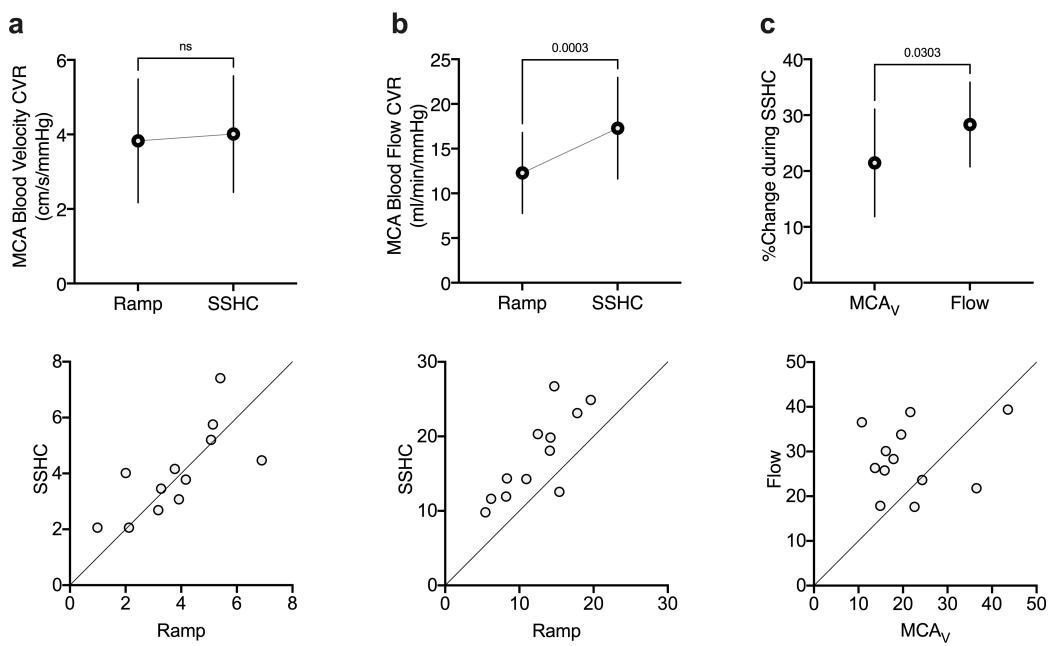

304 state hypercapnia (267 ± 54 vs. 348 ± 78 ml/min, respectively; $P < 0.05$, one-tailed paired t-test) with
305 a delta calculated blood flow of 81 ± 30 ml/min.

Figure 4 – Baseline (B) and steady-state hypercapnia (SSHC) comparisons. Top row: Baseline (B) and steady-state hypercapnia (SSHC) measures ($n=12$ except for panel d where $n=11$, mean \pm S.D.). Where statistical significance occurs, p-values are indicated above data (ns = not significant; paired t-test; α level significance 0.05). Bottom row: Individual data points ($n=12$ except for panel d where $n=11$) comparing baseline (B) to steady-state hypercapnia (SSHC) responses for the same variable in that column as top row. The diagonal line (identity line) indicates where data would fall if there was no measurable effect of SSHC from B. Data above the identity line indicates an increase in variable measure with SSHC (from baseline; B).

306
307 The mean difference in MCA blood velocity-based measure of CVR between the ramp and steady-
308 state hypercapnia protocols was 0.18 with 95% CI of -0.59 to 0.96 which is most compatible with
309 a negligible effect of protocol on MCA blood velocity CVR (3.8 ± 1.7 vs. 4.0 ± 1.6 cm/s/mmHg,
310 respectively; $n=12$, two-tailed paired t-test, $p=0.62$, $\eta_p^2=0.02$, Fig. 5, panel a). The mean difference
311 in calculated MCA blood flow-based measure of CVR between the steady-state protocol and ramp
312 protocol was 5.0 with a 95% CI of 2.8 to 7.2 ml/min/mmHg and was statistically significant
313 (17.3 ± 5.7 vs. 12.3 ± 4.5 ml/min/mmHg, respectively; $n=12$, two-tailed t-test, $P < 0.05$, $\eta_p^2=0.70$,
314 two-tailed t-test; Fig. 5, panel b). Similarly, when calculated as %change in MCA blood velocity
315 or MCA blood flow over the ΔPETCO_2 during hypercapnia, the mean difference between MCA
316 blood flow CVR and MCA blood velocity CVR was (6.7 ± 1.6 vs. 4.8 ± 2.0 %/mmHg, respectively;
317 $n = 12$, $P < 0.05$, one-tailed t-test). Finally, the %change of MCA blood flow was greater than the
318 %change of MCA blood velocity during the steady-state condition with a mean difference of 6.9
319 and 95% CI of -0.37 to 14.10 (29.8 ± 8.2 vs. 21.5 ± 9.6 %, respectively; $n=12$, $P < 0.05$, one-tailed t-
320 test; Fig. 5, panel c).

Middle cerebral artery responses to vasoreactivity protocols

Figure 5 – Middle cerebral artery (MCA) blood velocity and flow reactivity across protocols

Top row: Calculated MCA blood velocity cerebrovascular reactivity (CVR) was not different between ramp and steady-state hypercapnia (SSHC; panel a), while MCA blood flow CVR was higher in SSHC compared to the ramp protocol (panel b). The percent change in calculated MCA blood flow from baseline was higher than the percent change in MCA blood velocity from baseline (panel c) with SSHC. Where statistical significance occurs, p-values are indicated above data (ns = not significant; paired t-test; α level significance 0.05). N=12 for all variables with data presented as mean \pm S.D. Bottom row: Individual data points (n=12) comparing ramp to steady-state hypercapnia (SSHC) responses (panels a-b) for the same variable in that column as top row or MCA blood velocity to calculated MCA blood flow (panel c). The diagonal line (identity line) indicates where data would fall if there was no measurable effect of protocol on CVR measures (panels a-b) or effect of accounting for MCA CSA in flow calculations (compared to using MCA_V alone as an index of flow) when assessing %change of flow or MCA_V during SSHC (panel c). Data above the identity line indicates an increase in variable measure with SSHC (compared to ramp; panels a-b) or higher %change in flow value for a given %change in MCA_V.

321

Discussion

322 This is the first study to provide MCA CSA measures across ramp and steady-state hypercapnia
323 protocols, enabled by the ability to obtain MCA CSA measurements every 14 seconds with
324 prospective targeting of PETCO₂. This approach enabled direct comparisons of the steady- state
325 versus a ramp protocols to establish valid CVR calculations using only measures of flow velocity.
326 The noteworthy findings of this study are that: 1) the MCA CSA did not change during the ramp
327 protocol with delta ~ -3 to +4 mmHg of PETCO₂, but did increase with steady-state hypercapnia

Middle cerebral artery responses to vasoreactivity protocols

328 ~+4 mmHg of PETCO₂), 2) blood pressure remained stable throughout duration of both ramp and
329 steady-state protocols, and 3) CVR measures based on MCA blood velocity cerebrovascular
330 reactivity was not different between ramp and steady-state protocols, but 4) MCA blood flow-
331 based CVR was greater during steady-state compared to the ramp protocol. Taken together, the
332 ramp protocol seems to result in similar CVR values as those observed in the steady-state protocol,
333 with the added advantage of having minimal and negligible effects on MCA CSA or MAP in the
334 face of moderate elevations in PETCO₂.

335 ***Transcranial Doppler – MCA blood velocity & CVR measures***

336 Often, CVR is characterized by the slope in the linear relationship between MCA blood velocity
337 and PETCO₂ with respect to each variable's relative change with time. The relationship between
338 arterial blood velocity and CO₂ (16) is sigmoidal and both the range and starting point of PETCO₂
339 affect the arterial blood velocity response to CO₂ (17). Regan *et al.* (7) showed a lower MCA blood
340 velocity-based CVR during steady-state hypercapnia (Δ PETCO₂ of 10 mmHg) than during the
341 ramp hypercapnic protocol (-5 to +10 mmHg PETCO₂). However, these ranges of PETCO₂ can
342 elicit systemic hemodynamic effects (6) that can increase blood velocity changes independent of
343 cerebral vascular bed dilation. The current protocols used a lower dose of change in PETCO₂ in
344 order to avoid the central hemodynamic and non-linear portions of the CVR curve.

345 ***MRI – MCA CSA & CVR measures***

346 In the current study, PETCO₂ values at the ends of both ramp and steady-state hypercapnia
347 protocols, and the calculated MCA blood velocity CVR measures, were not different between the
348 two protocols. Yet, the PETCO₂ changes during the ramp protocol did not affect MCA CSA in
349 same the way that the steady-state hypercapnia protocol did. To quantify transient MCA CSA
350 measures, we developed an anatomical scan optimized to provide MCA images every 14 seconds.
351 This enabled imaging of the MCA during the dynamic stimuli such as the ramp protocol or onset
352 of the steady state protocol, as well as improving temporal sensitivity during the steady-state
353 model. To our knowledge, our 14 second anatomical scan of MCA CSA provides the highest level
354 of temporal resolution (i.e., shortest acquisition time) available when compared to existing
355 assessments of MCA CSA during steady-state hypercapnia protocols. From our current MCA CSA
356 findings, the MCA dilates under conditions where hypercapnia is elevated and sustained (i.e.
357 steady-state hypercapnia), rather than with brief exposure to elevated levels of PETCO₂ (i.e., end

Middle cerebral artery responses to vasoreactivity protocols

358 of ramp protocol). This observation is supported by previous studies indicating a slow onset to
359 dilation in either the internal carotid artery (18) or the MCA (2), despite immediate changes in
360 MCA blood velocity that reflect downstream microvascular dilation to early hypercapnia.

361 This study supports previous MCA CSA findings in CVR studies that indicate MCA CSA dilates
362 after ~2 minutes of steady-state hypercapnia using 3T (2) and 7T MRI (4,5). Thus, CVR values
363 during the steady-state protocol indicated significant error when the MCA cross-sectional area was
364 not included. Specifically, we found that the %change in MCA blood velocity was lower than the
365 %change in MCA blood flow by ~7% (mean difference between these two measures). This value
366 is less than the 18% observed in work by Coverdale et al. (2). We believe the discrepancy in these
367 mean differences is due to the magnitude of hypercapnia achieved in each study, with ~+Δ4 mmHg
368 PETCO₂ in the current study versus ~+Δ10 mmHg in PETCO₂ for the study by Coverdale et al.
369 As well, there was a 5% increase in MAP in the study by Coverdale et al. (~4 mmHg) which was
370 greater than the increase in MAP for our study (~2 mmHg for ramp, and ~1 mmHg for steady-
371 state), a difference that may be attributed to the greater magnitude of the hypercapnia stimulus in
372 the the previous study. While mild variations in MAP are accounted for by autoregulatory
373 mechanisms such that MCA blood flow is sustained with negligible influence on MCA CSA,
374 autoregulation mechanisms are impaired during hypercapnia (19). Thus, we anticipate that the
375 higher the hypercapnic magnitude, the greater the risk that MAP will influence MCA CSA (and/or
376 blood velocity) augmenting any discrepancies between MCA blood velocity and calculated MCA
377 blood flow.

378 This is the first study to use a sequential gas delivery circuit (via the RespirActTM) when assessing
379 MCA CSA responses during hypercapnia, thereby more closely aligning partial pressure of arterial
380 and end-tidal CO₂ levels (20). Interestingly, we achieved similar MCA blood flow CVR during
381 steady-state hypercapnia as previous work (2), and our MCA blood velocity CVR for both the
382 steady-state hypercapnia (2,21) and ramp protocol (7) were in agreement with previous studies.
383 As recommended by Regan et al. (7), when using a limited range of PETCO₂ values during a
384 hypercapnic protocol, a linear approach to CVR analysis is appropriate.

385 Everything considered, a CVR measure based solely on TCD-acquired MCA blood velocity
386 measures during a ramp hypercapnia protocol seems to elicit a similar CVR outcome as the
387 commonly used steady-state protocol, but without the limitation of potential changes in MCA

Middle cerebral artery responses to vasoreactivity protocols

388 CSA. CVR outcome measures involve calculating MCA blood velocity changes for a given change
389 in PETCO₂. Similarly, our study illustrates that even modest values of change in PETCO₂ achieve
390 a comparable value of CVR at higher hypercapnic doses.

391 **Methodological Considerations**

392 Our overall target range for manipulating PETCO₂ during the cerebrovascular reactivity was
393 between the $-\Delta 5$ to $+\Delta 5$ from baseline PETCO₂ (10). While our findings support a lack of MCA
394 CSA changes during ramp protocols of $-\Delta 3$ to $+\Delta 4$ mmHg in PETCO₂, we cannot make conclusive
395 remarks on MCA CSA changes during a ramp protocol of $\pm \Delta 5$ mmHg in PETCO₂. However, as
396 mentioned above, our values of Δ PETCO₂ fell within our target $\pm \Delta 5$ mmHg from baseline PETCO₂
397 range, the CVR measures are consistent with previous studies where higher levels of PETCO₂
398 were used, and we found negligible increases in MAP. Therefore, the modest level of PETCO₂
399 achieved here appear to have achieved the major objectives. The ramp protocol designed for the
400 current study also achieved an optimal balance between stimulus and central hemodynamics. We
401 acknowledge however, that we did not account for the impact of the ~ 2 mmHg rise in MAP during
402 the ramp protocol, which we expect to be negligible in impacting MCA CSA.

403 Although we were unable to measure continuous blood pressure and MCA blood velocity during
404 the MRI trial, we measured blood velocity data during the MRI session via the PC-MRI sequence.
405 Testing of the TCD and MRI segments of the study were collected consecutively within a 2-hour
406 window with the order of tests varied across participants. The absolute values for MCA blood
407 velocities measured by PC-MRI were lower than our TCD measures, although we suspect this had
408 to do with our pre-set Venc value choice of 100 cm/s which may have cut off some of the higher
409 velocities. Our rationale for not choosing a higher Venc than 100 cm/s was the possibility of cutting
410 off lower velocity values during baseline. Regardless, the increase in MCA blood velocity during
411 hypercapnia (from baseline) were in agreement between the two techniques (TCD: $\sim \Delta 18$ cm/s and
412 PC-MRI: $\sim \Delta 20$ cm/s). Thus, we assume that the blood pressure responses during the TCD and
413 MRI sessions were similar as well.

414 Finally, the current results are delimited to young healthy adults. Thus, additional studies are
415 needed to understand the effects of age, a group that demonstrates greater MAP responses to
416 hypercapnia and variable responses in CSA changes (9), or other differentiating conditions.

Middle cerebral artery responses to vasoreactivity protocols

417 Further, our study was conducted in the supine position, which is less replicable for CVR studies
418 than the seated position (22) and may explain some of the disparity of blood velocity measures for
419 some individuals between the two protocols: the supine posture is necessary for MRI studies.
420 Additional studies are required to address the impact of CSA changes and protocol model on
421 posture-dependent intra-subject variability so that reliable CVR protocols can be used to make
422 inferences on vascular health (e.g., inferred vascular dysfunction with reduced CVR). The current
423 data suggest that the ramp protocol might be useful in reducing inter-study variability.

Conclusions

424 A constant CSA during experimental vasoreactive challenges is essential to the reliability of TCD-
425 acquired blood velocity as a correlative index of blood flow changes. In this study, we showed
426 data that were most compatible with negligible change in MCA CSA from baseline during a graded
427 ramp hypercapnic protocol ($\pm \sim \Delta 4$ mmHg from baseline PETCO₂). Similar to our previous work,
428 the MCA data align best with an interpretation of MCA dilation during a prolonged (3-minutes)
429 $\sim \Delta 4$ mmHg in baseline PETCO₂ period of hypercapnia, and confirmed the expected error in
430 %change of MCA blood velocity as an index of blood flow and in the calculated CVR when a
431 change in CSA is not considered (2). Combined, these data suggest that during transient changes
432 in PETCO₂, as in the ramp protocol, the constant segment of the sigmoid may describe MCA CSA
433 changes with PETCO₂, and any changes in blood velocity can reflect CBF. In summary, the ramp
434 protocol with $\pm \sim \Delta 4$ mmHg from baseline PETCO₂ appears to provide expected measures of CVR
435 where blood velocity should reflect blood flow patterns of change.

Acknowledgements

437 The authors would like to thank the participants for their time, Joseph S. Gati and Trevor Szekeres
438 for their MRI expertise, Arlene Fleischhauer, and Emilie Woehrle and Jenna Schulz for helping
439 with participant recruitment. This study was funded by the Canadian Institutes of Health Research
440 (grant # 201503MOP-342412-MOV-CEEA). KN was supported by a research grant from
441 Children's Health Foundation. BKA was funded by the MITACS Postdoctoral Elevate Fellowship.
442 JKS and RSM are Tier 1 Canada Research Chairs.

Middle cerebral artery responses to vasoreactivity protocols

444

Author contribution statement

445

BKA conceptualized and designed the study, collected, analyzed, and disseminated the data, and
446 wrote and edited the manuscript. SB assisted with study design, data collection and analysis, and
447 assisted with writing and editing the manuscript. MK assisted with data collection, analysis and
448 interpretation and editing of the manuscript. BJM assisted with data collection, organization, and
449 editing the manuscript. KN assisted with study design and editing of the manuscript. RSM assisted
450 with study design and editing of the manuscript. JKS conceptualized and designed the study, and
451 assisted with data dissemination, writing and editing of the manuscript.

452

Conflict of interest

453

The authors do not have any conflicts of interest to disclose.

454

455

456

457

458

459

460

Middle cerebral artery responses to vasoreactivity protocols

References

- 461 1. Portegies MLP, de Brujin RFAG, Hofman A, Koudstaal PJ, Ikram MA. Cerebral vasomotor
462 reactivity and risk of mortality: the Rotterdam Study. *Stroke*. 2014 Jan;45(1):42–7.
- 463 2. Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK. Cerebral blood flow
464 velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. *J
465 Appl Physiol Bethesda Md 1985*. 2014 Nov 15;117(10):1090–6.
- 466 3. Howe CA, Caldwell HG, Carr J, Nowak-Flück D, Ainslie PN, Hoiland RL. Cerebrovascular
467 reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to
468 carbon dioxide. *Exp Physiol*. 2020;105(5):904–15.
- 469 4. Al-Khzraji BK, Shoemaker LN, Gati JS, Szekeres T, Shoemaker JK. Reactivity of larger
470 intracranial arteries using 7 T MRI in young adults. *J Cereb Blood Flow Metab Off J Int Soc
471 Cereb Blood Flow Metab*. 2019 Jul;39(7):1204–14.
- 472 5. Verbree J, Bronzwaer A-SGT, Ghariq E, Versluis MJ, Daemen MJAP, van Buchem MA, et
473 al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in
474 humans using ultra-high-field MRI. *J Appl Physiol Bethesda Md 1985*. 2014 Nov
475 15;117(10):1084–9.
- 476 6. Shoemaker JK, Vovk A, Cunningham DA. Peripheral chemoreceptor contributions to
477 sympathetic and cardiovascular responses during hypercapnia. *Can J Physiol Pharmacol*.
478 2002 Dec;80(12):1136–44.
- 479 7. Regan RE, Fisher JA, Duffin J. Factors affecting the determination of cerebrovascular
480 reactivity. *Brain Behav*. 2014 Sep;4(5):775–88.
- 481 8. Stefanidis KB, Askew CD, Klein T, Lagopoulos J, Summers MJ. Healthy aging affects
482 cerebrovascular reactivity and pressure-flow responses, but not neurovascular coupling: A
483 cross-sectional study. *PLOS ONE*. 2019 May 16;14(5):e0217082.
- 484 9. Coverdale NS, Badrov MB, Shoemaker JK. Impact of age on cerebrovascular dilation versus
485 reactivity to hypercapnia. *J Cereb Blood Flow Metab*. 2017 Jan 1;37(1):344–55.
- 486 10. Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial
487 Carbon Dioxide. *Compr Physiol*. 2019 Jun 12;9(3):1101–54.
- 488 11. McKetton L, Cohn M, Tang-Wai DF, Sobczyk O, Duffin J, Holmes KR, et al.
489 Cerebrovascular Resistance in Healthy Aging and Mild Cognitive Impairment. *Front Aging
490 Neurosci*. 2019;11:79.
- 491 12. Fisher JA, Sobczyk O, Crawley A, Poublanc J, Dufort P, Venkatraghavan L, et al. Assessing
492 cerebrovascular reactivity by the pattern of response to progressive hypercapnia. *Hum Brain
493 Mapp*. 2017 Jul;38(7):3415–27.
- 494

Middle cerebral artery responses to vasoreactivity protocols

495 13. Brothers RM, Lucas RAI, Zhu Y-S, Crandall CG, Zhang R. Cerebral vasomotor reactivity:
496 steady-state versus transient changes in carbon dioxide tension. *Exp Physiol.* 2014
497 Nov;99(11):1499–510.

498 14. Core Team R. R: A language and environment for statistical computing. R Foundation for
499 Statistical Computing, Vienna, Austria (2013). Suppl Fig S. 2015;2.

500 15. Makiyama K. magicfor: Magic Functions to Obtain Results from for Loops [Internet]. 2016
501 [cited 2021 Jan 9]. Available from: <https://CRAN.R-project.org/package=magicfor>

502 16. Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in
503 humans. *J Physiol.* 2011 Jun 15;589(Pt 12):3039–48.

504 17. Sobczyk O, Battisti-Charbonney A, Fierstra J, Mandell DM, Poublanc J, Crawley AP, et al.
505 A conceptual model for CO₂-induced redistribution of cerebral blood flow with experimental
506 confirmation using BOLD MRI. *NeuroImage.* 2014 May 15;92:56–68.

507 18. Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, et al. Regional brain
508 blood flow in man during acute changes in arterial blood gases. *J Physiol.* 2012 Jul
509 15;590(14):3261–75.

510 19. Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH. Effects of CO₂ on dynamic
511 cerebral autoregulation measurement. *Physiol Meas.* 1999 Aug;20(3):265–75.

512 20. Ito S, Mardimae A, Han J, Duffin J, Wells G, Fedorko L, et al. Non-invasive prospective
513 targeting of arterial P(CO₂) in subjects at rest. *J Physiol.* 2008 Aug 1;586(15):3675–82.

514 21. Burley CV, Lucas RAI, Whittaker AC, Mullinger K, Lucas SJE. The CO₂ stimulus duration
515 and steady-state time point used for data extraction alters the cerebrovascular reactivity
516 outcome measure. *Exp Physiol.* 2020 May;105(5):893–903.

517 22. McDonnell MN, Berry NM, Cutting MA, Keage HA, Buckley JD, Howe PRC. Transcranial
518 Doppler ultrasound to assess cerebrovascular reactivity: reliability, reproducibility and effect
519 of posture. *PeerJ.* 2013 Apr 9;1:e65.

520