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17  ABSTRACT

18  Embodied Cognition Theories (ECTs) propose that the decision process continues to unfold
19 during the execution of choice actions, and its outcome manifests itself in these actions.
20  Scenarios where actions not only express choice but also help sample information can
21  provide a valuable test of this framework. Remarkably almost no studies so far have
22 addressed this scenario. Here, we present a study testing just this paradigmatic situation with
23 humans. On each trial, subjects categorized a central object image, blurred to different extents
24 (2AFC task) by moving a cursor toward the left or right of the display. Upward cursor
25  movements, orthogonal with respect to choice options, reduced the image blur and could be
26  freely used to actively sample information. Thus, actions for decision and actions for
27  sampling were made orthogonal to each other. We analyzed response trajectories to test a
28  central prediction of ECTs; whether information-sampling movements co-occurred with the
29  ongoing decision process. Trajectory data revealed were bimodally distributed, with one kind
30  being direct towards one response option (non-sampling trials), and the other kind containing
31  an initial upward component before veering off towards an option (sampling trials). This
32  implies that there was an initial decision at the early stage of a trial whether to sample
33  information or not. Importantly, the trajectories in sampling trials were not purely upward,
34 but rather had a significant horizontal deviation that was visible early on in the movement.
35  This result suggests that movements to sample information exhibit an online interaction with
36  the decision process. The finding that decision processes interact with actions to sample
37  information supports the ECT under novel, ecologically relevant constrains.
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39  action
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40 1. Introduction

41  The classical view of decision-making was founded on the idea that action is executed after
42 adecision has been made, in a serial fashion (e.g., Newell & Simon, 1972). This idea

43 assumes a clear temporal and functional separation between decision making and the motor
44  processes that implement that decision. However, later behavioural studies challenged this
45  serial view and proposed that decision does not have to finish before the movement

46  execution process begins, de facto introducing the parallel view of decision making (e.g.,
47  Ghez, et. al., 1997 & McKinstry, et. al., 2008). This parallel view states that there is an

48  ongoing information flow from decision to action systems well before the decision process
49  has been fully completed. According to this view, not only action may start before a

50  decision is reached, but movements may be updated online based on newly acquired

51 evidence (Coles, et. al., 1985).

52 To investigate the putative interaction between action and decision as it unfolds in
53  time, some studies have used tasks which require continuous control of action. To this end,
54  decision-making tasks incorporated movement tracking for responses executed on devices
55  like a joystick, a robotic handle, a computer mouse, or freely with a hand reaching

56  movement (Resulaj, et. al., 2009, Burk, et.al., 2014, Barca & Pezzulo, 2012; Song &

57  Nakayama, 2008). Since these responses have a wide temporal and spatial span, they make
58 it possible to study, and compare the dynamics of the movement during the decision-

59  making process.

60 A typical finding that emerges from continuous movement paradigms when subjects
61  must move toward one out of two alternative targets, is the prevalence of movement

62  trajectories that are not perfectly direct to the chosen target (Song & Nakayama, 2008).

63  These findings have shown that the initial phase of the response movement weighs in the
64  paths to the two possible targets, maintaining a compromise which is later resolved by

65  diversion of the trajectory committing to one of the targets (Chapman, et. al., 2010 &

66  Gallivan, et. al., 2011). These averaged movement trajectories are interpreted as a case of
67 movement being planned and executed online during the deliberation process and more

68  importantly, that there is a continuous crosstalk between these two processes (Cisek &

69  Pastor-Bernier, 2014, Marcos, et. al., 2015). An exacerbated expression of this are changes
70  of mind, trials in which the subject’s response movement starts off toward one target but
71  corrects on-the-fly toward the alternative target (Burk, et. al., 2014). In general, these

72 findings motivated the parallel view of decision making, which focuses on the ongoing one-
73 way flow of information from action to decision.

74 Although the parallel view of decision making assumes a richer interaction between
75  action and decision than the sequential view, it only accounts for the forward influence

76  from decision to action. However, there is evidence for backward influence from action on
77  decision as well. For example, Burk, et. al. (2014) showed that when the spatial distance
78  between two response options is large, subjects make less changes of mind than when the
79  distance between targets is shorter. This means that action costs are considered and
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80 influence the outcome of the decision process. Similarly, Cos, et. al. (2011) found that the
81  amount of effort required to perform the response action biased performance in a perceptual
82  decision-making task.

83 We can frame the evidence mentioned above under Embodied Cognition Theories
84  (ECT) of decision-making, whose common characteristic is the influence of action

85  dynamics on decision. Indeed, drawing connections between motor processes and decision
86  making has a conceptual grounding on the wider framework of sensorimotor and embodied
87  views in cognitive sciences (Clark, 1999, O’Regan & Noe, 2001, Barsalou, 2008), a general
88  conceptual shift that has pervaded recent views in decision-making. One clear example is
89  Lepora & Pezzulo’s (2015) Embodied Choice Model. The model proposes a two-way

90 online interaction between motor actions and decision processes and that this interaction

91  allows for a fast update of movement and decision processes. A typical argument by

92  example often used to support this view is that, in nature, animals must move about (their
93  body and/or sensory epithelia) to be able to perceive information that is necessary for

94 making choices and planning actions (see Lepora & Pezzulo, 2015). To use the information
95  gained through movement though, there needs to be a backward flow of information from
96  action-related motor processes to decision making.

Response Plan
< fl Motor Action

b Response Plan
|Decision Process |« Motor Action ]

Sampling Plan

97

98  Figure 1. Interactions between motor action and decision in tasks without (a) and with (b) active
99  information sampling. a. In classical tasks (see text) decision process feeds the response plan which
100  gets executed with a motor action. While the action continues, the output of the action feeds back
101 into the decision process. This is not a fully embodied scenario, since actions do not bring an
102  information change. b. In a fully embodied scenario considered here, two different action plans, for
103 sampling and for responding, are allowed to unfold in parallel. The decision process has a
104  feedforward influence on motor output, whereas sampling influences decision via feedback from the
105  motor action. In contrast to panel (a), the executed motor action implements both responding and
106  sampling of information.
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107 Despite the logical emphasis that embodied views make on information sampling
108  movements, this notion has not been implemented in experimental tasks to support the

109  ECT. In fact, in most of these decision making tasks, the stimulus information is available
110  all at once and static, without any dependency upon the participant’s movement (Lepora &
111  Pezzulo, 2015, Barca & Pezzulo, 2012, Hudson, et. al., 2007, Marcos, et. al., 2013). The
112 interactions in these types of tasks have been illustrated in Figure 1a. Because the actions
113 performed to report a choice are inconsequential to the inflow of information used to reach
114  that decision, these tasks cannot capture all possible interactions between action and

115  decision proposed by ECTs. Therefore, there is a need for tasks that can reveal the two

116  relevant aspects of actions to identify the potential interplay between motor and decision
117  processes. This interplay, which has motivated the task used here to test decision making
118  under ECT, is illustrated in Figure 1b. Here, we assume that there are two types of action
119  plans which are critical in an embodied decision-making scenario, the ones necessary for
120 response itself, and the ones necessary for information sampling. Both of them interact with
121  the decision process, and mediate both feed-forward and feedback interactions.

122 In conclusion, we believe that the generality of the interplay between decision and
123 action, and by proxy, of the embodied decision framework, have not yet been tested in all
124 its critical components. In the present study, we aim at testing the ECT’s predictions with a
125  task in which information accrual depends on the subject’s actions. We have developed a
126  novel mouse-tracking task in which action is necessary both to sample information and to
127  indicate the decision. To be able to single out one from the other, movements directed to
128  sample information and movements to respond have been made orthogonal. That is, it is
129  possible for the subjects to accumulate all the information first and then make the choice,
130  make a choice at once without any accumulation of information, or anything in between.
131  Although sampling and response actions have orthogonal dynamics, one critical aspect of
132 the task is that both action plans are executed via same effector, so that the final motor
133 output must synthesise the two plans if they are to co-occur, as the theory predicts.

134 Our hypothesis, derived from the ECT (Lepora & Pezzulo, 2015, Cisek & Pastor-

135  Bernier, 2014), is that the movements related to the decision-making process and the

136  movements related to accumulation of evidence to reach that decision are subject to

137  significant online interaction. We first show that, in our task, movements depend on the
138  amount of available information such that participants move to sample information when
139  needed. Second, we demonstrate that the decision-making process transpires even in the
140  1nitial phases of the information sampling movements, so that trajectories are biased

141  towards one (usually the chosen) target much before all the information has been gathered.
142 These results do not only suggest that the decision-making process pervades information
143 sampling actions, but also that decision, actions and information sampling are orchestrated
144 in parallel, and not in a strictly sequential fashion.

145
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146 2. Methods
147 2.1. Participants

148  Twenty-one voluntary participants joined the experiment (13 women, 9 men, average age
149  23.5 years). Participants were recruited from the database of the Center for Brain &

150  Cognition (University Pompeu Fabra) and were paid 10 euros per hour in exchange for
151  their participation. They were all right-handed and had normal or corrected to normal vision
152 with no reported history of motor problems related to upper limbs. Before proceeding with
153  the experiment, all subjects read and signed an informed consent form. The experimental
154  protocol was approved by the ethics committee CEIC Parc de Salut Mar, Universitat

155  Pompeu Fabra. Before conducting the hypothesis-driven data analyses, we excluded data
156  from two subjects whose accuracy was below 75%.

157

158 2.2. Experimental setup

159  Participants were asked to perform a visual object categorization between “edible” vs “non-
160  edible” in a two-alternative forced choice (2AFC) paradigm. We used 63 edible and 63

161  non-edible object images from the Amsterdam Library of Object Images (Geusobroek, et.
162 al., 2005), and each of them was presented only once to each participant, obtaining a total
163 of 126 different trials per participant. To control for possible effects of colour cues, we used
164  grey-filtered versions of the images. Stimulus display and the task were programmed with
165 MATLAB, PsychToolBox (Brainard, 1997). Visual stimuli were presented on a Cambridge
166  Research Systems, Display++ monitor (1920 % 1080 pixels, 32°°, 100 Hz refresh rate).

167  Responses were recoded through a computer mouse (HP USB Optical Scroll Mouse), and
168  the cursor location was recorded at 100 Hz (at every display refresh frame). The

169  participant’s task involved moving the cursor from a home position at the bottom centre of
170  the display to the right or left response areas, depending on the choice regarding the image
171  presented at the top centre (locations and other details are described below).

172 For each subject, the total of 126 trials were divided, randomly and equiprobably
173 into three different movement-to-visibility conditions: No Blur (NB), Low Blur (LB) and
174 High Blur (HB). In the NB condition, the images were fully visible (without any blur) from
175  the beginning of the trial, and therefore visibility was not contingent on action. For the

176  other two conditions, in order to implement movement-dependent updating of information,
177  we manipulated the visibility of the object images as a function of mouse position. We used
178  adynamic filter mask over the image to blur the image. The filter convolved each pixel

179  with the neighbouring pixels with a Gaussian kernel with standard deviation (sd)

180  proportional to the vertical distance between current cursor position and the target image at
181  the top centre of the display, denoted dy, (measured in pixels). In the LB condition, the

182  Gaussian mask had sd = d,/120, whereas in the HB condition the Gaussian mask had sd =
183  dyp/60. This effectively made blur (hence, image visibility) depend on the participants’
184  movement, so that moving upward de-blurred the target image (i.e., the shorter the vertical

4
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185  distance to target, the smaller dy,, and hence the lower the sd and the higher the visibility).

186  The difference between the two blur conditions was the gain in visibility as a function of
187  distance.
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188

189  Figure 2. Schematic illustration of a trial sequence. Each trial was preceded by a 2000ms inter-trial
190 interval displaying a fixation cross. Then, the stimulus and the choices were presented on the screen
191  until response, with a deadline of 2000ms. Response areas, left and right of the display, are denoted
192 by straight vertical lines. All trials were equated to the same duration, 2000ms by adding a waiting
193 time if necessary. RT = reaction time.

194 2.3. Procedure

195  Each subject completed the task in a darkened, sound-attenuated laboratory room. Before
196  each trial started, the subject moved the mouse cursor to the bottom-centre home area

197  (height = 10 x width = 15 pixels, centre X, y coordinates: 960,1075 pixels). The trial began
198  with the image (265 x192 pixels) appearing at the top-centre of the monitor (x- coordinates:
199 827 to 1092, y-coordinates: 0 to 192 pixels). As soon as the image appeared, the subject
200  was free to move the mouse to indicate her choice by reaching to, and clicking on, one of
201  two response areas, left or right side of the display, within 2000 ms (Figure 2). The

202  rectangular response areas, covering the leftmost and rightmost 23% of the display, were
203  indicated by two vertical lines along the screen sides (x coordinates: 440 and 1480 pixels,
204  respectively; see, Figure 2). For half of the participants, edible was attributed to the left

205  response area and non-edible to the right. In the other half, it was reversed. Response

206  deadline was 2000 ms, after which the subject missed the trial. Each trial took the whole
207 2000 ms, independently of the response time. After a trial ended, the participant needed to
208  move the cursor back to the bottom-centre home location for the next trial to begin. The
209  inter-trial interval was 2000 ms, which also served as a fixation screen. Trials from all three
210  conditions (NB, LB, HB) were interleaved randomly throughout the experiment. Hence, for
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211  efficient responding, participants could not fall back on a pre-defined strategy based on
212 visibility prior to the start of the trial.

213 Because the response areas covered both lateral sides of the display, the decision

214  movement could vary in terms of the vertical extent of the trajectory, including direct

215  horizontal movements from the home location to the response area. As said earlier, in the
216  blurred image (LB and HB) conditions, the image blur decreased as the mouse moved

217  upward. Therefore, when the image did not contain sufficient information, the participant
218 needed to move in the vertical direction in order to gather evidence. Because of the

219  response deadline (2000 ms), moving upward had a cost (i.e., took time off the available
220  response time). Therefore, moving upward is never an optimal strategy if it is not necessary
221  to sample evidence.

222 3. Results

223 In our task, characterizing information sampling and response components of the subjects’
224  action boils down to the analysis of heights and angles of the response trajectories (some
225  example trajectories are shown in Figure 3). Firstly, we inspected the trajectory height,
226  denoted h, which was calculated by measuring the vertical distance (in pixels) between the
227  starting point and the highest point of the trajectory (Figure 3a). Second, we analysed the
228 initial angle of trajectories, denoted a, which was defined as the angle described by an

229  imaginary straight line connecting the starting point with the point at one-third of the length
230  of the trajectory (cyan dashed line in Figure 3a), with respect to the vertical midline. It is
231  important to note that, although correct targets were randomly assigned left or right sides
232 during the task, for analyses we realigned the correct choice to positive angles.

233
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235  Figure 3. a. An example of one mouse trajectory (red line) on the experimental display. Response
236  areas are indicated to the participants by the solid vertical lines on the left and right sides. The white
237  dashed line indicates the height 4 of the trajectory. The cyan dashed line that joints the origin with
238  the point of the trajectory that lies at one third of its total length serves to calculate the initial angle
239 o of the trajectory with respect to vertical. Positive angles are defined to be in the direction of the
240  correct target, whose location could occur randomly on either side. b. Examples of trajectories for
241 several individual trials, with the same conventions described in a.
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242 We preregistered this study and we first report the analysis that were planned prior to
243  data collection (see, https://osf.io/3ysah/). We also performed follow-up analyses that have
244 been planned after the pre-registration process, as these reveal important characteristics of
245  the data. Throughout the results section we report statistical tests according to the

246  frequentist approach (the analogous Bayesian analyses are reported in the Supplementary
247  Table S1). Both analyses lead to the same conclusions. We included only the trajectories of
248  correct trials into the analyses reported below (average 110 correct trials, >87%, out of 126
249  total per subject, range103-123).

250

251 3.1. Movement-dependent information sampling

252  If participants gather information as needed, their trajectories should reach higher when the
253  image is blurred. We therefore tested whether trajectories in blur trials reached higher than
254  trajectories in the no blur trials. As expected, trajectories in the two blur conditions were
255  higher than in the no blur condition, since information sampling was unnecessary in the
256 latter (right tail paired-samples t-tests, t(17) = 6.53, p < 0.001, Cohen’s d = 1.54; t(17) =
257  7.03,p <0.001, Cohen’s d = 1.66, for the comparison of NB with LB and HB,

258  respectively). However, even in the NB conditions trajectories had some vertical

259  component (mean = 368.3 pixels, sd = 231.9), possibly due to biophysical motor constrains.
260  To eliminate the height differences that are present in the trajectories but unrelated to

261  information gathering, we subtracted the average height in NB condition from LB and HB
262  trajectory heights in each individual’s data. Results (Figure 4a) showed that trajectories in
263  HB trials were about 27% higher than in LB trials (mean = 315.7, sd = 190.4, vs 229.3, sd =
264  148.8, respectively; right tail paired-samples t-test, t(17) = 5.39, p <0.001, Cohen’s d =
265  1.27).

266
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268  Figure 4.a. Height of trial trajectories for NB, LB and HB conditions. Each colored dot represents
269  individual means for the corresponding condition. White dots represent the group median for the
270  condition and the grey lines represent the inter-quartile range. b. Probability density of the initial
271 angles of the trajectories across participants. The solid black line corresponds to the Gaussian

272 mixture model (with 2 components) fit to the distribution (model with 2 components AIC = 19105 <
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model with 1 component AIC = 19753). Angle 0° corresponds to straight vertical upwards
movement, i.e., with no horizontal component. Positive angles correspond to correct target
direction.

3.2. Interplay between decision and action

Bimodality of trajectories. A central prediction of ECT is that movements should reflect the
decision-making process throughout, such that the trajectories should show early on a bias
towards the finally chosen target. We tested this prediction by studying the initial angles of
the trajectories (Figure 4b). We found that their distribution is bimodal (Hartigan’s Dip
Test, p-value < 0.001; Gaussian mixture model better fit with 2 components, Akaike
Information Criterion (AIC) = 19105 than the model with 1 component, AIC = 19753),
with a central lobe peaking at angle 2.3°, a lateral lobe peaking at 66.4° (vertical midline
corresponds to an initial angle of 0° and positive angles corresponding to directions to the
correct target), and the separation between the two lobes being 43.52 °. This bimodality and
the cut-off point allowed us to classify trajectories as sampling or non-sampling
trajectories, depending on whether the initial angle is closer to the central or the lateral
peak, respectively. We checked bimodality in the distribution of trajectory angles for each
subject individually (see Figure S1) and found that 9 out of 18 subjects showed significant
bimodality in the distribution in trajectory angles.

The presence of two types of trajectories is observed in each blur condition
separately (Figure S2). While there is a large fraction of non-sampling trajectories in the
NB condition (corresponding to the lateral lobe of the bimodal distribution; q = 0.62, X?(1,
N =635) =39.86, p < 0.001), surprisingly in the HB condition there were also non-
sampling trajectories (q = 0.14 binomial test p < .05). The presence of sampling and non-
sampling trajectories across all blur conditions suggests that participants made an initial
choice about whether or not to gather information, as supported by an analysis that shows
that trajectories classified as non-sampling had a much smaller height than sampling
trajectories (right tail two-sample t-test, t(1988) = 48.72, p <.001). Thus, non-sampling
trajectories simply reflect a ballistic movement towards the chosen target that emanates
from an initial decision, with little information gathering or ongoing decision-process
throughout.

Angle analysis of sampling trajectories. Thus, given the initial decision and the ensuing
existence of two different types of trajectories, a direct test of the prediction of ECT
requires examining the sampling trajectories alone. These trajectories correspond to the
central peak of the distribution in Fig. 4b. As the initial angles of these trials are close to
zero (vertical), trajectories mostly depart vertically from the home position with the aim of
gathering information to guide the final choice. However, in addition to the prominent
vertical component, the initial steps of the trajectory were biased towards the chosen target,
as the initial angle was significantly larger than zero in both LB and HB conditions (right
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312 tail one sample t-tests, t(16) = 4.58, p <.001 and t(16) = 3.41, p = .002, respectively). This
313 result strongly supports the notion that the decision-making process transpires into the
314  movement even when participants felt urged to actively sample information.

315 One might argue that some trials in the analysis above might have been

316  misclassified non-sampling trials, given the partial overlap of the two lobes of the bimodal
317  distribution of angles. This could introduce some biases towards positive angles. To control
318  for this possible confound we used a simpler analysis limited to LB and HB trials only

319  (where participants are urged to sample information) that does not rely on trial

320 classification. In this analysis we calculated average angle in incremental ranges of angles
321  (symmetric around 0°) from +1° to £30°, in steps of one degree (Figure 5a). We found that
322  the average angle was significantly larger than zero in all the ranges larger than £14° (right
323  tail t-tests, p < .05, see Figure 6a). Angles in the range +14° and +20° are well inside the
324  central peak of the bimodal distribution, as described above, and therefore can be reliably
325  classified as sampling trajectories (trajectories with such small initial angle very unlikely
326  correspond to trials where the decision maker already made a choice about where to move).
327  In sum, this new analysis shows trajectories whose initial angles lie within a small range of
328  angles symmetric around zero already show a significant positive bias towards the chosen
329  target. This result further supports the notion that the ongoing decision-making process

330 transpires into the movement even when not all information necessary to solve the task has
331  been gathered.

332 Although we did find those significant deviations in the initial angle of sampling
333 trajectories, we did observe only marginal evidence that the angle deviation was larger in
334 LB (mean = 5.28° sd = 4.75) than in HB (mean = 3.42°, sd = 4.13) conditions (Fig. 5b;
335  right tail paired-samples t-test, t(16) = 1.66, p = 0.058, Cohen’s d = .4).
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337  Figure 5. a. Mean initial trajectory angle for all blur trajectories (pooled LB and HB data), along
338  incremental ranges of angles symmetric around zero. The solid black line corresponds to the inter-
339  individual mean (the grey area represents s.e.m.). The black horizontal line represents significance
340  (right tail t-test, p < 0.05) against the hypothesis that the mean angle is not larger than zero. b.
341  Initial angle of trial trajectories for LB and HB conditions. The coloured dots represent each
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342 participant’s mean value for the corresponding condition. The white dots represent the median for
343 each condition and the grey lines illustrate the inter-quartile range.

344 3.3. Converging evidence from angle and height information

345  Initially we had decided to classify sampling and non-sampling trials based on initial angle
346  of the trajectories. However, if our hypothesis is correct, a similar classification should

347  apply to the heights of the trajectories. This is because sampling trajectories are expected to
348  reach higher than non-sampling trajectories, as the latter correspond to ballistic movements
349  to the target without much ongoing deliberations and thus are expected to reach vertically
350 much lower. What is more, if trajectories are truly separable into sampling and non-

351  sampling, then it should be the case that in their heights should also be distributed in a

352  bimodal way, and height and angle should be correlated. Consistent with this prediction, we
353  found that heights were distributed in a bimodal way (Figure 6a) across conditions and

354  participants (Figure 6a; Hartigan’s Dip Test, p < 0.05; see Figure S3 for each blur

355  condition). These results in turn suggest that it should be possible to classify trajectories as
356  sampling and non-sampling based on the bimodality in heights, and that this classification
357  should be largely consistent with the one derived above from the angle analyses. In line
358  with this, classification based on height and classification based on angle were highly

359  correlated (Pearson’s correlation, r = 0.76) and clustered trials in two clear categories

é gQ ‘(Fi gure 6b).
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364  Figure 6. a. Probability density of the heights of the trajectories across participants. The solid black
365  line corresponds to the Gaussian mixture model with 2 components fit to the distribution (better fit
366 in the model with 2 components, AIC = 26439 lower than the model with 1 component, AIC =

367  26874). b. Probability density of the heights and angles of the trajectories across participants. c.
368  Mean angle for all blur trajectories (pooled LB and HB data), along incremental ranges of heights.
369  The solid black line corresponds to the inter-individual mean (the grey area represents s.e.m.). The
370  black horizontal line represents significance (right tail t-test, p < 0.05) against the hypothesis that
371  the mean angle is not larger than zero. Angle 0° corresponds to pure vertical upwards movement,
372  i.e., with no horizontal component.

373 Similar to the angle analysis reported in Section 3.2 (where trial classification was
374  based on angle), we analysed angle again but this time using trial classification based on
375  height. We found that the angles in sampling trials, both the LB and the HB conditions,

376  were significantly larger than zero (right tail one sample t-test, t(16) = 3.7, p < 0.001,

377  Cohen’sd=.9 and t(16) = 2.05, p = 0.029, d = .5, respectively). This outcome supports the
378  conclusions of our main analysis reported above and shows that this finding generalizes
379  regardless of the classification variable used. Finally, and parallel to the incremental angle
380 analyses reported earlier, we also addressed how the mean angle changes as a function of
381  height increments of trajectories. As one would expect if trajectories reflect both choice and
382  information gathering, we found that as trajectories with lower heights are included into the
383  analysis, mean angle increases (Figure 6¢). This shows the interaction between trajectory
384  height and initial angle.

385

386 3.4. Robustness of the results at earlier initial angles

387  In the main analysis, we have estimated angles at one third of the trajectory, as we wanted
388  to capture the initial moments of the movements. However, the criterion to compute angles
389  at one-third of the trajectory is somehow arbitrary. As a check regarding the trial

390 classification, we decided to re-compute the trajectory angles at an earlier point in

391  trajectory (described in the Results section). The motivation was to provide an additional
392  look at the angle analysis to reveal that it is robust even at earlier moments of the trajectory.
393  This time we looked at angle at the one-fifth of trajectory as opposed to one-third of

394  trajectory point (described in Figure 2a). The distribution of angles in this calculation also
395  brought about a strong bimodality (Hartigan’s Dip Test, p < 0.05), confirming the main
396  findings. Then, we also corroborated that the angles in blur conditions were significantly
397  larger than zero even at this earlier point. In the LB condition the angle deviated

398  significantly above zero (vertical), but in the HB condition they were not significantly

399  larger than O (right tail one-sample t-tests, t(16) = 3.37 p = 0.002, Cohen’s d = 0.81 and
400  t(16) =-0.087, p =0.53, d = -.02, respectively). This means that whereas the decision starts
401  to have an impact earlier on in the trajectories of LB conditions, in the HB condition the
402  effect is weaker as more information is needed. Moreover, investigating angular deviation
403  at incremental ranges of angles, we found that the angles differed significantly from zero
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404  from 22° onward (right tail t-tests, p < .05, Figure S4a). Finally, we repeated the

405  comparison between LB (M = 2.9, sd = 3.57) and HB (M = -.08, sd = 4.001) which showed
406  astrong evidence for the effect of information sampling requirements on the decision status
407  (Figure S4b, right tail paired samples t-test, t(17) =2.51, p =0.011, Cohen’s d = 0.61). This
408  additional analysis, calculating the angles from one-fifth of trajectories, provides more

409  confidence regarding the difference between LB and HB conditions, in support for ECT.
410  Based on these converging results, we found strong evidence supporting that there was an
411  impact of the decision component in trajectories overall in the sampling trajectories and
412  that, if any, differences between blur conditions leaned in the expected direction.

413 4. Discussion

414  Many studies in the past have challenged the classical view of decision making and

415  cognition which assumes a temporal and functional separation between decision and action
416  systems (Pylyshyn, 1984). The idea is that natural choice behaviours of humans and other
417  animals involve movement patterns that reflect the ongoing decision process. As a result,
418  movement trajectory analyses are increasingly used to trace the underlying decision

419  dynamics. Our study clearly sides with these findings, showing that it is possible to trace
420  decision dynamics from the ongoing choice action (Tabor, et. al., 1997, Magnuson, 2005,
421  Spivey & Dale, 2006). However, the tasks used in previous studies did not contemplate the
422 case where actions are also needed to sample information. To fill this gap, we took one step
423  forward from this past research and tested whether the decision outcome pervades action
424 when information sampling is necessary. This is a condition that characterises choice in
425  many natural environments, such as getting closer to an object to decide whether it is food
426  ornot.

427 As mentioned in the introduction, parallel processing of decision-making and action
428  control is an important principle. However, the nature of the interaction between the two is
429  still under debate. For instance, Lepora & Pezzulo (2015) have put forward the ‘embodied
430  choice’ framework, that accommodates richer interactions between action and decision
431  through action-dependent information gain, compared to the parallel account. The

432  experimental tasks they had used to illustrate their predictions lacked the active sampling
433  component, which leaves one main prediction of the theory still unresolved. Our findings
434 support the ‘embodied choice’ theory by showing that decision and action interaction can
435  be traced in ecological scenarios incorporating the active sampling constrain. If this were
436  not the case, we would have observed a temporally separated sampling and responding
437  characteristics in the movement trajectory without any angular deviation in early parts of
438  the trajectories.

439 One central feature of the task used in the present study is that participants have to
440  trade off information (image de-blurring) for energetic efficiency (moving up, hence
441  orthogonal to the choice goal). This is because motor execution involves expenditure of
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442  energy, thus incurring effort-related costs. Motor cost and physical effort have been started
443 to be studied in relation to decision making (Burk, et. al., 2014, Marcos, et. al., 2015). For
444  instance, Cos, et. al. (2014) have shown that effort and biomechanics of a task influence the
445  decision dynamics starting at early stages. It is likely that physical effort influences the

446  decision dynamics due to the strong interactions between action and decision. In our

447  experiment, each blur condition had a different cost/information structure. Although, it is
448  not easy to quantify exactly how this effort to information ratio impacted our results (due to
449  the use of real images instead of parametric stimuli), it is still safe to say that associated
450  effort to sample information altered the decision making process and led to different choice
451  trajectories. The analyses showing an inverse relationship between image visibility and

452  trajectory height clearly support this.

453 The main result to emerge from this study, however, was based on the deviations
454  and curvatures in choice trajectories. Please note that this is superficially similar to many
455  other mouse-tracking studies (Spivey,et. al., 2010, Freeman, 2018, Wojnowicz, et. al.,

456  2009). A common task characteristic our current study shares with this previous work is the
457  urgency of responding to a task (Scherbaum & Kieslich, 2008. Kieslich, et. al., 2019). Via
458  imposing time pressure, participants are encouraged to execute decision and action in the
459  same time window as it is more optimal for a successful response than waiting statically to
460  make a decision and then move to report it. However, the fundamental difference between
461  our experiment though is the functional link between information and movement. In those
462  previous works, the subject planned and performed actions to report the choice response,
463  therefore effectively allowing to study interactions between decision process and response
464  plan only (as shown in Figure 1a). In contrast, the task we developed here involves, and
465  makes it possible to study, both response and sampling plans and their interplay (Figure
466  1b). Another way to put it is that previous studies so far have considered only tasks

467  equivalent to the ‘no blur’ condition in of our study. Hence, one of the main goals here was
468  to compare the trajectories between different sampling conditions as a function of

469  movement-information ratio. First, the results obtained conclusively support the prediction
470  that the decision process pervades information sampling movements in various ways.

471  Information sampling trajectories deviated to one of the choices (the correct one, on

472  average) very early on. We confirmed this both in low blur and high blur conditions, using
473  only trials classified as sampling trials. A second expectation by hypothesis was that, if the
474  sampling component was stronger in HB than in LB, then one would assume that the

475  decision component will be more pronounced in LB than in HB trajectories, especially at
476  the early stages. This is because the need for information in HB trials is stronger. Angular
477  differences between LB and HB conditions calculated according to the planned analysis (at
478  1/3th of trajectories) were in the expected direction, but reached only a marginally

479  significant effect. This borderline result may be due to the fact that the two conditions were
480  not sufficiently different in terms of costs of sampling movement. This cost depended

481  directly on the blur function, which was chosen arbitrarily. Indeed, subsequent analyses
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482  where angle was calculated at a more initial stage (1/5th of trajectories), or when angular
483  deviation was calculated in incremental steps from movement origin, revealed robust

484  significant differences in the same, expected direction. This variability reflects the

485  importance of the task mechanics to the study of sensorimotor interactions in a decision
486  making setting (Scherbaum & Kieslich, 2018). Variants of active sampling decision making
487  tasks, including variations of the information cost function, should shed more light on the
488  full range of embodied decisions under naturalistic constrains.

489 The proposed interactions between action and decision we suggest rely on the

490  incorporation of sampling and responding actions in the task structure (Figure 1b). We note
491  that the tasks that include movement-agnostic stimulus, often used in the literature (and
492  summarised in Figure 1a), are a special instance of the more general case modelled in

493  Figure 1b: one in which the arrows to and from “sampling plan” have zero weight. Yet, our
494  experimental setup is not intended to as a general model for all action-decision possibilities
495  that humans and animals are capable of. We rather claim that embodied decisions are the
496  manifestation of the flexibility of the decision process (Wispinski, et. al., 2018). In many
497  natural and ecological situations, like the one modelled here, decisions have to be carried
498  out as ETC predicts —with a strong interaction coupling with action processes.

499  Nevertheless, there are also abstract and higher-level decisions which may comply with
500  serial accounts of decision making, especially in humans. In line with a ‘phylogenetic

501  refinement’ view, fully abstract cognitive operations are evolutionarily more recent,

502  whereas rich cycles of action & decision are prevalent from very basic animals to complex
503  mammals (Cisek, 2019). In the human context, depending on the task, the biomechanical
504  characteristics and previous experience, we may observe response patters ranging from a
505  pure abstract and covert decision making process that precedes any action, to a fully

506 embodied and interactive one such as the one seen here. For instance, a novice driver may
507  find herself thinking step-by-step about all of the driving actions before executing them,
508  however as practice accumulates, she may decide and move at the same time with ease.
509  Therefore, we are aware of the vast complexity about the interaction between decision and
510  motor action (Gallivan, et. al., 2018). Our study provides a step forward in understanding
511  these interactions under the new constrain of action-dependent information sampling. What
512 we have shown is that when the task dynamics imposes this type of ecological constraint,
513 action for sampling and choice action have interactions with the decision process and with
514  each other.

515 To summarize, here we showed a demonstration of interactions between action to
516  sample information, action to respond and decision process with a novel mouse-tracking
517  task. Our results showed that decision feed into movement trajectory during information
518  sampling movements. This is a support for the embodied theories in decision making in a
519  way that has been lacking in the field, as far as we know.

520
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568  Figure S4. Analysis on angles which was calculated based on one fifth of trajectory length a. Mean
569  angle for LB & HB trajectories, for different ranges of angles, symmetric around zero, included in
570  the analysis. Full line corresponds to the mean; grey area represents s.e.m across subjects. The black
571  horizontal line represents significance (Right tail one-sample t-test, p < 0.05) against the hypothesis
572 that the mean angle is not larger than zero. b. Mean initial angle of trial trajectories for LB and HB
573  conditions. The grey lines represent each participant’s mean value for the corresponding condition.
574  The dark line is the sample mean of all data, error bars representing s.e.m.
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7. Supplementary Table

Median
Effect Frequentist
Page Analysis Variable H1 Bayes Factor | Error Size 95% C1 p-values

1 7 Height (all trials) | HB > LB 1067.6 <0.001 1.17 [0.54,1.79] | <0.001
Angle (classification

2 8 based on angle) LB>0 209.53 <0.001 1.01 [0.41, 1.63] <0.001
Angle (classification

3 8 based on angle) HB >0 25.27 <0.001 0.73 [0.21,1.29] | =0.002
Angle (classification

4 9 based on angle) LB > HB 1.45 0.004 0.37 [0.04,1.12] | =0.058
Angle (classification

5 11 based on height) LB>0 44.02 <0.001 0.8 [0.26,1.38] | <0.001
Angle (classification

6 11 based on height) HB >0 2.56 0.002 0.44 [0.06,0.93] | =0.029
Angle (calculated at

7 11 one-fifth) LB>0 222 <0.001 0.72 [0.2, 1.27] =.002
Angle (calculated at

8 11 one-fifth) HB >0 0.23 0.004 0.143 [0.01, 0.49] =53
Angle (calculated at

9 12 one-fifth) LB > HB 5.36 <0.001 0.54 [0.1, 1.05] =0.011

Table S1. Bayesian counterparts of the t-tests that have been reported in the Results section. The

analyses are ranked in the order of appearing in text.
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