

1

2 The dynamics of decision making and action during active sampling

3

4 Authors

5

Duygu Ozbagci^{1*}, Ruben Moreno-Bote¹, Salvador Soto-Faraco^{1,2}

6

7 1 Center for Brain and Cognition and Department of Information and Communications
8 Technologies, Pompeu Fabra University, Barcelona, Spain

9 2 Institut Català de Recerca I Estudis Avançats (ICREA), Barcelona, Spain

10

11

12

13

* Corresponding Autor: duygu.ozbagci@upf.edu

14

Senior Author: ruben.moreno@upf.edu

15

Senior Author: salvador.soto@upf.edu

16

17

ABSTRACT

18

Embodyed Cognition Theories (ECTs) propose that the decision process continues to unfold during the execution of choice actions, and its outcome manifests itself in these actions. Scenarios where actions not only express choice but also help sample information can provide a valuable test of this framework. Remarkably almost no studies so far have addressed this scenario. Here, we present a study testing just this paradigmatic situation with humans. On each trial, subjects categorized a central object image, blurred to different extents (2AFC task) by moving a cursor toward the left or right of the display. Upward cursor movements, orthogonal with respect to choice options, reduced the image blur and could be freely used to actively sample information. Thus, actions for decision and actions for sampling were made orthogonal to each other. We analyzed response trajectories to test a central prediction of ECTs; whether information-sampling movements co-occurred with the ongoing decision process. Trajectory data revealed were bimodally distributed, with one kind being direct towards one response option (non-sampling trials), and the other kind containing an initial upward component before veering off towards an option (sampling trials). This implies that there was an initial decision at the early stage of a trial whether to sample information or not. Importantly, the trajectories in sampling trials were not purely upward, but rather had a significant horizontal deviation that was visible early on in the movement. This result suggests that movements to sample information exhibit an online interaction with the decision process. The finding that decision processes interact with actions to sample information supports the ECT under novel, ecologically relevant constraints.

38

Keywords: decision-making, embodied cognition, mouse tracking, action dynamics, motor action

40

1. Introduction

41 The classical view of decision-making was founded on the idea that action is executed after
42 a decision has been made, in a serial fashion (e.g., Newell & Simon, 1972). This idea
43 assumes a clear temporal and functional separation between decision making and the motor
44 processes that implement that decision. However, later behavioural studies challenged this
45 serial view and proposed that decision does not have to finish before the movement
46 execution process begins, *de facto* introducing the parallel view of decision making (e.g.,
47 Ghez, et. al., 1997 & McKinstry, et. al., 2008). This parallel view states that there is an
48 ongoing information flow from decision to action systems well before the decision process
49 has been fully completed. According to this view, not only action may start before a
50 decision is reached, but movements may be updated online based on newly acquired
51 evidence (Coles, et. al., 1985).

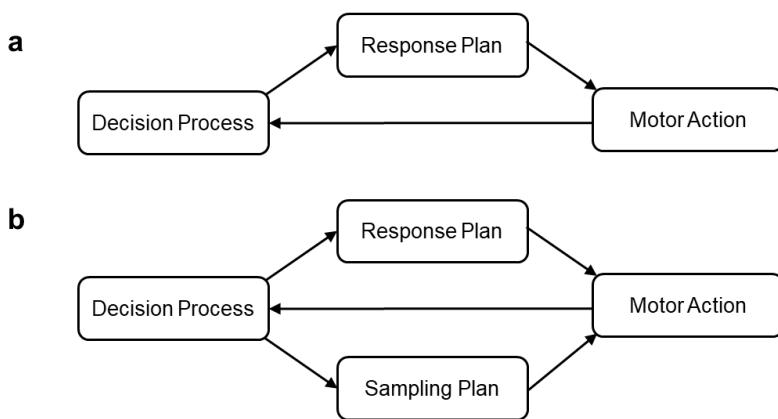
52 To investigate the putative interaction between action and decision as it unfolds in
53 time, some studies have used tasks which require continuous control of action. To this end,
54 decision-making tasks incorporated movement tracking for responses executed on devices
55 like a joystick, a robotic handle, a computer mouse, or freely with a hand reaching
56 movement (Resulaj, et. al., 2009, Burk, et.al., 2014, Barca & Pezzulo, 2012; Song &
57 Nakayama, 2008). Since these responses have a wide temporal and spatial span, they make
58 it possible to study, and compare the dynamics of the movement during the decision-
59 making process.

60 A typical finding that emerges from continuous movement paradigms when subjects
61 must move toward one out of two alternative targets, is the prevalence of movement
62 trajectories that are not perfectly direct to the chosen target (Song & Nakayama, 2008).
63 These findings have shown that the initial phase of the response movement weighs in the
64 paths to the two possible targets, maintaining a compromise which is later resolved by
65 diversion of the trajectory committing to one of the targets (Chapman, et. al., 2010 &
66 Gallivan, et. al., 2011). These averaged movement trajectories are interpreted as a case of
67 movement being planned and executed online during the deliberation process and more
68 importantly, that there is a continuous crosstalk between these two processes (Cisek &
69 Pastor-Bernier, 2014, Marcos, et. al., 2015). An exacerbated expression of this are changes
70 of mind, trials in which the subject's response movement starts off toward one target but
71 corrects on-the-fly toward the alternative target (Burk, et. al., 2014). In general, these
72 findings motivated the parallel view of decision making, which focuses on the ongoing one-
73 way flow of information from action to decision.

74 Although the parallel view of decision making assumes a richer interaction between
75 action and decision than the sequential view, it only accounts for the forward influence
76 from decision to action. However, there is evidence for backward influence from action on
77 decision as well. For example, Burk, et. al. (2014) showed that when the spatial distance
78 between two response options is large, subjects make less changes of mind than when the
79 distance between targets is shorter. This means that action costs are considered and

80 influence the outcome of the decision process. Similarly, Cos, et. al. (2011) found that the
81 amount of effort required to perform the response action biased performance in a perceptual
82 decision-making task.

83 We can frame the evidence mentioned above under Embodied Cognition Theories
84 (ECT) of decision-making, whose common characteristic is the influence of action
85 dynamics on decision. Indeed, drawing connections between motor processes and decision
86 making has a conceptual grounding on the wider framework of sensorimotor and embodied
87 views in cognitive sciences (Clark, 1999, O'Regan & Noe, 2001, Barsalou, 2008), a general
88 conceptual shift that has pervaded recent views in decision-making. One clear example is
89 Lepora & Pezzulo's (2015) Embodied Choice Model. The model proposes a two-way
90 online interaction between motor actions and decision processes and that this interaction
91 allows for a fast update of movement and decision processes. A typical argument by
92 example often used to support this view is that, in nature, animals must move about (their
93 body and/or sensory epithelia) to be able to perceive information that is necessary for
94 making choices and planning actions (see Lepora & Pezzulo, 2015). To use the information
95 gained through movement though, there needs to be a backward flow of information from
96 action-related motor processes to decision making.



97
98 **Figure 1.** Interactions between motor action and decision in tasks without (a) and with (b) active
99 information sampling. **a.** In classical tasks (see text) decision process feeds the response plan which
100 gets executed with a motor action. While the action continues, the output of the action feeds back
101 into the decision process. This is not a fully embodied scenario, since actions do not bring an
102 information change. **b.** In a fully embodied scenario considered here, two different action plans, for
103 sampling and for responding, are allowed to unfold in parallel. The decision process has a
104 feedforward influence on motor output, whereas sampling influences decision via feedback from the
105 motor action. In contrast to panel (a), the executed motor action implements both responding and
106 sampling of information.

107 Despite the logical emphasis that embodied views make on information sampling
108 movements, this notion has not been implemented in experimental tasks to support the
109 ECT. In fact, in most of these decision making tasks, the stimulus information is available
110 all at once and static, without any dependency upon the participant's movement (Lepora &
111 Pezzulo, 2015, Barca & Pezzulo, 2012, Hudson, et. al., 2007, Marcos, et. al., 2013). The
112 interactions in these types of tasks have been illustrated in Figure 1a. Because the actions
113 performed to report a choice are inconsequential to the inflow of information used to reach
114 that decision, these tasks cannot capture all possible interactions between action and
115 decision proposed by ECTs. Therefore, there is a need for tasks that can reveal the two
116 relevant aspects of actions to identify the potential interplay between motor and decision
117 processes. This interplay, which has motivated the task used here to test decision making
118 under ECT, is illustrated in Figure 1b. Here, we assume that there are two types of action
119 plans which are critical in an embodied decision-making scenario, the ones necessary for
120 response itself, and the ones necessary for information sampling. Both of them interact with
121 the decision process, and mediate both feed-forward and feedback interactions.

122 In conclusion, we believe that the generality of the interplay between decision and
123 action, and by proxy, of the embodied decision framework, have not yet been tested in all
124 its critical components. In the present study, we aim at testing the ECT's predictions with a
125 task in which information accrual depends on the subject's actions. We have developed a
126 novel mouse-tracking task in which action is necessary both to sample information and to
127 indicate the decision. To be able to single out one from the other, movements directed to
128 sample information and movements to respond have been made orthogonal. That is, it is
129 possible for the subjects to accumulate all the information first and then make the choice,
130 make a choice at once without any accumulation of information, or anything in between.
131 Although sampling and response actions have orthogonal dynamics, one critical aspect of
132 the task is that both action plans are executed via same effector, so that the final motor
133 output must synthesise the two plans if they are to co-occur, as the theory predicts.

134 Our hypothesis, derived from the ECT (Lepora & Pezzulo, 2015, Cisek & Pastor-
135 Bernier, 2014), is that the movements related to the decision-making process and the
136 movements related to accumulation of evidence to reach that decision are subject to
137 significant online interaction. We first show that, in our task, movements depend on the
138 amount of available information such that participants move to sample information when
139 needed. Second, we demonstrate that the decision-making process transpires even in the
140 initial phases of the information sampling movements, so that trajectories are biased
141 towards one (usually the chosen) target much before all the information has been gathered.
142 These results do not only suggest that the decision-making process pervades information
143 sampling actions, but also that decision, actions and information sampling are orchestrated
144 in parallel, and not in a strictly sequential fashion.

145

146 **2. Methods**

147 **2.1. Participants**

148 Twenty-one voluntary participants joined the experiment (13 women, 9 men, average age
149 23.5 years). Participants were recruited from the database of the Center for Brain &
150 Cognition (University Pompeu Fabra) and were paid 10 euros per hour in exchange for
151 their participation. They were all right-handed and had normal or corrected to normal vision
152 with no reported history of motor problems related to upper limbs. Before proceeding with
153 the experiment, all subjects read and signed an informed consent form. The experimental
154 protocol was approved by the ethics committee CEIC Parc de Salut Mar, Universitat
155 Pompeu Fabra. Before conducting the hypothesis-driven data analyses, we excluded data
156 from two subjects whose accuracy was below 75%.

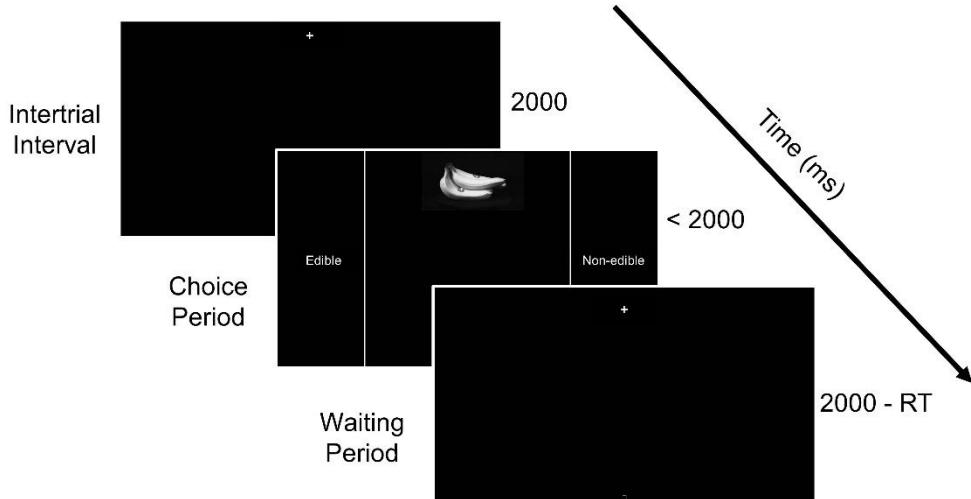
157

158 **2.2. Experimental setup**

159 Participants were asked to perform a visual object categorization between “edible” vs “non-
160 edible” in a two-alternative forced choice (2AFC) paradigm. We used 63 edible and 63
161 non-edible object images from the Amsterdam Library of Object Images (Geusobroek, et.
162 al., 2005), and each of them was presented only once to each participant, obtaining a total
163 of 126 different trials per participant. To control for possible effects of colour cues, we used
164 grey-filtered versions of the images. Stimulus display and the task were programmed with
165 MATLAB, PsychToolBox (Brainard, 1997). Visual stimuli were presented on a Cambridge
166 Research Systems, Display++ monitor (1920×1080 pixels, 32'', 100 Hz refresh rate).
167 Responses were recoded through a computer mouse (HP USB Optical Scroll Mouse), and
168 the cursor location was recorded at 100 Hz (at every display refresh frame). The
169 participant’s task involved moving the cursor from a home position at the bottom centre of
170 the display to the right or left response areas, depending on the choice regarding the image
171 presented at the top centre (locations and other details are described below).

172 For each subject, the total of 126 trials were divided, randomly and equiprobably
173 into three different movement-to-visibility conditions: No Blur (NB), Low Blur (LB) and
174 High Blur (HB). In the NB condition, the images were fully visible (without any blur) from
175 the beginning of the trial, and therefore visibility was not contingent on action. For the
176 other two conditions, in order to implement movement-dependent updating of information,
177 we manipulated the visibility of the object images as a function of mouse position. We used
178 a dynamic filter mask over the image to blur the image. The filter convolved each pixel
179 with the neighbouring pixels with a Gaussian kernel with standard deviation (sd)
180 proportional to the vertical distance between current cursor position and the target image at
181 the top centre of the display, denoted d_v (measured in pixels). In the LB condition, the
182 Gaussian mask had $sd = d_v/120$, whereas in the HB condition the Gaussian mask had $sd =$
183 $d_v/60$. This effectively made blur (hence, image visibility) depend on the participants’
184 movement, so that moving upward de-blurred the target image (i.e., the shorter the vertical

185 distance to target, the smaller d_V , and hence the lower the sd and the higher the visibility).
186 The difference between the two blur conditions was the gain in visibility as a function of
187 distance.



188
189 **Figure 2.** Schematic illustration of a trial sequence. Each trial was preceded by a 2000ms inter-trial
190 interval displaying a fixation cross. Then, the stimulus and the choices were presented on the screen
191 until response, with a deadline of 2000ms. Response areas, left and right of the display, are denoted
192 by straight vertical lines. All trials were equated to the same duration, 2000ms by adding a waiting
193 time if necessary. RT = reaction time.

194 **2.3. Procedure**

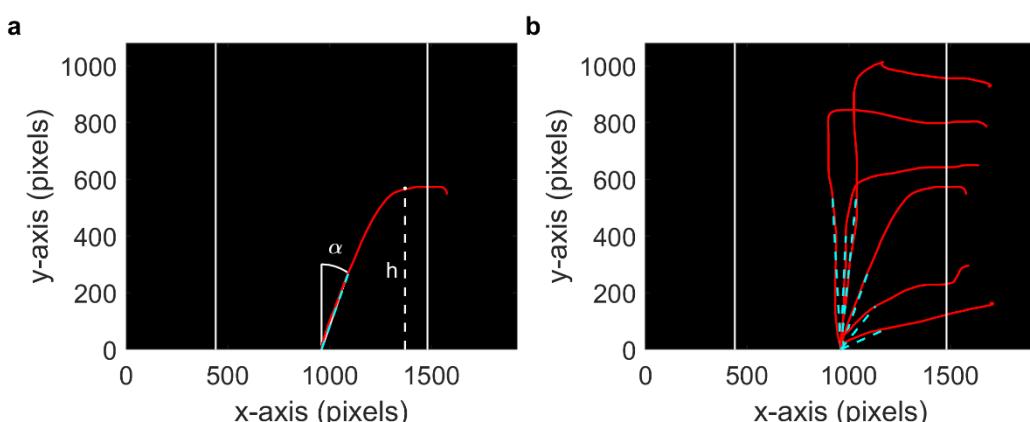
195 Each subject completed the task in a darkened, sound-attenuated laboratory room. Before
196 each trial started, the subject moved the mouse cursor to the bottom-centre home area
197 (height = 10 x width = 15 pixels, centre x, y coordinates: 960,1075 pixels). The trial began
198 with the image (265 x192 pixels) appearing at the top-centre of the monitor (x- coordinates:
199 827 to 1092, y-coordinates: 0 to 192 pixels). As soon as the image appeared, the subject
200 was free to move the mouse to indicate her choice by reaching to, and clicking on, one of
201 two response areas, left or right side of the display, within 2000 ms (Figure 2). The
202 rectangular response areas, covering the leftmost and rightmost 23% of the display, were
203 indicated by two vertical lines along the screen sides (x coordinates: 440 and 1480 pixels,
204 respectively; see, Figure 2). For half of the participants, edible was attributed to the left
205 response area and non-edible to the right. In the other half, it was reversed. Response
206 deadline was 2000 ms, after which the subject missed the trial. Each trial took the whole
207 2000 ms, independently of the response time. After a trial ended, the participant needed to
208 move the cursor back to the bottom-centre home location for the next trial to begin. The
209 inter-trial interval was 2000 ms, which also served as a fixation screen. Trials from all three
210 conditions (NB, LB, HB) were interleaved randomly throughout the experiment. Hence, for

211 efficient responding, participants could not fall back on a pre-defined strategy based on
212 visibility prior to the start of the trial.

213 Because the response areas covered both lateral sides of the display, the decision
214 movement could vary in terms of the vertical extent of the trajectory, including direct
215 horizontal movements from the home location to the response area. As said earlier, in the
216 blurred image (LB and HB) conditions, the image blur decreased as the mouse moved
217 upward. Therefore, when the image did not contain sufficient information, the participant
218 needed to move in the vertical direction in order to gather evidence. Because of the
219 response deadline (2000 ms), moving upward had a cost (i.e., took time off the available
220 response time). Therefore, moving upward is never an optimal strategy if it is not necessary
221 to sample evidence.

222 3. Results

223 In our task, characterizing information sampling and response components of the subjects'
224 action boils down to the analysis of heights and angles of the response trajectories (some
225 example trajectories are shown in Figure 3). Firstly, we inspected the trajectory height,
226 denoted h , which was calculated by measuring the vertical distance (in pixels) between the
227 starting point and the highest point of the trajectory (Figure 3a). Second, we analysed the
228 initial angle of trajectories, denoted α , which was defined as the angle described by an
229 imaginary straight line connecting the starting point with the point at one-third of the length
230 of the trajectory (cyan dashed line in Figure 3a), with respect to the vertical midline. It is
231 important to note that, although correct targets were randomly assigned left or right sides
232 during the task, for analyses we realigned the correct choice to positive angles.
233



234
235 **Figure 3. a.** An example of one mouse trajectory (red line) on the experimental display. Response
236 areas are indicated to the participants by the solid vertical lines on the left and right sides. The white
237 dashed line indicates the height h of the trajectory. The cyan dashed line that joints the origin with
238 the point of the trajectory that lies at one third of its total length serves to calculate the initial angle
239 α of the trajectory with respect to vertical. Positive angles are defined to be in the direction of the
240 correct target, whose location could occur randomly on either side. **b.** Examples of trajectories for
241 several individual trials, with the same conventions described in a.

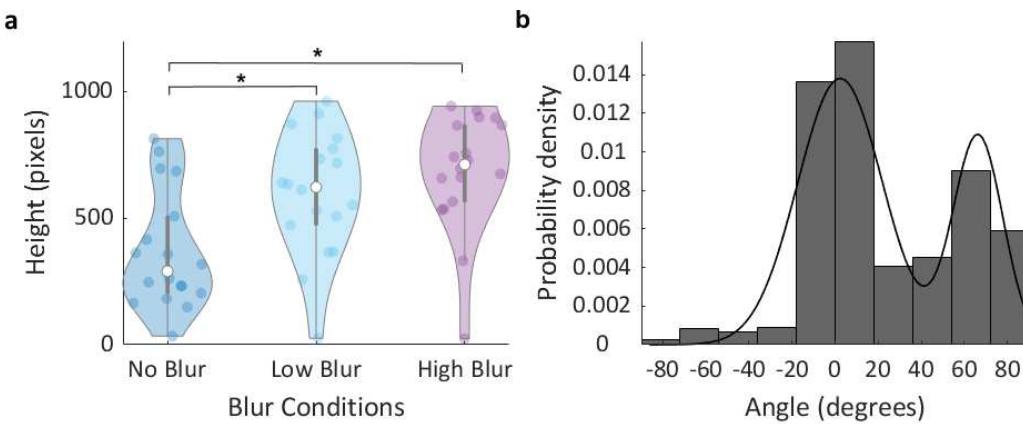
242 We preregistered this study and we first report the analysis that were planned prior to
243 data collection (see, <https://osf.io/3ysah/>). We also performed follow-up analyses that have
244 been planned after the pre-registration process, as these reveal important characteristics of
245 the data. Throughout the results section we report statistical tests according to the
246 frequentist approach (the analogous Bayesian analyses are reported in the Supplementary
247 Table S1). Both analyses lead to the same conclusions. We included only the trajectories of
248 correct trials into the analyses reported below (average 110 correct trials, >87%, out of 126
249 total per subject, range 103-123).

250

251 3.1. Movement-dependent information sampling

252 If participants gather information as needed, their trajectories should reach higher when the
253 image is blurred. We therefore tested whether trajectories in blur trials reached higher than
254 trajectories in the no blur trials. As expected, trajectories in the two blur conditions were
255 higher than in the no blur condition, since information sampling was unnecessary in the
256 latter (right tail paired-samples t-tests, $t(17) = 6.53$, $p < 0.001$, Cohen's $d = 1.54$; $t(17) =$
257 7.03 , $p < 0.001$, Cohen's $d = 1.66$, for the comparison of NB with LB and HB,
258 respectively). However, even in the NB conditions trajectories had some vertical
259 component (mean = 368.3 pixels, $sd = 231.9$), possibly due to biophysical motor constrains.
260 To eliminate the height differences that are present in the trajectories but unrelated to
261 information gathering, we subtracted the average height in NB condition from LB and HB
262 trajectory heights in each individual's data. Results (Figure 4a) showed that trajectories in
263 HB trials were about 27% higher than in LB trials (mean = 315.7, $sd = 190.4$, vs 229.3, $sd =$
264 148.8, respectively; right tail paired-samples t-test, $t(17) = 5.39$, $p < 0.001$, Cohen's $d =$
265 1.27).

266



267

268 **Figure 4.a.** Height of trial trajectories for NB, LB and HB conditions. Each colored dot represents
269 individual means for the corresponding condition. White dots represent the group median for the
270 condition and the grey lines represent the inter-quartile range. **b.** Probability density of the initial
271 angles of the trajectories across participants. The solid black line corresponds to the Gaussian
272 mixture model (with 2 components) fit to the distribution (model with 2 components AIC = 19105 <

273 model with 1 component AIC = 19753). Angle 0° corresponds to straight vertical upwards
274 movement, i.e., with no horizontal component. Positive angles correspond to correct target
275 direction.

276

277 **3.2. Interplay between decision and action**

278 *Bimodality of trajectories.* A central prediction of ECT is that movements should reflect the
279 decision-making process throughout, such that the trajectories should show early on a bias
280 towards the finally chosen target. We tested this prediction by studying the initial angles of
281 the trajectories (Figure 4b). We found that their distribution is bimodal (Hartigan's Dip
282 Test, p-value < 0.001; Gaussian mixture model better fit with 2 components, Akaike
283 Information Criterion (AIC) = 19105 than the model with 1 component, AIC = 19753),
284 with a central lobe peaking at angle 2.3°, a lateral lobe peaking at 66.4° (vertical midline
285 corresponds to an initial angle of 0° and positive angles corresponding to directions to the
286 correct target), and the separation between the two lobes being 43.52 °. This bimodality and
287 the cut-off point allowed us to classify trajectories as sampling or non-sampling
288 trajectories, depending on whether the initial angle is closer to the central or the lateral
289 peak, respectively. We checked bimodality in the distribution of trajectory angles for each
290 subject individually (see Figure S1) and found that 9 out of 18 subjects showed significant
291 bimodality in the distribution in trajectory angles.

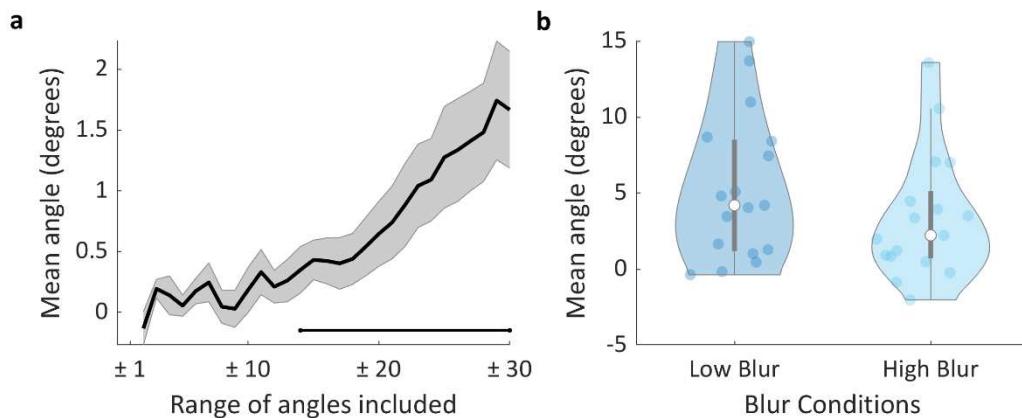
292 The presence of two types of trajectories is observed in each blur condition
293 separately (Figure S2). While there is a large fraction of non-sampling trajectories in the
294 NB condition (corresponding to the lateral lobe of the bimodal distribution; $q = 0.62$, $X^2(1,$
295 $N = 635) = 39.86$, $p < 0.001$), surprisingly in the HB condition there were also non-
296 sampling trajectories ($q = 0.14$ binomial test $p < .05$). The presence of sampling and non-
297 sampling trajectories across all blur conditions suggests that participants made an initial
298 choice about whether or not to gather information, as supported by an analysis that shows
299 that trajectories classified as non-sampling had a much smaller height than sampling
300 trajectories (right tail two-sample t-test, $t(1988) = 48.72$, $p < .001$). Thus, non-sampling
301 trajectories simply reflect a ballistic movement towards the chosen target that emanates
302 from an initial decision, with little information gathering or ongoing decision-process
303 throughout.

304 *Angle analysis of sampling trajectories.* Thus, given the initial decision and the ensuing
305 existence of two different types of trajectories, a direct test of the prediction of ECT
306 requires examining the sampling trajectories alone. These trajectories correspond to the
307 central peak of the distribution in Fig. 4b. As the initial angles of these trials are close to
308 zero (vertical), trajectories mostly depart vertically from the home position with the aim of
309 gathering information to guide the final choice. However, in addition to the prominent
310 vertical component, the initial steps of the trajectory were biased towards the chosen target,
311 as the initial angle was significantly larger than zero in both LB and HB conditions (right

312 tail one sample t-tests, $t(16) = 4.58$, $p < .001$ and $t(16) = 3.41$, $p = .002$, respectively). This
313 result strongly supports the notion that the decision-making process transpires into the
314 movement even when participants felt urged to actively sample information.

315 One might argue that some trials in the analysis above might have been
316 misclassified non-sampling trials, given the partial overlap of the two lobes of the bimodal
317 distribution of angles. This could introduce some biases towards positive angles. To control
318 for this possible confound we used a simpler analysis limited to LB and HB trials only
319 (where participants are urged to sample information) that does not rely on trial
320 classification. In this analysis we calculated average angle in incremental ranges of angles
321 (symmetric around 0°) from $\pm 1^\circ$ to $\pm 30^\circ$, in steps of one degree (Figure 5a). We found that
322 the average angle was significantly larger than zero in all the ranges larger than $\pm 14^\circ$ (right
323 tail t-tests, $p < .05$, see Figure 6a). Angles in the range $\pm 14^\circ$ and $\pm 20^\circ$ are well inside the
324 central peak of the bimodal distribution, as described above, and therefore can be reliably
325 classified as sampling trajectories (trajectories with such small initial angle very unlikely
326 correspond to trials where the decision maker already made a choice about where to move).
327 In sum, this new analysis shows trajectories whose initial angles lie within a small range of
328 angles symmetric around zero already show a significant positive bias towards the chosen
329 target. This result further supports the notion that the ongoing decision-making process
330 transpires into the movement even when not all information necessary to solve the task has
331 been gathered.

332 Although we did find those significant deviations in the initial angle of sampling
333 trajectories, we did observe only marginal evidence that the angle deviation was larger in
334 LB (mean = 5.28° , $sd = 4.75$) than in HB (mean = 3.42° , $sd = 4.13$) conditions (Fig. 5b;
335 right tail paired-samples t-test, $t(16) = 1.66$, $p = 0.058$, Cohen's $d = .4$).



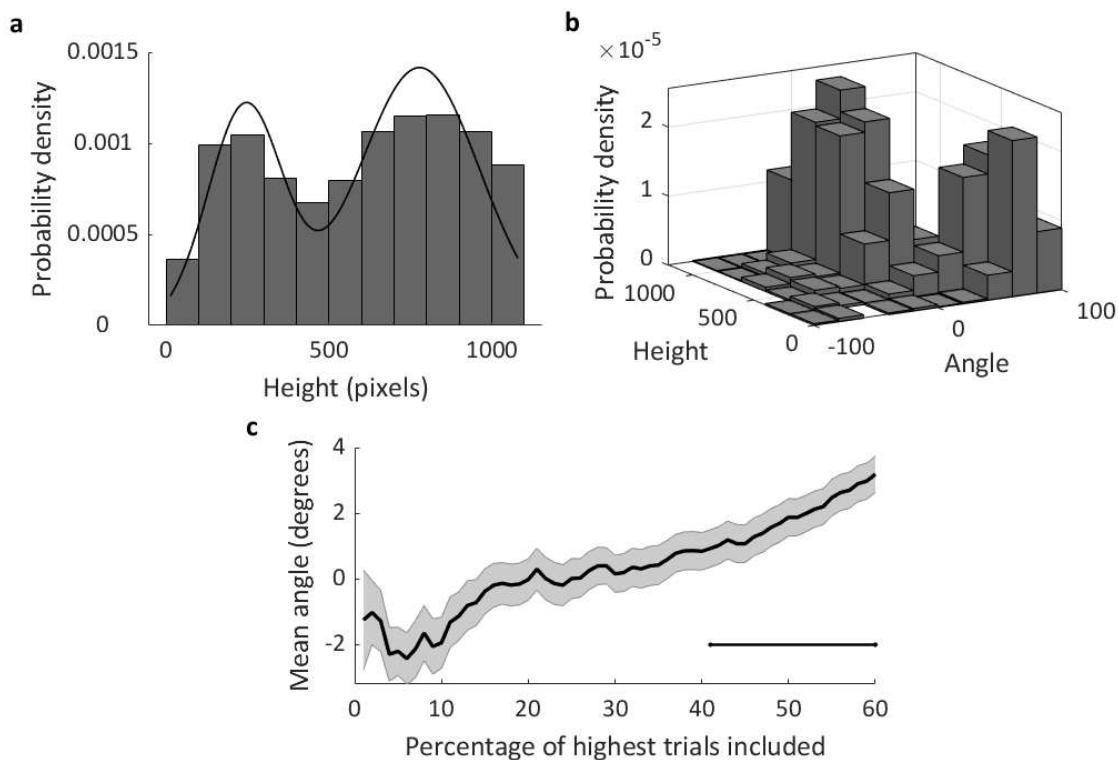
336

337 **Figure 5. a.** Mean initial trajectory angle for all blur trajectories (pooled LB and HB data), along
338 incremental ranges of angles symmetric around zero. The solid black line corresponds to the inter-
339 individual mean (the grey area represents s.e.m.). The black horizontal line represents significance
340 (right tail t-test, $p < 0.05$) against the hypothesis that the mean angle is not larger than zero. **b.**
341 Initial angle of trial trajectories for LB and HB conditions. The coloured dots represent each

342 participant's mean value for the corresponding condition. The white dots represent the median for
343 each condition and the grey lines illustrate the inter-quartile range.

344 **3.3. Converging evidence from angle and height information**

345 Initially we had decided to classify sampling and non-sampling trials based on initial angle
346 of the trajectories. However, if our hypothesis is correct, a similar classification should
347 apply to the heights of the trajectories. This is because sampling trajectories are expected to
348 reach higher than non-sampling trajectories, as the latter correspond to ballistic movements
349 to the target without much ongoing deliberations and thus are expected to reach vertically
350 much lower. What is more, if trajectories are truly separable into sampling and non-
351 sampling, then it should be the case that in their heights should also be distributed in a
352 bimodal way, and height and angle should be correlated. Consistent with this prediction, we
353 found that heights were distributed in a bimodal way (Figure 6a) across conditions and
354 participants (Figure 6a; Hartigan's Dip Test, $p < 0.05$; see Figure S3 for each blur
355 condition). These results in turn suggest that it should be possible to classify trajectories as
356 sampling and non-sampling based on the bimodality in heights, and that this classification
357 should be largely consistent with the one derived above from the angle analyses. In line
358 with this, classification based on height and classification based on angle were highly
359 correlated (Pearson's correlation, $r = 0.76$) and clustered trials in two clear categories
360 (Figure 6b).
361



363

364 **Figure 6. a.** Probability density of the heights of the trajectories across participants. The solid black
365 line corresponds to the Gaussian mixture model with 2 components fit to the distribution (better fit
366 in the model with 2 components, AIC = 26439 lower than the model with 1 component, AIC =
367 26874). **b.** Probability density of the heights and angles of the trajectories across participants. **c.**
368 Mean angle for all blur trajectories (pooled LB and HB data), along incremental ranges of heights.
369 The solid black line corresponds to the inter-individual mean (the grey area represents s.e.m.). The
370 black horizontal line represents significance (right tail t-test, $p < 0.05$) against the hypothesis that
371 the mean angle is not larger than zero. Angle 0° corresponds to pure vertical upwards movement,
372 i.e., with no horizontal component.

373 Similar to the angle analysis reported in Section 3.2 (where trial classification was
374 based on angle), we analysed angle again but this time using trial classification based on
375 height. We found that the angles in sampling trials, both the LB and the HB conditions,
376 were significantly larger than zero (right tail one sample t-test, $t(16) = 3.7$, $p < 0.001$,
377 Cohen's $d = .9$ and $t(16) = 2.05$, $p = 0.029$, $d = .5$, respectively). This outcome supports the
378 conclusions of our main analysis reported above and shows that this finding generalizes
379 regardless of the classification variable used. Finally, and parallel to the incremental angle
380 analyses reported earlier, we also addressed how the mean angle changes as a function of
381 height increments of trajectories. As one would expect if trajectories reflect both choice and
382 information gathering, we found that as trajectories with lower heights are included into the
383 analysis, mean angle increases (Figure 6c). This shows the interaction between trajectory
384 height and initial angle.

385

386 **3.4. Robustness of the results at earlier initial angles**

387 In the main analysis, we have estimated angles at one third of the trajectory, as we wanted
388 to capture the initial moments of the movements. However, the criterion to compute angles
389 at one-third of the trajectory is somehow arbitrary. As a check regarding the trial
390 classification, we decided to re-compute the trajectory angles at an earlier point in
391 trajectory (described in the Results section). The motivation was to provide an additional
392 look at the angle analysis to reveal that it is robust even at earlier moments of the trajectory.
393 This time we looked at angle at the one-fifth of trajectory as opposed to one-third of
394 trajectory point (described in Figure 2a). The distribution of angles in this calculation also
395 brought about a strong bimodality (Hartigan's Dip Test, $p < 0.05$), confirming the main
396 findings. Then, we also corroborated that the angles in blur conditions were significantly
397 larger than zero even at this earlier point. In the LB condition the angle deviated
398 significantly above zero (vertical), but in the HB condition they were not significantly
399 larger than 0 (right tail one-sample t-tests, $t(16) = 3.37$ $p = 0.002$, Cohen's $d = 0.81$ and
400 $t(16) = -0.087$, $p = 0.53$, $d = -.02$, respectively). This means that whereas the decision starts
401 to have an impact earlier on in the trajectories of LB conditions, in the HB condition the
402 effect is weaker as more information is needed. Moreover, investigating angular deviation
403 at incremental ranges of angles, we found that the angles differed significantly from zero

404 from 22° onward (right tail t-tests, $p < .05$, Figure S4a). Finally, we repeated the
405 comparison between LB ($M = 2.9$, $sd = 3.57$) and HB ($M = -.08$, $sd = 4.001$) which showed
406 a strong evidence for the effect of information sampling requirements on the decision status
407 (Figure S4b, right tail paired samples t-test, $t(17) = 2.51$, $p = 0.011$, Cohen's $d = 0.61$). This
408 additional analysis, calculating the angles from one-fifth of trajectories, provides more
409 confidence regarding the difference between LB and HB conditions, in support for ECT.
410 Based on these converging results, we found strong evidence supporting that there was an
411 impact of the decision component in trajectories overall in the sampling trajectories and
412 that, if any, differences between blur conditions leaned in the expected direction.

413 **4. Discussion**

414 Many studies in the past have challenged the classical view of decision making and
415 cognition which assumes a temporal and functional separation between decision and action
416 systems (Pylyshyn, 1984). The idea is that natural choice behaviours of humans and other
417 animals involve movement patterns that reflect the ongoing decision process. As a result,
418 movement trajectory analyses are increasingly used to trace the underlying decision
419 dynamics. Our study clearly sides with these findings, showing that it is possible to trace
420 decision dynamics from the ongoing choice action (Tabor, et. al., 1997, Magnuson, 2005,
421 Spivey & Dale, 2006). However, the tasks used in previous studies did not contemplate the
422 case where actions are also needed to sample information. To fill this gap, we took one step
423 forward from this past research and tested whether the decision outcome pervades action
424 when information sampling is necessary. This is a condition that characterises choice in
425 many natural environments, such as getting closer to an object to decide whether it is food
426 or not.

427 As mentioned in the introduction, parallel processing of decision-making and action
428 control is an important principle. However, the nature of the interaction between the two is
429 still under debate. For instance, Lepora & Pezzulo (2015) have put forward the 'embodied
430 choice' framework, that accommodates richer interactions between action and decision
431 through action-dependent information gain, compared to the parallel account. The
432 experimental tasks they had used to illustrate their predictions lacked the active sampling
433 component, which leaves one main prediction of the theory still unresolved. Our findings
434 support the 'embodied choice' theory by showing that decision and action interaction can
435 be traced in ecological scenarios incorporating the active sampling constrain. If this were
436 not the case, we would have observed a temporally separated sampling and responding
437 characteristics in the movement trajectory without any angular deviation in early parts of
438 the trajectories.

439 One central feature of the task used in the present study is that participants have to
440 trade off information (image de-blurring) for energetic efficiency (moving up, hence
441 orthogonal to the choice goal). This is because motor execution involves expenditure of

442 energy, thus incurring effort-related costs. Motor cost and physical effort have been started
443 to be studied in relation to decision making (Burk, et. al., 2014, Marcos, et. al., 2015). For
444 instance, Cos, et. al. (2014) have shown that effort and biomechanics of a task influence the
445 decision dynamics starting at early stages. It is likely that physical effort influences the
446 decision dynamics due to the strong interactions between action and decision. In our
447 experiment, each blur condition had a different cost/information structure. Although, it is
448 not easy to quantify exactly how this effort to information ratio impacted our results (due to
449 the use of real images instead of parametric stimuli), it is still safe to say that associated
450 effort to sample information altered the decision making process and led to different choice
451 trajectories. The analyses showing an inverse relationship between image visibility and
452 trajectory height clearly support this.

453 The main result to emerge from this study, however, was based on the deviations
454 and curvatures in choice trajectories. Please note that this is superficially similar to many
455 other mouse-tracking studies (Spivey, et. al., 2010, Freeman, 2018, Wojnowicz, et. al.,
456 2009). A common task characteristic our current study shares with this previous work is the
457 urgency of responding to a task (Scherbaum & Kieslich, 2008. Kieslich, et. al., 2019). Via
458 imposing time pressure, participants are encouraged to execute decision and action in the
459 same time window as it is more optimal for a successful response than waiting statically to
460 make a decision and then move to report it. However, the fundamental difference between
461 our experiment though is the functional link between information and movement. In those
462 previous works, the subject planned and performed actions to report the choice response,
463 therefore effectively allowing to study interactions between decision process and response
464 plan only (as shown in Figure 1a). In contrast, the task we developed here involves, and
465 makes it possible to study, both response and sampling plans and their interplay (Figure
466 1b). Another way to put it is that previous studies so far have considered only tasks
467 equivalent to the ‘no blur’ condition in of our study. Hence, one of the main goals here was
468 to compare the trajectories between different sampling conditions as a function of
469 movement-information ratio. First, the results obtained conclusively support the prediction
470 that the decision process pervades information sampling movements in various ways.
471 Information sampling trajectories deviated to one of the choices (the correct one, on
472 average) very early on. We confirmed this both in low blur and high blur conditions, using
473 only trials classified as sampling trials. A second expectation by hypothesis was that, if the
474 sampling component was stronger in HB than in LB, then one would assume that the
475 decision component will be more pronounced in LB than in HB trajectories, especially at
476 the early stages. This is because the need for information in HB trials is stronger. Angular
477 differences between LB and HB conditions calculated according to the planned analysis (at
478 1/3th of trajectories) were in the expected direction, but reached only a marginally
479 significant effect. This borderline result may be due to the fact that the two conditions were
480 not sufficiently different in terms of costs of sampling movement. This cost depended
481 directly on the blur function, which was chosen arbitrarily. Indeed, subsequent analyses

482 where angle was calculated at a more initial stage (1/5th of trajectories), or when angular
483 deviation was calculated in incremental steps from movement origin, revealed robust
484 significant differences in the same, expected direction. This variability reflects the
485 importance of the task mechanics to the study of sensorimotor interactions in a decision
486 making setting (Scherbaum & Kieslich, 2018). Variants of active sampling decision making
487 tasks, including variations of the information cost function, should shed more light on the
488 full range of embodied decisions under naturalistic constraints.

489 The proposed interactions between action and decision we suggest rely on the
490 incorporation of sampling and responding actions in the task structure (Figure 1b). We note
491 that the tasks that include movement-agnostic stimulus, often used in the literature (and
492 summarised in Figure 1a), are a special instance of the more general case modelled in
493 Figure 1b: one in which the arrows to and from “sampling plan” have zero weight. Yet, our
494 experimental setup is not intended to as a general model for all action-decision possibilities
495 that humans and animals are capable of. We rather claim that embodied decisions are the
496 manifestation of the flexibility of the decision process (Wispinski, et. al., 2018). In many
497 natural and ecological situations, like the one modelled here, decisions have to be carried
498 out as ETC predicts –with a strong interaction coupling with action processes.
499 Nevertheless, there are also abstract and higher-level decisions which may comply with
500 serial accounts of decision making, especially in humans. In line with a ‘phylogenetic
501 refinement’ view, fully abstract cognitive operations are evolutionarily more recent,
502 whereas rich cycles of action & decision are prevalent from very basic animals to complex
503 mammals (Cisek, 2019). In the human context, depending on the task, the biomechanical
504 characteristics and previous experience, we may observe response patterns ranging from a
505 pure abstract and covert decision making process that precedes any action, to a fully
506 embodied and interactive one such as the one seen here. For instance, a novice driver may
507 find herself thinking step-by-step about all of the driving actions before executing them,
508 however as practice accumulates, she may decide and move at the same time with ease.
509 Therefore, we are aware of the vast complexity about the interaction between decision and
510 motor action (Gallivan, et. al., 2018). Our study provides a step forward in understanding
511 these interactions under the new constraint of action-dependent information sampling. What
512 we have shown is that when the task dynamics imposes this type of ecological constraint,
513 action for sampling and choice action have interactions with the decision process and with
514 each other.

515 To summarize, here we showed a demonstration of interactions between action to
516 sample information, action to respond and decision process with a novel mouse-tracking
517 task. Our results showed that decision feed into movement trajectory during information
518 sampling movements. This is a support for the embodied theories in decision making in a
519 way that has been lacking in the field, as far as we know.

520

521 **5. Acknowledgements**

522 This project receives support from the grant from Agency for Management of University
523 and Research Grants (AGAUR -2017 SGR 1545), Ministerio de Economia y
524 Competitividad (PSI2016-75558-P AEI/FEDER). This project has been co-funded with
525 50% by the European Regional Development Fund under the framework of the
526 ERFD/FEDER Operative Programme for Catalunya 2014-2020.

527 D.O. is supported by a fellowship from “la Caixa” Foundation (ID100010434; fellowship
528 code LCF/BQ/DI18/11660026). This project has received funding from the European
529 Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
530 Curie grant agreement No. 713673.

531 RM-B is supported by BFU2017-85936-P from MINECO (Spain), the Howard Hughes
532 Medical Institute (HHMI; ref 55008742), an ICREA Academia award, and the Bial
533 Foundation (grant number 117/18). S.S-F. is funded by Ministerio de Ciencia e Innovación
534 (Ref: PID2019-108531GB-I00 AEI/FEDER).

535

536

537

538

539

540

541

542

543

544

545

546

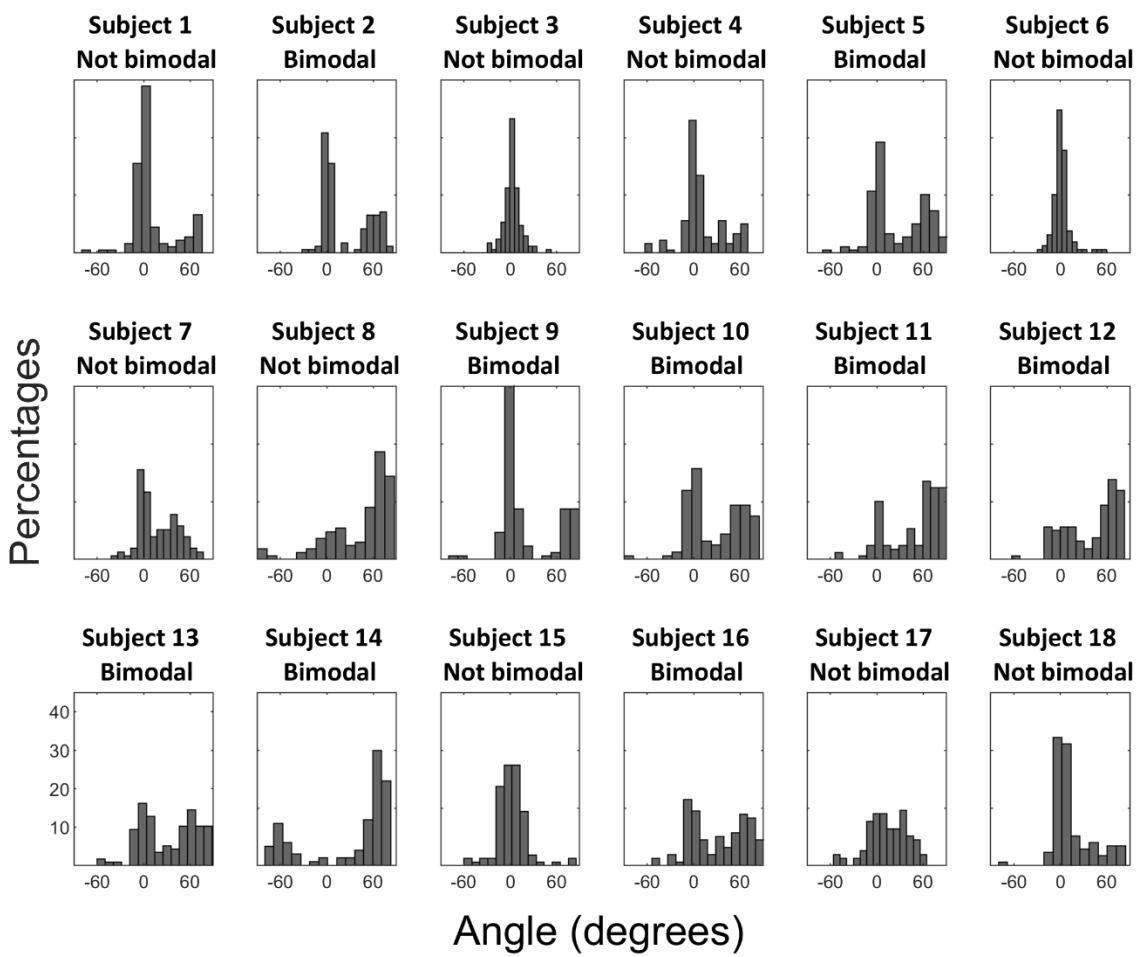
547

548

549

550

6. Supplementary Figures



551

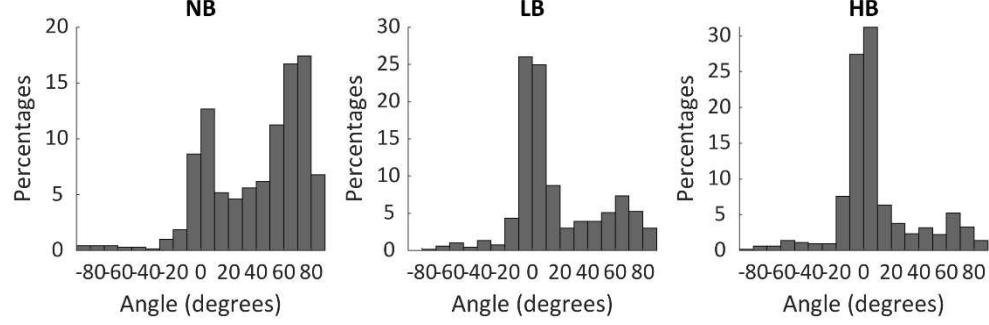
Figure S1. Distribution of angles for each individual subject.

552

553

554

555

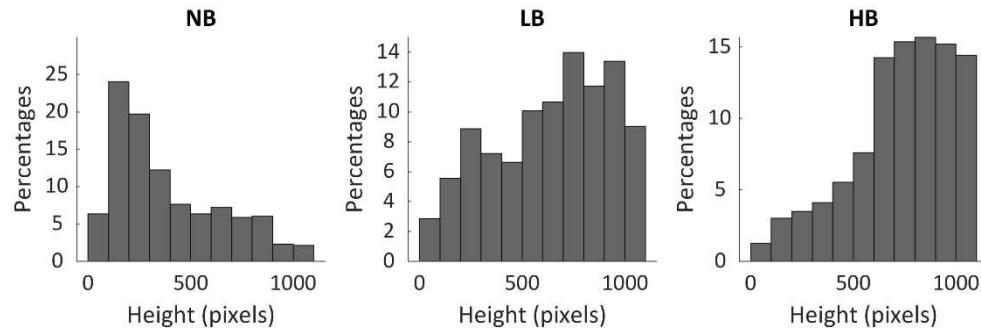


556

557

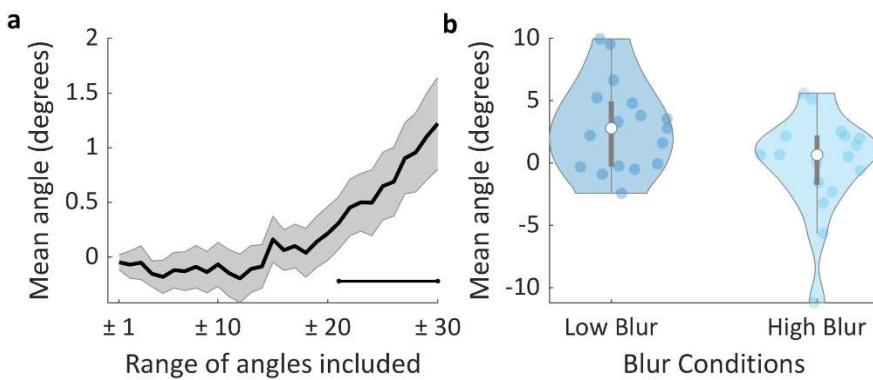
Figure S2. Distribution of trajectory angles for each blur condition.

559
560
561
562



563
564 **Figure S3.** Distribution of trajectory heights across participants for each blur condition.

565



566
567

568 **Figure S4.** Analysis on angles which was calculated based on one fifth of trajectory length **a.** Mean
569 angle for LB & HB trajectories, for different ranges of angles, symmetric around zero, included in
570 the analysis. Full line corresponds to the mean; grey area represents s.e.m across subjects. The black
571 horizontal line represents significance (Right tail one-sample t-test, $p < 0.05$) against the hypothesis
572 that the mean angle is not larger than zero. **b.** Mean initial angle of trial trajectories for LB and HB
573 conditions. The grey lines represent each participant's mean value for the corresponding condition.
574 The dark line is the sample mean of all data, error bars representing s.e.m.

575
576
577
578
579
580
581
582
583
584
585

586

7. Supplementary Table

587

	Page	Analysis Variable	H1	Bayes Factor	Error	Median Effect Size	95% CI	Frequentist p-values
1	7	Height (all trials)	HB > LB	1067.6	< 0.001	1.17	[0.54, 1.79]	<0.001
2	8	Angle (classification based on angle)	LB > 0	209.53	<0.001	1.01	[0.41, 1.63]	<0.001
3	8	Angle (classification based on angle)	HB > 0	25.27	<0.001	0.73	[0.21, 1.29]	=0.002
4	9	Angle (classification based on angle)	LB > HB	1.45	0.004	0.37	[0.04, 1.12]	=0.058
5	11	Angle (classification based on height)	LB > 0	44.02	<0.001	0.8	[0.26, 1.38]	<0.001
6	11	Angle (classification based on height)	HB > 0	2.56	0.002	0.44	[0.06, 0.93]	=0.029
7	11	Angle (calculated at one-fifth)	LB > 0	22.2	< 0.001	0.72	[0.2, 1.27]	=.002
8	11	Angle (calculated at one-fifth)	HB > 0	0.23	0.004	0.143	[0.01, 0.49]	=.53
9	12	Angle (calculated at one-fifth)	LB > HB	5.36	<0.001	0.54	[0.1, 1.05]	=0.011

588

Table S1. Bayesian counterparts of the t-tests that have been reported in the Results section. The analyses are ranked in the order of appearing in text.

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

8. References

608 Barca, L., & Pezzulo, G. (2012). Unfolding visual lexical decision in time. *PLoS one*, 7(4),
609 e35932.

610 Barsalou, L. W. (2008). Grounded cognition. *Annu. Rev. Psychol.*, 59, 617-645.

611 Brainard, D. H. (1997). The psychophysics toolbox. *Spatial vision*, 10(4), 433-436.

612 Burk, D., Ingram, J. N., Franklin, D. W., Shadlen, M. N., & Wolpert, D. M. (2014). Motor
613 effort alters changes of mind in sensorimotor decision making. *PLoS one*, 9(3),
614 e92681.

615 Chapman, C. S., Gallivan, J. P., Wood, D. K., Milne, J. L., Culham, J. C., & Goodale, M.
616 A. (2010). Reaching for the unknown: multiple target encoding and real-time
617 decision-making in a rapid reach task. *Cognition*, 116(2), 168-176.

618 Cisek, P., & Pastor-Bernier, A. (2014). On the challenges and mechanisms of embodied
619 decisions. *Philosophical Transactions of the Royal Society B: Biological
620 Sciences*, 369(1655), 20130479.

621 Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. *Attention,
622 Perception, & Psychophysics*, 81(7), 2265-2287.

623 Clark, A. (1999). An embodied cognitive science? *Trends in cognitive sciences*, 3(9), 345-
624 351.

625 Coles, M. G., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A
626 psychophysiological investigation of the continuous flow model of human
627 information processing. *Journal of Experimental Psychology: Human Perception
628 and Performance*, 11(5), 529.

629 Cos, I., Bélanger, N., & Cisek, P. (2011). The influence of predicted arm biomechanics on
630 decision making. *Journal of neurophysiology*, 105(6), 3022-3033.

631 Cos, I., Duque, J., & Cisek, P. (2014). Rapid prediction of biomechanical costs during
632 action decisions. *Journal of Neurophysiology*, 112(6), 1256-1266.

633 Freeman, J. B. (2018). Doing psychological science by hand. *Current Directions in
634 Psychological Science*, 27(5), 315-323.

635 Gallivan, J. P., Chapman, C. S., Wood, D. K., Milne, J. L., Ansari, D., Culham, J. C., &
636 Goodale, M. A. (2011). One to four, and nothing more: nonconscious parallel
637 individuation of objects during action planning. *Psychological science*, 22(6), 803-
638 811.

639 Gallivan, J. P., Chapman, C. S., Wolpert, D. M., & Flanagan, J. R. (2018). Decision-
640 making in sensorimotor control. *Nature Reviews Neuroscience*, 19(9), 519-534.

641 Geusebroek, J. M., Burghouts, G. J., & Smeulders, A. W. (2005). The Amsterdam library
642 of object images. *International Journal of Computer Vision*, 61(1), 103-112.

643 Ghez, C., Favilla, M., Ghilardi, M. F., Gordon, J., Bermejo, R., & Pullman, S. (1997).
644 Discrete and continuous planning of hand movements and isometric force
645 trajectories. *Experimental Brain Research*, 115(2), 217-233.

646 Hartigan, J. A., & Hartigan, P. M. (1985). The dip test of unimodality. *The annals of*
647 *Statistics*, 13(1), 70-84.

648 Hudson, T. E., Maloney, L. T., & Landy, M. S. (2007). Movement planning with
649 probabilistic target information. *Journal of Neurophysiology*, 98(5), 3034-3046.

650 Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M., & Schulte-Mecklenbeck, M.
651 (2019). *Mouse-Tracking. A Handbook of Process Tracing Methods*; Routledge:
652 Abingdon, UK, 111-130.

653 Lepora, N. F., & Pezzulo, G. (2015). Embodied choice: how action influences perceptual
654 decision making. *PLoS Comput Biol*, 11(4), e1004110.

655 Magnuson, J. S. (2005). Moving hand reveals dynamics of thought. *Proceedings of the*
656 *National Academy of Sciences*, 102(29), 9995-9996.

657 Marcos, E., Cos, I., Cisek, P., Girard, B., & Verschure, P. F. (2013). Biomechanical costs
658 of reaching movements bias perceptual decisions. *BMC Neuroscience*, 14(S1),
659 P408.

660 Marcos, E., Cos, I., Girard, B., & Verschure, P. F. (2015). Motor cost influences perceptual
661 decisions. *PLoS One*, 10(12), e0144841.

662 McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics reveal parallel
663 competition in decision making. *Psychological Science*, 19(1), 22-24.

664 Newell, A., & Simon, H. A. (1972). *Human problem solving* (Vol. 104, No. 9). Englewood
665 Cliffs, NJ: Prentice-Hall.

666 O'Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual
667 consciousness. *Behavioral and brain sciences*, 24(5), 939.

668 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming
669 numbers into movies. *Spatial vision*, 10(4), 437-442.

670 Pylyshyn, Z. W. (1984). *Computation and cognition* (p. 41). Cambridge, MA: MIT press.

671 Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in
672 decision-making. *Nature*, 461(7261), 263-266.

673 Scherbaum, S., & Kieslich, P. J. (2018). Stuck at the starting line: How the starting
674 procedure influences mouse-tracking data. *Behavior Research Methods*, 50(5),
675 2097-2110.

676 Song, J. H., & Nakayama, K. (2008). Target selection in visual search as revealed by
677 movement trajectories. *Vision research*, 48(7), 853-861.

678 Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. *Current*
679 *Directions in Psychological Science*, 15(5), 207-211.

680 Spivey, M. J., Dale, R., Knoblich, G., & Grosjean, M. (2010). Do curved reaching
681 movements emerge from competing perceptions? A reply to van der Wel et al.
682 (2009).

683 Tabor, W., Juliano, C., & Tanenhaus, M. K. (1997). Parsing in a dynamical system: An
684 attractor-based account of the interaction of lexical and structural constraints in
685 sentence processing. *Language and Cognitive Processes*, 12(2-3), 211-271.

686 Wispinski, N. J., Gallivan, J. P., & Chapman, C. S. (2018). Models, movements, and minds:
687 bridging the gap between decision making and action. *Annals of the New York
688 Academy of Sciences*, 1-22.

689 Wojnowicz, M. T., Ferguson, M. J., Dale, R., & Spivey, M. J. (2009). The self-organization
690 of explicit attitudes. *Psychological Science*, 20(11), 1428-1435.

691