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ABSTRACT 17 

Embodied Cognition Theories (ECTs) propose that the decision process continues to unfold 18 

during the execution of choice actions, and its outcome manifests itself in these actions. 19 

Scenarios where actions not only express choice but also help sample information can 20 

provide a valuable test of this framework. Remarkably almost no studies so far have 21 

addressed this scenario. Here, we present a study testing just this paradigmatic situation with 22 

humans. On each trial, subjects categorized a central object image, blurred to different extents 23 

(2AFC task) by moving a cursor toward the left or right of the display. Upward cursor 24 

movements, orthogonal with respect to choice options, reduced the image blur and could be 25 

freely used to actively sample information. Thus, actions for decision and actions for 26 

sampling were made orthogonal to each other. We analyzed response trajectories to test a 27 

central prediction of ECTs; whether information-sampling movements co-occurred with the 28 

ongoing decision process. Trajectory data revealed were bimodally distributed, with one kind 29 

being direct towards one response option (non-sampling trials), and the other kind containing 30 

an initial upward component before veering off towards an option (sampling trials). This 31 

implies that there was an initial decision at the early stage of a trial whether to sample 32 

information or not. Importantly, the trajectories in sampling trials were not purely upward, 33 

but rather had a significant horizontal deviation that was visible early on in the movement. 34 

This result suggests that movements to sample information exhibit an online interaction with 35 

the decision process. The finding that decision processes interact with actions to sample 36 

information supports the ECT under novel, ecologically relevant constrains. 37 

Keywords: decision-making, embodied cognition, mouse tracking, action dynamics, motor 38 

action39 
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1. Introduction 40 

The classical view of decision-making was founded on the idea that action is executed after 41 

a decision has been made, in a serial fashion (e.g., Newell & Simon, 1972). This idea 42 

assumes a clear temporal and functional separation between decision making and the motor 43 

processes that implement that decision. However, later behavioural studies challenged this 44 

serial view and proposed that decision does not have to finish before the movement 45 

execution process begins, de facto introducing the parallel view of decision making (e.g., 46 

Ghez, et. al., 1997 & McKinstry, et. al., 2008). This parallel view states that there is an 47 

ongoing information flow from decision to action systems well before the decision process 48 

has been fully completed. According to this view, not only action may start before a 49 

decision is reached, but movements may be updated online based on newly acquired 50 

evidence (Coles, et. al., 1985).  51 

To investigate the putative interaction between action and decision as it unfolds in 52 

time, some studies have used tasks which require continuous control of action. To this end, 53 

decision-making tasks incorporated movement tracking for responses executed on devices 54 

like a joystick, a robotic handle, a computer mouse, or freely with a hand reaching 55 

movement (Resulaj, et. al., 2009, Burk, et.al., 2014, Barca & Pezzulo, 2012; Song & 56 

Nakayama, 2008). Since these responses have a wide temporal and spatial span, they make 57 

it possible to study, and compare the dynamics of the movement during the decision-58 

making process.  59 

A typical finding that emerges from continuous movement paradigms when subjects 60 

must move toward one out of two alternative targets, is the prevalence of movement 61 

trajectories that are not perfectly direct to the chosen target (Song & Nakayama, 2008). 62 

These findings have shown that the initial phase of the response movement weighs in the 63 

paths to the two possible targets, maintaining a compromise which is later resolved by 64 

diversion of the trajectory committing to one of the targets (Chapman, et. al., 2010 & 65 

Gallivan, et. al., 2011). These averaged movement trajectories are interpreted as a case of 66 

movement being planned and executed online during the deliberation process and more 67 

importantly, that there is a continuous crosstalk between these two processes (Cisek & 68 

Pastor-Bernier, 2014, Marcos, et. al., 2015). An exacerbated expression of this are changes 69 

of mind, trials in which the subject9s response movement starts off toward one target but 70 

corrects on-the-fly toward the alternative target (Burk, et. al., 2014). In general, these 71 

findings motivated the parallel view of decision making, which focuses on the ongoing one-72 

way flow of information from action to decision. 73 

Although the parallel view of decision making assumes a richer interaction between 74 

action and decision than the sequential view, it only accounts for the forward influence 75 

from decision to action. However, there is evidence for backward influence from action on 76 

decision as well. For example, Burk, et. al. (2014) showed that when the spatial distance 77 

between two response options is large, subjects make less changes of mind than when the 78 

distance between targets is shorter. This means that action costs are considered and 79 
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influence the outcome of the decision process. Similarly, Cos, et. al. (2011) found that the 80 

amount of effort required to perform the response action biased performance in a perceptual 81 

decision-making task.  82 

We can frame the evidence mentioned above under Embodied Cognition Theories 83 

(ECT) of decision-making, whose common characteristic is the influence of action 84 

dynamics on decision. Indeed, drawing connections between motor processes and decision 85 

making has a conceptual grounding on the wider framework of sensorimotor and embodied 86 

views in cognitive sciences (Clark, 1999, O9Regan & Noe, 2001, Barsalou, 2008), a general 87 

conceptual shift that has pervaded recent views in decision-making. One clear example is 88 

Lepora & Pezzulo9s (2015) Embodied Choice Model. The model proposes a two-way 89 

online interaction between motor actions and decision processes and that this interaction 90 

allows for a fast update of movement and decision processes. A typical argument by 91 

example often used to support this view is that, in nature, animals must move about (their 92 

body and/or sensory epithelia) to be able to perceive information that is necessary for 93 

making choices and planning actions (see Lepora & Pezzulo, 2015). To use the information 94 

gained through movement though, there needs to be a backward flow of information from 95 

action-related motor processes to decision making.  96 

 97 
Figure 1. Interactions between motor action and decision in tasks without (a) and with (b) active 98 

information sampling. a.  In classical tasks (see text) decision process feeds the response plan which 99 

gets executed with a motor action. While the action continues, the output of the action feeds back 100 

into the decision process. This is not a fully embodied scenario, since actions do not bring an 101 

information change. b. In a fully embodied scenario considered here, two different action plans, for 102 

sampling and for responding, are allowed to unfold in parallel. The decision process has a 103 

feedforward influence on motor output, whereas sampling influences decision via feedback from the 104 

motor action. In contrast to panel (a), the executed motor action implements both responding and 105 

sampling of information. 106 
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Despite the logical emphasis that embodied views make on information sampling 107 

movements, this notion has not been implemented in experimental tasks to support the 108 

ECT. In fact, in most of these decision making tasks, the stimulus information is available 109 

all at once and static, without any dependency upon the participant9s movement (Lepora & 110 

Pezzulo, 2015, Barca & Pezzulo, 2012, Hudson, et. al., 2007, Marcos, et. al., 2013). The 111 

interactions in these types of tasks have been illustrated in Figure 1a. Because the actions 112 

performed to report a choice are inconsequential to the inflow of information used to reach 113 

that decision, these tasks cannot capture all possible interactions between action and 114 

decision proposed by ECTs. Therefore, there is a need for tasks that can reveal the two 115 

relevant aspects of actions to identify the potential interplay between motor and decision 116 

processes. This interplay, which has motivated the task used here to test decision making 117 

under ECT, is illustrated in Figure 1b. Here, we assume that there are two types of action 118 

plans which are critical in an embodied decision-making scenario, the ones necessary for 119 

response itself, and the ones necessary for information sampling. Both of them interact with 120 

the decision process, and mediate both feed-forward and feedback interactions.  121 

In conclusion, we believe that the generality of the interplay between decision and 122 

action, and by proxy, of the embodied decision framework, have not yet been tested in all 123 

its critical components. In the present study, we aim at testing the ECT9s predictions with a 124 

task in which information accrual depends on the subject9s actions. We have developed a 125 

novel mouse-tracking task in which action is necessary both to sample information and to 126 

indicate the decision. To be able to single out one from the other, movements directed to 127 

sample information and movements to respond have been made orthogonal. That is, it is 128 

possible for the subjects to accumulate all the information first and then make the choice, 129 

make a choice at once without any accumulation of information, or anything in between. 130 

Although sampling and response actions have orthogonal dynamics, one critical aspect of 131 

the task is that both action plans are executed via same effector, so that the final motor 132 

output must synthesise the two plans if they are to co-occur, as the theory predicts.  133 

Our hypothesis, derived from the ECT (Lepora & Pezzulo, 2015, Cisek & Pastor-134 

Bernier, 2014), is that the movements related to the decision-making process and the 135 

movements related to accumulation of evidence to reach that decision are subject to 136 

significant online interaction. We first show that, in our task, movements depend on the 137 

amount of available information such that participants move to sample information when 138 

needed. Second, we demonstrate that the decision-making process transpires even in the 139 

initial phases of the information sampling movements, so that trajectories are biased 140 

towards one (usually the chosen) target much before all the information has been gathered. 141 

These results do not only suggest that the decision-making process pervades information 142 

sampling actions, but also that decision, actions and information sampling are orchestrated 143 

in parallel, and not in a strictly sequential fashion.   144 

 145 
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2. Methods 146 

2.1. Participants 147 

Twenty-one voluntary participants joined the experiment (13 women, 9 men, average age 148 

23.5 years). Participants were recruited from the database of the Center for Brain & 149 

Cognition (University Pompeu Fabra) and were paid 10 euros per hour in exchange for 150 

their participation. They were all right-handed and had normal or corrected to normal vision 151 

with no reported history of motor problems related to upper limbs. Before proceeding with 152 

the experiment, all subjects read and signed an informed consent form. The experimental 153 

protocol was approved by the ethics committee CEIC Parc de Salut Mar, Universitat 154 

Pompeu Fabra. Before conducting the hypothesis-driven data analyses, we excluded data 155 

from two subjects whose accuracy was below 75%. 156 

 157 

2.2. Experimental setup  158 

Participants were asked to perform a visual object categorization between <edible= vs <non-159 

edible= in a two-alternative forced choice (2AFC) paradigm. We used 63 edible and 63 160 

non-edible object images from the Amsterdam Library of Object Images (Geusobroek, et. 161 

al., 2005), and each of them was presented only once to each participant, obtaining a total 162 

of 126 different trials per participant. To control for possible effects of colour cues, we used 163 

grey-filtered versions of the images. Stimulus display and the task were programmed with 164 

MATLAB, PsychToolBox (Brainard, 1997). Visual stimuli were presented on a Cambridge 165 

Research Systems, Display++ monitor (1920 × 1080 pixels, 3299, 100 Hz refresh rate). 166 

Responses were recoded through a computer mouse (HP USB Optical Scroll Mouse), and 167 

the cursor location was recorded at 100 Hz (at every display refresh frame). The 168 

participant9s task involved moving the cursor from a home position at the bottom centre of 169 

the display to the right or left response areas, depending on the choice regarding the image 170 

presented at the top centre (locations and other details are described below).  171 

For each subject, the total of 126 trials were divided, randomly and equiprobably 172 

into three different movement-to-visibility conditions: No Blur (NB), Low Blur (LB) and 173 

High Blur (HB). In the NB condition, the images were fully visible (without any blur) from 174 

the beginning of the trial, and therefore visibility was not contingent on action. For the 175 

other two conditions, in order to implement movement-dependent updating of information, 176 

we manipulated the visibility of the object images as a function of mouse position. We used 177 

a dynamic filter mask over the image to blur the image. The filter convolved each pixel 178 

with the neighbouring pixels with a Gaussian kernel with standard deviation (sd) 179 

proportional to the vertical distance between current cursor position and the target image at 180 

the top centre of the display, denoted �� (measured in pixels). In the LB condition, the 181 

Gaussian mask had sd = ��/120, whereas in the HB condition the Gaussian mask had sd = 182 ��/60. This effectively made blur (hence, image visibility) depend on the participants9 183 

movement, so that moving upward de-blurred the target image (i.e., the shorter the vertical 184 
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distance to target, the smaller ��, and hence the lower the sd and the higher the visibility). 185 

The difference between the two blur conditions was the gain in visibility as a function of 186 

distance. 187 

 188 
Figure 2. Schematic illustration of a trial sequence. Each trial was preceded by a 2000ms inter-trial 189 

interval displaying a fixation cross. Then, the stimulus and the choices were presented on the screen 190 

until response, with a deadline of 2000ms. Response areas, left and right of the display, are denoted 191 

by straight vertical lines. All trials were equated to the same duration, 2000ms by adding a waiting 192 

time if necessary. RT = reaction time.  193 

2.3. Procedure 194 

Each subject completed the task in a darkened, sound-attenuated laboratory room. Before 195 

each trial started, the subject moved the mouse cursor to the bottom-centre home area 196 

(height = 10 x width = 15 pixels, centre x, y coordinates: 960,1075 pixels). The trial began 197 

with the image (265 x192 pixels) appearing at the top-centre of the monitor (x- coordinates: 198 

827 to 1092, y-coordinates: 0 to 192 pixels). As soon as the image appeared, the subject 199 

was free to move the mouse to indicate her choice by reaching to, and clicking on, one of 200 

two response areas, left or right side of the display, within 2000 ms (Figure 2). The 201 

rectangular response areas, covering the leftmost and rightmost 23% of the display, were 202 

indicated by two vertical lines along the screen sides (x coordinates: 440 and 1480 pixels, 203 

respectively; see, Figure 2). For half of the participants, edible was attributed to the left 204 

response area and non-edible to the right. In the other half, it was reversed. Response 205 

deadline was 2000 ms, after which the subject missed the trial. Each trial took the whole 206 

2000 ms, independently of the response time. After a trial ended, the participant needed to 207 

move the cursor back to the bottom-centre home location for the next trial to begin. The 208 

inter-trial interval was 2000 ms, which also served as a fixation screen. Trials from all three 209 

conditions (NB, LB, HB) were interleaved randomly throughout the experiment. Hence, for 210 
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efficient responding, participants could not fall back on a pre-defined strategy based on 211 

visibility prior to the start of the trial.  212 

Because the response areas covered both lateral sides of the display, the decision 213 

movement could vary in terms of the vertical extent of the trajectory, including direct 214 

horizontal movements from the home location to the response area. As said earlier, in the 215 

blurred image (LB and HB) conditions, the image blur decreased as the mouse moved 216 

upward. Therefore, when the image did not contain sufficient information, the participant 217 

needed to move in the vertical direction in order to gather evidence. Because of the 218 

response deadline (2000 ms), moving upward had a cost (i.e., took time off the available 219 

response time). Therefore, moving upward is never an optimal strategy if it is not necessary 220 

to sample evidence.  221 

3. Results 222 

In our task, characterizing information sampling and response components of the subjects9 223 

action boils down to the analysis of heights and angles of the response trajectories (some 224 

example trajectories are shown in Figure 3). Firstly, we inspected the trajectory height, 225 

denoted h, which was calculated by measuring the vertical distance (in pixels) between the 226 

starting point and the highest point of the trajectory (Figure 3a). Second, we analysed the 227 

initial angle of trajectories, denoted α, which was defined as the angle described by an 228 

imaginary straight line connecting the starting point with the point at one-third of the length 229 

of the trajectory (cyan dashed line in Figure 3a), with respect to the vertical midline. It is 230 

important to note that, although correct targets were randomly assigned left or right sides 231 

during the task, for analyses we realigned the correct choice to positive angles.  232 

 233 

 234 
Figure 3. a. An example of one mouse trajectory (red line) on the experimental display. Response 235 

areas are indicated to the participants by the solid vertical lines on the left and right sides. The white 236 

dashed line indicates the height h of the trajectory. The cyan dashed line that joints the origin with 237 

the point of the trajectory that lies at one third of its total length serves to calculate the initial angle 238 

α of the trajectory with respect to vertical. Positive angles are defined to be in the direction of the 239 

correct target, whose location could occur randomly on either side.  b. Examples of trajectories for 240 

several individual trials, with the same conventions described in a.  241 
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We preregistered this study and we first report the analysis that were planned prior to 242 

data collection (see, https://osf.io/3ysah/). We also performed follow-up analyses that have 243 

been planned after the pre-registration process, as these reveal important characteristics of 244 

the data. Throughout the results section we report statistical tests according to the 245 

frequentist approach (the analogous Bayesian analyses are reported in the Supplementary 246 

Table S1). Both analyses lead to the same conclusions. We included only the trajectories of 247 

correct trials into the analyses reported below (average 110 correct trials, >87%, out of 126 248 

total per subject, range103-123). 249 

 250 

3.1. Movement-dependent information sampling  251 

If participants gather information as needed, their trajectories should reach higher when the 252 

image is blurred. We therefore tested whether trajectories in blur trials reached higher than 253 

trajectories in the no blur trials. As expected, trajectories in the two blur conditions were 254 

higher than in the no blur condition, since information sampling was unnecessary in the 255 

latter (right tail paired-samples t-tests, t(17) = 6.53, p < 0.001, Cohen9s d = 1.54; t(17) = 256 

7.03, p < 0.001, Cohen9s d = 1.66, for the comparison of NB with LB and HB, 257 

respectively). However, even in the NB conditions trajectories had some vertical 258 

component (mean = 368.3 pixels, sd = 231.9), possibly due to biophysical motor constrains. 259 

To eliminate the height differences that are present in the trajectories but unrelated to 260 

information gathering, we subtracted the average height in NB condition from LB and HB 261 

trajectory heights in each individual9s data. Results (Figure 4a) showed that trajectories in 262 

HB trials were about 27% higher than in LB trials (mean = 315.7, sd = 190.4, vs 229.3, sd = 263 

148.8, respectively; right tail paired-samples t-test, t(17) = 5.39, p < 0.001, Cohen9s d = 264 

1.27). 265 

 266 

 267 
Figure 4.a. Height of trial trajectories for NB, LB and HB conditions. Each colored dot represents 268 

individual means for the corresponding condition. White dots represent the group median for the 269 

condition and the grey lines represent the inter-quartile range. b. Probability density of the initial 270 

angles of the trajectories across participants. The solid black line corresponds to the Gaussian 271 

mixture model (with 2 components) fit to the distribution (model with 2 components AIC = 19105 < 272 
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model with 1 component AIC = 19753). Angle 0º corresponds to straight vertical upwards 273 

movement, i.e., with no horizontal component. Positive angles correspond to correct target 274 

direction.  275 

 276 

3.2. Interplay between decision and action  277 

Bimodality of trajectories. A central prediction of ECT is that movements should reflect the 278 

decision-making process throughout, such that the trajectories should show early on a bias 279 

towards the finally chosen target. We tested this prediction by studying the initial angles of 280 

the trajectories (Figure 4b). We found that their distribution is bimodal (Hartigan9s Dip 281 

Test, p-value < 0.001; Gaussian mixture model better fit with 2 components, Akaike 282 

Information Criterion (AIC) = 19105 than the model with 1 component, AIC = 19753), 283 

with a central lobe peaking at angle 2.3º, a lateral lobe peaking at 66.4º (vertical midline 284 

corresponds to an initial angle of 0º and positive angles corresponding to directions to the 285 

correct target), and the separation between the two lobes being 43.52 º. This bimodality and 286 

the cut-off point allowed us to classify trajectories as sampling or non-sampling 287 

trajectories, depending on whether the initial angle is closer to the central or the lateral 288 

peak, respectively. We checked bimodality in the distribution of trajectory angles for each 289 

subject individually (see Figure S1) and found that 9 out of 18 subjects showed significant 290 

bimodality in the distribution in trajectory angles.  291 

The presence of two types of trajectories is observed in each blur condition 292 

separately (Figure S2). While there is a large fraction of non-sampling trajectories in the 293 

NB condition (corresponding to the lateral lobe of the bimodal distribution; q = 0.62, X2(1, 294 

N = 635) = 39.86, p < 0.001), surprisingly in the HB condition there were also non-295 

sampling trajectories (q = 0.14 binomial test p < .05). The presence of sampling and non-296 

sampling trajectories across all blur conditions suggests that participants made an initial 297 

choice about whether or not to gather information, as supported by an analysis that shows 298 

that trajectories classified as non-sampling had a much smaller height than sampling 299 

trajectories (right tail two-sample t-test, t(1988) = 48.72, p < .001). Thus, non-sampling 300 

trajectories simply reflect a ballistic movement towards the chosen target that emanates 301 

from an initial decision, with little information gathering or ongoing decision-process 302 

throughout.  303 

Angle analysis of sampling trajectories. Thus, given the initial decision and the ensuing 304 

existence of two different types of trajectories, a direct test of the prediction of ECT 305 

requires examining the sampling trajectories alone. These trajectories correspond to the 306 

central peak of the distribution in Fig. 4b. As the initial angles of these trials are close to 307 

zero (vertical), trajectories mostly depart vertically from the home position with the aim of 308 

gathering information to guide the final choice. However, in addition to the prominent 309 

vertical component, the initial steps of the trajectory were biased towards the chosen target, 310 

as the initial angle was significantly larger than zero in both LB and HB conditions (right 311 
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tail one sample t-tests, t(16) = 4.58, p < .001 and t(16) = 3.41, p = .002, respectively). This 312 

result strongly supports the notion that the decision-making process transpires into the 313 

movement even when participants felt urged to actively sample information.   314 

One might argue that some trials in the analysis above might have been 315 

misclassified non-sampling trials, given the partial overlap of the two lobes of the bimodal 316 

distribution of angles. This could introduce some biases towards positive angles. To control 317 

for this possible confound we used a simpler analysis limited to LB and HB trials only 318 

(where participants are urged to sample information) that does not rely on trial 319 

classification. In this analysis we calculated average angle in incremental ranges of angles 320 

(symmetric around 0º) from ±1º to ±30º, in steps of one degree (Figure 5a).  We found that 321 

the average angle was significantly larger than zero in all the ranges larger than ±14º (right 322 

tail t-tests, p < .05, see Figure 6a). Angles in the range ±14º and ±20º are well inside the 323 

central peak of the bimodal distribution, as described above, and therefore can be reliably 324 

classified as sampling trajectories (trajectories with such small initial angle very unlikely 325 

correspond to trials where the decision maker already made a choice about where to move). 326 

In sum, this new analysis shows trajectories whose initial angles lie within a small range of 327 

angles symmetric around zero already show a significant positive bias towards the chosen 328 

target. This result further supports the notion that the ongoing decision-making process 329 

transpires into the movement even when not all information necessary to solve the task has 330 

been gathered.  331 

Although we did find those significant deviations in the initial angle of sampling 332 

trajectories, we did observe only marginal evidence that the angle deviation was larger in 333 

LB (mean = 5.28º, sd = 4.75) than in HB (mean = 3.42º, sd = 4.13) conditions (Fig. 5b; 334 

right tail paired-samples t-test, t(16) = 1.66, p = 0.058, Cohen9s d = .4).   335 

 336 

Figure 5. a. Mean initial trajectory angle for all blur trajectories (pooled LB and HB data), along 337 

incremental ranges of angles symmetric around zero. The solid black line corresponds to the inter-338 

individual mean (the grey area represents s.e.m.). The black horizontal line represents significance 339 

(right tail t-test, p < 0.05) against the hypothesis that the mean angle is not larger than zero. b. 340 

Initial angle of trial trajectories for LB and HB conditions. The coloured dots represent each 341 
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participant9s mean value for the corresponding condition. The white dots represent the median for 342 

each condition and the grey lines illustrate the inter-quartile range. 343 

3.3. Converging evidence from angle and height information 344 

Initially we had decided to classify sampling and non-sampling trials based on initial angle 345 

of the trajectories. However, if our hypothesis is correct, a similar classification should 346 

apply to the heights of the trajectories. This is because sampling trajectories are expected to 347 

reach higher than non-sampling trajectories, as the latter correspond to ballistic movements 348 

to the target without much ongoing deliberations and thus are expected to reach vertically 349 

much lower. What is more, if trajectories are truly separable into sampling and non-350 

sampling, then it should be the case that in their heights should also be distributed in a 351 

bimodal way, and height and angle should be correlated. Consistent with this prediction, we 352 

found that heights were distributed in a bimodal way (Figure 6a) across conditions and 353 

participants (Figure 6a; Hartigan9s Dip Test, p < 0.05; see Figure S3 for each blur 354 

condition). These results in turn suggest that it should be possible to classify trajectories as 355 

sampling and non-sampling based on the bimodality in heights, and that this classification 356 

should be largely consistent with the one derived above from the angle analyses. In line 357 

with this, classification based on height and classification based on angle were highly 358 

correlated (Pearson9s correlation, r = 0.76) and clustered trials in two clear categories 359 

(Figure 6b). 360 
  361 
7 362 

 363 
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Figure 6. a. Probability density of the heights of the trajectories across participants. The solid black 364 

line corresponds to the Gaussian mixture model with 2 components fit to the distribution (better fit 365 

in the model with 2 components, AIC = 26439 lower than the model with 1 component, AIC = 366 

26874). b. Probability density of the heights and angles of the trajectories across participants. c. 367 

Mean angle for all blur trajectories (pooled LB and HB data), along incremental ranges of heights. 368 

The solid black line corresponds to the inter-individual mean (the grey area represents s.e.m.). The 369 

black horizontal line represents significance (right tail t-test, p < 0.05) against the hypothesis that 370 

the mean angle is not larger than zero. Angle 0º corresponds to pure vertical upwards movement, 371 

i.e., with no horizontal component. 372 

Similar to the angle analysis reported in Section 3.2 (where trial classification was 373 

based on angle), we analysed angle again but this time using trial classification based on 374 

height. We found that the angles in sampling trials, both the LB and the HB conditions, 375 

were significantly larger than zero (right tail one sample t-test, t(16) = 3.7, p < 0.001, 376 

Cohen9s d = .9 and t(16) = 2.05, p = 0.029, d = .5, respectively). This outcome supports the 377 

conclusions of our main analysis reported above and shows that this finding generalizes 378 

regardless of the classification variable used. Finally, and parallel to the incremental angle 379 

analyses reported earlier, we also addressed how the mean angle changes as a function of 380 

height increments of trajectories. As one would expect if trajectories reflect both choice and 381 

information gathering, we found that as trajectories with lower heights are included into the 382 

analysis, mean angle increases (Figure 6c). This shows the interaction between trajectory 383 

height and initial angle. 384 

 385 

3.4. Robustness of the results at earlier initial angles 386 

In the main analysis, we have estimated angles at one third of the trajectory, as we wanted 387 

to capture the initial moments of the movements. However, the criterion to compute angles 388 

at one-third of the trajectory is somehow arbitrary. As a check regarding the trial 389 

classification, we decided to re-compute the trajectory angles at an earlier point in 390 

trajectory (described in the Results section). The motivation was to provide an additional 391 

look at the angle analysis to reveal that it is robust even at earlier moments of the trajectory. 392 

This time we looked at angle at the one-fifth of trajectory as opposed to one-third of 393 

trajectory point (described in Figure 2a). The distribution of angles in this calculation also 394 

brought about a strong bimodality (Hartigan9s Dip Test, p < 0.05), confirming the main 395 

findings. Then, we also corroborated that the angles in blur conditions were significantly 396 

larger than zero even at this earlier point. In the LB condition the angle deviated 397 

significantly above zero (vertical), but in the HB condition they were not significantly 398 

larger than 0 (right tail one-sample t-tests, t(16) = 3.37 p = 0.002, Cohen9s d = 0.81 and 399 

t(16) = -0.087, p = 0.53, d = -.02, respectively). This means that whereas the decision starts 400 

to have an impact earlier on in the trajectories of LB conditions, in the HB condition the 401 

effect is weaker as more information is needed. Moreover, investigating angular deviation 402 

at incremental ranges of angles, we found that the angles differed significantly from zero 403 
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from 22º onward (right tail t-tests, p < .05, Figure S4a). Finally, we repeated the 404 

comparison between LB (M = 2.9, sd = 3.57) and HB (M = -.08, sd = 4.001) which showed 405 

a strong evidence for the effect of information sampling requirements on the decision status 406 

(Figure S4b, right tail paired samples t-test, t(17) = 2.51, p = 0.011, Cohen9s d = 0.61). This 407 

additional analysis, calculating the angles from one-fifth of trajectories, provides more 408 

confidence regarding the difference between LB and HB conditions, in support for ECT. 409 

Based on these converging results, we found strong evidence supporting that there was an 410 

impact of the decision component in trajectories overall in the sampling trajectories and 411 

that, if any, differences between blur conditions leaned in the expected direction.   412 

4. Discussion 413 

Many studies in the past have challenged the classical view of decision making and 414 

cognition which assumes a temporal and functional separation between decision and action 415 

systems (Pylyshyn, 1984). The idea is that natural choice behaviours of humans and other 416 

animals involve movement patterns that reflect the ongoing decision process. As a result, 417 

movement trajectory analyses are increasingly used to trace the underlying decision 418 

dynamics. Our study clearly sides with these findings, showing that it is possible to trace 419 

decision dynamics from the ongoing choice action (Tabor, et. al., 1997, Magnuson, 2005, 420 

Spivey & Dale, 2006). However, the tasks used in previous studies did not contemplate the 421 

case where actions are also needed to sample information. To fill this gap, we took one step 422 

forward from this past research and tested whether the decision outcome pervades action 423 

when information sampling is necessary. This is a condition that characterises choice in 424 

many natural environments, such as getting closer to an object to decide whether it is food 425 

or not. 426 

As mentioned in the introduction, parallel processing of decision-making and action 427 

control is an important principle. However, the nature of the interaction between the two is 428 

still under debate. For instance, Lepora & Pezzulo (2015) have put forward the 8embodied 429 

choice9 framework, that accommodates richer interactions between action and decision 430 

through action-dependent information gain, compared to the parallel account. The 431 

experimental tasks they had used to illustrate their predictions lacked the active sampling 432 

component, which leaves one main prediction of the theory still unresolved. Our findings 433 

support the 8embodied choice9 theory by showing that decision and action interaction can 434 

be traced in ecological scenarios incorporating the active sampling constrain. If this were 435 

not the case, we would have observed a temporally separated sampling and responding 436 

characteristics in the movement trajectory without any angular deviation in early parts of 437 

the trajectories.  438 

One central feature of the task used in the present study is that participants have to 439 

trade off information (image de-blurring) for energetic efficiency (moving up, hence 440 

orthogonal to the choice goal). This is because motor execution involves expenditure of 441 
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energy, thus incurring effort-related costs. Motor cost and physical effort have been started 442 

to be studied in relation to decision making (Burk, et. al., 2014, Marcos, et. al., 2015). For 443 

instance, Cos, et. al. (2014) have shown that effort and biomechanics of a task influence the 444 

decision dynamics starting at early stages. It is likely that physical effort influences the 445 

decision dynamics due to the strong interactions between action and decision. In our 446 

experiment, each blur condition had a different cost/information structure. Although, it is 447 

not easy to quantify exactly how this effort to information ratio impacted our results (due to 448 

the use of real images instead of parametric stimuli), it is still safe to say that associated 449 

effort to sample information altered the decision making process and led to different choice 450 

trajectories. The analyses showing an inverse relationship between image visibility and 451 

trajectory height clearly support this. 452 

The main result to emerge from this study, however, was based on the deviations 453 

and curvatures in choice trajectories. Please note that this is superficially similar to many 454 

other mouse-tracking studies (Spivey,et. al., 2010, Freeman, 2018, Wojnowicz, et. al., 455 

2009). A common task characteristic our current study shares with this previous work is the 456 

urgency of responding to a task (Scherbaum & Kieslich, 2008. Kieslich, et. al., 2019). Via 457 

imposing time pressure, participants are encouraged to execute decision and action in the 458 

same time window as it is more optimal for a successful response than waiting statically to 459 

make a decision and then move to report it. However, the fundamental difference between 460 

our experiment though is the functional link between information and movement. In those 461 

previous works, the subject planned and performed actions to report the choice response, 462 

therefore effectively allowing to study interactions between decision process and response 463 

plan only (as shown in Figure 1a). In contrast, the task we developed here involves, and 464 

makes it possible to study, both response and sampling plans and their interplay (Figure 465 

1b). Another way to put it is that previous studies so far have considered only tasks 466 

equivalent to the 8no blur9 condition in of our study. Hence, one of the main goals here was 467 

to compare the trajectories between different sampling conditions as a function of 468 

movement-information ratio. First, the results obtained conclusively support the prediction 469 

that the decision process pervades information sampling movements in various ways. 470 

Information sampling trajectories deviated to one of the choices (the correct one, on 471 

average) very early on. We confirmed this both in low blur and high blur conditions, using 472 

only trials classified as sampling trials. A second expectation by hypothesis was that, if the 473 

sampling component was stronger in HB than in LB, then one would assume that the 474 

decision component will be more pronounced in LB than in HB trajectories, especially at 475 

the early stages. This is because the need for information in HB trials is stronger. Angular 476 

differences between LB and HB conditions calculated according to the planned analysis (at 477 

1/3th of trajectories) were in the expected direction, but reached only a marginally 478 

significant effect. This borderline result may be due to the fact that the two conditions were 479 

not sufficiently different in terms of costs of sampling movement. This cost depended 480 

directly on the blur function, which was chosen arbitrarily. Indeed, subsequent analyses 481 
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where angle was calculated at a more initial stage (1/5th of trajectories), or when angular 482 

deviation was calculated in incremental steps from movement origin, revealed robust 483 

significant differences in the same, expected direction. This variability reflects the 484 

importance of the task mechanics to the study of sensorimotor interactions in a decision 485 

making setting (Scherbaum & Kieslich, 2018). Variants of active sampling decision making 486 

tasks, including variations of the information cost function, should shed more light on the 487 

full range of embodied decisions under naturalistic constrains.   488 

The proposed interactions between action and decision we suggest rely on the 489 

incorporation of sampling and responding actions in the task structure (Figure 1b). We note 490 

that the tasks that include movement-agnostic stimulus, often used in the literature (and 491 

summarised in Figure 1a), are a special instance of the more general case modelled in 492 

Figure 1b: one in which the arrows to and from <sampling plan= have zero weight. Yet, our 493 

experimental setup is not intended to as a general model for all action-decision possibilities 494 

that humans and animals are capable of. We rather claim that embodied decisions are the 495 

manifestation of the flexibility of the decision process (Wispinski, et. al., 2018). In many 496 

natural and ecological situations, like the one modelled here, decisions have to be carried 497 

out as ETC predicts –with a strong interaction coupling with action processes. 498 

Nevertheless, there are also abstract and higher-level decisions which may comply with 499 

serial accounts of decision making, especially in humans. In line with a 8phylogenetic 500 

refinement9 view, fully abstract cognitive operations are evolutionarily more recent, 501 

whereas rich cycles of action & decision are prevalent from very basic animals to complex 502 

mammals (Cisek, 2019). In the human context, depending on the task, the biomechanical 503 

characteristics and previous experience, we may observe response patters ranging from a 504 

pure abstract and covert decision making process that precedes any action, to a fully 505 

embodied and interactive one such as the one seen here. For instance, a novice driver may 506 

find herself thinking step-by-step about all of the driving actions before executing them, 507 

however as practice accumulates, she may decide and move at the same time with ease. 508 

Therefore, we are aware of the vast complexity about the interaction between decision and 509 

motor action (Gallivan, et. al., 2018). Our study provides a step forward in understanding 510 

these interactions under the new constrain of action-dependent information sampling. What 511 

we have shown is that when the task dynamics imposes this type of ecological constraint, 512 

action for sampling and choice action have interactions with the decision process and with 513 

each other.  514 

To summarize, here we showed a demonstration of interactions between action to 515 

sample information, action to respond and decision process with a novel mouse-tracking 516 

task. Our results showed that decision feed into movement trajectory during information 517 

sampling movements. This is a support for the embodied theories in decision making in a 518 

way that has been lacking in the field, as far as we know. 519 

 520 
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6. Supplementary Figures 550 

 551 
Figure S1. Distribution of angles for each individual subject. 552 

 553 

 554 

 555 

 556 
 557 

Figure S2.  Distribution of trajectory angles for each blur condition. 558 
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 559 

 560 

 561 
 562 

 563 
Figure S3. Distribution of trajectory heights across participants for each blur condition. 564 

 565 

 566 
 567 

Figure S4. Analysis on angles which was calculated based on one fifth of trajectory length a. Mean 568 

angle for LB & HB trajectories, for different ranges of angles, symmetric around zero, included in 569 

the analysis. Full line corresponds to the mean; grey area represents s.e.m across subjects. The black 570 

horizontal line represents significance (Right tail one-sample t-test, p < 0.05) against the hypothesis 571 

that the mean angle is not larger than zero. b. Mean initial angle of trial trajectories for LB and HB 572 

conditions. The grey lines represent each participant9s mean value for the corresponding condition. 573 

The dark line is the sample mean of all data, error bars representing s.e.m.  574 
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7. Supplementary Table 586 

 587 

  Page Analysis Variable H1 Bayes Factor Error 

Median 

Effect 

Size 95% CI 

Frequentist 

p-values 

1 7 Height (all trials) HB > LB 1067.6 < 0.001 1.17 [0.54, 1.79] <0.001 

2 8 

Angle (classification 

based on angle) LB > 0 209.53 <0.001 1.01 [0.41, 1.63] <0.001 

3 8 

Angle (classification 

based on angle) HB > 0  25.27 <0.001 0.73 [0.21, 1.29] =0.002 

4 9 

Angle (classification 

based on angle) LB > HB 1.45 0.004 0.37 [0.04, 1.12] =0.058 

5 11 

Angle (classification 

based on height) LB > 0 44.02 <0.001 0.8 [0.26, 1.38] <0.001 

6 11 

Angle (classification 

based on height) HB > 0  2.56 0.002 0.44 [0.06, 0.93] =0.029 

7 11 

Angle (calculated at 

one-fifth) LB > 0 22.2 < 0.001 0.72 [0.2, 1.27] =.002 

8 11 

Angle (calculated at 

one-fifth) HB > 0  0.23 0.004 0.143 [0.01, 0.49] =.53 

9 12 

Angle (calculated at 

one-fifth) LB > HB 5.36 <0.001 0.54 [0.1, 1.05] =0.011 

 588 

Table S1. Bayesian counterparts of the t-tests that have been reported in the Results section. The 589 

analyses are ranked in the order of appearing in text. 590 

 591 
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