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Abstract

Aim Growth differentiation factor 15 (GDF15) increases in serum during pregnancy to levels not
seen in any other physiological state and is suggested to be involved in pregnancy-induced
nausea, weight regulation and glucose metabolism. The main action of GDF15 is regulated
through a receptor of the brainstem, i.e., through exposure of GDF15 in both blood and
cerebrospinal fluid (CSF). The aim of the current study was to measure GDF15 in both CSF and

serum during pregnancy, and to compare it longitudinally to non-pregnant levels.

Methods Women were sampled at elective caesarean section (n=45, BMI=28.1+£5.0) and were
followed up 5 years after pregnancy (n=25). GDF15, insulin and leptin were measured in CSF

and serum. In addition, glucose, adiponectin and Hs-CRP were measured in blood.

Results GDF15 levels were higher during pregnancy compared with follow-up in both CSF
(385£128 vs. 115432 ng/l, p<0.001) and serum (73789+£29198 vs. 404+102 ng/l, p<0.001). CSF
levels correlated with serum levels during pregnancy (p<0.001), but not in the non-pregnant state
(p=0.98). Both CSF and serum GDF15 were highest in women carrying a female fetus (p<0.001),
previously linked to pregnancy-induced nausea. Serum GDF15 correlated with the homeostatic
model assessment for beta-cell function and placental weight, and CSF GDF15 correlated

inversely with CSF insulin levels.

Conclusion This, the first study to measure CSF GDF15 during pregnancy, demonstrated
increased GDF15 levels in both serum and CSF during pregnancy. The results suggest that effects

of GDF15 during pregnancy can be mediated by increases in both CSF and serum levels.

Keywords: Cerebrospinal fluid, Growth differentiation factor 15, Human pregnancy
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Introduction

Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta
family, was first discovered to be involved in inflammation and stress pathways but has also
emerged as a potentially important metabolic regulator. (1-3) GDF15 has for example been
shown to induce weight loss (probably through appetite suppression and decreased food intake),

affect energy expenditure and motivation to exercise, and improve glucose tolerance. (4-9)

Research interest has recently grown regarding GDF15 during pregnancy as substantial and
progressive increases in serum GDF15 have been shown from early to late pregnancy, ending up
with serum levels much higher than in any other physiological or pathophysiological state. (10-
12) Pregnancy is marked by major metabolic and physiological changes, such as increases in
appetite, body weight, insulin resistance and inflammation. (13, 14) GDF15 may play an
important role in all these areas, and has been found during pregnancy to be linked to altered

glucose metabolism, (12, 15) and pregnancy-induced nausea. (16-18)

Food intake and energy expenditure are primarily controlled by the central nervous system, with
the arcuate nucleus of the hypothalamus identified as a key area. Several appetite-
suppressing/stimulating neuropeptides have been shown to change both in the circulation and in
the cerebrospinal fluid (CSF) during pregnancy. (19, 20) GDF15 signals through the glial cell
line-derived neurotrophic factor (GDNF) family receptor alpha-like (GFRAL), a receptor
believed to be present only in the area postrema (AP) and the nucleus of the solitary tract (NTS)
regions of the brainstem,(21, 22) which in turn signals to the arcuate nucleus in the
hypothalamus. The AP/NTS region is also generally believed to be the main signaling center for

nausea.(23) AP has a highly permeable blood brain barrier (BBB) compared to other brain
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regions, and can therefore receive signals both from the blood and CSF, whereas NTS is

separated from AP with a more solid BBB.(24)

Local hypothalamic expression of GDF15 or intracerebroventricular injections of recombinant
human GDF15 in mice resulted in a direct central action which induced anorexia and weight
loss.(25) Although numerous recent human studies have measured GDF15 in the circulation, few
have examined GDF15 concentrations in the CSF. Studies to date have shown approximately
50% increased GDF15 levels in CSF of patients with neurodegenerative disorders or
glioblastomas.(26-28) However, the effect of pregnancy on CSF levels - a physiological state
with up to 200-fold increases in circulating GDF15 — is not known. The aim of this study was to
determine the concentration of GDF15 in both CSF and serum during pregnancy and to establish
whether CSF GDF15 was different in the pregnant compared to the non-pregnant state in a cohort

of women sampled at elective cesarean section and after pregnancy.

Materials and Methods

Ethical approval
The study was approved by the ethical committee at the University of Gothenburg (dnr 402-

08/dnr 750-15). Informed consent was obtained from all participants.

Study cohort

Women were recruited at admission for elective cesarean section as previously described,(19)
and followed up 5 years after pregnancy.(29) All women with serum and/or CSF samples
available from the previous study were included in the present study. Out of 74 women in the
original study, 45 women had remaining samples from the cesarean section and 24 women had

4
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samples from the 5-year follow-up. Inclusion criteria in the original study were uncomplicated
pregnancy and good health, judged from the medical history. At entry, all subjects were
normoglycemic, nonsmokers, and did not consume alcohol. Dieting and use of weight-loss
supplements within 6 months before pregnancy were excluding criteria. The characteristics and
blood/CSF measurements for the women in the study are presented in Table 1. A drop-out
analysis showed that women who did not attend the follow-up had higher pre-pregnancy BMI,
and pregnancy glucose and insulin compared with women attending both visits (BMI, 30 + 4 vs
27 £ 4 kg/m?, p =0.01; glucose, 4.5 + 1.3 vs 3.9 + 0.6 mmol/l, p = 0.04; insulin, 13.9 + 8.0 vs9.0

+ 5.4 mU/], p = 0.02). There were no differences in age, gestational weight gain, placental weight

or birth weight (p > 0.3), and importantly, there was no difference in GDF15 levels in serum or
CSF at pregnancy between women that attended one or two visits (p > 0.5).
Table 1. Maternal characteristics at delivery and at follow-up
Delivery N Mean=SD Follow-up N  Mean+ SD
General General
Age (y) 45 34.1+44  Follow-up time (y) 25 50£1.2
Pre-pregnancy BMI (kg/m?) 45 28.1+5.0 BMI (kg/m?) 25  275+4.7
Energy Intake (kcal) 24 2739+1025 Energy Intake (kcal) 25 2068 £616

Gestational age at cesarean (d) 44 260 + 35
Gestational weight gain (kg) 40 13.2=x6.1

Birth weight of child (kg) 44 3.6+£0.5
Blood measurement Blood measurement

p-Glucose (mmol/L) 44 42+1.1 p-Glucose (mmol/L) 24 52+0.5
s-Insulin (mU/L) 44 11.2+69 s-Insulin (mU/L) 25 6.7+3.9
HOMA-IR 44 23+2.1 HOMA-IR 24 1.6+1.0
HOMA-B (%) 40  453+473 HOMA-B (%) 24 80 + 39
s-Leptin (ng/ml) 44 151177 s-Leptin (ng/ml) 25 18.4+13.3
s-Adiponectin (pg/ml) 43 52423 s-Adiponectin (ug/ml) 25 10.0+4.4
s-Hs-CRP (mg/L) 45 7.8+9.8 s-Hs-CRP (mg/L) 25 29453
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CSF measurement CSF measurement
CSF-Insulin (mU/L) 45 0.33+0.12 CSF-Insulin (mU/L) 17 1.5+£1.6
CSF-Leptin (ng/ml) 45  0.24+0.08 CSF-Leptin (ng/ml) 17  0.20+£0.10
101
102
103 The pregnant subjects underwent elective cesarean section the morning after an overnight

104  fast. A 10-ml venous blood sample was taken by venipuncture before infusion of Ringer-acetate
105  solution. Before spinal anesthesia, an introducer needle was inserted into the interspinous

106  ligament at L3-4, and a 25-gauge Whitacre needle or a 25-gauge Pajunk Pencil Point Spinal

107  Needle was inserted through the introducer into the subarachnoid space. Ten milliliters of CSF
108  were removed with a 10-ml syringe. Hemorrhagic samples were excluded. The first 0.5 ml of
109  CSF was discarded. Study samples were transferred to polyethylene tubes, placed on ice,

110  centrifuged, aliquoted, and stored (—80°C). Serum samples were similarly centrifuged, aliquoted,
111 and stored. At the 5-year follow-up, women came to the laboratory after an over-night fast and
112 CSF and blood samples were taken and processed in the same way as at the cesarean section.
113 Dietary intake was assessed with a self-administered questionnaire for the three previous months.
114  The questionnaire had a semi-quantitative food frequency design and was validated in Swedish
115  men and non-pregnant women against a 4-day food record and assessments of 24-h energy

116  expenditure and nitrogen excretion. From these comparisons, valid estimates of energy intake
117  were obtained in normal weight, overweight, and obese subjects.(30)

118

119  Biochemical analysis

120  Blood glucose and insulin were analysed with a Cobas Modular system (Roche Diagnostics,

121 Risch, Switzerland) at the Clinical Chemistry Laboratory, Sahlgrenska University Hospital
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122 (accredited in accordance with the International Standard ISO 15189:2007). CSF insulin was

123  analyzed with a double-antibody radioimmunoassay (Linco Research) at the Department of

124  Clinical Science, Lund University. Leptin and adiponectin were measured with ELISA kits (R&D
125  Systems) in the Clinical Neurochemistry Laboratory at Sahlgrenska University Hospital Mdlndal.
126 ELISA plates were read on a Vmax plate reader, and concentrations were determined with

127  Softmax software (Molecular Devices). Insulin was measured in undiluted samples and

128  adiponectin in 100-fold diluted samples. For leptin analysis, CSF samples were diluted 2-fold and
129  serum samples 100-fold. HOMA-IR was calculated as (fasting glucose x fasting insulin)/22.5 and
130 HOMA-B as (20 x fasting insulin)/(fasting glucose — 3.5).(31) GDF15 concentration was

131  measured with Human GDF-15 Quantikine Elisa Kit (R&D Systems, Minneapolis, MN, USA).
132 Serum GDF15 samples during and after pregnancy were diluted 1:64 and 1:4, respectively. CSF
133 GDF15 samples were diluted 1:2. The intra- and inter-assay coefficients of variation (CVs) for

134  GDF15 measurements were 1.7% and 7%, respectively.

135

136  Statistical analysis

137  Variables are expressed as mean =+ standard deviation (SD). Differences between pregnancy and
138  follow-up were assessed using paired t-tests; between-group differences for fetal sex were

139  assessed using independent t-tests and univariate tests. Associations were analyzed using Pearson
140  correlations and linear regression models. Adjustments in linear regression models were made for
141  gestational age, or for gestational age, maternal pre-pregnancy BMI, gestational weight gain and

142 fetal sex. All tests were two-tailed and conducted at a 0.05 significance level.

143

144
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145  Results
146  Pregnancy GDF15 levels were increased in both serum and CSF

147  During pregnancy, GDF15 was almost 200 times higher in serum and more than 3 times higher in
148  CSF compared with levels five years after pregnancy (Table 2). The GDF15 ratio CSF:serum

149  was, however, lower during pregnancy compared with follow up.
150

151  Table 2. GDF15 in serum and CSF at delivery and at follow-up 5 years after delivery

Pregnancy vs Follow-up

N Mean + SD Difference Correlation

Pregnanc
Serum GDF15 (ng/L) SMRNSY 44 TITROLDVIN . poor R=0290 P=0215

Follow-up 24 404 +102
Pregnanc

CSF GDF15 (ng/L) SR A4S 385128 pi<0.001  R=0.487 p"=0.077
Follow-up 164 115+32
Pregnanc

CSF:serum GDF15 (%) S 0-560.19 p<0.001 R=0.734 p°=0.003
Follow-up 14 31.9+10.3

152 p4 significance between pregnancy and follow-up using paired t-test; p¢ significance for Pearson

153  correlation between pregnancy and follow-up; R, Pearson correlation coefficient.

154

155  Pregnancy GDF15 levels did not correlate with post-pregnancy GDF15 levels in either serum or
156  CSF. However, a strong significant correlation was observed for the ratio CSF:serum between the

157  two time points (Table 2).

158  CSF GDF15 was also compared with serum GDF15 within the two time points separately (Fig 1).
159  During pregnancy, there was a clear and significant correlation (r=0.577; p<0.001) between
160 GDFI15 serum and CSF levels (Figure 1A). In contrast, 5 years after pregnancy there was no

161  correlation between serum and CSF levels (Figure 1B).
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162
163  Figure 1. Correlations between GDF15 in cerebrospinal fluid and GDF1S5 in serum. Pearson

164  correlation at A) cesarean section and B) 5 years after pregnancy.

165

166  Women carrying a female fetus had the highest GDF'15 levels in both serum and CSF

167  Women carrying a female fetus had significantly higher GDF15 levels both in serum and in CSF
168  during pregnancy compared with women carrying a male fetus (Figure 2), whether or not the
169  analysis was adjusted for gestational age, maternal age and BMI. There was no significant

170  difference in the CSF:serum ratio of GDF15 between mothers carrying fetuses of different sex.
171 After pregnancy, there were no differences in GDF15 in either serum or CSF between mothers

172 that carried female vs. male fetuses (p > 0.6).

173

174  Figure 2. Maternal GDF1S5 levels at cesarean section depending on fetal sex. Box plot of
175  GDF15 in A) serum, B) CSF or C) CSF:serum ratio. *independent t-test; "adjusted for maternal
176  pre-pregnancy BMI, maternal age and gestational age. The box represents first quartile, median

177  and third quartile; the whiskers represent standard deviation.

178

179  Serum GDF15 associated with beta-cell function

180 At cesarean section, there were no associations between GDF15 in serum or in CSF with self-
181  reported pre-pregnancy BMI (P=0.18) or gestational weight gain (P=0.92). There was a positive
182  association for serum GDF15 with HOMA-B (Table 3), but no significant associations with

9
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glucose, insulin or HOMA-IR were found. Similarly, associations between serum GDF15 and the
adipokines leptin and adiponectin, the inflammation marker hs-CRP, and birth weight were not
significant. The association between GDF15 and placental weight was significant when adjusted

for gestational age, but not in the fully adjusted model.

Table 3. Associations for serum and CSF GDF15 during pregnancy.

Model A Model B
B p B P

Serum GDF15

p-Glucose -0.181 0.269 -0.286 0.165
s-Insulin -0.162 0.322 -0.289 0.098
HOMA-IR -0.180 0.273 -0.284 0.123
HOMA-B 0.449 0.003 0.590 0.001
s-Leptin -0.097 0.556 -0.190 0.343
s-Adiponectin 0.234 0.155 0.239 0.277
s-Hs-CRP 0.220 0.154 0.106 0.564
Placental weight 0.325 0.044 0289  0.191
Birth weight 0.100 0.543 0.019 0.932
CSF GDF15

CSF-Insulin -0.318 0.038 -0.232 0.275
CSF-Leptin -0.165 0.293 -0.128 0.527

Model A- adjusted for gestational age at sampling
Model B — adjusted for gestational age, maternal age, maternal pre-pregnancy BMI, gestational weight gain and fetal
sex.

There was a negative association between CSF GDF15 and insulin when adjusted for gestational

age, but not in the fully adjusted model (Table 3). There was no association with CSF leptin.

At follow up, none of the blood or CSF measurements correlated significantly with GDF15 (data
not shown). There were no significant correlations between GDF15 and energy or macronutrient

intake at delivery or at follow-up.

10
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198

199  Discussion

200  For the first time, GDF15 levels were measured in CSF of pregnant women. We showed
201  increased levels of GDF15 in both CSF and serum compared with the non-pregnant state,
202 whereas the ratio CSF:serum was lower during pregnancy. Furthermore, women carrying a

203  female fetus had higher GDF15 levels in both serum and CSF.

204  We have previously shown prospectively in a different cohort that serum GDF15 was increased
205  up to 200 times in trimester 3 compared with the non-pregnant state.(12) We measured similar
206  elevated serum levels in the current population, but also showed an increase in GDF15 in the CSF
207  during pregnancy. The (approximately 3-fold) increase in CSF was smaller than observed in

208  serum, thus the ratio of CSF:serum was decreased during pregnancy. GDF15 has been proposed
209  to regulate food intake, to be involved in taste aversion and possibly in food choice, as well as in
210 improvement of glucose tolerance.(3-5, 32, 33) High serum GDF15 levels during pregnancy have
211 previously also been linked to nausea and hyperemesis gravidarum, and in our previous study we
212 showed an association with beta-cell function as measured by HOMA-B.(12, 16-18) However,
213 anorexia and cachexia, which would be expected at high GDF15 levels, does not normally occur
214 during pregnancy. Pregnant women increase food intake and gain a substantial amount of weight
215  (for example, normal-weight women in our prospective cohort gained 10.5 kg body weight of
216  which 4 kg was fat mass(34)). How these greatly increased GDF15 levels coexist with increased
217  energy intake during pregnancy is not yet known. Although the main effects of GDF15 are

218  believed to be regulated through the GFRAL receptor of the brainstem,(1, 2, 22, 35) GFRAL-

219  independent effects centrally or peripherally cannot be excluded (36). GFRAL has been shown to

11
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220  be exclusively expressed in the AP and NTS regions of the brainstem in the non-pregnant
221  state,(1, 2, 22) although no studies have examined maternal GFRAL expression during

222 pregnancy.

223 AP has a permeable BBB, which means that the GFRAL receptor is exposed to circulating

224  ligands from both blood and CSF, whereas NTS is situated behind a less permeable BBB.(24) In
225  murine models, both peripheral and central injections of GDF15 reduce food intake and cause
226 weight loss.(22, 25) Effects of increased GDF15 in CSF on human physiology are not known.
227  GDF15 in CSF has been measured only in a few studies, never in pregnancy, but in conjunction
228  with its potential role in CNS disease. In these studies GDF15 was shown to be increased in CSF
229  of patients with neurodegenerative disorders such as multiple sclerosis(26) and Parkinson’s

230  disease(27) or in glioblastoma patients(28). Patients in these studies typically had GDF15 levels
231 of between 200-300 pg/ml in CSF (approximately 50% higher than matching controls), i.e. a
232 smaller increase than we found in pregnancy in the present study. The control subjects in

233 previous studies showed similar CSF levels to our non-pregnant subjects at follow-up.(26, 27)
234 Unfortunately, none of the previous studies with CSF levels of GDF15 performed parallel

235  measurements of serum GDF15 so comparisons of CSF:serum ratios are not available.

236 In the non-pregnant state, we saw no correlation between GDF15 in CSF and serum, which may
237  indicate that a proportion of GDF15 in CSF is produced within the CNS. In pregnancy, however,
238  astate with large GDF15 increases, CSF levels correlated with serum levels. One explanation for
239  this could be that large peripheral increases in GDF15 from placental expression,(10) leads to
240  increased transport (active or passive) from blood to CSF across the BBB. Interestingly, even
241 though there was no association found with either CSF or serum GDF15 levels when comparing

242 the pregnant vs. non-pregnant state, the CSF:serum GDF15 ratio was strongly correlated between

12
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243 states. This could be interpreted as women with a high degree of GDF15 transport across the
244  BBB in the non-pregnant state may also have a high degree of transport in the pregnant state.
245  However, as mentioned above, it should be noted that all GDF15 in CSF is presumably not from
246  aperipheral origin. Expression of GDF15 in CNS and release into the CSF has been shown in
247  murine studies,(37) and CNS expression has been documented in the open-access Brain Atlas

248  resource of the Human Protein Atlas.(38)

249  We have previously shown, in a different cohort of pregnant women, higher GDF15 serum levels
250 in women carrying a female compared with male fetus.(12) We confirmed that finding in the
251  current cohort, and also showed that CSF levels of GDF15 were higher in the women carrying a
252  female fetus. Since this is a new observation, the mechanism for higher GDF15 levels in female
253  pregnancies is not known. However, sexual dimorphism is found for placental transcription of
254  other endocrine molecules found at high levels during pregnancy (such as human chorionic

255  gonadotropin, HCG), where sex chromosomes has been suggested to play an important role.(39)
256  Even though the reason for increased GDF15 levels is not known, one could speculate that the
257  higher degree of nausea found in women carrying girls (40-43) might be linked to the higher
258  GDF15 concentrations in serum and/or CSF. There was no difference in CSF:serum ratio of

259  GDF15 for women with male versus female fetuses, which is as expected if CSF levels are

260  mainly determined by peripheral levels.

261  We also confirmed in this new cohort of women our previously shown association between

262 serum GDF15 and HOMA-B in serum. Additionally, we observed a negative association of CSF
263  GDF15 with CSF insulin, but no association with CSF leptin. Both insulin and leptin are believed
264  to be involved in the central regulation of energy balance and peripheral glucose metabolism

265  during pregnancy.(44) Both hormones stimulate POMC and inhibit AgRP/NPY neuronal activity

13
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266  and are therefore implicated in decreased food intake. In the present study, we found no change
267  in CSF leptin during pregnancy compared to follow-up, whereas CSF insulin was lower during
268  pregnancy compared to follow-up (p=0.01). In agreement with our previous study of serum

269  GDFIS5 in pregnancy, we did not see a correlation with gestational weight gain. We also did not
270  observe any association with self-reported dietary intake (data not shown), although it should be

271  noted that only approximately half of the women returned a completed dietary questionnaire.

272 As most research on GDF15 in the CNS has been performed in animal studies, this study adds
273  important new knowledge in the human. The design of the study with women acting as their own
274  controls is a strength of the study. However, limitations include the shortfall in number of women
275  attending the follow-up CSF sampling. This reduces power and could open for potential bias. The
276  women attending both visits had lower BMI, glucose and insulin compared with the women only
277  sampled at pregnancy. Importantly, however, there were no differences in GDF15 levels, and

278  with only performing paired longitudinal analysis for changes between the two time points the
279  bias should not influence the results of the present study. Also, we did not have information about
280 pregnancy induced nausea, which would have been valuable to evaluate the role played by CSF

281  and serum GDF15 in this respect.

282  In conclusion, we have measured GDF15 in CSF of pregnant women and compared the levels
283  longitudinally to the non-pregnant state. We showed increased levels of GDF15 in both CSF and
284  serum during pregnancy compared with follow-up, and that both CSF and serum levels were

285  highest in women carrying a female fetus. We propose that effects of GDF15 during pregnancy
286  can be mediated by changes in both CSF and serum levels. These types of human studies are

287  important to start elucidating how GDF15 might be centrally regulated in its proposed actions

288  involving appetite, nausea and glucose metabolism.
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