

1 **Growth differentiation factor 15 increases in both cerebrospinal fluid and serum during**
2 **pregnancy**

3 Ulrika Andersson-Hall¹, Pernilla Svedin¹, Carina Mallard¹, Kaj Blennow^{2,3}, Henrik
4 Zetterberg^{2,3,4,5}, Agneta Holmäng¹.

5 ¹Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at
6 University of Gothenburg, Sweden.

7 ²Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

8 ³Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
9 Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.

10 ⁴Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United
11 Kingdom.

12 ⁵UK Dementia Research Institute at UCL, London, United Kingdom.

13

14 **Short title:** Cerebrospinal GDF15 during pregnancy

15

16 **Corresponding author:** Ulrika Andersson Hall, Institute of Neuroscience and Physiology, Box
17 432, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.

18 E-mail: ulrika.andersson.hall@gu.se Orcid ID: 0000-0003-3722-3454

19

20

21 **Abstract**

22 **Aim** Growth differentiation factor 15 (GDF15) increases in serum during pregnancy to levels not
23 seen in any other physiological state and is suggested to be involved in pregnancy-induced
24 nausea, weight regulation and glucose metabolism. The main action of GDF15 is regulated
25 through a receptor of the brainstem, i.e., through exposure of GDF15 in both blood and
26 cerebrospinal fluid (CSF). The aim of the current study was to measure GDF15 in both CSF and
27 serum during pregnancy, and to compare it longitudinally to non-pregnant levels.

28 **Methods** Women were sampled at elective caesarean section (n=45, BMI=28.1±5.0) and were
29 followed up 5 years after pregnancy (n=25). GDF15, insulin and leptin were measured in CSF
30 and serum. In addition, glucose, adiponectin and Hs-CRP were measured in blood.

31 **Results** GDF15 levels were higher during pregnancy compared with follow-up in both CSF
32 (385±128 vs. 115±32 ng/l, p<0.001) and serum (73789±29198 vs. 404±102 ng/l, p<0.001). CSF
33 levels correlated with serum levels during pregnancy (p<0.001), but not in the non-pregnant state
34 (p=0.98). Both CSF and serum GDF15 were highest in women carrying a female fetus (p<0.001),
35 previously linked to pregnancy-induced nausea. Serum GDF15 correlated with the homeostatic
36 model assessment for beta-cell function and placental weight, and CSF GDF15 correlated
37 inversely with CSF insulin levels.

38 **Conclusion** This, the first study to measure CSF GDF15 during pregnancy, demonstrated
39 increased GDF15 levels in both serum and CSF during pregnancy. The results suggest that effects
40 of GDF15 during pregnancy can be mediated by increases in both CSF and serum levels.

41

42 **Keywords:** Cerebrospinal fluid, Growth differentiation factor 15, Human pregnancy

43

44 **Introduction**

45 Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta
46 family, was first discovered to be involved in inflammation and stress pathways but has also
47 emerged as a potentially important metabolic regulator. (1-3) GDF15 has for example been
48 shown to induce weight loss (probably through appetite suppression and decreased food intake),
49 affect energy expenditure and motivation to exercise, and improve glucose tolerance. (4-9)

50 Research interest has recently grown regarding GDF15 during pregnancy as substantial and
51 progressive increases in serum GDF15 have been shown from early to late pregnancy, ending up
52 with serum levels much higher than in any other physiological or pathophysiological state. (10-
53 12) Pregnancy is marked by major metabolic and physiological changes, such as increases in
54 appetite, body weight, insulin resistance and inflammation. (13, 14) GDF15 may play an
55 important role in all these areas, and has been found during pregnancy to be linked to altered
56 glucose metabolism, (12, 15) and pregnancy-induced nausea. (16-18)

57 Food intake and energy expenditure are primarily controlled by the central nervous system, with
58 the arcuate nucleus of the hypothalamus identified as a key area. Several appetite-
59 suppressing/stimulating neuropeptides have been shown to change both in the circulation and in
60 the cerebrospinal fluid (CSF) during pregnancy. (19, 20) GDF15 signals through the glial cell
61 line-derived neurotrophic factor (GDNF) family receptor alpha-like (GFRAL), a receptor
62 believed to be present only in the area postrema (AP) and the nucleus of the solitary tract (NTS)
63 regions of the brainstem,(21, 22) which in turn signals to the arcuate nucleus in the
64 hypothalamus. The AP/NTS region is also generally believed to be the main signaling center for
65 nausea.(23) AP has a highly permeable blood brain barrier (BBB) compared to other brain

66 regions, and can therefore receive signals both from the blood and CSF, whereas NTS is
67 separated from AP with a more solid BBB.(24)

68 Local hypothalamic expression of GDF15 or intracerebroventricular injections of recombinant
69 human GDF15 in mice resulted in a direct central action which induced anorexia and weight
70 loss.(25) Although numerous recent human studies have measured GDF15 in the circulation, few
71 have examined GDF15 concentrations in the CSF. Studies to date have shown approximately
72 50% increased GDF15 levels in CSF of patients with neurodegenerative disorders or
73 glioblastomas.(26-28) However, the effect of pregnancy on CSF levels - a physiological state
74 with up to 200-fold increases in circulating GDF15 – is not known. The aim of this study was to
75 determine the concentration of GDF15 in both CSF and serum during pregnancy and to establish
76 whether CSF GDF15 was different in the pregnant compared to the non-pregnant state in a cohort
77 of women sampled at elective cesarean section and after pregnancy.

78

79 **Materials and Methods**

80 *Ethical approval*

81 The study was approved by the ethical committee at the University of Gothenburg (dnr 402-
82 08/dnr 750-15). Informed consent was obtained from all participants.

83 *Study cohort*

84 Women were recruited at admission for elective cesarean section as previously described,(19)
85 and followed up 5 years after pregnancy.(29) All women with serum and/or CSF samples
86 available from the previous study were included in the present study. Out of 74 women in the
87 original study, 45 women had remaining samples from the cesarean section and 24 women had

88 samples from the 5-year follow-up. Inclusion criteria in the original study were uncomplicated
89 pregnancy and good health, judged from the medical history. At entry, all subjects were
90 normoglycemic, nonsmokers, and did not consume alcohol. Dieting and use of weight-loss
91 supplements within 6 months before pregnancy were excluding criteria. The characteristics and
92 blood/CSF measurements for the women in the study are presented in Table 1. A drop-out
93 analysis showed that women who did not attend the follow-up had higher pre-pregnancy BMI,
94 and pregnancy glucose and insulin compared with women attending both visits (BMI, 30 ± 4 vs
95 $27 \pm 4 \text{ kg/m}^2$, $p = 0.01$; glucose, 4.5 ± 1.3 vs $3.9 \pm 0.6 \text{ mmol/l}$, $p = 0.04$; insulin, 13.9 ± 8.0 vs $9.0 \pm 5.4 \text{ mU/l}$, $p = 0.02$). There were no differences in age, gestational weight gain, placental weight
96 or birth weight ($p > 0.3$), and importantly, there was no difference in GDF15 levels in serum or
97 CSF at pregnancy between women that attended one or two visits ($p > 0.5$).
98

99

100 **Table 1.** Maternal characteristics at delivery and at follow-up

<i>Delivery</i>	N	Mean \pm SD	<i>Follow-up</i>	N	Mean \pm SD
<i>General</i>					
Age (y)	45	34.1 ± 4.4	Follow-up time (y)	25	5.0 ± 1.2
Pre-pregnancy BMI (kg/m^2)	45	28.1 ± 5.0	BMI (kg/m^2)	25	27.5 ± 4.7
Energy Intake (kcal)	24	2739 ± 1025	Energy Intake (kcal)	25	2068 ± 616
Gestational age at cesarean (d)	44	260 ± 35			
Gestational weight gain (kg)	40	13.2 ± 6.1			
Birth weight of child (kg)	44	3.6 ± 0.5			
<i>Blood measurement</i>					
p-Glucose (mmol/L)	44	4.2 ± 1.1	p-Glucose (mmol/L)	24	5.2 ± 0.5
s-Insulin (mU/L)	44	11.2 ± 6.9	s-Insulin (mU/L)	25	6.7 ± 3.9
HOMA-IR	44	2.3 ± 2.1	HOMA-IR	24	1.6 ± 1.0
HOMA-B (%)	40	453 ± 473	HOMA-B (%)	24	80 ± 39
s-Leptin (ng/ml)	44	15.1 ± 7.7	s-Leptin (ng/ml)	25	18.4 ± 13.3
s-Adiponectin ($\mu\text{g/ml}$)	43	5.2 ± 2.3	s-Adiponectin ($\mu\text{g/ml}$)	25	10.0 ± 4.4
s-Hs-CRP (mg/L)	45	7.8 ± 9.8	s-Hs-CRP (mg/L)	25	2.9 ± 5.3

<i>CSF measurement</i>		<i>CSF measurement</i>	
CSF-Insulin (mU/L)	45	CSF-Insulin (mU/L)	17
CSF-Leptin (ng/ml)	45	CSF-Leptin (ng/ml)	17

101

102

103 The pregnant subjects underwent elective cesarean section the morning after an overnight
104 fast. A 10-ml venous blood sample was taken by venipuncture before infusion of Ringer-acetate
105 solution. Before spinal anesthesia, an introducer needle was inserted into the interspinous
106 ligament at L3-4, and a 25-gauge Whitacre needle or a 25-gauge Pajunk Pencil Point Spinal
107 Needle was inserted through the introducer into the subarachnoid space. Ten milliliters of CSF
108 were removed with a 10-ml syringe. Hemorrhagic samples were excluded. The first 0.5 ml of
109 CSF was discarded. Study samples were transferred to polyethylene tubes, placed on ice,
110 centrifuged, aliquoted, and stored (-80°C). Serum samples were similarly centrifuged, aliquoted,
111 and stored. At the 5-year follow-up, women came to the laboratory after an over-night fast and
112 CSF and blood samples were taken and processed in the same way as at the cesarean section.

113 Dietary intake was assessed with a self-administered questionnaire for the three previous months.
114 The questionnaire had a semi-quantitative food frequency design and was validated in Swedish
115 men and non-pregnant women against a 4-day food record and assessments of 24-h energy
116 expenditure and nitrogen excretion. From these comparisons, valid estimates of energy intake
117 were obtained in normal weight, overweight, and obese subjects.(30)

118

119 *Biochemical analysis*

120 Blood glucose and insulin were analysed with a Cobas Modular system (Roche Diagnostics,
121 Risch, Switzerland) at the Clinical Chemistry Laboratory, Sahlgrenska University Hospital

122 (accredited in accordance with the International Standard ISO 15189:2007). CSF insulin was
123 analyzed with a double-antibody radioimmunoassay (Linco Research) at the Department of
124 Clinical Science, Lund University. Leptin and adiponectin were measured with ELISA kits (R&D
125 Systems) in the Clinical Neurochemistry Laboratory at Sahlgrenska University Hospital Mölndal.
126 ELISA plates were read on a Vmax plate reader, and concentrations were determined with
127 Softmax software (Molecular Devices). Insulin was measured in undiluted samples and
128 adiponectin in 100-fold diluted samples. For leptin analysis, CSF samples were diluted 2-fold and
129 serum samples 100-fold. HOMA-IR was calculated as (fasting glucose \times fasting insulin)/22.5 and
130 HOMA-B as (20 \times fasting insulin)/(fasting glucose – 3.5). (31) GDF15 concentration was
131 measured with Human GDF-15 Quantikine Elisa Kit (R&D Systems, Minneapolis, MN, USA).
132 Serum GDF15 samples during and after pregnancy were diluted 1:64 and 1:4, respectively. CSF
133 GDF15 samples were diluted 1:2. The intra- and inter-assay coefficients of variation (CVs) for
134 GDF15 measurements were 1.7% and 7%, respectively.

135
136 *Statistical analysis*
137 Variables are expressed as mean \pm standard deviation (SD). Differences between pregnancy and
138 follow-up were assessed using paired t-tests; between-group differences for fetal sex were
139 assessed using independent t-tests and univariate tests. Associations were analyzed using Pearson
140 correlations and linear regression models. Adjustments in linear regression models were made for
141 gestational age, or for gestational age, maternal pre-pregnancy BMI, gestational weight gain and
142 fetal sex. All tests were two-tailed and conducted at a 0.05 significance level.

143

144

145 **Results**

146 *Pregnancy GDF15 levels were increased in both serum and CSF*

147 During pregnancy, GDF15 was almost 200 times higher in serum and more than 3 times higher in
148 CSF compared with levels five years after pregnancy (Table 2). The GDF15 ratio CSF:serum
149 was, however, lower during pregnancy compared with follow up.

150

151 **Table 2.** GDF15 in serum and CSF at delivery and at follow-up 5 years after delivery

		N	Mean ± SD	Pregnancy vs Follow-up		
				Difference	Correlation	
Serum GDF15 (ng/L)	Pregnancy	44	73789 ± 29198	$p^a < 0.001$	$R = 0.290$	$P^b = 0.215$
	Follow-up	24	404 ± 102			
CSF GDF15 (ng/L)	Pregnancy	45	385 ± 128	$p^a < 0.001$	$R = 0.487$	$p^b = 0.077$
	Follow-up	16	115 ± 32			
CSF:serum GDF15 (%)	Pregnancy	44	0.56 ± 0.19	$p^a < 0.001$	$R = 0.734$	$p^b = 0.003$
	Follow-up	16	31.9 ± 10.3			

152 p^a , significance between pregnancy and follow-up using paired t-test; p^a , significance for Pearson
153 correlation between pregnancy and follow-up; R, Pearson correlation coefficient.

154

155 Pregnancy GDF15 levels did not correlate with post-pregnancy GDF15 levels in either serum or
156 CSF. However, a strong significant correlation was observed for the ratio CSF:serum between the
157 two time points (Table 2).

158 CSF GDF15 was also compared with serum GDF15 within the two time points separately (Fig 1).
159 During pregnancy, there was a clear and significant correlation ($r = 0.577$; $p < 0.001$) between
160 GDF15 serum and CSF levels (Figure 1A). In contrast, 5 years after pregnancy there was no
161 correlation between serum and CSF levels (Figure 1B).

162

163 **Figure 1. Correlations between GDF15 in cerebrospinal fluid and GDF15 in serum.** Pearson
164 correlation at A) cesarean section and B) 5 years after pregnancy.

165

166 *Women carrying a female fetus had the highest GDF15 levels in both serum and CSF*
167 Women carrying a female fetus had significantly higher GDF15 levels both in serum and in CSF
168 during pregnancy compared with women carrying a male fetus (Figure 2), whether or not the
169 analysis was adjusted for gestational age, maternal age and BMI. There was no significant
170 difference in the CSF:serum ratio of GDF15 between mothers carrying fetuses of different sex.
171 After pregnancy, there were no differences in GDF15 in either serum or CSF between mothers
172 that carried female vs. male fetuses ($p > 0.6$).

173

174 **Figure 2. Maternal GDF15 levels at cesarean section depending on fetal sex.** Box plot of
175 GDF15 in A) serum, B) CSF or C) CSF:serum ratio. ^aindependent t-test; ^badjusted for maternal
176 pre-pregnancy BMI, maternal age and gestational age. The box represents first quartile, median
177 and third quartile; the whiskers represent standard deviation.

178

179 *Serum GDF15 associated with beta-cell function*

180 At cesarean section, there were no associations between GDF15 in serum or in CSF with self-
181 reported pre-pregnancy BMI ($P=0.18$) or gestational weight gain ($P=0.92$). There was a positive
182 association for serum GDF15 with HOMA-B (Table 3), but no significant associations with

183 glucose, insulin or HOMA-IR were found. Similarly, associations between serum GDF15 and the
184 adipokines leptin and adiponectin, the inflammation marker hs-CRP, and birth weight were not
185 significant. The association between GDF15 and placental weight was significant when adjusted
186 for gestational age, but not in the fully adjusted model.

187

188 **Table 3.** Associations for serum and CSF GDF15 during pregnancy.

	Model A		Model B	
	β	<i>p</i>	β	<i>p</i>
<i>Serum GDF15</i>				
p-Glucose	-0.181	0.269	-0.286	0.165
s-Insulin	-0.162	0.322	-0.289	0.098
HOMA-IR	-0.180	0.273	-0.284	0.123
HOMA-B	0.449	0.003	0.590	0.001
s-Leptin	-0.097	0.556	-0.190	0.343
s-Adiponectin	0.234	0.155	0.239	0.277
s-Hs-CRP	0.220	0.154	0.106	0.564
Placental weight	0.325	0.044	0.289	0.191
Birth weight	0.100	0.543	0.019	0.932
<i>CSF GDF15</i>				
CSF-Insulin	-0.318	0.038	-0.232	0.275
CSF-Leptin	-0.165	0.293	-0.128	0.527

189 Model A- adjusted for gestational age at sampling

190 Model B – adjusted for gestational age, maternal age, maternal pre-pregnancy BMI, gestational weight gain and fetal
191 sex.

192

193 There was a negative association between CSF GDF15 and insulin when adjusted for gestational
194 age, but not in the fully adjusted model (Table 3). There was no association with CSF leptin.

195 At follow up, none of the blood or CSF measurements correlated significantly with GDF15 (data
196 not shown). There were no significant correlations between GDF15 and energy or macronutrient
197 intake at delivery or at follow-up.

198

199 **Discussion**

200 For the first time, GDF15 levels were measured in CSF of pregnant women. We showed
201 increased levels of GDF15 in both CSF and serum compared with the non-pregnant state,
202 whereas the ratio CSF:serum was lower during pregnancy. Furthermore, women carrying a
203 female fetus had higher GDF15 levels in both serum and CSF.

204 We have previously shown prospectively in a different cohort that serum GDF15 was increased
205 up to 200 times in trimester 3 compared with the non-pregnant state.(12) We measured similar
206 elevated serum levels in the current population, but also showed an increase in GDF15 in the CSF
207 during pregnancy. The (approximately 3-fold) increase in CSF was smaller than observed in
208 serum, thus the ratio of CSF:serum was decreased during pregnancy. GDF15 has been proposed
209 to regulate food intake, to be involved in taste aversion and possibly in food choice, as well as in
210 improvement of glucose tolerance.(3-5, 32, 33) High serum GDF15 levels during pregnancy have
211 previously also been linked to nausea and hyperemesis gravidarum, and in our previous study we
212 showed an association with beta-cell function as measured by HOMA-B.(12, 16-18) However,
213 anorexia and cachexia, which would be expected at high GDF15 levels, does not normally occur
214 during pregnancy. Pregnant women increase food intake and gain a substantial amount of weight
215 (for example, normal-weight women in our prospective cohort gained 10.5 kg body weight of
216 which 4 kg was fat mass(34)). How these greatly increased GDF15 levels coexist with increased
217 energy intake during pregnancy is not yet known. Although the main effects of GDF15 are
218 believed to be regulated through the GFRAL receptor of the brainstem,(1, 2, 22, 35) GFRAL-
219 independent effects centrally or peripherally cannot be excluded (36). GFRAL has been shown to

220 be exclusively expressed in the AP and NTS regions of the brainstem in the non-pregnant
221 state,(1, 2, 22) although no studies have examined maternal GFRAL expression during
222 pregnancy.

223 AP has a permeable BBB, which means that the GFRAL receptor is exposed to circulating
224 ligands from both blood and CSF, whereas NTS is situated behind a less permeable BBB.(24) In
225 murine models, both peripheral and central injections of GDF15 reduce food intake and cause
226 weight loss.(22, 25) Effects of increased GDF15 in CSF on human physiology are not known.
227 GDF15 in CSF has been measured only in a few studies, never in pregnancy, but in conjunction
228 with its potential role in CNS disease. In these studies GDF15 was shown to be increased in CSF
229 of patients with neurodegenerative disorders such as multiple sclerosis(26) and Parkinson's
230 disease(27) or in glioblastoma patients(28). Patients in these studies typically had GDF15 levels
231 of between 200-300 pg/ml in CSF (approximately 50% higher than matching controls), i.e. a
232 smaller increase than we found in pregnancy in the present study. The control subjects in
233 previous studies showed similar CSF levels to our non-pregnant subjects at follow-up.(26, 27)
234 Unfortunately, none of the previous studies with CSF levels of GDF15 performed parallel
235 measurements of serum GDF15 so comparisons of CSF:serum ratios are not available.

236 In the non-pregnant state, we saw no correlation between GDF15 in CSF and serum, which may
237 indicate that a proportion of GDF15 in CSF is produced within the CNS. In pregnancy, however,
238 a state with large GDF15 increases, CSF levels correlated with serum levels. One explanation for
239 this could be that large peripheral increases in GDF15 from placental expression,(10) leads to
240 increased transport (active or passive) from blood to CSF across the BBB. Interestingly, even
241 though there was no association found with either CSF or serum GDF15 levels when comparing
242 the pregnant vs. non-pregnant state, the CSF:serum GDF15 ratio was strongly correlated between

243 states. This could be interpreted as women with a high degree of GDF15 transport across the
244 BBB in the non-pregnant state may also have a high degree of transport in the pregnant state.
245 However, as mentioned above, it should be noted that all GDF15 in CSF is presumably not from
246 a peripheral origin. Expression of GDF15 in CNS and release into the CSF has been shown in
247 murine studies,(37) and CNS expression has been documented in the open-access Brain Atlas
248 resource of the Human Protein Atlas.(38)

249 We have previously shown, in a different cohort of pregnant women, higher GDF15 serum levels
250 in women carrying a female compared with male fetus.(12) We confirmed that finding in the
251 current cohort, and also showed that CSF levels of GDF15 were higher in the women carrying a
252 female fetus. Since this is a new observation, the mechanism for higher GDF15 levels in female
253 pregnancies is not known. However, sexual dimorphism is found for placental transcription of
254 other endocrine molecules found at high levels during pregnancy (such as human chorionic
255 gonadotropin, HCG), where sex chromosomes has been suggested to play an important role.(39)
256 Even though the reason for increased GDF15 levels is not known, one could speculate that the
257 higher degree of nausea found in women carrying girls (40-43) might be linked to the higher
258 GDF15 concentrations in serum and/or CSF. There was no difference in CSF:serum ratio of
259 GDF15 for women with male versus female fetuses, which is as expected if CSF levels are
260 mainly determined by peripheral levels.

261 We also confirmed in this new cohort of women our previously shown association between
262 serum GDF15 and HOMA-B in serum. Additionally, we observed a negative association of CSF
263 GDF15 with CSF insulin, but no association with CSF leptin. Both insulin and leptin are believed
264 to be involved in the central regulation of energy balance and peripheral glucose metabolism
265 during pregnancy.(44) Both hormones stimulate POMC and inhibit AgRP/NPY neuronal activity

266 and are therefore implicated in decreased food intake. In the present study, we found no change
267 in CSF leptin during pregnancy compared to follow-up, whereas CSF insulin was lower during
268 pregnancy compared to follow-up ($p=0.01$). In agreement with our previous study of serum
269 GDF15 in pregnancy, we did not see a correlation with gestational weight gain. We also did not
270 observe any association with self-reported dietary intake (data not shown), although it should be
271 noted that only approximately half of the women returned a completed dietary questionnaire.

272 As most research on GDF15 in the CNS has been performed in animal studies, this study adds
273 important new knowledge in the human. The design of the study with women acting as their own
274 controls is a strength of the study. However, limitations include the shortfall in number of women
275 attending the follow-up CSF sampling. This reduces power and could open for potential bias. The
276 women attending both visits had lower BMI, glucose and insulin compared with the women only
277 sampled at pregnancy. Importantly, however, there were no differences in GDF15 levels, and
278 with only performing paired longitudinal analysis for changes between the two time points the
279 bias should not influence the results of the present study. Also, we did not have information about
280 pregnancy induced nausea, which would have been valuable to evaluate the role played by CSF
281 and serum GDF15 in this respect.

282 In conclusion, we have measured GDF15 in CSF of pregnant women and compared the levels
283 longitudinally to the non-pregnant state. We showed increased levels of GDF15 in both CSF and
284 serum during pregnancy compared with follow-up, and that both CSF and serum levels were
285 highest in women carrying a female fetus. We propose that effects of GDF15 during pregnancy
286 can be mediated by changes in both CSF and serum levels. These types of human studies are
287 important to start elucidating how GDF15 might be centrally regulated in its proposed actions
288 involving appetite, nausea and glucose metabolism.

289

290 **Acknowledgements** We would like to thank anesthetists Aurimantas Pelanis and Ove Karlsson
291 for CSF sampling, and Ulf Andreasson for help with biochemical analysis of the original study

292 **Funding** This work was supported by grants from the Emil and Wera Cornell Foundation, the
293 Swedish Research Council (12206), the Swedish Diabetes Association Research Foundation
294 (2015-08) and the Swedish state under the agreement between the Swedish government and the
295 country councils, the ALF-agreement (720851). KB is supported by the Swedish Research
296 Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-
297 201809-2016615), the Swedish Alzheimer Foundation (#AF-742881), Hjärnfonden, Sweden
298 (#FO2017-0243), the Swedish state under the agreement between the Swedish government and
299 the County Councils, the ALF-agreement (#ALFGBG-715986), and European Union Joint
300 Program for Neurodegenerative Disorders (JPND2019-466-236). HZ is a Wallenberg Scholar
301 supported by grants from the Swedish Research Council (#2018-02532), the European Research
302 Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the
303 Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), and the UK
304 Dementia Research Institute at UCL. CM and PS were supported by the Swedish Research
305 Council (VR-2017-01409), Åhlén Foundation, Public Health Service at the Sahlgrenska
306 University Hospital (ALFGBG-722491) and Swedish Brain Foundation (FO2019-0270). The
307 funders had no role in study design, data collection and analysis, decision to publish, or
308 preparation of the manuscript.

309

310 **Conflict of Interest** We have read the journal's policy and the authors of this manuscript have the
311 following competing interests: KB has served as a consultant, at advisory boards, or at data
312 monitoring committees for Abcam, Axon, Biogen, JOMDD/Shimadzu, Julius Clinical, Lilly,
313 MagQu, Novartis, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain
314 Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator
315 Program. HZ has served at scientific advisory boards for Denali, Roche Diagnostics, Wave,
316 Samumed, Siemens Healthineers, Pinteon Therapeutics and CogRx, has given lectures in
317 symposia sponsored by Fujirebio, Alzecure and Biogen, and is a co-founder of Brain Biomarker
318 Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program
319 (outside submitted work). The other authors declare no conflict of interest.

320

321 **Data availability statement** The data that support the findings of this study are available from
322 the corresponding author upon reasonable request.

323

324

325 **References**

- 326 1. Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, et al. Non-
327 homeostatic body weight regulation through a brainstem-restricted receptor for GDF15.
328 *Nature*. 2017;550(7675):255-9.
- 329 2. Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, et al.
330 GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and
331 nonhuman primates. *Nat Med*. 2017;23(10):1150-7.

332 3. Mullican SE, Rangwala SM. Uniting GDF15 and GFRAL: Therapeutic Opportunities in
333 Obesity and Beyond. *Trends Endocrinol Metab*. 2018;29(8):560-70.

334 4. Schernthaner-Reiter MH, Itariu BK, Krebs M, Promintzer-Schifferl M, Stulnig TM, Tura
335 A, et al. GDF15 reflects beta cell function in obese patients independently of the grade of
336 impairment of glucose metabolism. *Nutr Metab Cardiovasc Dis*. 2019;29(4):334-42.

337 5. Nakayasu ES, Syed F, Tersey SA, Gritsenko MA, Mitchell HD, Chan CY, et al.
338 Comprehensive Proteomics Analysis of Stressed Human Islets Identifies GDF15 as a
339 Target for Type 1 Diabetes Intervention. *Cell Metab*. 2020;31(2):363-74 e6.

340 6. Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR, Gutgesell RM, et
341 al. Metformin-induced increases in GDF15 are important for suppressing appetite and
342 promoting weight loss. *Nature Metabolism*. 2019;1(12):1202-8.

343 7. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, et al. GDF15 mediates
344 the effects of metformin on body weight and energy balance. *Nature*.
345 2020;578(7795):444-8.

346 8. Zhang H, Fealy CE, Kirwan JP. Exercise training promotes a GDF15-associated reduction
347 in fat mass in older adults with obesity. *American Journal of Physiology-Endocrinology*
348 and *Metabolism*. 2019;316(5):E829-E36.

349 9. Klein AB, Nicolaisen TS, Ørtenblad N, Gejl KD, Jensen R, Fritzen AM, et al.
350 Pharmacological but not physiological GDF15 suppresses feeding and the motivation to
351 exercise. *Nature Communications*. 2021;12(1):1-9.

352 10. Moore AG, Brown DA, Fairlie WD, Bauskin AR, Brown PK, Munier ML, et al. The
353 transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is
354 present in high concentrations in the serum of pregnant women. *J Clin Endocrinol Metab*.
355 2000;85(12):4781-8.

356 11. Michelsen TM, Henriksen T, Reinhold D, Powell TL, Jansson T. The human placental
357 proteome secreted into the maternal and fetal circulations in normal pregnancy based on
358 4-vessel sampling. *FASEB J*. 2019;33(2):2944-56.

359 12. Andersson-Hall U, Joelsson L, Svedin P, Mallard C, Holmäng A.
360 Growth-differentiation-factor 15 levels in obese and healthy pregnancies: relation to
361 insulin resistance and insulin secretory function. *Clinical Endocrinology*. 2021.

362 13. Aung ZK, Grattan D, Ladyman S. Pregnancy-induced adaptation of central sensitivity to
363 leptin and insulin. *Molecular and Cellular Endocrinology*. 2020;110933.

364 14. Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of Maternal Insulin
365 Resistance during Pregnancy: An Updated Overview. *Journal of Diabetes Research*.
366 2019;2019.

367 15. Tang M, Luo M, Lu W, Wang S, Zhang R, Liang W, et al. Serum growth differentiation
368 factor 15 is associated with glucose metabolism in the third trimester in Chinese pregnant
369 women. *Diabetes Res Clin Pr*. 2019;156:107823.

370 16. Fejzo MS, Sazonova OV, Sathirapongsasuti JF, Hallgrímsdóttir IB, Vacic V, MacGibbon
371 KW, et al. Placenta and appetite genes GDF15 and IGFBP7 are associated with
372 hyperemesis gravidarum. *Nature communications*. 2018;9(1):1-9.

373 17. Petry CJ, Ong KK, Burling KA, Barker P, Goodburn SF, Perry JR, et al. Associations of
374 vomiting and antiemetic use in pregnancy with levels of circulating GDF15 early in the
375 second trimester: A nested case-control study. *Wellcome open research*. 2018;3.

376 18. Fejzo MS, Fasching PA, Schneider MO, Schwitulla J, Beckmann MW, Schwenke E, et al.
377 Analysis of GDF15 and IGFBP7 in hyperemesis gravidarum support causality.
378 *Geburtshilfe und Frauenheilkunde*. 2019;79(4):382.

379 19. Gustavsson C, Andersson Hall U, Pelanis A, Karlsson OI, Andersson L, Svedin P, et al.
380 Cerebrospinal fluid levels of insulin, leptin, and agouti-related protein in relation to BMI
381 in pregnant women. *Obesity (Silver Spring)*. 2016;24(6):1299-304.

382 20. Page-Wilson G, Reitman-Ivashkov E, Meece K, White A, Rosenbaum M, Smiley R, et al.
383 Cerebrospinal fluid levels of leptin, proopiomelanocortin, and agouti-related protein in
384 human pregnancy: evidence for leptin resistance. *J Clin Endocrinol Metab*. 2013;98:264-
385 71.

386 21. Tsai VW-W, Zhang HP, Manandhar R, Schofield P, Christ D, Lee-Ng KKM, et al.
387 GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain
388 AP/NTS. *International Journal of Obesity*. 2019;1-11.

389 22. Yang L, Chang C-C, Sun Z, Madsen D, Zhu H, Padkjær SB, et al. GFRAL is the receptor
390 for GDF15 and is required for the anti-obesity effects of the ligand. *Nature medicine*.
391 2017;23(10):1158.

392 23. Miller AD, Leslie RA. The area postrema and vomiting. *Frontiers in neuroendocrinology*.
393 1994;15(4):301-20.

394 24. Wang Q-P, Guan J-L, Pan W, Kastin AJ, Shioda S. A diffusion barrier between the area
395 postrema and nucleus tractus solitarius. *Neurochemical research*. 2008;33(10):2035-43.

396 25. Tsai VW-W, Manandhar R, Jørgensen SB, Lee-Ng KKM, Zhang HP, Marquis CP, et al.
397 The anorectic actions of the TGF β cytokine MIC-1/GDF15 require an intact brainstem
398 area postrema and nucleus of the solitary tract. *PloS one*. 2014;9(6):e100370.

399 26. Kosa P, Wu T, Phillips J, Leinonen M, Masvekar R, Komori M, et al. Idebenone does not
400 inhibit disability progression in primary progressive MS. *Multiple Sclerosis and Related
401 Disorders*. 2020;102434.

402 27. Maetzler W, Deleersnijder W, Hanssens V, Bernard A, Brockmann K, Marquetand J, et
403 al. GDF15/MIC1 and MMP9 cerebrospinal fluid levels in Parkinson's disease and Lewy
404 body dementia. *PloS one*. 2016;11(3):e0149349.

405 28. Shnaper S, Desbaillets I, Brown DA, Murat A, Migliavacca E, Schluep M, et al. Elevated
406 levels of MIC-1/GDF15 in the cerebrospinal fluid of patients are associated with
407 glioblastoma and worse outcome. *International journal of cancer*. 2009;125(11):2624-30.

408 29. Andersson-Hall U, Svedin P, Andreasson U, Gren M, Ingemansson A, Zetterberg H, et al.
409 Central and peripheral leptin and agouti-related protein during and after pregnancy in
410 relation to weight change. *Clin Endocrinol (Oxf)*. 2018;88(2):263-71.

411 30. Lindroos A, Lissner L, Sjostrom L. Validity and reproducibility of a self-administered
412 dietary questionnaire in obese and non-obese subjects. *Eur J Clin Nutr*. 1993;47:461-81.

413 31. Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model
414 assessment: insulin resistance and β -cell function from fasting plasma glucose and insulin
415 concentrations in man. *Diabetologia*. 1985;28(7):412-9.

416 32. Worth AA, Shoop R, Tye K, Feetham CH, D'Agostino G, Dodd GT, et al. The cytokine
417 GDF15 signals through a population of brainstem cholecystokinin neurons to mediate
418 anorectic signalling. *Elife*. 2020;9:e55164.

419 33. Tsai V, Zhang H, Manandhar R, Lee-Ng K, Lebhar H, Marquis C, et al. Treatment with
420 the TGF- β superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the
421 metabolic dysfunction of mice with diet-induced obesity. *International journal of obesity*.
422 2018;42(3):561-71.

423 34. Andersson-Hall U, Svedin P, Svensson H, Lonn M, Mallard C, Holmang A. Longitudinal
424 changes in adipokines and free leptin index during and after pregnancy in women with
425 obesity. *Int J Obes (Lond)*. 2020;44(3):675-83.

426 35. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. The metabolic
427 effects of GDF15 are mediated by the orphan receptor GFRAL. *Nature medicine*.
428 2017;23(10):1215.

429 36. Wischhusen J, Melero I, Fridman WH. Growth/Differentiation Factor-15 (GDF-15): From
430 Biomarker to Novel Targetable Immune Checkpoint. *Frontiers in Immunology*. 2020;11.

431 37. Strelau J, Sullivan A, Böttner M, Lingor P, Falkenstein E, Suter-Cazzolara C, et al.
432 Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic
433 factor for midbrain dopaminergic neurons in vivo. *Journal of Neuroscience*.
434 2000;20(23):8597-603.

435 38. Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the
436 protein-coding genes in the human, pig, and mouse brain. *Science*. 2020;367(6482).

437 39. Rosenfeld CS. Sex-specific placental responses in fetal development. *Endocrinology*.
438 2015;156(10):3422-34.

439 40. Rashid M, Rashid M, Malik F, Herath R. Hyperemesis gravidarum and fetal gender: a
440 retrospective study. *Journal of Obstetrics and Gynaecology*. 2012;32(5):475-8.

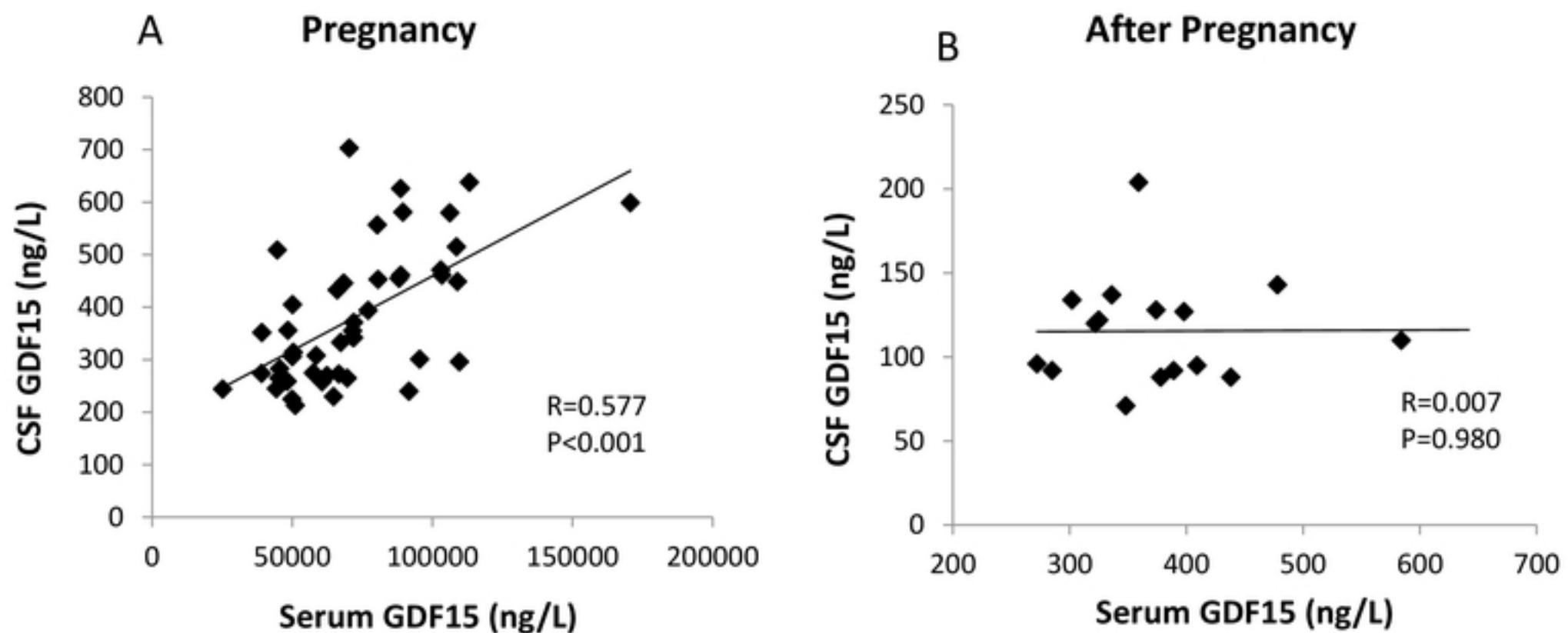
441 41. Schiff MA, Reed SD, Daling JR. The sex ratio of pregnancies complicated by
442 hospitalisation for hyperemesis gravidarum. *BJOG: An International Journal of Obstetrics*
443 & *Gynaecology*. 2004;111(1):27-30.

444 42. Askling J, Erlandsson G, Kaijser M, Akre O, Ekbom A. Sickness in pregnancy and sex of
445 child. *The Lancet*. 1999;354(9195):2053.

446 43. Källén B. Hyperemesis during pregnancy and delivery outcome: a registry study.
447 *European Journal of Obstetrics & Gynecology*. 1987;26(4):291-302.

448 44. Ladyman S, Augustine R, Grattan D. Hormone interactions regulating energy balance
449 during pregnancy. *J Neuroendocrinol*. 2010;22:805-17.

450


451

452

453

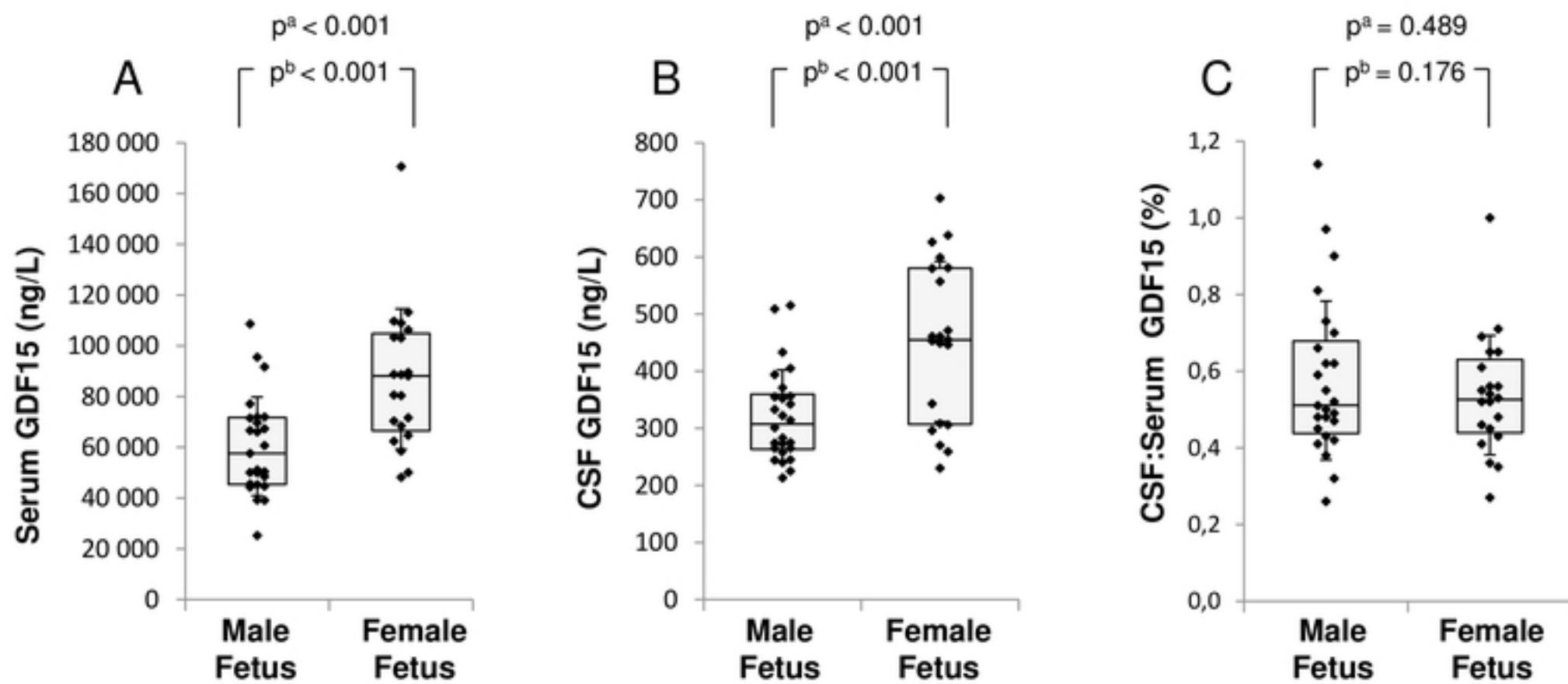

454

Figure 1.

Figure 1

Figure 2.

Figure 2