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Abstract18

The magnitude and efficiency of particulate carbon export from the ocean surface de-19

pends not only on net primary production (NPP) but also on how carbon is consumed,20

respired, and repackaged by organisms. We contend that several of these processes can21

be captured by the size spectrum of the plankton community. However, most global mod-22

els have relatively simple food-web structures that are unable to generate plankton size-23

spectra. Moreover, the life-cycles of multicellular zooplankton are typically not resolved,24

restricting the ability of models to represent time-lags that are known to impact carbon25

export and its efficiency (pe-ratio). Here, we use a global mechanistic size-spectrum model26

of the marine plankton community to investigate how particulate export and pe-ratio27

relate to the community size spectrum, community composition, and time-lags between28

predators and prey. The model generates emergent food-webs with associated size dis-29

tributions for organisms and detrital particles. To resolve time-lags between phytoplank-30

ton and zooplankton, we implement the life-cycle of multicellular zooplankton (here rep-31

resented by copepods). The simulation successfully captures observed patterns in biomass32

and energy fluxes across regions. We find that carbon export correlates best with cope-33

pod biomass and trophic level, whereas the pe-ratio correlates best with the exponent34

of the size spectrum and sea surface temperature (SST). Community metrics performed35

better than NPP or SST for both deep export and pe-ratio. Time-lags between phyto-36

plankton and copepods did not strongly affect export or pe-ratio. We conclude by dis-37

cussing how can we reconcile size-spectrum theory with field sampling.38

Plain Language Summary39

Plankton are tiny but extremely abundant aquatic organisms. Plankton lock CO240

away from the atmosphere as they sink to the deep ocean, where carbon can be stored41

for hundreds of years. However, how much carbon is locked away and for how long de-42

pends on how organisms eat, defecate, and respire. We argue that these processes are43

reflected in the size composition of the plankton community. The size composition shows44

a clear relationship between the number of organisms and their body-size. The steep-45

ness of this “size-abundance relationship” describes the balance between small vs. large46

organisms, and has been argued to reflect how energy is transferred from small to large47

organisms. Since large organisms create fast-sinking particles, the size-abundance rela-48

tionship could be used to estimate how much carbon is being stored in the deep ocean.49

Here we use a computer simulation of the global plankton community to investigate how50

the removal of carbon relates to the plankton community and the steepness of the size-51

abundance relationship. The model successfully captures patterns observed in nature.52

We found that the size-abundance relationship, together with the quantity of large zoo-53

plankton better explained carbon export than other measures typically used, such as pho-54

tosynthesis and temperature.55

1 Introduction56

Plankton contribute to the removal of atmospheric CO2 by photosynthesizing in57

the surface ocean and sinking into the deep ocean, where remineralized carbon may re-58

main sequestered for hundreds of years (Longhurst & Harrison, 1989; Ducklow et al., 2001).59

The amount of carbon exported and carbon export efficiency emerge from intricate pro-60

cesses that result in either carbon being respired in the surface ocean – and therefore not61

sequestered – or exported and respired in the deep ocean. Where and how much carbon62

is respired depends on the community composition and interactions between organisms63

who eat, respire, and excrete this carbon several times as energy flows across the food-64

web. However, due to the large amount of players and processes that alter carbon ex-65

port, global estimates of the flux out of the euphotic zone are highly uncertain, ranging66
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from ≈ 3 to 12 PgC year−1 (Dunne et al., 2005; S. Henson et al., 2011; DeVries & We-67

ber, 2017).68

Community composition and interactions between organisms drive carbon export69

and its efficiency (Ducklow et al., 2001; S. Henson et al., 2019). In general, food-webs70

that are dominated by large organisms are expected to efficiently export large amounts71

of carbon (Wassmann, 1997; Stamieszkin et al., 2015). This is because large organisms72

produce fast-sinking particles (Small et al., 1979). These food-webs tend to be short, where73

NPP efficiently reaches large organisms (Wassmann, 1997). Conversely, food-webs dom-74

inated by small organisms tend to be long, with many trophic transfers. Each trophic75

transfer results in respiration losses, and therefore long food-webs with many trophic lev-76

els result in carbon being exported inefficiently (Wassmann, 1997).77

Time-lags between phytoplankton and zooplankton are another factor that has been78

suggested to affect carbon export (Parsons, 1988; S. A. Henson et al., 2015; S. Henson79

et al., 2019). These time-lags result from the slower demographic response of multicel-80

lular zooplankton (e.g. copepods) relative to phytoplankton growth rate. Multicellular81

zooplankton need to grow in body size before being able to reproduce. This ontogenetic82

growth prevents multicellular zooplankton populations to grow as fast as phytoplank-83

ton that grow by cell division. In contrast, unicellular zooplankton (that also grow by84

cell division) are able to tightly follow phytoplankton dynamics. Grazing by unicellu-85

lar zooplankton often results in low export efficiencies, as they contribute to long food-86

webs dominated by small organisms (McNair et al., 2021), where most carbon is respired87

in the surface ocean. Hence, differences in life-history strategies between prey and preda-88

tors can alter the amount of carbon exported.89

Food-web structure, organismal size distributions, and the life cycle of organisms90

are therefore important factors contributing to carbon export and its efficiency. How-91

ever, most models that simulate carbon export have similar simple food-web configura-92

tions. These food-web configurations tend to resolve a small and a large group of each93

component of the ecosystem: phytoplankton, zooplankton, and detritus (e.g. Laws et94

al., 2000; Siegel et al., 2014; S. A. Henson et al., 2015; DeVries & Weber, 2017; Bisson95

et al., 2020). These food-webs have fixed interactions, where the small/large zooplank-96

ton eats the small/large phytoplankton (and perhaps the large zooplankton also eats the97

small zooplankton). Yet, marine systems tend to form size-spectra with complex inter-98

actions (Sprules & Munawar, 1986; Sprules & Barth, 2016; Hartvig et al., 2011). Organ-99

isms of the same size can occupy different trophic levels, or the same organism can be100

at a different trophic level depending on the environmental conditions. In addition, in101

these models, no life cycle differences are made between zooplankton groups, prevent-102

ing time-lags between prey and predators. Simple food-web configurations are convenient103

to understand some of the main interactions, but also miss several of the factors men-104

tioned above. Hence, incorporating flexible food-web configurations, life histories, and105

size-spectra in ecosystem models might help identify new processes driving carbon ex-106

port and its efficiency.107

A major factor shaping marine food-webs is body-size (Hartvig et al., 2011; An-108

dersen et al., 2016). Predator-prey interactions are size-dependent, where typically large109

eats small, and metabolic processes follow allometric relationships (Kiørboe & Hirst, 2014).110

In marine systems, the combination of these processes results in body-mass normalized111

size-spectra closely resembling power-law functions (B = κmλ), with varying coefficient112

(κ) and exponent (λ) (Sprules & Barth, 2016; Andersen, 2019). Differences in the co-113

efficient indicate differences in the bulk biomass, whereas differences in the exponent show114

changes in the balance of small vs. large organisms, reflecting how efficiently energy and115

biomass reach larger organisms (Andersen et al., 2009). Among the emergent size spec-116

tra, low exponents (steeper spectra) indicate that energy is inefficiently channeled to-117

wards large organisms (inefficient food-webs), while communities with high exponents118

(flatter spectra) efficiently channel NPP to large organisms (efficient food-webs). The119
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exponent of the size spectrum is thus a good indicator of food-web efficiency, and is there-120

fore a potentially good indicator of carbon export and its efficiency.121

Here we seek to understand how carbon export and its efficiency relate to commu-122

nity composition, food-web structure, size spectra, and trophic interactions between prey123

and predators. To do so, we use a mechanistic model of the planktonic community cou-124

pled to a 3D representation of a global ocean circulation model. We use the Nutrient-125

Unicellular-Multicellular (NUM) size-spectrum model of the planktonic community (Serra-126

Pompei et al., 2020). This framework is built upon the main processes at the individ-127

ual level: physiology and prey size preference and encounter. The life cycle of multicel-128

lular zooplankton is also resolved, differentiating them from unicellular zooplankton. The129

model yields size spectra of plankton and detrital particles, which are important to de-130

termine particle sinking rates. Overall, food-web structure and the resulting particle ex-131

port are emergent properties from biological interactions between organisms and the en-132

vironment.133

2 Methods134

The NUM framework is a mechanistic size- and trait-based model of the planktonic135

community (Serra-Pompei et al., 2020). The original model resolves the size distribu-136

tion of unicellular protists (autotrophic, mixotrophic, heterotrophic), the copepod com-137

munity, copepod fecal pellets, and one pool of nitrogen. Here, the model has been ex-138

tended to account for the size-distribution of dead cells and dead copepods, together re-139

ferred to as deadfalls. The ecological model is embedded in a 3D transport matrix that140

represents advection and mixing of the ocean physical environment (Khatiwala, 2007).141

Here, we briefly explain the model and illustrate the main concepts (Fig. 1). A detailed142

explanation of the model and its equations can be found in the supplementary material143

and in (Serra-Pompei et al., 2020).144

2.1 Ecological model145

The model is mechanistic, where we use empirically demonstrated mechanisms at146

the individual level to scale to the population, community and ecosystem levels. The model147

generates a community of protists, copepods, fecal pellets, and deadfalls (Fig. 1c). To148

obtain the community size-spectrum, the model simulates several size-classes of each com-149

partment (Fig. 1b). Protists are discretized in populations characterised by the organ-150

ism’s size. Copepods also have several populations, each characterised by the adult body-151

mass and feeding mode. Each copepod population grows in body-size as they mature152

from nauplii to adults that can reproduce (Fig. 1b). The growth from nauplii to adult-153

hood results in changes of up to two orders of magnitude in body mass. Copepods pro-154

duce fecal pellets that are proportional to the organism size. Finally, both protists that155

die through viral lysis and copepods that die through non-consumptive mortality result156

in deadfalls of sizes that depend on the size of the producer. Therefore, size is the main157

trait describing organisms and particles, and physiological rates, predator-prey interac-158

tions, and sinking rates of particles are all size-dependent.159

We consider different protist trophic strategies and copepod feeding modes. Here,160

protists are mixotrophic “generalists” (Fig. 1a); i.e. they can simultaneously photosyn-161

thesize, take up dissolved nutrients, and eat other organisms. Size resolves the emergence162

of the distinct trophic strategies across the protist size spectrum (Chakraborty et al., 2017).163

For example, since the smallest protists don’t have prey to eat and have a competitive164

advantage in nitrogen uptake, they will mainly be autotrophs. On the other hand, there165

is more prey available for large protists, and therefore they will tend to be heterotrophs.166

Intermediate sized protists will tend to be mixotrophs. Still, environmemtal conditions167

and prey availability will define the best trophic strategy for each size-class. As for cope-168

pods, we make a distinction between “active” and “passive” feeding modes. Active cope-169
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Figure 1. Diagram of the ecological model. (a) Community level processes are scaled from

rates at the individual level, which depend on resources and prey availability as well as tem-

perature and organism size. (b) A population is the combination of organisms that have the

same trait combinations, here cell mass for protists and adult body mass and feeding mode

(active vs. passive) for copepods (b). Finally, (c) the combination of all populations results in

community-level processes and the emergence of size-spectra.

pods include cruising copepods and feeding-current feeders that encompass most calanoid170

copepods. Passive feeding copepods are ambush “sit-and-wait” feeders that include some171

calanoids and most cyclopoids. Active feeding copepods constantly search for food, have172

high metabolic expenditures, and are more easily detected by predators. Conversely, pas-173

sive feeders avoid predation by waiting for their prey to come, resulting in a lower avail-174

ability of prey. These two feeding modes include the feeding strategies of most pelagic175

copepods.176

Organisms in the model interact through competition and predation (Fig. 1). Cope-177

pods feed on protists, on other copepods, and on deadfalls and fecal pellets. Protists feed178

on other protists, but also have the ability to photosynthesise and take up dissolved ni-179

trogen. Food that is not assimilated by copepods is egested as fecal pellets. The dead180

cells/bodies of organisms that die through viral lysis or other background mortality en-181

ter the deadfalls compartment. Deadfalls are remineralized and can be eaten by cope-182

pods. The sinking rate of fecal pellets and deadfalls is size-dependent. Overall, rather183

than being prescribed, the food-web configuration and resulting community trait-composition184

emerge from the environmental forcing (nitrogen, light, temperature), and the interac-185

tions of competition and predation.186
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2.2 Biomass spectrum187

From the biomass in each size-class we obtain a size distribution of the biomass.188

The normalized biomass spectrum results from dividing the biomass in each size range189

by the size-range itself. For example, the size spectrum of protists is Pk,spec = Pk/∆P ,190

and thus the unit of the biomass spectrum becomes mgC m−3
µgC−1 (where mgC m−3

191

corresponds to the biomass concentration in the water and µgC−1 to the bin width of192

the body-size range). The community size-spectrum is the sum of all the size-spectra.193

This normalization allows comparison between compartments, even when bin-sizes dif-194

fer (see Sprules & Barth, 2016 and chapter 2 of Andersen, 2019 for more explanations195

regarding size-spectra conversions).196

2.3 Ocean circulation and environmental forcing197

The NUM framework is embedded within a representation of the global ocean cir-198

culation, using the “transport matrix method” (Khatiwala et al., 2005; Khatiwala, 2007).199

The transport matrix is derived from a coarse resolution (2.8◦ × 2.8◦, 15 vertical lev-200

els), monthly-averaged simulation of the MITgcm (http://kelvin.earth.ox.ac.uk/201

spk/Research/TMM/TransportMatrixConfigs, as used in Dutkiewicz, Follows, & Parekh,202

2005). The coarse resolution results in the euphotic zone being resolved in only two or203

three layers of the transport matrix. The temperature forcing is monthly averaged. Ir-204

radiance at the ocean surface was taken from http://sites.science.oregonstate.edu/205

ocean.productivity/index.php. The data was afterwards interpolated to fit the grid206

of the transport matrix.207

2.4 Carbon export and carbon export efficiency (pe-ratio)208

The pe-ratio is defined as the fraction of depth-integrated NPP exported as sink-209

ing particles at a given depth horizon. For both carbon export and pe-ratio, the depth210

horizons used in this study are 120 m and 1080 m, which are the bottom of the second211

and the seventh layer of the transport matrix, respectively. We consider the annual and212

seasonal pe-ratio. The annual pe-ratio is the ratio between NPP and export flux, both213

integrated over a year. The seasonal pe-ratio is the daily particle flux divided by the two214

weeks averaged NPP prior to export.215

2.5 Numerics216

The model configuration is flexible and any reasonable number of state variables217

can be implemented. Here, we use 14 protists size-classes (ranging from 10−7
µgC to 10−1.5

µgC218

per cell), and 8 copepod populations (6 populations of active feeding copepods and 2 pop-219

ulations of passive feeding copepods). Copepods range from 10−3
µgC for the smallest220

nauplii to 104 µgC for the largest adult copepod. Each copepod population is divided221

into 5 size-classes going from nauplii to adults. There are 8 size classes of fecal pellets222

and 8 size-classes of deadfalls. There is one pool of dissolved nitrogen. The model was223

implemented in MATLAB and run for 15 years. In this run-time, the internal nutrient224

dynamics does not reach equilibrium. This would need much longer, unaffordable run225

times. To compensate for this, we initiate the nitrogen concentration with nitrate data226

from the World Ocean Atlas. By the end of the simulation, most model compartments227

reach equilibrium, yet a small drift is present due to the internal nutrient dynamics. The228

code can be found in the following GitHub repository https://github.com/cam-sp/229

NUMmodel global.git.230

2.6 Model testing231

Outputs of the model are compared with field data extracted from the literature.
Protists biomass is compared with nano- and microplankton data from the upper 50 m
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of the water column from three Atlantic Meridional Transects (AMT 12-14, in summer
and autumn, San Martin et al. (2006)). Copepod biomass is compared with data from
the AMT 13 transect (López & Anadón, 2008). López and Anadón (2008) used a small
mesh size and therefore included the smaller size range, which is often omitted in other
studies. To calculate the copepod biomass we multiplied the average copepod body-mass
by the abundance within each size-range of the study. Exponents of the size spectrum
can also be found in San Martin et al. (2006), where they fitted a size-spectrum to nano-
and micro-plankton together with mesozooplankton data. To compare net primary pro-
duction (NPP) we use the data-set collected in Saba et al. (2011), where NPP field data
were collected from different campaigns. We show the root mean square difference (RMSD)
of NPP for each region to compare with the values obtained in Saba et al. (2011), where
RMSD is:

RMSD =

(

1

N

N
∑

i=1

[log10(NPPm)− log10(NPPd)]
2

)1/2

,

where N is the number of data points, NPPm the modeled NPP, and NPPd the data232

values.233

For particle export, we use the data compiled in Le Moigne et al. (2013) and ex-234

tended in S. Henson et al. (2019). In this data-set, the particle export is estimated be-235

tween 100-200 m depth by the 234Th technique. Data points of export that fell within236

the same bin and day of the transport matrix were averaged, and the variability was shown237

with error bars in the figure. The same procedure was done for the NPP data. Finally,238

we do not compare modelled pe-ratios with the ones derived in other studies. In other239

studies pe-ratios are often obtained by using NPP models (from remote sensing) and dif-240

ferences might emerge due to model differences. We therefore stick to validate NPP and241

export separately without checking pe-ratios from other studies.242

3 Results243

We start by describing the general trends of biomass and energy fluxes in the food-244

web while comparing them with data. Next, we investigate the drivers of food-web con-245

figurations and associated particle export and pe-ratio. All the fluxes discussed are yearly-246

integrated, except in the last section (3.6) where we consider seasonality.247

3.1 Biomass248

Protist and copepod biomass follow the same global trend (Fig. 2): high in tem-249

perate and sub-polar regions, and lowest in oligotrophic gyres. Compared with latitu-250

dinal field-data of nano- and microplankon biomass (Fig. 3), the model falls within ob-251

served biomass ranges in the AMT 12 transect (Fig. 3a), and in the northern hemisphere252

of the AMT 13 transect (Fig. 3b). However, in the latter transect, the model overesti-253

mates biomass in the southern hemisphere. This overestimation is probably due to the254

lack of iron limitation in the model. The model also overestimates protist biomass in the255

AMT 14 transect despite following well the trend (Fig. 3c). However, the biomass data256

from this transect is much lower than in the other two transects. Overall, despite the257

overestimation in some regions, modeled protist biomass follows well the general trend258

and magnitude of the data.259

Copepod biomass trends match well the data from the AMT transect (Fig. 4), de-260

spite an overestimation between latitudes -30 and -10 (stations 22 to 18). The latter fol-261

low the protist biomass trend that was also overestimated in those regions during Oc-262

tober. Relative copepod biomass within body-size ranges is somewhat constant across263

latitudes, with a dominance of small copepods in most regions (Fig. 4). The model sim-264

ulates more small copepods than observed. Nevertheless, large copepods are present in265

most regions, including low productive regions, both in the data and the model.266
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Figure 2. Model predictions: yearly averaged biomass of (a) protists and (b) copepods. (c)

average trophic level of active copepods averaged over the year (trophic level is calculated as ex-

plained in the SI section B). (d) Yearly averaged exponent of the community size-spectrum (see

figure D.1 in the SI explaining how we fit the size spectrum and obtain the parameters).

3.2 Size spectrum267

The model produces a community size spectrum (Fig. 5). We fitted a power-law268

function (Bsp = κmλ) to the normalized community biomass spectrum to obtain the269

coefficient (κ) and the exponent (λ). The yearly averaged exponent varies between −1.3270

and −0.7. the exponent is always negative and always close to the theoretical value of271

−1 (Andersen & Beyer, 2006). The lowest values (steeper slopes) appear in oligotrophic272

regions, and the largest values in productive regions (Fig. 2). Exponents obtained from273

field data are also close to −1 (Fig. 6). Our model fits well data trends at low latitudes,274

but overestimates the slope at high latitudes. The data yields lower exponents at lat-275

itudes close to −50 and 50, particularly during the summer cruises (AMT 12 and 14, Fig. 6a,c).276

For the southern regions this could again be explained by iron limitation. For the north-277

ern regions, a possible reason is the presence of copepods that perform seasonal migra-278

tions, which we do not have in the model. In this case, these copepods would be present279

earlier in the year and deplete the system faster than in our model. In any case, both280

the data and model show an exponent always close to the theoretical prediction of −1.281

Changes in the exponent seem to be driven by the presence/absence of the small-282

est protists size-classes and the largest copepods (Fig. 5). Some parts of the size spec-283

trum, however, do not fit well a power-law function (e.g. Fig. 5b,c), particularly within284

the protists size-range. This is due to a plankton bloom, where a specific phytoplank-285

ton size group dominates the system. This highlights that a wide range of body-sizes is286

needed to properly fit a size-spectrum.287
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Figure 3. Nano- and micro-plankton biomass from the model (continuous lines) versus data

(markers), both integrated over the upper 50 m. Biomass data is from three Atlantic Meridional

Transects (AMT): (a) AMT 12 (May-June 2003), (b) AMT 13 (September-October 2003), and

(c) AMT 14 (April-June 2004). Left panel shows stations where the data was collected. Data

extracted from San Martin et al. (2006).

3.3 Food-web structure and trophic level288

Food-web structure and trophic levels vary across regions and time (Fig. 2c and289

7). The average trophic level of active copepods is highest in oligotrophic regions (Fig. 2c),290

where it is close to level 4, indicating long food-webs. The biomass of active copepods291

in these oligotrophic regions is fairly low. In temperate and sub-arctic regions, the av-292

erage trophic level of active copepods decreases to between 2 and 3 (Fig. 2c and 7). This293

occurs when the size of primary producers increases (e.g. Fig. 7b,c versus a). Trophic294

levels close to 2 indicate that copepods feed mostly on primary producers, efficiently trans-295

ferring energy to large organisms that produce fast-sinking particles.296

Copepods of different sizes can have similar trophic levels (Fig. 7b,c). Small pas-297

sive copepods often have the same trophic level as large active copepods. This is due to298

the lower predator-prey mass ratio of passive feeding copepods relative to active feed-299

ers. Hence, communities dominated by passive feeders are less efficient than communi-300

ties dominated by active feeders at transferring energy to large organisms and export-301

ing carbon.302

3.4 Primary production, carbon flux and export efficiency303

Yearly averaged NPP is high in temperate and equatorial regions and lowest in the304

oligotrophic gyres (Fig. 8a). The annual global NPP is 62 PgC year−1, within the range305

of global NPP estimated by remote sensing (between 36 and 78 PgC year−1, Carr et al.,306

2006). Compared to field data (Fig. 9), our model performs well in some regions such307

as the North Atlantic and BATS but does not perform well in the Southern Ocean, where308

it can underestimate NPP by up to an order of magnitude. This may be due to the coarse309
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Figure 4. Copepod biomass along the Atlantic Meridional Transect for different body-size

ranges (September-October). (a) Model estimates. (b) Data from López and Anadón (2008),

obtained by multiplying the abundance by the average body-mass within each size range from

field data. The smallest size-class combines adult copepods and nauplii. For easier comparison

between simulated and observed data, the dashed line in panel b is the total copepod biomass

from the model (from panel a). Left panel shows the stations where the data was collected in

López and Anadón (2008).

resolution of our physical model, which results in low light levels in the surface layers.310

Also, NPP data in the Southern Ocean are large and variable, possibly due to some of311

the data being collected in a frontal zone. Still, the RMSD values in most regions are312

similar to or lower than the ones obtained from other NPP models (Saba et al., 2011)313

(note that the comparison might sometimes be imprecise due to data averaging in some314

bins of the transport matrix).315

Global carbon export is 7.4 PgC year−1 at 120 m (and 2.0 PgC year−1 at 1080 m),316

which is within recent estimates of global carbon export (6.6 PgC year−1 in Siegel et al.317

(2014) and 9.1 PgC year−1 in DeVries and Weber (2017)). Yearly integrated carbon ex-318

port is highest in tropical and in temperate regions (Fig. 8b and c). Compared to field319

data of 234Th measured at depths between 80 and 150 m (Fig. 9b), the spread is rather320

large. The yearly pe-ratio at 120 m ranges between ≈0 in oligotrophic regions to more321

than 0.4 in polar regions, and pe-ratio at 1080 m is below 0.1 in most regions except in322

polar regions, where it reaches almost 0.2 (Fig. 8d,e).323

The composition of the sinking material varies across regions and depth (Fig. 10).324

Deadfalls dominate export at 120 m in oligotrophic regions, in the North Atlantic, and325

in the Southern Ocean (Fig. 10a). Elsewhere, deadfalls and copepods fecal pellets con-326

tribute similarly to the surface carbon flux (Fig. 10b,c). However, deep export (1080 m),327

is dominated by fecal pellets produced by large copepods, except in the Southern Ocean328

and the North Atlantic. In these regions, dead cells still contribute 60% of the deep ex-329

port. In conclusion, the composition of the carbon export is highly variable close to the330

surface, but is mainly dominated by large fecal pellets below 1000 m.331
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Figure 5. Normalized biomass spectra of the community at different times of the year in

the North Atlantic: (a) winter, (b) spring, (c) summer, (d) autumn. Protists (yellow), active

copepods (dark blue), passive copepods (light blue). Biomass spectra of the community (grey,

we multiplied it by 100 for better visualisation), and least square fit (grey dashed line). To calcu-

late the community spectrum, the community was divided into 24 logarithmic evenly distributed

mass groups, and therefore the resolution is coarser than the spectrum within each group. The

community spectrum does not include detritus.

3.5 Relation between export, pe-ratio and community metrics332

To explore the relations between community metrics and carbon export, we per-333

formed a correlation analysis of export and pe-ratio at 120 m and 1080 m with the ex-334

ponent of the size spectrum, the average trophic level of active copepods, and copepod335

biomass. We also compared the performance of these community metrics with other more336

commonly used metrics such as NPP and sea surface temperature (SST, Fig. 11).337

The exponent of the size spectrum correlates strongly with pe-ratio at all depths338

(Fig. 11k,p), and with surface export (Fig. 11a). Large exponents (“flatter” spectra) re-339

sult in high and efficient export, whereas low exponents (steeper spectra) result in low340

and inefficient export. That is because the exponent of the size spectrum provides in-341

formation on how efficiently energy reaches large organisms that are efficient carbon ex-342

porters.343

Copepod biomass correlates well with carbon export (Fig. 11b,g). This is not sur-344

prising, since in the model, copepods produce faster-sinking particles relative to protists.345

Due to the relative constant size-distribution of copepods, an increase in copepod biomass346

also incurs an increase in large copepods that contribute the most to deep export. On347

the other hand, surface pe-ratio is mainly unrelated to copepod biomass (Fig. 11l). In348

this case, there is a lower bound of copepod biomass until which pe-ratio and copepod349

biomass are uncorrelated, and after this threshold is surpassed, any kind of pe-ratio can350

be found. This effect is smoothed for the deep pe-ratio, where there is again a stronger351

relationship with copepod biomass (Fig. 11q).352
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Figure 6. Exponent of the size spectrum from the model (continuous lines) and from field

samples (markers). Data is from three Atlantic Meridional Transects (AMT): (a) AMT 12

(May-June 2003), (b) AMT 13 (September-October 2003), and (c) AMT 14 (April-June 2004),

extracted from San Martin et al. (2006). Stations can be found in figure 3 of this paper.
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Figure 7. Food-webs emerging from the model shown as trophic levels (y-axis) vs. body-mass

(x-axis) for three latitudes (21, 32, 52) in the North Pacific. Circle size (area) represents biomass

relative to a common value for all panels. Lines connecting circles show the strength of the

trophic interaction (i.e. predation, smallest values have been removed for clarity). Trophic level

is calculated as explained in SI section B. Decimal trophic levels can occur due to a correction to

account for mixotrophy. This also results in some large protists having a lower trophic level than

their prey.

The average trophic level of active copepods has the strongest (negative) correla-353

tion with carbon export (Fig. 11c,h). The pe-ratio shows no clear relation with trophic354

level (Fig. 11m,r), similar to the relationship described for copepod biomass.355

NPP shows two trends with carbon export (Fig. 11d,i), one for low latitudes and356

another for high latitudes. On the other hand, NPP correlates negatively with pe-ratio357

at higher latitudes and has no clear relation at low latitudes (Fig. 11n). The variabil-358

ity increases for both deep export and deep pe-ratio (Fig. 11j,s), weakening the relation-359

ship between the two variables.360

Finally, temperature shows no clear relation with export (Fig. 11e,j), but is strongly361

related to pe-ratio (Fig. 11o,t).362

Overall, at the annual level, carbon export correlates best with total copepod biomass363

and the average trophic level of active copepods. On the other hand, pe-ratio correlates364
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Figure 8. Yearly integrated (a) NPP, (b) particle export at 120 m, (c) particle export at

1080 m, (d) pe-ratio at 120 m, (e) pe-ratio at 1080 m.

best with the exponent of the size spectrum and with temperature. Finally, NPP was365

strongly and negatively related to the surface pe-ratio in productive systems only. For366

both SST and NPP the effect weakened for deep pe-ratio.367

3.6 Seasonality and time-lags368

Until now we have considered yearly integrated rates. However, the dynamics of369

export and its efficiency vary over the season. We examine this in three regions with dif-370

ferent dynamics: North Pacific, North Atlantic and an oligotrophic gyre. The North Pa-371

cific has large copepods throughout the year (Fig. 12d) and a gradual increase of phy-372

toplankton biomass and NPP during spring (Fig. 12g). The North Atlantic has a phy-373

toplankton bloom almost twice as intense as in the North Pacific (Fig. 12h) and cope-374

pods appear relatively late in the season (Fig. 12e). Finally, the oligotrophic gyre has375

a very low copepod biomass and is dominated by a microbial food-web (Fig. 12c,f).376

The different dynamics between the North Atlantic and North Pacific emerge from377

the differences in winter phytoplankton biomass due to deep mixing. In the North Pa-378

cific, copepods are sustained by protists biomass during the winter, and are able to con-379

trol the phytoplankton spring bloom, which is therefore not very pronounced. There is380

still a time-lag between copepods and protists, but shorter compared to the one in the381

North Atlantic. The constant presence of large copepods results in carbon export be-382

ing dominated by fecal pellets, even during the spring bloom. The pe-ratio is high and383

follows the dynamics of export, particularly just after the bloom when NPP decreases384

while export is still high.385

In the north Atlantic, copepod biomass is lower because copepods need to recover386

from the deep winter mixing. The delay between the spring bloom and peak biomass is387

also longer, and therefore most export is dominated by dead protists in spring during388
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Figure 9. Model vs. data of (a) NPP and (b) carbon export. Colors in panel a show dif-

ferent ocean regions: Southern Ocean (SO, RMSD=0.53), Hawaii Ocean Time-series (HOT,

RMSD=0.28), Bermuda Atlantic Time-series Study (BATS, RMSD=0.22), eastern North Atlantic

(NA, RMSD=0.27), and Arabian Sea (Arab, RMSD=0.20). Colors in panel b represent latitude.

Error bars appear for data that fall within the same day and bin in the transport matrix, where

the shown data point is the average. NPP data was obtained from the data-set compiled in Saba

et al. (2011), and carbon export data from the data-set compiled in Le Moigne et al. (2013),

extended in S. Henson et al. (2019). See figures D.2 and D.3 in the Supporting Information for

sampling locations.

and after the bloom (Fig. 12k). In this case, the pe-ratio at 120 m is very high just af-389

ter the bloom, but is heavily attenuated due to the slower sinking rates and therefore390

does not result in a high pe-ratio at 1000 m. Hence, time-lags affect the composition of391

the export flux, but not necessarily the pe-ratio. Ultimately the pe-ratio is defined by392

total export, the fast dynamics of NPP relative to export (e.g. after the bloom), and com-393

munity composition, the latter defining the sinking rates of particles.394

The exponent of the size spectrum follows surface pe-ratio trends, but does not nec-395

essarily follow the trend of deep pe-ratio (Fig. 12p-u). It thus seems that pe-ratio cor-396

relates well with variation of the exponent across regions but not necessarily over time397

within a specific region.398

4 Discussion399

We sought to understand how carbon export and its efficiency relate to the size spec-400

trum and community composition of the planktonic community. These metrics included401

the exponent of the size spectrum, trophic level of organisms, and copepod biomass. We402

also wanted to understand how time-lags between primary producers and copepods af-403

fected export and its efficiency. The analysis was made with a mechanistic trait-based404

model that resolves the size structure of both the planktonic community and the sink-405

ing detritus. Food web structures and size spectra emerge from the model rather than406

being prescribed. Simulated biomass of copepods and protists follow well-observed trends407

from field data. The emergent food-webs and size-spectra result in differences in carbon408

export and its efficiency.409

The main results are: (i) carbon export correlates best with copepod biomass and410

the average trophic level of active copepods, whereas (ii) pe-ratio correlates best with411

the exponent of the size spectrum and SST. (iii) These community metrics correlate bet-412
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Figure 10. Contribution to total export from dead cells (a,d), fecal pellets from small cope-

pods (b,e), and from large copepods(c,f) at 120 m (upper panels) and 1080 m (lower panels).

Small copepods are below 1mm.

ter with deep export and deep pe-ratio than commonly used metrics, such as NPP or413

SST. Finally, (iv) time-lags between phytoplankton and copepods change the composi-414

tion of the material exported, but do not strongly affect export or pe-ratio.415

4.1 Can we use size spectra to estimate carbon export and its efficiency?416

The modelled carbon export correlates better with the exponent of the size spec-417

trum than with NPP or temperature. An interesting avenue could therefore be to use418

this metric to estimate carbon export. However, measuring a size-spectrum in the field419

is not easy, as it requires sampling organisms/particles that range several orders of mag-420

nitude in mass. Therefore, many studies focus on sampling only one part of the size spec-421

trum (e.g. phytoplankton). Dynamics of specific size-groups of unicellular organisms can422

quickly vary in time, for example, during a phytoplankton bloom. In such conditions,423

a power-law will not fit the spectrum when only the phytoplankton size-range is consid-424

ered (Fig. 5b,c). The irregularities observed in size-spectra (often referred as “domes”)425

are common (Sheldon & Parsons, 1967). These domes reflect other properties of the food-426

web, such as changing top- vs. bottom-up control within a size range (Rossberg et al.,427

2019). Thus, size-spectrum theory applies only when fitted across a wide size-range of428

organisms.429

Field-sampling over a large size range is possible (Lombard et al., 2019), but the430

space and time resolution of these measurements is scarce and the collection demand-431

ing. An approach that would overcome this limitation is to get proxies of the size-spectrum432

via remote sensing (Kostadinov et al., 2009), however this approach still needs to be val-433

idated. If sampling plankton size-spectra in the field becomes easier to achieve, or if good434

proxies of the size-spectrum are developed, size-spectra may become a powerful tool to435

quantify ecosystem processes such as trophic transfer efficiency to large organisms (such436

as fish) and carbon export to the deep ocean.437
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Figure 11. Correlation plots for export and pe-ratio at 120 m and 1080 m against the ex-

ponent of the size-spectrum (a,f,k,p), copepod biomass (b,g,l,q), average trophic level of active

copepods (c,h,m,r), NPP (d,i,n,s), and SST (e,j,o,t). Rates are yearly integrated, the rest is

yearly averaged. Numbers in the upper corner of each panel show the Spearman correlation

coefficient.

4.2 Export, pe-ratio, and time-lags438

Time-lags between primary production and peak copepod biomass do not affect439

carbon export or its efficiency per-se. They mainly affect the composition of the mate-440

rial being exported. Some studies suggest that strong trophic coupling between phyto-441

plankton and their predators can reduce export and its efficiency due to trophic trans-442

fer losses and higher remineralization rates in the surface ocean (Parsons, 1988; S. Hen-443

son et al., 2019). These studies often assume the predator to be mesozooplankton. How-444

ever, here, we show that deep export is maximal when copepod biomass is high. Con-445

versely, dominance by protists during spring blooms results in large surface export, but446

not deep export. We expect this latter result to change if formation of detrital aggre-447

gates was modelled. As aggregates become larger, their sinking rates increase. This may448

particularly happen during diatom blooms, potentially resulting in a high export and449

pe-ratio in “uncoupled systems”. Overall, whether export and its efficiency are high or450

low in coupled or uncoupled systems depend on how efficient prey are at exporting car-451

bon relative to their predators.452

Another result from the model is that surface export often lags NPP, and deep ex-453

port does not follow NPP dynamics. These differences in timing between export and NPP454

complicates the interpretation of pe-ratio values. For instance, the pe-ratio at surface455

follows carbon export, whereas the deep pe-ratio is not necessarily higher when deep ex-456

port is high. Rather, the deep pe-ratio increases when NPP decreases. These differences457

in rate of change of export end NPP have been shown to give different pe-ratios depend-458

ing on how NPP is averaged (Laws & Maiti, 2019). Total export has a more intuitive459

dynamic than pe-ratio, since pe-ratio is a function of two rates that vary at different time-460
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Figure 12. Seasonal dynamics in the North Pacific, North Atlantic and an oligotrophic re-

gion. (a,b,c) biomass of protists, (d,e,f) biomass of copepods. (g,h,i) NPP, (j-o) export at

120 m and at 1080 m, (p-r) pe-ratio at 120 and 1080 m and (s-u) exponent of the normalized

size-spectrum. Note different scales on the y-axis within columns.

scales and where the uncertainties of both measurements are propagated. Thus, estimat-461

ing total export may be more useful than attempting to estimate the pe-ratio.462

4.3 Contribution by copepods to carbon export463

Deep export in most regions is dominated by fecal pellets of large copepods, even464

in oligotrophic regions. This result agrees with other studies that found copepod size to465

be an important driver of carbon export (Stamieszkin et al., 2015). This is, however, not466

necessarily supported by other studies. Using field data, a recent study found regimes467

of low carbon export in regions where macrozooplankton biomass and bacteria were high468

(S. Henson et al., 2019). Other studies argue that copepods can strongly attenuate the469

carbon flux by fragmenting detrital particles (Wexels Riser et al., 2007, 2010; Cavan et470

al., 2017; Mayor et al., 2020). We consider consumption of detritus by copepods, but not471

a reduction in particle size due to particle fragmentation. Therefore, in the model, losses472

by simple trophic transfer are not enough to attenuate the flux.473
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4.4 Comparison with other models and model limitations474

Our model fits biomass data well, but less so in terms of NPP and carbon export.475

Other models which are optimised with observations perform better at estimating these476

rates (Stock et al., 2014; Siegel et al., 2014; DeVries & Weber, 2017), but provide less477

mechanistic detail. Still, in terms of NPP, the variation found for each region is lower478

or similar to the values found in 21 NPP models (Saba et al., 2011), suggesting that the479

model performs relatively well. Similarly, our global estimate of carbon export at 100 m,480

7.4 PgC year−1, falls within the range of estimated values of some of the most recent stud-481

ies (6.6 PgC year−1 in Siegel et al. (2014) and 9.1 PgC year−1 in DeVries and Weber (2017)).482

It should also be kept in mind that the data used to validate models have high uncer-483

tainties. We used a global data-set where carbon export by sinking particles was mea-484

sured via the 234Th method. However, due to adsorption of 234Th on filters and pref-485

erential collection of suspended versus sinking particles, this method can underestimate486

the carbon flux by approximately 2-fold in some regions (Quay, 1997; Buesseler et al.,487

2000). Moreover, the variability of export in each region is high, and often the standard488

deviations in each region are close or larger than the mean value (Le Moigne et al., 2013).489

Hence, given the uncertainty in NPP and export observations, it is hard to reliably val-490

idate model performance.491

Despite the high ecological complexity of our model, the biogeochemistry is sim-492

plistic. We use nitrogen as the sole nutrient in the system, whereas most global mod-493

els consider other limiting nutrients such as iron, phosphorus or silica (S. Henson et al.,494

2011; DeVries & Weber, 2017; Ward et al., 2018), which can be important limiting fac-495

tors in some ocean regions. Therefore the model does not resolve iron limited regions (e.g.496

the southern ocean). In addition, the coarse resolution of the transport matrix prevented497

us from obtaining carbon export just below the photic layer, which has been recommended498

in recent studies (Buesseler et al., 2020). Instead we measured it at fixed depths (120 m499

and 1080 m) probably causing some biases when comparing carbon export across regions.500

Protists in the model are not separated into functional groups. Instead, the trophic501

strategy (autotrophy, mixotrophy or heterotrophy) emerges as a function of cell size and502

the environment. This configuration still captures the main dynamics observed in na-503

ture: a dominance of small primary producers in oligotrophic regions, larger primary pro-504

ducers in more productive regions, and the constant presence of unicellular zooplank-505

ton and the microbial food-web. This simplification becomes an advantage as it captures506

complex dynamics while being based on a relatively low set of parameters and processes.507

Other organisms that may contribute significantly to carbon export but are not in-508

cluded in our model are gelatinous zooplankton (Luo et al., 2020). The inclusion of these509

organisms would probably increase export due to (i) their large bodies that can quickly510

sink to the bottom, and (ii) their large predator-prey mass ratio. Large predator-prey511

mass ratios generate “shortcuts” in the food-web, where energy from very small organ-512

isms is efficiently transferred to larger ones, further enhancing carbon export and its ef-513

ficiency. Some recent global models now include gelatinous zooplankton (Heneghan et514

al., 2020), but these organisms still lack in most (all?) global biogeochemical models.515

Finally, we do not represent diel and seasonal vertical migrations of zooplankton.516

Vertical migration play an important role in the survival and life cycle of copepods, and517

in carbon export (Jónasdóttir et al., 2015; Hansen & Visser, 2016; Steinberg & Landry,518

2017; Pinti et al., 2021). Implementing vertical migrations may be done through opti-519

misation (e.g. Brun et al., 2019; Pinti et al., 2019; Pinti & Visser, 2019). However, im-520

plementing behaviour together with population dynamics is challenging, especially if con-521

sidered at the global scale. Implementing the active export pathway is urgently needed,522

since other modelling studies have suggested that the active carbon flux may have been523

responsible for increasing the efficiency of the biological carbon pump (Fakhraee et al.,524

2020).525
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5 Conclusion526

We have investigated how carbon export and its efficiency relate to the size spec-527

trum and community composition of the planktonic community. We have shown that528

carbon export correlates well with copepod biomass and trophic level, and that pe-ratio529

correlates best with the exponent of the size spectrum and temperature. Community met-530

rics correlate better with deep export and deep pe-ratio than SST and NPP. Time-lags531

between phytoplankton and zooplankton do not necessarily affect carbon export or its532

efficiency. Our framework captures complex community dynamics scaled from simple individual-533

level processes. The model also successfully captures observed inter-biome differences in534

plankton biomass and rates. This study has shown the potential of more complex eco-535

logical models to explore and understand ecosystem functions and biogeochemical pro-536

cesses at the global scale.537
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