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Abstract  17 

As climate change shifts marine species distribution and abundance worldwide, projecting local 18 

changes over decadal scales may be a valuable adaptive strategy for managers and industry. In 19 

Iceland, one of the top fish-producing nations in the world, long-term monitoring enables model 20 

simulations of groundfish species habitat distribution. We used generalized additive models to 21 

characterize suitable thermal habitat for 47 fish species in Iceland’s waters. We then projected 22 

changes in thermal habitat by midcentury with an ensemble of five general circulation models 23 

from the Coupled Model Intercomparison Program 6 (CMIP6) and NOAA (CM2.6) and two 24 

scenarios (SSP 5-8.5 and SSP 2-4.5).  We find a general northward shift in centroids of habitat 25 

distribution, with variable regional dynamics among species. Species thermal affinity was the 26 

most significant predictor of future habitat change, with warmer-water species more likely to see 27 
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projected increases in suitable habitat. We present spatially explicit habitat change projections 28 

for commercially and culturally important species. These projections might serve as guideposts 29 

to inform long-term management decisions about regional and species-specific suitability for 30 

Iceland’s fisheries, infrastructure investment, and risk evaluation under climate change. 31 

 32 

Introduction 33 

Climate change is shifting marine species distribution and abundance worldwide 34 

(Parmesan, 2006; Poloczanska et al., 2013). These shifts are projected to continue as climate 35 

change intensifies (Molinos et al., 2016), with complex and unevenly distributed social-36 

ecological consequences (Golden et al., 2016; Lam et al., 2016; Pinsky et al., 2018; Sumaila et 37 

al., 2011). Alongside the urgent need for bold action to reduce greenhouse gas emissions is the 38 

need for adaptive management approaches to maintain desired fishery outcomes under changing 39 

and novel conditions. Researchers project that implementing management that accounts for 40 

changes in fish species productivity and distribution can improve outcomes for fishery catches 41 

and profits under most climate scenarios (Free et al., 2020; Gaines et al., 2018). For fisheries 42 

with adequate scientific and technical capacity, conducting forecasts and incorporating future 43 

climate scenarios into management decisions is a key aspect of climate-adaptive management 44 

(Free et al., 2020; Holsman et al., 2019; Karp et al., 2019; Pinsky & Mantua, 2014). While 45 

seasonal and interannual forecasts may be of most immediate use for management and industry, 46 

climate-scale projections allow managers and practitioners to evaluate risk, plan for future losses 47 

or gains in suitability, and inform longer term decision-making processes such as national 48 

legislation or international negotiations (Hobday et al., 2018; Holsman et al., 2019).  49 
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In Iceland, the economic and cultural importance of fisheries and the sophistication of its 50 

management and scientific systems mean that projecting future change in fish stocks could be a 51 

key priority for achieving climate-adaptive fisheries (Kleisner et al. in press). Consistently 52 

ranking among the top twenty marine fish capture producing countries worldwide (FAO, 2020), 53 

Iceland is located in a highly productive transition zone between warm Atlantic and cold Polar 54 

currents. The interactions of these currents create high spatial and temporal oceanographic 55 

variability within Iceland’s waters, and the ecosystem is highly sensitive to their dynamics 56 

(Astthorsson et al., 2007). Environmental conditions have fluctuated over the past century in 57 

relation to multidecadal oscillations and local atmospheric dynamics with profound ecological 58 

and economic consequences: Relatively warm periods were associated with fishery booms that 59 

drove the development of Iceland’s commercial fisheries and economy, and cooler-water periods 60 

(in combination with overfishing) associated with devastating fishery crashes (Astthorsson et al., 61 

2007; Ogilvie & Jónsdóttir, 2000; Valtýsson & Jónsson, 2018).  62 

Recently, a warm anomaly from the mid-1990s to late 2010s drove substantial changes in 63 

fish abundance and distribution around Iceland, including documentation of new species and 64 

increases of warmer-water species (Astthorsson & Palsson, 2006; Valdimarsson et al., 2012; 65 

Valtýsson & Jónsson, 2018). Particularly notorious was the abrupt expansion of Atlantic 66 

mackerel (Scomber scombrus) into Iceland’s waters (Olafur S. Astthorsson et al., 2012; 67 

Olafsdottir et al., 2019) that quickly became an economic boon for Iceland, but led to 68 

international political conflict over the fishing of the stock (Spijkers & Boonstra, 2017). 69 

Researchers also noted significant shifts in groundfish distribution and community assemblage, 70 

with heterogeneous regional trends associated with oceanographic conditions and the influence 71 
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of coastal fjord systems on predator-prey dynamics (Jónsdóttir et al., 2019; Stefánsdóttir, 2008; 72 

Stefánsdóttir, 2019). 73 

Given these past temperature-related changes, a logical next step might be to project how 74 

future change might affect fish species abundance and distribution. Global studies have projected 75 

that Iceland, like other high-latitude countries, could be a climate <winner,= potentially 76 

experiencing increased biodiversity and fisheries catch potential as warmer waters move fish 77 

poleward (Cheung et al., 2009; Molinos et al., 2016). However, given the highly local and 78 

variable dynamics of Iceland climatic conditions and differing ecological, economic, and cultural 79 

importance of its fish species, higher-resolution projections indicating specific species and 80 

regional dynamics could be more applicable for fisheries managers and industry. Campana et al. 81 

(2020) used Iceland bottom trawl survey data to model fish habitat and projected that a uniform 82 

1℃ increase in bottom temperature would drive a general northward shift in habitat distribution, 83 

with significant variation across species and quadrants of the exclusive economic zone (EEZ). 84 

The authors noted a high level of regional and temporal variation in past warming trends and 85 

warned that future warning is unlikely to be homogenous nor linear.  86 

Iceland’s fishery managers have collected standardized fisheries independent and 87 

fisheries dependent data since the 1980s, allowing for detailed analyses of species abundance and 88 

distribution in relation to environmental conditions that can inform future projections. These 89 

long-term monitoring data are ideal for a common but data-intensive approach to anticipating 90 

regional or global species distribution shifts: pairing statistical models of species suitable habitat 91 

with global climate model outputs (Stock et al., 2011). Given the uncertainty inherent to 92 

projecting both the dynamics of the global climate and the human actions and policies that 93 

influence those dynamics, using an ensemble of climate models across different scenarios is 94 
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advised (Morley et al., 2018, 2020). Here we use long-term fisheries independent trawl data and 95 

an ensemble of the newest generation of global climate models from the Coupled Model 96 

Intercomparison Project (CMIP6) to project how future climate change will affect suitable 97 

thermal habitat of 47 species in Iceland’s waters at a 0.25° x 0.25° resolution. These spatially 98 

explicit climate projections can more directly inform Iceland’s fishing industry and fisheries 99 

management’s needs for adapting to climate-driven changes in fish distribution, and illustrate to 100 

other nations and regions how these projections might be considered in long-term climate-101 

adaptive management.  102 

 103 

Methods 104 

Projecting future temperature changes in Iceland’s waters 105 

We used a suite of global climate models to project future ocean surface and bottom 106 

temperatures in Iceland’s waters, including a high-resolution global climate model (CM2.6 from 107 

the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, 108 

NOAA GFDL) and four coarser global climate models from the Coupled Model Intercomparison 109 

Project 6 (CMIP6). Researchers have found that CM2.6 (10-km ocean resolution) resolves the 110 

ocean circulation in the Northwest Atlantic more realistically than coarser models (Saba et al., 111 

2016). However, this model has a cold bias in sea surface and bottom temperature in Iceland’s 112 

waters in the historical period from 1982-2012, so we selected the highest resolution CMIP6 113 

models that have a range of cold and warm biases to complement the higher resolution CM2.6. 114 

These were GFDL CM4 (25-km ocean resolution) from the National Oceanic and Atmospheric 115 

Administration Geophysical Fluid Dynamics Laboratory, U.S.A; CNRM-CM6 (25-km ocean 116 
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resolution) from the Centre National de Recherches Meteorologiques and Centre Europeen de 117 

Recherche et de Formation Avancee en Calcul Scientifique, France; HadGEM3-GC31 (100-km 118 

ocean resolution) from the Met Office Hadley Centre, U.K.; and IPSL-CM6A-LR (100-km 119 

ocean resolution) from L’Institut Pierre Simon Laplace, France. We downloaded CMIP6 data 120 

using the xarray package (version 0.15.1) in Python (version 3.7.6) (Hoyer & Hamman, 2017).  121 

The CMIP6 models use future scenario simulations that combine the Representative 122 

Concentration Pathways (RCPs) of radiative forcings used in the Intergovernmental Panel on 123 

Climate Change’s Fifth Assessment Report (IPCC AR5) with Shared Socioeconomic Pathways 124 

(SSPs) of societal development (Eyring et al., 2016; O’Neill et al., 2017). We examined two 125 

future scenarios for the years 2015-2100: SSP 2-4.5, a <middle of the road= scenario where 126 

countries continue along historical social, economic, and technological development trajectories 127 

as they strive toward sustainable development goals; and SSP 5-8.5, a <fossil-fueled 128 

development= scenario where accelerated economic growth emphasizes fossil fuels (O’Neill et 129 

al., 2017). The CM2.6 projects an idealized transient climate response (1% per year increase in 130 

atmospheric CO2) simulation over 80 years, where the last 20 years are comparable to years 131 

2061-2080 of SSP 5-8.5. We thus focused on this 2061-2080 period for our future projections.  132 

We standardized the models using the <delta method,= where we calculated the difference 133 

between each model’s monthly projections and modeled historical control (mean of 1985-2015), 134 

and then added these deltas to a standard climatology (Anandhi et al., 2011; Kleisner et al., 2017; 135 

Morley et al., 2018). We used a sea surface temperature (SST) climatology from daily NOAA 136 

Optimum Interpolated Sea Surface Temperature (OISST) data from 1982-2012 and a bottom 137 

temperature climatology from the NOAA Greenland-Iceland-Norwegian Seas Regional 138 

Climatology version 2 (GINS RC v2) from 1985-2012 (Seidov et al. 2013). All projections were 139 
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interpolated to a standard 0.25° x 0.25°grid to match the OISST resolution. We ran a monthly 140 

SST and bottom temperature hindcast for the years 2000-2018 using the Mercator Ocean Global 141 

Reanalysis (GLORYS) dataset from the Copernicus Marine Environment Monitoring Service 142 

and a projection for the years 2061-2080 for each the five models and two scenarios on a 143 

projection grid of the 2,312 0.25° cells in Iceland’s EEZ.  144 

 145 

Modeling species thermal habitat 146 

The Icelandic Marine and Freshwater Research Institute (MFRI) conducts annual 147 

standardized bottom trawl surveys in the spring and autumn to inform groundfish stock 148 

assessments. The spring survey has been conducted since 1985 at about 590 fixed stations 149 

covering Iceland’s continental shelf to 500m depth (Solmundsson et al., 2020). The autumn 150 

survey, initiated in 1996 and expanded in 2000, covers about 400 fixed stations that additionally 151 

include deeper waters along the continental slope (400-1500m; Campana et al. 2020). Fish 152 

lengths and standard weight conversions are used to calculate biomass (kg) per nautical mile. 153 

Surface temperature and bottom temperature are also measured in situ. We used surveys through 154 

March 2020, excluding the autumn survey before it was expanded in 2000 and 2011 when a 155 

labor strike interrupted the survey, for n = 27,524 total survey tows (Figure 1).  We combined the 156 

spring and autumn surveys to better account for the full thermal envelope each species 157 

experiences throughout the year (Kleisner et al., 2017). 158 

We modeled individual species distributions with two-stage generalized additive models 159 

(GAMs), using the mgcv package (version 1.8.33) in R (version 4.0.2) (Wood, 2011). The first 160 

stage was a presence-absence model with a binomial error distribution, and the second stage was 161 
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a biomass given presence model using a log-link transform on non-zero observations with a 162 

gaussian error distribution. For both stages, we included a penalized likelihood to reduce model 163 

complexity (Morley et al., 2018; Wood, 2006). We calculated suitable thermal habitat as the 164 

product of the presence-absence model predictions, the back-transformed log-biomass model 165 

predictions, and a smearing estimate (the mean of the log-biomass model residuals) to correct for 166 

retransformation bias (Duan 1983; Kleisner et al., 2017; Morley et al., 2018). This suitable 167 

thermal habitat value does not directly represent species abundance, but rather the potential 168 

suitable habitat and species density solely based on model predictor variables (Kleisner et al., 169 

2017; Morley et al., 2018). 170 

The predictor variables for the models included tow and environmental information from 171 

the trawl surveys and more complex temperature variables from GLORYS. From the surveys, we 172 

used in situ surface and bottom temperature and the starting depth of the tow. We used GLORYS 173 

temperature data to characterize broader spatial and temporal aspects of thermal habitat that 174 

could influence species distribution, including the annual minimum and maximum surface and 175 

bottom temperature (that is, the minimum or maximum temperature over the preceding twelve 176 

months in the 0.25° x 0.25° cell where the tow was conducted) and spatial standard deviation of 177 

surface and bottom temperature (using a 3 x 3 window around each 0.25° x 0.25° cell) to 178 

approximate frontal activity (Abrahms et al., 2019; Morley et al., 2018), which is known to 179 

influence species distribution in Iceland’s waters (Astthorsson et al., 2007) . We removed the 180 

annual minimum bottom temperature as a predictor variable because it was highly correlated 181 

with the survey in situ bottom temperature (Spearman’s rho = 0.77).  182 

To account for habitat suitability factors not captured by depth and temperature, we 183 

added Bormicon regions (Figure 1), which are habitat zones used in MFRI’s multispecies 184 
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modelling efforts (Stefansson, 2004), as a parametric term.  These regions were delineated based 185 

on topography (the depth contour of the continental shelf and submarine ridges), hydrography 186 

(salinity distribution and mixing patterns), and general patterns of spawning, migration, and 187 

fishing effort for key demersal species (Stefansson & Palsson, 1997). We selected these regions 188 

based on their management relevance and in the absence of more detailed habitat quality data but 189 

recognize risks of tautology in using these regions to simulate species distribution. We 190 

performed additional tests of the suitability of this predictor during initial model selection and 191 

determined that it improved model performance in terms of prediction error, deviance explained, 192 

and Akaike’s Information Criterion (AIC) for the majority of species. The fact that there are 193 

relatively few survey tows in the offshore regions also limits predictive performance, so we 194 

focus our subsequent results and discussion on habitat dynamics along the continental shelf and 195 

provide the caveat that this variable should be interpreted with caution, particularly for any 196 

species for which models project offshore habitat changes.  197 

Thus, the final model formulas were as follows, where s() represents a thin plate spline 198 

smooth term: 199 

Presence ~ intercept + Bormicon region + s(tow depth) + s (SST) + s(bottom 200 

temperature) + s(min SST) + s(max SST) + s(sd SST) + s(max BT) + s(sd BT)  201 

Log-biomass (kg) ~ intercept + Bormicon region + s(tow depth) + s (SST) + 202 

s(bottom temperature) + s(min SST) + s(max SST) + s(sd SST) + s(max BT) + 203 

s(sd BT)  204 

The GLORYS data were available from 1993-2018, so the final models were fitted with n 205 

= 19759 tows with all predictor data available. For species with no presences observed in a 206 
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particular Bormicon region, we randomly replaced 10% of the tows in those regions with near-207 

zero (1-10) biomass values to allow log-biomass projections in those areas, following Morely et 208 

al. (2018). Because these surveys were designed to sample demersal fish, we removed 209 

invertebrate and pelagic species for analysis. We ran models for 56 fish species with sufficient 210 

observations for the model parameters.  211 

We assessed model performance by training the presence-absence models with tows 212 

through 2013 (approximately 80% of the tows), and testing predictions on the remaining 20% of 213 

the tows. We assessed presence-absence models using true skill statistic (TSS), a measure suited 214 

to spatial presence-absence prediction performance, where a score of 1 represents perfect 215 

agreement and a score < 0 is no better than random (Allouche et al., 2006). All species had a TSS 216 

score > 0.25, so we did not remove any species from analysis based on this metric. To evaluate 217 

the importance of each predictor variable in contributing to model explanatory power, we 218 

compared the percent deviance explained from the full model and a model with that covariate 219 

dropped for each species.  220 

We considered the suitability of a temperature-based model by comparing the prediction 221 

error in the combined presence-absence and log-biomass thermal suitable habitat predictions 222 

with that of a <naïve= model with temperature variables removed (i.e., just depth and Bormicon 223 

region as predictors). Models were considered suitable if the ratio of the full model to naïve 224 

model error was < 1 and the Diebold-Mariano test p-value was < 0.05 (see Kleisner et al., 2017). 225 

We removed nine species from analysis based on this assessment and present results for the 47 226 

remaining species. We performed these tests using the dismo package (version 1.3.2) in R 227 

(Hijmans et al., 2020). Other model results reported (deviance explained, suitable thermal habitat 228 
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values) are based on the models fitted on all data, not split into training and testing. See 229 

supplemental information for model performance results for all species.  230 

Projecting future thermal habitat 231 

We calculated the amount of available suitable habitat as the sum of all modeled thermal 232 

habitat values in the full EEZ projection grid (Morley et al., 2018). We compared the mean 233 

available habitat in the historical period (2000-2018) with the future period (2061-2080) for each 234 

species. Because some changes were quite large (orders of magnitude), we present log10 x-fold 235 

change (log (mean future thermal habitat / mean historical thermal habitat)) so that relative 236 

increases and decreases can be compared. We calculated the centroid of distribution for each 237 

species as mean latitude and longitude weighted by the modeled thermal habitat value, and 238 

calculated the distance (km) and direction (degrees) shifted between the historical and future 239 

period with the geosphere package (version 1.5.10) in R (Hijmans, 2019). Additionally, we 240 

calculated the shifts in warm and cold edges of species distributions as the difference in the 95th 241 

and 5th respective percentile latitude of thermal habitat values > 0.05 (Fredston‐Hermann et al., 242 

2020).  243 

We grouped species by thermal affinity indices outlined in Campana et al. (2020), based 244 

on bottom temperatures and depths from the trawl surveys. We calculated thermal bias as the 245 

difference in median biomass-weighted bottom temperature for each species and the median 246 

bottom temperature of all survey tows, stenothermal index as the range of 5th and 95th percentiles 247 

of those biomass-weighted bottom temperatures for each species, and depth as the biomass-248 

weighted median tow depth for each species. Because the spring and autumn surveys sample 249 

different areas and depths, we calculated separate index values for each season and took a 250 

weighted mean based on the number of observations in each season. Following Campana et al. 251 
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(2020), we categorized species into warm water (positive thermal bias), cool water (-3℃ to 0℃ 252 

thermal bias), and cold water (< -3℃ thermal bias) niches. We tested associations between 253 

thermal affinity indices and projected shifts in thermal habitat availability and distribution with 254 

ordinary least squares regression.  255 

Results 256 

Projected climate change 257 

The projected climate model deltas resulted in a mean increase in surface temperatures in 258 

Iceland’s EEZ of 1.96℃ for SSP 2-4.5 (ranging from 0.76℃, CNRM to 2.40℃, MOHC) and 259 

2.40℃ for SSP 5-8.5 (ranging from 1.00℃, CM2.6 to 3.40℃, IPSL) by 2061-2080. For bottom 260 

temperatures, the mean projected increase for 2061-2080 was 0.06℃ for SSP 2-4.5 (ranging 261 

from -1.5℃, GFDL to 1.21℃, IPSL) and 0.20℃ for SSP 5-8.5 (ranging from -1.35℃, GFDL to 262 

1.47℃, IPSL) in 2061-2080 (see supplemental information for time series of individual climate 263 

model projections). Spatially, surface warming was projected throughout Iceland’s EEZ and 264 

most pronounced in offshore northeast waters for both scenarios (Figure 2a). The variation 265 

among climate model surface temperature projections was also highest in Iceland’s northern 266 

waters, which likely reflects uncertainty in the mixing dynamics between Atlantic and polar 267 

waters (Figure 2b). Bottom temperature deltas showed cooling in Iceland’s southern waters 268 

beyond the continental shelf, and concentrated warming along the northern shelf and east along 269 

the Iceland-Faroes ridge in the southeast (Figure 2c). Variation among models was highest in the 270 

east where warming is most pronounced, as well as offshore southern waters (Figure 2d). 271 

Projected changes in suitable thermal habitat 272 
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The presence-absence GAMs explained mean 44% of deviance (sd 16; range 10-81) 273 

across the 47 species and had a mean TSS of 0.68 (sd 0.15, range 0.36-0.95). The log-biomass 274 

models explained mean 31% of deviance (sd 15, range 10-72). Tow depth and Bormicon region 275 

contributed the most to variance explained in both the presence-absence and log-biomass 276 

models. Models fitted without depth lost mean 12.9% variance explained for presence-absence 277 

(sd 9.11, range -2.05-32.1) and 5.5% for log-biomass (sd 4.64, range -0.05-16.3). Models fitted 278 

without Bormicon region lost mean 10.5% (sd 9.51, range -4.04-32.0) and 2.8% (sd 1.74, range -279 

0.14 -7.02) variance explained in presence-absence and log-biomass models, respectively. For 280 

the presence-absence models, the remaining temperature variables contributed between 8.9-9.6% 281 

variance explained on average, whereas for log-biomass models, lost variance explained was 282 

minimal, ranging from 0.2% for SST standard deviation and maximum to 0.86% for bottom 283 

temperature.  284 

Warmer water species were generally projected to see an increase in suitable thermal 285 

habitat in 2061-2080 relative to 2000-2018, while cold and cool water species were generally 286 

projected to see a decrease in habitat (Figure 3). The magnitude of decreases was higher than the 287 

magnitude of increases, and patterns were similar across the two scenarios. Thirteen species had 288 

a projected increase in habitat for all models for SSP 2-4.5 and fifteen for SSP 5-8.5, whereas 289 

fifteen species had a projected decrease in habitat for all models in SSP 2-4.5 and sixteen for SSP 290 

5-8.5. Thermal bias was significantly positively correlated with median change in projected 291 

suitable habitat for SSP 5-8.5 (adjusted r2 = 0.12, p < 0.01; for SSP 2-4.5, adjusted r2 = 0.03 and 292 

p = 0.13), whereas stenothermic index and median depth did not show a significant relationship 293 

with projected suitable thermal habitat change in either scenario (stenothermic index: p = 0.13, 294 

0.10; median depth: p = 0.12, 0.37).  295 
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These projected habitat suitability shifts were spatially heterogeneous within Iceland’s 296 

waters, with most species showing relatively localized increases and/or decreases (Figure 4). Cod 297 

(Gadus morhua), saithe (Pollachius virens), and redfish (Sebastes marinus), key commercial 298 

species, showed increases along Iceland’s northern continental shelf. For cod, a cool water 299 

species, habitat suitability increases were more pronounced in the north and east, with potential 300 

suitability decreases in the southwest and southeast (Figure 4a). Redfish showed a pronounced 301 

decrease in southwest offshore waters. Long rough dab (Hippoglossoides platessoides), a cool 302 

water species, showed nearly the opposite pattern to cod, with decreases along the northern 303 

continental shelf and increases in the south/southeast (for SSP 2-4.5) (Figure 4b). Whiting 304 

(Merlangius merlangus), along with several other warm-water species including monkfish 305 

(Lophius piscatorius), witch (Glyptocephalus cynoglossus), megrim (Lepidorhombus 306 

whiffiagonis), and Norway haddock (Sebastes viviparus), showed habitat suitability increases 307 

along Iceland’s southern and western continental shelf (Figure 4c). Lumpfish (Cyclopterus 308 

lumpus, cool water), Atlantic wolffish (Anarhichus lupus, cool water), plaice (Pleuronectes 309 

platessa, warm water) and dab (Limanda limanda, warm water) all show inshore decreases, 310 

concentrated in the northwest fjords for lumpfish, wolffish, and dab and along the west coast 311 

bays for plaice (Figure 4d). Lemon sole (Microstomus kitt, warm water), on the other hand, 312 

shows nearshore increases around the island. Maps indicating projected habitat changes for all 313 

analyzed species and all projection periods are available in the supplemental information.  314 

Taken together, these projected shifts in species distribution show general northward 315 

movement, trending north and northwest in SSP 2-4.5 and north and slightly northeast among 316 

warmer water species in SSP 5-8.5 (Figure 5). There was no significant relationship between 317 

thermal bias, stenothermic index, and depth with the distance or bearing of centroid change. 318 
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Species with a higher thermal bias (i.e. warmer water species) were significantly more likely to 319 

see northward movement of the cold edge of their range (adj r2 = 0.10, p = 0.02 for SSP 2-4.5, 320 

adj r2 = 0.14, p = 0.005 for SSP 5-8.5), but there were no significant relationships observed for 321 

movement of the southern warm range edge or with other thermal affinity indices. 322 

 323 

Discussion 324 

These results corroborate previous projections that future climate change could result in 325 

significant shifts in fish species abundance and distribution in Iceland’s waters, and further 326 

illustrate potential variability in responses among species and regions. Consistent with global 327 

hypotheses and Campana et al. (2020)’s analyses, our results indicate an overall northward shift 328 

in center of biomass distribution for Iceland’s demersal fish species, with warmer water species 329 

more likely to expand the cold edge of their range. Species thermal bias was a more significant 330 

predictor of future habitat suitability change than stenothermic index or depth preference, results 331 

also similar to Campana et al. (2020)’s findings. In general, our analyses suggest similar trends 332 

to those observed during the mid-1990s warming period (Valtýsson & Jónsson, 2018) could be 333 

expected by midcentury, with many warmer water species likely to experience overall increases 334 

in suitable thermal habitat in Iceland’s EEZ. However, these patterns are localized and may be 335 

accompanied by regional decreases. 336 

It is encouraging that many commercially important species are projected to see increases 337 

in suitable habitat in Iceland’s waters. However, regional heterogeneity in habitat suitability 338 

changes may be of interest to managers and the fishing industry. For example, the overall 339 

increase in habitat suitability for cod, a flagship commercial species for Iceland, is largely along 340 
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the northern coast, where fishing capacity and infrastructure has declined following industry 341 

consolidation (Kokorsch & Benediktsson, 2018). Meanwhile, the capital region and western 342 

coast where cod catches have historically been highest may see decreases under the high-CO2 343 

emission scenario. Fishers in these waters may see cod supplemented by warmer-water species 344 

such as monkfish and megrim. The impact of these shifts may be felt unevenly within the fishing 345 

industry as larger companies with more technological capacity are less dependent on proximity 346 

to fishing grounds than smaller companies (Edvardsson et al. 2018). Local small boat operations 347 

could be further disadvantaged by the projected decreased habitat suitability for several species 348 

in inshore areas, particularly in the fisheries-dependent northwest region. Declining inshore 349 

habitat suitability for lumpfish may be particularly challenging for communities where the 350 

fishery is a cultural mainstay (Chambers, 2016). The potential movement of lumpfish offshore 351 

may present an additional management concern if it increases lumpfish bycatch rates in other 352 

fisheries, but could be beneficial if it alleviates interactions with pinnipeds and seabirds. Thus, 353 

these multidecadal scale projections might be a consideration in long-term planning not only for 354 

fishery development but also broader infrastructure policy, as investment in energy transmission 355 

and roads is critical for the competitiveness of smaller and more remote processing facilities 356 

(Reynisson et al. 2012).  357 

Further examination of the life history and ecology of these species may aid in 358 

interpreting the trends we present here and highlight any results that may warrant further, finer-359 

scale investigation. For example, a potentially puzzling result is that the species with the largest 360 

projected suitable habitat decreases, dab and plaice, are both warm-water species. These species 361 

are found in shallow waters, and therefore may be particularly sensitive to temperature or limited 362 

in their habitat. Survey coverage and timing may also factor into the uncertainty of these results. 363 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433927
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

For example, dab have an especially patchy distribution with few high-volume tows (MFRI, 364 

2020), which likely reduces model predictive power. Plaice spawn during the early spring, 365 

concurrent with the spring surveys (Solmundsson et al., 2005), which may result in aggregations 366 

that could bias the survey. These spawning dynamics may in part explain why plaice show a 367 

different pattern from lemon sole, another warm and shallow water species that spawns later in 368 

the year. While our analyses were intended as an exploration of overall trends rather than fitting 369 

individual models for each species, a more tailored approach that incorporates these specific 370 

spawning dynamics would be advisable for any planning regarding these species. Similarly, a 371 

species-specific approach could reveal climate sensitivity in species we dropped from analysis 372 

based on MASE performance. For example, Greenland halibut appear to be sensitive to the 373 

interaction between bottom temperature and depth based on model performance in initial trials.  374 

In addition to refining habitat models, more complex approaches are likely needed to 375 

accurately project future fish productivity and distribution in Iceland’s waters. Our estimates of 376 

suitable thermal habitat represent maximum potential abundances with all other factors held 377 

equal, and do not capture changes in physiology, species interactions, or fishing pressure, all of 378 

which could change in coming decades. Predator-prey interactions could be a dominant 379 

ecological driver in Iceland’s waters: During the mid-1990s warming period, increasing cod and 380 

other gadoid stocks along Iceland’s northern coast is believed to have triggered the decline of a 381 

commercially important shrimp fishery, as these fish preyed heavily on northern shrimp and 382 

other species in closed fjord systems (Jónsdóttir et al., 2019). More recently, mackerel predation 383 

has been associated with declines in other warm-water species despite continued warming 384 

(Valtýsson & Jónsson, 2018). Such predator-prey interactions, while not accounted for in our 385 

models, would be key management considerations under warming conditions.  386 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433927
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

Additionally, we did not differentiate size or age classes among species, nor other 387 

intraspecific population structures that may have distinct suitable thermal habitats and thus future 388 

climate-driven dynamics. Cod, for example, exhibit ontogenetic regional shifts that follow the 389 

clockwise flow of currents around Iceland (Astthorsson et al., 2007), as well as behavioral 390 

ecotypes with separate temperature and depth niches (Grabowski et al., 2011). Combining 391 

autumn and spring survey data in our models was a step toward reducing bias based on seasonal 392 

dynamics, but more specific models for species known to have age-differentiated temperature 393 

responses could provide more nuanced projections of how climate change could affect ecological 394 

interactions and fisheries productivity.  395 

Another limitation of our study is that as the survey data are limited to Iceland’s EEZ, 396 

they may not capture the full thermal or depth range for these species. Thus, our 397 

characterizations of suitable habitat may be too restrictive, and our projections cannot account 398 

for potential migration of more southern stocks into Iceland’s waters. However, since many of 399 

Iceland’s demersal stocks are relatively constrained to Iceland’s continental shelf (Valtýsson & 400 

Jónsson, 2018), limiting this analysis to Iceland’s EEZ may be appropriate for the species 401 

discussed here. Expanding these models to include data from more southern surveys, such as the 402 

Western and Southern areas of the International Council for Exploration of the Sea International 403 

Bottom Trawl Survey, could more comprehensively capture species temperature niches and 404 

potential future climate responses. Such an analysis would be valuable for identifying dynamics 405 

of straddling stocks and informing priorities for international negotiations. 406 

Finally, management decisions are likely to be more significant determinants of fish 407 

abundance and distribution than long-term climate trends, particularly for the next few decades 408 

(Mullon et al., 2016). Our habitat suitability projections can provide an idea of regions or species 409 
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that could be important to develop or to protect, but the future outcomes will depend largely on 410 

human actions. This study demonstrates the value of using global climate models to make 411 

spatially explicit projections of fish suitable habitat, which may serve as guideposts for long-term 412 

scenario planning, investment in fisheries and infrastructure, and risk evaluation. For Iceland and 413 

other regions with available data to support habitat modeling, such forward-looking studies could 414 

be a valuable strategy for achieving climate-adaptive fisheries. 415 

 416 

Data statement 417 

NOAA High Resolution SST data were provided by the NOAA/OAR/ESRL PSL, Boulder, 418 

Colorado, USA, from their website at https://www.ncdc.noaa.gov/oisst. GLORYS data were 419 

provided by the Copernicus Marine Environmental Monitoring Service at 420 

https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL421 

_REANALYSIS_PHY_001_031. 422 

Code for downloading climate data and performing these analyses is available at 423 

https://github.com/juliagmason/iceland_climate_resilient_fisheries. 424 
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Figures 614 

 615 

  616 

Figure 1: Study region indicating Iceland's Exclusive Economic Zone (EEZ, solid line), 617 

Bormicon regions (red dashed lines), and bottom trawl survey points.  618 
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 619 

Figure 2: Projected ensemble means (A, C) and standard deviation (B, D) for sea surface and 620 

bottom temperature deltas for the years 2061-2080 for the middle of the road (SSP 2-4.5) and 621 

fossil-fueled development (SSP 5-8.5) scenarios. Thin lines indicate 1000m isobaths and thick 622 

lines indicate Iceland’s EEZ.   623 
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 624 

Figure 3: Projected changes in suitable thermal habitat for modeled species for 2061-2080 625 

relative to 2000-2018 for middle of the road (SSP 2-4.5, left) and fossil-fueled development (SSP 626 

5-8.5, right) scenarios. Boxplots represent the distribution of suitable habitat projections from 627 

each of the climate models. Colors represent species thermal niche: red species are warm water, 628 

light blue are cool water, and dark blue are cold water (see methods and Campana et al., 2020 for 629 

classifications). Note that x-axis is on a log10 scale, so a species with a value of -1 would have 630 

10% of the total projected suitable thermal habitat in 2061-2080 relative to 2000-2018. 631 
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 632 

Figure 4: Projected changes in future habitat suitability for cod (A), long rough dab (B), whiting 633 

(C), and lumpfish (D) in 2061-2080 relative to 2000-2018 under the middle of the road (SSP 2-634 

4.5, left) and fossil fueled development (SSP 5-8.5, right) scenarios. Green regions indicate 635 

increases in suitable habitat whereas brown regions indicate decreases in suitable habitat.  636 

 637 
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 638 

Figure 5: Projected distance (km) and direction (bearing, 0-360 degrees) of shifts in the centroid 639 

of suitable thermal habitat distribution between 2061-2080 and 2000-2018 under the middle of 640 

the road (SSP 2-4.5, left) and fossil fueled development (SSP 5-8.5, right) scenarios. Colors 641 

represent species thermal niche (see Figure 3). Triangles indicate the circular average value for 642 

the bearing change, grouped by thermal niche. Version with species labels available in the 643 

supplemental information.  644 
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