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Abstract

As climate change shifts marine species distribution and abundance worldwide, projecting local
changes over decadal scales may be a valuable adaptive strategy for managers and industry. In
Iceland, one of the top fish-producing nations in the world, long-term monitoring enables model
simulations of groundfish species habitat distribution. We used generalized additive models to
characterize suitable thermal habitat for 47 fish species in Iceland’s waters. We then projected
changes in thermal habitat by midcentury with an ensemble of five general circulation models
from the Coupled Model Intercomparison Program 6 (CMIP6) and NOAA (CM2.6) and two
scenarios (SSP 5-8.5 and SSP 2-4.5). We find a general northward shift in centroids of habitat
distribution, with variable regional dynamics among species. Species thermal affinity was the

most significant predictor of future habitat change, with warmer-water species more likely to see
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projected increases in suitable habitat. We present spatially explicit habitat change projections
for commercially and culturally important species. These projections might serve as guideposts
to inform long-term management decisions about regional and species-specific suitability for

Iceland’s fisheries, infrastructure investment, and risk evaluation under climate change.

Introduction

Climate change is shifting marine species distribution and abundance worldwide
(Parmesan, 2006; Poloczanska et al., 2013). These shifts are projected to continue as climate
change intensifies (Molinos et al., 2016), with complex and unevenly distributed social-
ecological consequences (Golden et al., 2016; Lam et al., 2016; Pinsky et al., 2018; Sumaila et
al., 2011). Alongside the urgent need for bold action to reduce greenhouse gas emissions is the
need for adaptive management approaches to maintain desired fishery outcomes under changing
and novel conditions. Researchers project that implementing management that accounts for
changes in fish species productivity and distribution can improve outcomes for fishery catches
and profits under most climate scenarios (Free et al., 2020; Gaines et al., 2018). For fisheries
with adequate scientific and technical capacity, conducting forecasts and incorporating future
climate scenarios into management decisions is a key aspect of climate-adaptive management
(Free et al., 2020; Holsman et al., 2019; Karp et al., 2019; Pinsky & Mantua, 2014). While
seasonal and interannual forecasts may be of most immediate use for management and industry,
climate-scale projections allow managers and practitioners to evaluate risk, plan for future losses
or gains in suitability, and inform longer term decision-making processes such as national

legislation or international negotiations (Hobday et al., 2018; Holsman et al., 2019).
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In Iceland, the economic and cultural importance of fisheries and the sophistication of its
management and scientific systems mean that projecting future change in fish stocks could be a
key priority for achieving climate-adaptive fisheries (Kleisner et al. in press). Consistently
ranking among the top twenty marine fish capture producing countries worldwide (FAO, 2020),
Iceland is located in a highly productive transition zone between warm Atlantic and cold Polar
currents. The interactions of these currents create high spatial and temporal oceanographic
variability within Iceland’s waters, and the ecosystem is highly sensitive to their dynamics
(Astthorsson et al., 2007). Environmental conditions have fluctuated over the past century in
relation to multidecadal oscillations and local atmospheric dynamics with profound ecological
and economic consequences: Relatively warm periods were associated with fishery booms that
drove the development of Iceland’s commercial fisheries and economy, and cooler-water periods
(in combination with overfishing) associated with devastating fishery crashes (Astthorsson et al.,

2007; Ogilvie & Jonsdottir, 2000; Valtysson & Jonsson, 2018).

Recently, a warm anomaly from the mid-1990s to late 2010s drove substantial changes in
fish abundance and distribution around Iceland, including documentation of new species and
increases of warmer-water species (Astthorsson & Palsson, 2006; Valdimarsson et al., 2012;
Valtysson & Jonsson, 2018). Particularly notorious was the abrupt expansion of Atlantic
mackerel (Scomber scombrus) into Iceland’s waters (Olafur S. Astthorsson et al., 2012;
Olafsdottir et al., 2019) that quickly became an economic boon for Iceland, but led to
international political conflict over the fishing of the stock (Spijkers & Boonstra, 2017).
Researchers also noted significant shifts in groundfish distribution and community assemblage,

with heterogeneous regional trends associated with oceanographic conditions and the influence
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of coastal fjord systems on predator-prey dynamics (Jonsdéttir et al., 2019; Stefansdoéttir, 2008;

Stefansdottir, 2019).

Given these past temperature-related changes, a logical next step might be to project how
future change might affect fish species abundance and distribution. Global studies have projected
that Iceland, like other high-latitude countries, could be a climate “winner,” potentially
experiencing increased biodiversity and fisheries catch potential as warmer waters move fish
poleward (Cheung et al., 2009; Molinos et al., 2016). However, given the highly local and
variable dynamics of Iceland climatic conditions and differing ecological, economic, and cultural
importance of its fish species, higher-resolution projections indicating specific species and
regional dynamics could be more applicable for fisheries managers and industry. Campana et al.
(2020) used Iceland bottom trawl survey data to model fish habitat and projected that a uniform
1°C increase in bottom temperature would drive a general northward shift in habitat distribution,
with significant variation across species and quadrants of the exclusive economic zone (EEZ).
The authors noted a high level of regional and temporal variation in past warming trends and

warned that future warning is unlikely to be homogenous nor linear.

Iceland’s fishery managers have collected standardized fisheries independent and
fisheries dependent data since the 1980s, allowing for detailed analyses of species abundance and
distribution in relation to environmental conditions that can inform future projections. These
long-term monitoring data are ideal for a common but data-intensive approach to anticipating
regional or global species distribution shifts: pairing statistical models of species suitable habitat
with global climate model outputs (Stock et al., 2011). Given the uncertainty inherent to
projecting both the dynamics of the global climate and the human actions and policies that

influence those dynamics, using an ensemble of climate models across different scenarios is
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95 advised (Morley et al., 2018, 2020). Here we use long-term fisheries independent trawl data and

96 an ensemble of the newest generation of global climate models from the Coupled Model

97  Intercomparison Project (CMIP6) to project how future climate change will affect suitable

98 thermal habitat of 47 species in Iceland’s waters at a 0.25° x 0.25° resolution. These spatially

99  explicit climate projections can more directly inform Iceland’s fishing industry and fisheries
100 management’s needs for adapting to climate-driven changes in fish distribution, and illustrate to
101  other nations and regions how these projections might be considered in long-term climate-

102  adaptive management.

103

104  Methods

105  Projecting future temperature changes in Iceland’s waters

106 We used a suite of global climate models to project future ocean surface and bottom

107  temperatures in Iceland’s waters, including a high-resolution global climate model (CM2.6 from
108  the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory,
109 NOAA GFDL) and four coarser global climate models from the Coupled Model Intercomparison
110  Project 6 (CMIP6). Researchers have found that CM2.6 (10-km ocean resolution) resolves the
111 ocean circulation in the Northwest Atlantic more realistically than coarser models (Saba et al.,
112 2016). However, this model has a cold bias in sea surface and bottom temperature in Iceland’s
113 waters in the historical period from 1982-2012, so we selected the highest resolution CMIP6

114  models that have a range of cold and warm biases to complement the higher resolution CM2.6.
115  These were GFDL CM4 (25-km ocean resolution) from the National Oceanic and Atmospheric

116  Administration Geophysical Fluid Dynamics Laboratory, U.S.A; CNRM-CM6 (25-km ocean
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117  resolution) from the Centre National de Recherches Meteorologiques and Centre Europeen de
118  Recherche et de Formation Avancee en Calcul Scientifique, France; HadGEM3-GC31 (100-km
119  ocean resolution) from the Met Office Hadley Centre, U.K.; and IPSL-CM6A-LR (100-km

120  ocean resolution) from L’Institut Pierre Simon Laplace, France. We downloaded CMIP6 data

121  using the xarray package (version 0.15.1) in Python (version 3.7.6) (Hoyer & Hamman, 2017).

122 The CMIP6 models use future scenario simulations that combine the Representative

123 Concentration Pathways (RCPs) of radiative forcings used in the Intergovernmental Panel on
124  Climate Change’s Fifth Assessment Report (IPCC ARS) with Shared Socioeconomic Pathways
125  (SSPs) of societal development (Eyring et al., 2016; O’Neill et al., 2017). We examined two
126  future scenarios for the years 2015-2100: SSP 2-4.5, a “middle of the road” scenario where

127  countries continue along historical social, economic, and technological development trajectories
128  as they strive toward sustainable development goals; and SSP 5-8.5, a “fossil-fueled

129  development” scenario where accelerated economic growth emphasizes fossil fuels (O’Neill et
130  al., 2017). The CM2.6 projects an idealized transient climate response (1% per year increase in
131  atmospheric CO>) simulation over 80 years, where the last 20 years are comparable to years

132 2061-2080 of SSP 5-8.5. We thus focused on this 2061-2080 period for our future projections.

133 We standardized the models using the “delta method,” where we calculated the difference
134  between each model’s monthly projections and modeled historical control (mean of 1985-2015),
135  and then added these deltas to a standard climatology (Anandhi et al., 2011; Kleisner et al., 2017;
136  Morley et al., 2018). We used a sea surface temperature (SST) climatology from daily NOAA
137  Optimum Interpolated Sea Surface Temperature (OISST) data from 1982-2012 and a bottom

138  temperature climatology from the NOAA Greenland-Iceland-Norwegian Seas Regional

139  Climatology version 2 (GINS RC v2) from 1985-2012 (Seidov et al. 2013). All projections were


https://doi.org/10.1101/2021.03.04.433927
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433927; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

140  interpolated to a standard 0.25° x 0.25°grid to match the OISST resolution. We ran a monthly
141 SST and bottom temperature hindcast for the years 2000-2018 using the Mercator Ocean Global
142 Reanalysis (GLORYS) dataset from the Copernicus Marine Environment Monitoring Service
143 and a projection for the years 2061-2080 for each the five models and two scenarios on a

144  projection grid of the 2,312 0.25° cells in Iceland’s EEZ.

145

146  Modeling species thermal habitat

147 The Icelandic Marine and Freshwater Research Institute (MFRI) conducts annual

148  standardized bottom trawl surveys in the spring and autumn to inform groundfish stock

149  assessments. The spring survey has been conducted since 1985 at about 590 fixed stations

150  covering Iceland’s continental shelf to 500m depth (Solmundsson et al., 2020). The autumn

151  survey, initiated in 1996 and expanded in 2000, covers about 400 fixed stations that additionally
152  include deeper waters along the continental slope (400-1500m; Campana et al. 2020). Fish

153  lengths and standard weight conversions are used to calculate biomass (kg) per nautical mile.
154  Surface temperature and bottom temperature are also measured in situ. We used surveys through
155  March 2020, excluding the autumn survey before it was expanded in 2000 and 2011 when a

156  labor strike interrupted the survey, for n = 27,524 total survey tows (Figure 1). We combined the
157  spring and autumn surveys to better account for the full thermal envelope each species

158  experiences throughout the year (Kleisner et al., 2017).

159 We modeled individual species distributions with two-stage generalized additive models
160 (GAMs), using the mgev package (version 1.8.33) in R (version 4.0.2) (Wood, 2011). The first

161  stage was a presence-absence model with a binomial error distribution, and the second stage was
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162  abiomass given presence model using a log-link transform on non-zero observations with a

163  gaussian error distribution. For both stages, we included a penalized likelihood to reduce model
164  complexity (Morley et al., 2018; Wood, 2006). We calculated suitable thermal habitat as the

165  product of the presence-absence model predictions, the back-transformed log-biomass model

166  predictions, and a smearing estimate (the mean of the log-biomass model residuals) to correct for
167  retransformation bias (Duan 1983; Kleisner et al., 2017; Morley et al., 2018). This suitable

168  thermal habitat value does not directly represent species abundance, but rather the potential

169  suitable habitat and species density solely based on model predictor variables (Kleisner et al.,

170  2017; Morley et al., 2018).

171 The predictor variables for the models included tow and environmental information from
172 the trawl surveys and more complex temperature variables from GLORYS. From the surveys, we
173  used in situ surface and bottom temperature and the starting depth of the tow. We used GLORYS
174  temperature data to characterize broader spatial and temporal aspects of thermal habitat that

175  could influence species distribution, including the annual minimum and maximum surface and
176  bottom temperature (that is, the minimum or maximum temperature over the preceding twelve
177  months in the 0.25° x 0.25° cell where the tow was conducted) and spatial standard deviation of
178  surface and bottom temperature (using a 3 x 3 window around each 0.25° x 0.25° cell) to

179  approximate frontal activity (Abrahms et al., 2019; Morley et al., 2018), which is known to

180 influence species distribution in Iceland’s waters (Astthorsson et al., 2007) . We removed the

181  annual minimum bottom temperature as a predictor variable because it was highly correlated

182  with the survey in situ bottom temperature (Spearman’s rho = 0.77).

183 To account for habitat suitability factors not captured by depth and temperature, we

184  added Bormicon regions (Figure 1), which are habitat zones used in MFRI’s multispecies
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185  modelling efforts (Stefansson, 2004), as a parametric term. These regions were delineated based
186  on topography (the depth contour of the continental shelf and submarine ridges), hydrography
187  (salinity distribution and mixing patterns), and general patterns of spawning, migration, and

188  fishing effort for key demersal species (Stefansson & Palsson, 1997). We selected these regions
189  based on their management relevance and in the absence of more detailed habitat quality data but
190 recognize risks of tautology in using these regions to simulate species distribution. We

191  performed additional tests of the suitability of this predictor during initial model selection and
192  determined that it improved model performance in terms of prediction error, deviance explained,
193  and Akaike’s Information Criterion (AIC) for the majority of species. The fact that there are

194  relatively few survey tows in the offshore regions also limits predictive performance, so we

195  focus our subsequent results and discussion on habitat dynamics along the continental shelf and
196  provide the caveat that this variable should be interpreted with caution, particularly for any

197  species for which models project offshore habitat changes.

198 Thus, the final model formulas were as follows, where s() represents a thin plate spline

199 smooth term:

200 Presence ~ intercept + Bormicon region + s(tow depth) + s (SST) + s(bottom

201 temperature) + s(min SST) + s(max SST) + s(sd SST) + s(max BT) + s(sd BT)

202 Log-biomass (kg) ~ intercept + Bormicon region + s(tow depth) + s (SST) +

203 s(bottom temperature) + s(min SST) + s(max SST) + s(sd SST) + s(max BT) +

204 s(sd BT)

205 The GLORYS data were available from 1993-2018, so the final models were fitted with n
206  =19759 tows with all predictor data available. For species with no presences observed in a
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207  particular Bormicon region, we randomly replaced 10% of the tows in those regions with near-
208  zero (17'%) biomass values to allow log-biomass projections in those areas, following Morely et
209  al. (2018). Because these surveys were designed to sample demersal fish, we removed

210 invertebrate and pelagic species for analysis. We ran models for 56 fish species with sufficient

211  observations for the model parameters.

212 We assessed model performance by training the presence-absence models with tows

213 through 2013 (approximately 80% of the tows), and testing predictions on the remaining 20% of
214  the tows. We assessed presence-absence models using true skill statistic (TSS), a measure suited
215  to spatial presence-absence prediction performance, where a score of 1 represents perfect

216  agreement and a score < 0 is no better than random (Allouche et al., 2006). All species had a TSS
217 score > 0.25, so we did not remove any species from analysis based on this metric. To evaluate
218  the importance of each predictor variable in contributing to model explanatory power, we

219  compared the percent deviance explained from the full model and a model with that covariate

220  dropped for each species.

221 We considered the suitability of a temperature-based model by comparing the prediction
222 error in the combined presence-absence and log-biomass thermal suitable habitat predictions
223 with that of a “naive” model with temperature variables removed (i.e., just depth and Bormicon
224  region as predictors). Models were considered suitable if the ratio of the full model to naive

225  model error was < 1 and the Diebold-Mariano test p-value was < 0.05 (see Kleisner et al., 2017).
226 We removed nine species from analysis based on this assessment and present results for the 47
227  remaining species. We performed these tests using the dismo package (version 1.3.2) in R

228  (Hijmans et al., 2020). Other model results reported (deviance explained, suitable thermal habitat

10
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229  values) are based on the models fitted on all data, not split into training and testing. See

230  supplemental information for model performance results for all species.
231 Projecting future thermal habitat

232 We calculated the amount of available suitable habitat as the sum of all modeled thermal
233 habitat values in the full EEZ projection grid (Morley et al., 2018). We compared the mean

234 available habitat in the historical period (2000-2018) with the future period (2061-2080) for each
235  species. Because some changes were quite large (orders of magnitude), we present log10 x-fold
236  change (log (mean future thermal habitat / mean historical thermal habitat)) so that relative

237  increases and decreases can be compared. We calculated the centroid of distribution for each
238  species as mean latitude and longitude weighted by the modeled thermal habitat value, and

239  calculated the distance (km) and direction (degrees) shifted between the historical and future
240  period with the geosphere package (version 1.5.10) in R (Hijmans, 2019). Additionally, we

241  calculated the shifts in warm and cold edges of species distributions as the difference in the 95
242 and 5™ respective percentile latitude of thermal habitat values > 0.05 (Fredston-Hermann et al.,

243 2020).

244 We grouped species by thermal affinity indices outlined in Campana et al. (2020), based
245  on bottom temperatures and depths from the trawl surveys. We calculated thermal bias as the
246  difference in median biomass-weighted bottom temperature for each species and the median

247  bottom temperature of all survey tows, stenothermal index as the range of 5™ and 95™ percentiles
248  of those biomass-weighted bottom temperatures for each species, and depth as the biomass-

249  weighted median tow depth for each species. Because the spring and autumn surveys sample

250 different areas and depths, we calculated separate index values for each season and took a

251  weighted mean based on the number of observations in each season. Following Campana et al.

11
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252 (2020), we categorized species into warm water (positive thermal bias), cool water (-3°C to 0°C
253  thermal bias), and cold water (< -3°C thermal bias) niches. We tested associations between
254  thermal affinity indices and projected shifts in thermal habitat availability and distribution with

255  ordinary least squares regression.

256  Results

257  Projected climate change

258 The projected climate model deltas resulted in a mean increase in surface temperatures in
259  Iceland’s EEZ of 1.96°C for SSP 2-4.5 (ranging from 0.76°C, CNRM to 2.40°C, MOHC) and
260  2.40°C for SSP 5-8.5 (ranging from 1.00°C, CM2.6 to 3.40°C, IPSL) by 2061-2080. For bottom
261  temperatures, the mean projected increase for 2061-2080 was 0.06°C for SSP 2-4.5 (ranging

262  from -1.5°C, GFDL to 1.21°C, IPSL) and 0.20°C for SSP 5-8.5 (ranging from -1.35°C, GFDL to
263 1.47°C, IPSL) in 2061-2080 (see supplemental information for time series of individual climate
264  model projections). Spatially, surface warming was projected throughout Iceland’s EEZ and

265  most pronounced in offshore northeast waters for both scenarios (Figure 2a). The variation

266  among climate model surface temperature projections was also highest in Iceland’s northern

267  waters, which likely reflects uncertainty in the mixing dynamics between Atlantic and polar

268  waters (Figure 2b). Bottom temperature deltas showed cooling in Iceland’s southern waters

269  beyond the continental shelf, and concentrated warming along the northern shelf and east along
270  the Iceland-Faroes ridge in the southeast (Figure 2c). Variation among models was highest in the

271  east where warming is most pronounced, as well as offshore southern waters (Figure 2d).

272 Projected changes in suitable thermal habitat

12
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273 The presence-absence GAMs explained mean 44 % of deviance (sd 16; range 10-81)

274  across the 47 species and had a mean TSS of 0.68 (sd 0.15, range 0.36-0.95). The log-biomass
275  models explained mean 31% of deviance (sd 15, range 10-72). Tow depth and Bormicon region
276  contributed the most to variance explained in both the presence-absence and log-biomass

277  models. Models fitted without depth lost mean 12.9% variance explained for presence-absence
278  (sd 9.11, range -2.05-32.1) and 5.5% for log-biomass (sd 4.64, range -0.05-16.3). Models fitted
279  without Bormicon region lost mean 10.5% (sd 9.51, range -4.04-32.0) and 2.8% (sd 1.74, range -
280  0.14 -7.02) variance explained in presence-absence and log-biomass models, respectively. For
281  the presence-absence models, the remaining temperature variables contributed between 8.9-9.6%
282  variance explained on average, whereas for log-biomass models, lost variance explained was

283  minimal, ranging from 0.2% for SST standard deviation and maximum to 0.86% for bottom

284  temperature.

285 Warmer water species were generally projected to see an increase in suitable thermal

286  habitat in 2061-2080 relative to 2000-2018, while cold and cool water species were generally

287  projected to see a decrease in habitat (Figure 3). The magnitude of decreases was higher than the
288  magnitude of increases, and patterns were similar across the two scenarios. Thirteen species had
289  aprojected increase in habitat for all models for SSP 2-4.5 and fifteen for SSP 5-8.5, whereas
290 fifteen species had a projected decrease in habitat for all models in SSP 2-4.5 and sixteen for SSP
291  5-8.5. Thermal bias was significantly positively correlated with median change in projected

292  suitable habitat for SSP 5-8.5 (adjusted r* = 0.12, p < 0.01; for SSP 2-4.5, adjusted r*= 0.03 and
293  p =0.13), whereas stenothermic index and median depth did not show a significant relationship
294  with projected suitable thermal habitat change in either scenario (stenothermic index: p = 0.13,

295  0.10; median depth: p = 0.12, 0.37).
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296 These projected habitat suitability shifts were spatially heterogeneous within Iceland’s
297  waters, with most species showing relatively localized increases and/or decreases (Figure 4). Cod
298  (Gadus morhua), saithe (Pollachius virens), and redfish (Sebastes marinus), key commercial
299  species, showed increases along Iceland’s northern continental shelf. For cod, a cool water

300  species, habitat suitability increases were more pronounced in the north and east, with potential
301 suitability decreases in the southwest and southeast (Figure 4a). Redfish showed a pronounced
302  decrease in southwest offshore waters. Long rough dab (Hippoglossoides platessoides), a cool
303  water species, showed nearly the opposite pattern to cod, with decreases along the northern

304 continental shelf and increases in the south/southeast (for SSP 2-4.5) (Figure 4b). Whiting

305 (Merlangius merlangus), along with several other warm-water species including monkfish

306  (Lophius piscatorius), witch (Glyptocephalus cynoglossus), megrim (Lepidorhombus

307  whiffiagonis), and Norway haddock (Sebastes viviparus), showed habitat suitability increases
308 along Iceland’s southern and western continental shelf (Figure 4c). Lumpfish (Cyclopterus

309  lumpus, cool water), Atlantic wolffish (Anarhichus lupus, cool water), plaice (Pleuronectes
310  platessa, warm water) and dab (Limanda limanda, warm water) all show inshore decreases,
311  concentrated in the northwest fjords for lumpfish, wolffish, and dab and along the west coast
312 bays for plaice (Figure 4d). Lemon sole (Microstomus kitt, warm water), on the other hand,

313  shows nearshore increases around the island. Maps indicating projected habitat changes for all

314  analyzed species and all projection periods are available in the supplemental information.

315 Taken together, these projected shifts in species distribution show general northward
316 movement, trending north and northwest in SSP 2-4.5 and north and slightly northeast among
317  warmer water species in SSP 5-8.5 (Figure 5). There was no significant relationship between

318 thermal bias, stenothermic index, and depth with the distance or bearing of centroid change.
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319  Species with a higher thermal bias (i.e. warmer water species) were significantly more likely to
320  see northward movement of the cold edge of their range (adj r* = 0.10, p = 0.02 for SSP 2-4.5,
321  adj ?=0.14, p = 0.005 for SSP 5-8.5), but there were no significant relationships observed for

322 movement of the southern warm range edge or with other thermal affinity indices.
323
324  Discussion

325 These results corroborate previous projections that future climate change could result in
326  significant shifts in fish species abundance and distribution in Iceland’s waters, and further

327  1illustrate potential variability in responses among species and regions. Consistent with global
328  hypotheses and Campana et al. (2020)’s analyses, our results indicate an overall northward shift
329 in center of biomass distribution for Iceland’s demersal fish species, with warmer water species
330 more likely to expand the cold edge of their range. Species thermal bias was a more significant
331  predictor of future habitat suitability change than stenothermic index or depth preference, results
332 also similar to Campana et al. (2020)’s findings. In general, our analyses suggest similar trends
333  to those observed during the mid-1990s warming period (Valtysson & Jonsson, 2018) could be
334  expected by midcentury, with many warmer water species likely to experience overall increases
335 in suitable thermal habitat in Iceland’s EEZ. However, these patterns are localized and may be

336  accompanied by regional decreases.

337 It is encouraging that many commercially important species are projected to see increases
338 in suitable habitat in Iceland’s waters. However, regional heterogeneity in habitat suitability
339  changes may be of interest to managers and the fishing industry. For example, the overall

340 increase in habitat suitability for cod, a flagship commercial species for Iceland, is largely along
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341  the northern coast, where fishing capacity and infrastructure has declined following industry

342  consolidation (Kokorsch & Benediktsson, 2018). Meanwhile, the capital region and western

343  coast where cod catches have historically been highest may see decreases under the high-CO»
344  emission scenario. Fishers in these waters may see cod supplemented by warmer-water species
345  such as monkfish and megrim. The impact of these shifts may be felt unevenly within the fishing
346  industry as larger companies with more technological capacity are less dependent on proximity
347  to fishing grounds than smaller companies (Edvardsson et al. 2018). Local small boat operations
348  could be further disadvantaged by the projected decreased habitat suitability for several species
349 in inshore areas, particularly in the fisheries-dependent northwest region. Declining inshore

350 habitat suitability for lumpfish may be particularly challenging for communities where the

351  fishery is a cultural mainstay (Chambers, 2016). The potential movement of lumpfish offshore
352  may present an additional management concern if it increases lumpfish bycatch rates in other
353  fisheries, but could be beneficial if it alleviates interactions with pinnipeds and seabirds. Thus,
354  these multidecadal scale projections might be a consideration in long-term planning not only for
355 fishery development but also broader infrastructure policy, as investment in energy transmission
356  and roads is critical for the competitiveness of smaller and more remote processing facilities

357 (Reynisson et al. 2012).

358 Further examination of the life history and ecology of these species may aid in

359 interpreting the trends we present here and highlight any results that may warrant further, finer-
360 scale investigation. For example, a potentially puzzling result is that the species with the largest
361  projected suitable habitat decreases, dab and plaice, are both warm-water species. These species
362  are found in shallow waters, and therefore may be particularly sensitive to temperature or limited

363 in their habitat. Survey coverage and timing may also factor into the uncertainty of these results.
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For example, dab have an especially patchy distribution with few high-volume tows (MFRI,
2020), which likely reduces model predictive power. Plaice spawn during the early spring,
concurrent with the spring surveys (Solmundsson et al., 2005), which may result in aggregations
that could bias the survey. These spawning dynamics may in part explain why plaice show a
different pattern from lemon sole, another warm and shallow water species that spawns later in
the year. While our analyses were intended as an exploration of overall trends rather than fitting
individual models for each species, a more tailored approach that incorporates these specific
spawning dynamics would be advisable for any planning regarding these species. Similarly, a
species-specific approach could reveal climate sensitivity in species we dropped from analysis
based on MASE performance. For example, Greenland halibut appear to be sensitive to the

interaction between bottom temperature and depth based on model performance in initial trials.

In addition to refining habitat models, more complex approaches are likely needed to
accurately project future fish productivity and distribution in Iceland’s waters. Our estimates of
suitable thermal habitat represent maximum potential abundances with all other factors held
equal, and do not capture changes in physiology, species interactions, or fishing pressure, all of
which could change in coming decades. Predator-prey interactions could be a dominant
ecological driver in Iceland’s waters: During the mid-1990s warming period, increasing cod and
other gadoid stocks along Iceland’s northern coast is believed to have triggered the decline of a
commercially important shrimp fishery, as these fish preyed heavily on northern shrimp and
other species in closed fjord systems (Jonsdottir et al., 2019). More recently, mackerel predation
has been associated with declines in other warm-water species despite continued warming
(Valtysson & Jonsson, 2018). Such predator-prey interactions, while not accounted for in our

models, would be key management considerations under warming conditions.
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387 Additionally, we did not differentiate size or age classes among species, nor other

388 intraspecific population structures that may have distinct suitable thermal habitats and thus future
389  climate-driven dynamics. Cod, for example, exhibit ontogenetic regional shifts that follow the
390 clockwise flow of currents around Iceland (Astthorsson et al., 2007), as well as behavioral

391  ecotypes with separate temperature and depth niches (Grabowski et al., 2011). Combining

392  autumn and spring survey data in our models was a step toward reducing bias based on seasonal
393  dynamics, but more specific models for species known to have age-differentiated temperature
394  responses could provide more nuanced projections of how climate change could affect ecological

395 interactions and fisheries productivity.

396 Another limitation of our study is that as the survey data are limited to Iceland’s EEZ,
397 they may not capture the full thermal or depth range for these species. Thus, our

398  characterizations of suitable habitat may be too restrictive, and our projections cannot account
399 for potential migration of more southern stocks into Iceland’s waters. However, since many of
400 Iceland’s demersal stocks are relatively constrained to Iceland’s continental shelf (Valtysson &
401  Jonsson, 2018), limiting this analysis to Iceland’s EEZ may be appropriate for the species

402  discussed here. Expanding these models to include data from more southern surveys, such as the
403  Western and Southern areas of the International Council for Exploration of the Sea International
404  Bottom Trawl Survey, could more comprehensively capture species temperature niches and

405  potential future climate responses. Such an analysis would be valuable for identifying dynamics

406  of straddling stocks and informing priorities for international negotiations.

407 Finally, management decisions are likely to be more significant determinants of fish
408  abundance and distribution than long-term climate trends, particularly for the next few decades

409  (Mullon et al., 2016). Our habitat suitability projections can provide an idea of regions or species
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410  that could be important to develop or to protect, but the future outcomes will depend largely on
411  human actions. This study demonstrates the value of using global climate models to make

412  spatially explicit projections of fish suitable habitat, which may serve as guideposts for long-term
413  scenario planning, investment in fisheries and infrastructure, and risk evaluation. For Iceland and
414  other regions with available data to support habitat modeling, such forward-looking studies could

415  be a valuable strategy for achieving climate-adaptive fisheries.

416

417  Data statement

418  NOAA High Resolution SST data were provided by the NOAA/OAR/ESRL PSL, Boulder,
419  Colorado, USA, from their website at https://www.ncdc.noaa.gov/oisst. GLORYS data were
420  provided by the Copernicus Marine Environmental Monitoring Service at

421  https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL

422 _REANALYSIS_PHY_001_031.

423  Code for downloading climate data and performing these analyses is available at

424 https://github.com/juliagmason/iceland_climate_resilient_fisheries.
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617  Figure 1: Study region indicating Iceland's Exclusive Economic Zone (EEZ, solid line),

618  Bormicon regions (red dashed lines), and bottom trawl survey points.
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620  Figure 2: Projected ensemble means (A, C) and standard deviation (B, D) for sea surface and
621  bottom temperature deltas for the years 2061-2080 for the middle of the road (SSP 2-4.5) and
622  fossil-fueled development (SSP 5-8.5) scenarios. Thin lines indicate 1000m isobaths and thick
623  lines indicate Iceland’s EEZ.
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625  Figure 3: Projected changes in suitable thermal habitat for modeled species for 2061-2080

626  relative to 2000-2018 for middle of the road (SSP 2-4.5, left) and fossil-fueled development (SSP
627  5-8.5, right) scenarios. Boxplots represent the distribution of suitable habitat projections from
628  each of the climate models. Colors represent species thermal niche: red species are warm water,
629  light blue are cool water, and dark blue are cold water (see methods and Campana et al., 2020 for
630 classifications). Note that x-axis is on a log10 scale, so a species with a value of -1 would have
631  10% of the total projected suitable thermal habitat in 2061-2080 relative to 2000-2018.

26


https://doi.org/10.1101/2021.03.04.433927
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433927; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A SSP2-4.5 SSP5-85

/K/ /'\/ Habitat
67.5 difference

il o P i o N

In' Eir ’I' o I -
M R R

10

o

. —10

62.54

-y

60.04

T T T v
-30 -20 =10 =30 -20 -10

B SSP 2-45 SSP5-85

/yv/ ;\.’/ Habitat
67.5 difference

=P L e
65.0 1 %\:ﬁ i %ﬁ i 0.0
-0.3
6254
o |-

30 20 —10 —20 -20 -0

C SSP2-45 SSP5-85

/'\”/ )"’/ Habitat
67.5+ difference

| o= - 50

-y

60.04

6254 i 25
\ " 0.0
60.04
-30 -20 -10 -30 -20 -10
D SSP2-45 SSP 5-8.5
Habitat
67.5 difference
00
65.04
-0.1

62.54

60.04

—02
—03
20 20 -10 30 20 -0

Habitat - Habitat
decreasing I - increasing
632

633  Figure 4: Projected changes in future habitat suitability for cod (A), long rough dab (B), whiting
634  (C), and lumpfish (D) in 2061-2080 relative to 2000-2018 under the middle of the road (SSP 2-
635 4.5, left) and fossil fueled development (SSP 5-8.5, right) scenarios. Green regions indicate

636  increases in suitable habitat whereas brown regions indicate decreases in suitable habitat.
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Figure 5: Projected distance (km) and direction (bearing, 0-360 degrees) of shifts in the centroid
of suitable thermal habitat distribution between 2061-2080 and 2000-2018 under the middle of
the road (SSP 2-4.5, left) and fossil fueled development (SSP 5-8.5, right) scenarios. Colors
represent species thermal niche (see Figure 3). Triangles indicate the circular average value for
the bearing change, grouped by thermal niche. Version with species labels available in the
supplemental information.
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