

1 **Mutation load decreases with haplotype age in wild Soay sheep**

2

3

4

5 Authors names and addresses:

6

7 Stoffel, M.A.^{1*}, Johnston, S.E.¹, Pilkington, J.G.¹, Pemberton, J.M¹

8 ¹Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh,
9 EH9 3FL, United Kingdom

10

11

12

13

14

15

16

17

18

19

20

21

22

23 * Corresponding author:

24 Martin A. Stoffel

25 Postal address: Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK

26

27 E-mail: martin.stoffel@ed.ac.uk

28 **Abstract**

29
30 Runs of homozygosity (ROH) are pervasive in diploid genomes and expose the effects of deleterious
31 recessive mutations, but how exactly these regions contribute to variation in fitness remains unclear.
32 Here, we combined empirical analyses and simulations to explore the deleterious effects of ROH
33 with varying genetic map lengths in wild Soay sheep. Using a long-term dataset of 4,592 individuals
34 genotyped at 417K SNPs, we found that inbreeding depression increases with ROH length. A 1%
35 genomic increase in long ROH (>12.5cM) reduced the odds of first-year survival by 12%, compared
36 to only 7% for medium ROH (1.56-12.5cM), while short ROH (<1.56cM) had no effect on survival. We
37 show by forward genetic simulations that this is predicted: compared with shorter ROH, long ROH
38 will have higher densities of deleterious alleles, with larger average effects on fitness and lower
39 population frequencies. Taken together, our results are consistent with the idea that the mutation
40 load decreases in older haplotypes underlying shorter ROH, where purifying selection has had more
41 time to purge deleterious mutations. Finally, our study demonstrates that strong inbreeding
42 depression can persist despite ongoing purging in a historically small population.

43 **Introduction**

44

45 The structure of deleterious genetic variation in natural populations shapes a range of processes in
46 evolutionary biology, such as the strength of inbreeding depression and the efficiency of genetic
47 purging (Charlesworth & Willis, 2009; Hedrick & Garcia-Dorado, 2016). The role of deleterious
48 mutations is also increasingly discussed in applied conservation, in particular when considering
49 genetic rescue of small populations (Kyriazis, Wayne, & Lohmueller, 2020; Ralls, Sunnucks, Lacy, &
50 Frankham, 2020). To date, studies in wild populations have mostly focused on average, genome-
51 wide fitness effects of deleterious recessive alleles through measuring genome-wide inbreeding
52 coefficients (Bérénos, Ellis, Pilkington, & Pemberton, 2016; Chen, Cosgrove, Bowman, Fitzpatrick, &
53 Clark, 2016; Harrisson et al., 2019; Hoffman et al., 2014; Huisman, Kruuk, Ellis, Clutton-Brock, &
54 Pemberton, 2016; Niskanen et al., 2020), or genome-sequence based predictions of deleterious
55 mutations (Grossen, Guillaume, Keller, & Croll, 2020; Robinson, Brown, Kim, Lohmueller, & Wayne,
56 2018; Xue et al., 2015). Therefore, we still know very little about how deleterious mutations in
57 different parts of the genome contribute to inbreeding depression, as these analyses usually require
58 large samples of individuals with known fitness and dense genomic data – both of which are scarce
59 in wild non-model organisms.

60

61 In populations for which mapped genetic markers are available, runs of homozygosity (ROH) open
62 up new possibilities for studying the effects of (partially) recessive deleterious variation. These long
63 stretches of homozygous genotypes are ubiquitous in diploid genomes and commonly arise when
64 individuals inherit homologous haplotypes which are identical-by-descent (IBD), originating from a
65 single copy of the region in a common ancestor. Offspring of related parents have more ROH which
66 in turn increases the probability that partially recessive deleterious alleles are expressed, thereby
67 causing inbreeding depression (Charlesworth & Willis, 2009). The lengths and numbers of ROH can
68 vary widely between individuals, and have been shown to contribute to the genetic architecture of
69 complex traits and diseases in humans (Ceballos, Joshi, Clark, Ramsay, & Wilson, 2018; Clark et al.,
70 2019) and to production traits in livestock (Ferenčaković, Sölkner, Kapš, & Curik, 2017; Pryce, Haile-
71 Mariam, Goddard, & Hayes, 2014). In wild populations, ROH are increasingly used to precisely
72 measure individual inbreeding coefficients (Kardos et al., 2018; Kardos, Luikart, & Allendorf, 2015)
73 and the effects of inbreeding on fitness (Bérénos et al., 2016; Stoffel, Johnston, Pilkington, &
74 Pemberton, 2020). Moreover, genome-wide association studies are starting to uncover associations
75 between ROH at specific locations in the genome and complex traits or fitness, thereby providing

76 information about the distribution of effect sizes at loci causing inbreeding depression (Pryce et al.,
77 2014; Stoffel et al., 2020).

78

79 The length of an ROH allows one to estimate the time to a most recent common ancestor (MRCA) of
80 the underlying IBD haplotypes (Thompson, 2013). In any given generation, DNA is inherited in
81 physically large chunks with genetic map lengths of around 100 cM, and recombination breaks up
82 these segments in successive generations. For example, an initial segment is broken up into smaller
83 IBD segments with an expected length of 2 cM after 25 generations, or 50 meioses (Thompson,
84 2013). The expected genetic map length L of an ROH can be estimated as $L = 100/(2^g)$ cM, where
85 g is the number of generations to the MRCA (Thompson, 2013), though the distribution is
86 exponential with high variance due to stochastic effects of recombination and Mendelian
87 segregation (Kardos, Taylor, Ellegren, Luikart, & Allendorf, 2016; Thompson, 2013). Long ROH
88 originating from close inbreeding are expected to have a recent ancestor, while short ROH have an
89 ancestor further back in the pedigree. In addition, when the effective size N_e of a population has
90 been small at a given point in the recent history, ROH with a MRCA at that point will be more
91 abundant in the current population. The relative frequencies of ROH of different lengths are
92 therefore informative about recent fluctuations in population sizes (Browning & Browning, 2015;
93 Ceballos et al., 2018; Kardos, Qvarnström, & Ellegren, 2017).

94

95 Considering jointly the fitness effects and sizes of ROH allows us to investigate how ROH lengths
96 (and therefore haplotype ages) are associated with inbreeding depression and mutation load. Given
97 that ROH lengths provide an expectation for the number of generations for which the underlying
98 haplotypes have been exposed to selection, we hypothesise the following: Short ROH originating
99 further back in the pedigree should be depleted of deleterious recessive variation, as purifying
100 selection has had many generations to remove these mutations. In contrast, long ROH emerging
101 from younger haplotypes should on average carry larger numbers of strongly deleterious recessive
102 mutations at lower frequencies, and therefore be associated with stronger effects on fitness. In
103 humans, ROH in general and especially long ROH are enriched for mutations which are predicted to
104 be deleterious (Pemberton & Szpiech, 2018; Szpiech et al., 2018, 2013), but to our knowledge, these
105 predictions have not been tested using actual fitness data in a wild population. Quantifying the
106 fitness effects of different ROH length classes could help to understand the genetic basis of
107 inbreeding depression and provide a novel way to assess the efficiency of selection against
108 deleterious mutations in wild populations.

109

110 Here, we combined long-term life-history data for 4789 wild Soay sheep with 417K SNP genotypes
111 and linkage map information to test whether inbreeding coefficients (F_{ROH}) calculated from ROH with
112 long, medium and short genetic map lengths differ in their contribution to inbreeding depression in
113 first-year survival. We then used forward genetic simulations based on the Soay sheep demographic
114 history to quantify the expected differences in the mutation load among ROH length classes and to
115 explore the underlying causes. We discuss how our results fit into current knowledge about
116 inbreeding depression and purging in small populations and methodological implications for
117 studying the genetic basis of inbreeding depression.

118

119

120

121

122 **Materials and Methods**

123

124 **Study population.** Soay sheep are descendants of primitive European domestic sheep and have
125 lived unmanaged on the St. Kilda archipelago, Scotland, for thousands of years (Clutton-Brock &
126 Pemberton, 2004). A part of the population in the Village Bay area on the island of Hirta (57°49'N, 8°
127 34'W) has been the focus of a long-term individual-based study since 1985 (Clutton-Brock &
128 Pemberton, 2004). More than 95% of individuals in the study area are ear-tagged within a week after
129 birth during the lambing season from March to May, and DNA samples are obtained from either
130 blood samples or ear punches. Routine mortality checks, in particular during peak mortality at the
131 end of winter, usually find around 80% of deceased animals (Bérénos et al., 2016). Here, we focused
132 on the fitness trait 'first year survival', where every individual was given a 1 if it survived from birth
133 (March to May) to the 30th April of the next year, and a 0 if it did not, with measures available for 4879
134 individuals born from 1979 to 2018. In order to impute genotypes, we assembled a pedigree based
135 on 438 unlinked SNP markers from the Ovine SNP50 BeadChip using the R package Sequoia
136 (Huisman, 2017). In the few cases where no SNP genotypes were available, we used either
137 observations from the field or microsatellite markers (Morrissey et al., 2012). All animal work was
138 carried out according to UK Home Office procedures and was licensed under the UK Animals
139 (Scientific Procedures) Act of 1986 (Project License no. PPL70/8818).

140

141 **Genotyping.** We genotyped a total of 7,700 Soay sheep on the Illumina Ovine SNP50 BeadChip
142 resulting in 39,368 polymorphic SNPs after filtering for SNPs with minor allele frequency > 0.001,
143 SNP locus genotyping success > 0.99 and individual genotyping success > 0.95. We then used the

144 check.marker function in GenABEL version 1.8-0 (Aulchenko, Ripke, Isaacs, & Van Duijn, 2007) with
145 the same thresholds, including identity by state with another individual < 0.9 . We also genotyped
146 189 sheep on the Ovine Infinium HD SNP BeadChip, resulting in 430,702 polymorphic SNPs for 188
147 individuals, after removing monomorphic SNPs, and filtering for SNPs with SNP locus genotyping
148 success > 0.99 and individual sheep with genotyping success > 0.95 . These sheep were specifically
149 selected to maximise the genetic diversity represented in the full population (for full details, see
150 Johnston, Bérénos, Slate, & Pemberton, 2016). All SNP positions were based on the Oar_v3.1 sheep
151 genome assembly (GenBank assembly ID GCA_000298735.1 (Jiang et al., 2014)).

152

153 **Genotype imputation.** The detailed genotype imputation methods are presented elsewhere
154 (Stoffel et al., 2020). Briefly, we first merged the datasets from the 50K SNP chip and from the HD
155 SNP chip with --bmerge in PLINK v1.90b6.12 (Purcell et al., 2007), resulting in a dataset with 436,117
156 SNPs including 33,068 SNPs genotyped on both SNP chips. We then discarded SNPs on the X
157 chromosome and focused on the 419,281 SNPs located on autosomes. To impute SNPs with
158 genotypes missing in individuals genotyped at the lower SNP density, we used Alphalmpute v1.98
159 (Hickey, Kinghorn, Tier, van der Werf, & Cleveland, 2012), which uses both genomic and pedigree
160 information for phasing and subsequent imputation of missing genotypes. After imputation, we
161 filtered SNPs with call rates below 95%. Overall, this resulted in a dataset with 7691 individuals,
162 417,373 SNPs and a mean genotyping rate per individual of 99.5% (range 94.8%-100%). We
163 evaluated the accuracy of genotype imputation using 10-fold leave-one-out cross-validation. In each
164 iteration, we randomly chose one individual genotyped on the high-density (HD) SNP chip, masked
165 genotypes unique to the HD chip and imputed the masked genotypes. This allowed us to compare
166 the imputed genotypes to the true genotypes and to evaluate the accuracy of the imputation.
167 Overall, 99.3% of genotypes were imputed correctly. Moreover, the distribution of inbreeding
168 coefficients F_{ROH} was very similar for individuals genotyped on the HD chip and individuals with
169 imputed SNPs, indicating little difference in inferred ROH between the two groups and hence no
170 obvious bias in ROH calling based on imputed genotypes (Stoffel et al., 2020).

171

172 **Inferring linkage map positions.** We used a dense, sex-averaged Soay sheep linkage map with
173 36,972 autosomal markers (Johnston et al., 2016) to infer the genetic map positions in cM for each
174 SNP in the imputed dataset. As the imputed SNP dataset used here had a higher SNP density than
175 the linkage map SNP dataset, we interpolated the genetic positions of SNPs that were not present in
176 the linkage map dataset by assuming a constant recombination rate in genomic regions between
177 linkage mapped SNPs (Kardos et al., 2018, 2017). If two flanking SNPs had the same coordinates on

178 the genetic map, all imputed SNPs in between were assigned the same genetic map position. If two
179 flanking SNPs had different genetic map positions, the SNPs in between were assigned increasing
180 genetic map positions depending on the physical distance to each of the two SNPs. For example, if
181 the two flanking SNPs had cM positions 3 and 4, an imputed SNP half way between these SNPs on
182 the physical map got assigned a cM position of 3.5. Imputed SNPs occurring before the first linkage
183 mapped SNP on a chromosome were assigned a genetic map position of 0 cM, and SNPs occurring
184 after the last linkage mapped SNP on a chromosome were assigned the same genetic position as
185 the last linkage mapped SNP.

186

187 **ROH calling and individual inbreeding coefficients F_{ROH} .** We focused on ROH quantified by their
188 genetic map lengths rather than physical map lengths as this accounts for the effects of
189 recombination rate variation on detected ROH lengths (Kardos et al., 2017) and allows us to infer an
190 expected time of coalescence for each ROH more precisely, assuming ROH are true IBD segments
191 (Thompson, 2013). To call ROH based on their genetic map lengths in cM, we used PLINK (Purcell
192 et al., 2007), replacing physical with genetic map positions in the input `.map` file. To keep the
193 parameter arguments on a comparable scale to running PLINK with base-pair positions, we
194 multiplied cM positions by 1e6. We then called ROH with a minimum length of 0.39 cM containing
195 at least 25 SNPs while allowing a maximum gap of 0.25 cM between SNPs and one heterozygote
196 genotype per ROH using the command '`--homozyg --homozyg-window-snp 25 --homozyg-snp 25 -`
197 `-homozyg-kb 390 --homozyg-gap 250 --homozyg-density 100 --homozyg-window-missing 2 --`
198 `homozyg-het 2 --homozyg-window-het 2`''. We semi-arbitrarily chose 0.39 cM as the minimum ROH
199 length, which is the expected length of an ROH when the underlying haplotypes have a MRCA 128
200 generations ago as calculated with $100/(2g)$ cM (Thompson, 2013). Based on our SNP density, a
201 stretch of genome with length 0.39 cM will contain on average ~50 SNPs, which, together with a slow
202 LD decay in Soay sheep (Stoffel et al., 2020) should be sufficient to reliably call ROH of that length
203 and above. To capture biologically interesting time-horizons, we qualitatively assessed the
204 distribution of ROH lengths in the population (Supplementary Figure 1), and subsequently clustered
205 ROH into three length classes: long ROH (> 12.5 cM) with an expected MRCA up to 4 generations
206 ago and therefore likely to have originated from close inbreeding, medium ROH (1.56 - 12.5 cM)
207 originating between 4 and 32 generations ago and reflecting the recent demographic history of the
208 population and short ROH (0.39 - 1.56 cM) with an expected MRCA between 32 and 128 generations
209 ago, reflecting deeper processes in the population history. For each length class, we calculated
210 individual inbreeding coefficients F_{ROH} by summing up their total ROH length in each individual and
211 dividing this value by the total sex-averaged autosomal map length of 3146 cM. This can be thought

212 of as a genetic map equivalent to the usual physical map based inbreeding coefficient F_{ROH} (Kardos
213 et al., 2018). This resulted in three inbreeding coefficients per individual, $F_{ROHlong}$, $F_{ROHmedium}$ and
214 $F_{ROHshort}$, each ranging between 0 and 1.

215

216 **Genetic simulations.** We used simulations to generate baseline expectations for how ROH length
217 classes are expected to differ in their mutation load, and how this is influenced by different selection
218 and dominance coefficients underlying deleterious mutations. Specifically, we used forward genetic
219 Wright-Fisher simulations in SLiM 3 (Haller & Messer, 2019) to simulate deleterious mutations and
220 overlaid neutral mutations using msprime (Kelleher, Etheridge, & McVean, 2016) and pyslim (Haller,
221 Galloway, Kelleher, Messer, & Ralph, 2019).

222

223 The Soay sheep were transferred to the St. Kilda archipelago around 4,000 years or roughly 1,000
224 generations ago (Clutton-Brock & Pemberton, 2004), and their recent N_e has been estimated at 194
225 (Kijas et al., 2012). We simulated a population with a demographic history close to that estimated for
226 Soay sheep, with a larger ancestral population size $N_{anc} = 1,000$ for a period of 10,000 generations,
227 followed by an instantaneous change to 200 individuals (after arrival on St. Kilda) for 1,000
228 generations. Starting 30 generations in the past (at generation 10,970), we simulated an
229 instantaneous bottleneck down to 10 individuals followed by an exponential recovery to 200
230 individuals within 20 generations to reflect the bottleneck due to the recent transfer of 107 sheep
231 (22 of which were castrates) from the island of Soay to the island of Hirta in 1932, and their rapid
232 population increase to between 600 and 2200 individuals nowadays. This broadly assumes a ratio
233 of effective to census population size of 1:10, which is in line with Soay sheep N_e estimated from
234 genomic data (Kijas et al., 2012)

235

236 We modelled 100 Mb diploid genomes with a uniformly distributed recombination rate of 1e-8 per
237 bp per generation, so that the physical distance between two SNPs in Mb was on average equal to
238 their genetic map distance in cM. In each generation, mutations were simulated at a rate of 1e-8 per
239 site, with 30% neutral mutations and 70% deleterious mutations (Kim, Huber, & Lohmueller, 2017).
240 We explored the impact of different parameters underlying the distribution of fitness effects (DFE)
241 for new deleterious mutations by simulating a range of selection and dominance coefficients.
242 Specifically, selection coefficients s were drawn from gamma distributions with varying mean $s \in \{-$
243 $0.01, -0.03, -0.05\}$ and a shape parameter of 0.2, based on values estimated in humans (Eyre-Walker,
244 Woolfit, & Phelps, 2006). We also varied the dominance coefficients h for deleterious alleles from
245 fully to partially recessive with $h \in \{0, 0.05, 0.2\}$. SLiM defines a mutation's fitness effect when

246 homozygous as $1+s$ and when heterozygous as $h(1+hs)$. Overall, we ran nine simulations for all
247 combinations of s and h , with 50 replicates each.

248

249 At the end of each SLiM simulation, we generated a list of segregating deleterious mutations for the
250 200 individuals and saved the full tree sequence of the simulation (Haller et al., 2019). Neutral
251 mutations were then added using the coalescent simulator msprime (Kelleher et al., 2016) and
252 pyslim (Haller et al., 2019) and the results for each simulation were saved as vcf files. Before adding
253 neutral mutations, we used recapitation, a technique which runs a coalescent simulation back in
254 time to ensure the coalescence of all samples (Haller et al., 2019). We then called runs of
255 homozygosity in PLINK with the same parameters as in the empirical data analysis above, and
256 clustered ROH into the same three ROH length classes.

257

258 Lastly, we combined ROH information with the deleterious mutation data and calculated the
259 following three statistics, all of them as averages across all individuals within a given simulation: 1)
260 The mutation load per cM ROH length. We defined the mutation load per unit length (in cM) for each
261 ROH length class within an individual with $\frac{\sum_1^n s}{\sum_1^m ROH (cM)}$, where the numerator sums up the selection
262 coefficients s for all n deleterious mutations found in the respective ROH class, and the denominator
263 sums up the genetic map lengths of all m ROH segments in the relevant class within an individual.
264 This measure of mutation load therefore quantifies the average expected fitness decline per cM of
265 ROH; 2) the average number of deleterious mutations within each ROH class, per cM length; 3) the
266 average allele frequency of deleterious mutations within each ROH class in the population.

267

268 **Statistical analyses.** To estimate the effects of the three inbreeding coefficients $F_{ROHlong}$, $F_{ROHmedium}$
269 and $F_{ROHshort}$ on survival, we fitted a binomial Bayesian generalised linear mixed model (GLMM) with
270 logit link, using brms (Bürkner, 2017), a high-level R interface to Stan (Carpenter et al., 2017). The
271 response variable was first-year survival, with a value of 1 if a sheep survived to April 30th in the year
272 after it was born and a value of 0 if it died. We used the following model structure:

273

274 $\Pr(surv_i = 1) = logit^{-1}(\beta_0 + F_{ROHlong_i}\beta_1 + F_{ROHmedium_i}\beta_2 + F_{ROHshort_i}\beta_3 + sex_i\beta_4 + twin_i\beta_5 +$
275 $\alpha_k^{birth\ year} + \alpha_l^{mother\ id})$

276

$$\alpha_k^{birth\ year} \sim N(0, \sigma_{birth\ year}^2), \quad for\ k = 1, \dots, 39$$

$$\alpha_l^{mother\ id} \sim N(0, \sigma_{mother\ id}^2), \quad for\ k = 1, \dots, 1118$$

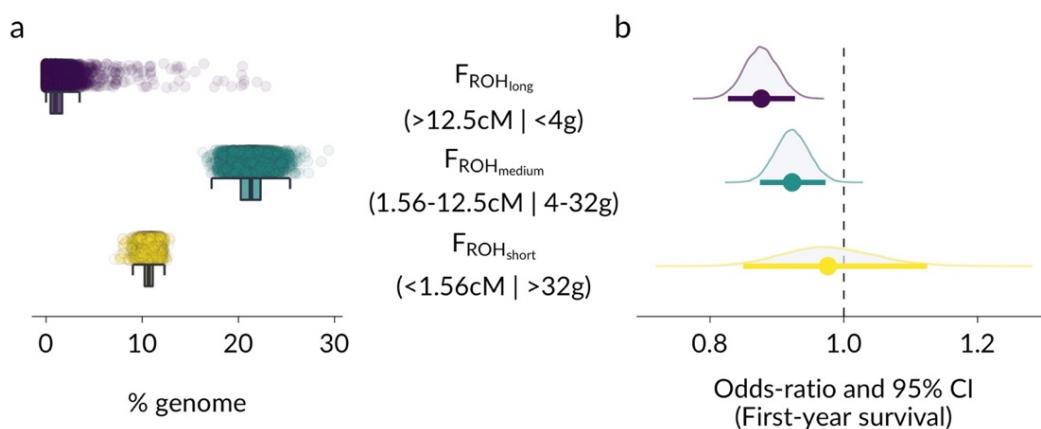
279

280 The probability of survival for observation i ($\text{Pr}(\text{surv}_i = 1)$) was modelled with an intercept β_0 , the
281 three population level (fixed) effects for individual inbreeding coefficients F_{ROH} calculated from long
282 ROH (> 12.5 cM), medium ROH (between 1.56 and 12.5 cM) and short ROH (< 1.56 cM) and two
283 further population level effects to take into account the sex of the individual (female = 0, male = 1)
284 and whether it was a twin (no = 0, yes = 1). The model also included two group-level (random)
285 intercept effects for birth year and maternal identity to model environmental variation across years
286 and maternal effects, respectively. The three F_{ROH} variables were multiplied by 100, such that the
287 model estimates the change in the odds of survival for a 1% increase in genomic ROH of the
288 respective class. We used a normal prior with mean = 0 and sd = 5 for population-level effects and
289 the default half Student- t prior for the standard deviation of group-level parameters. We ran four
290 MCMC chains with the NUTS sampler with 10,000 iterations each, a warmup of 5,000 iterations and
291 no thinning. All chains were visually checked for convergence and the Gelman-Rubin criterion was
292 < 1.1 for all predictors, indicating good convergence (Gelman & Rubin, 1992). We present model
293 estimates as odds ratios, which represent the predicted multiplicative change in the odds of survival
294 for a unit increase in a given predictor, and 95% credible intervals based on the 2.5th and 97.5th
295 percentile in the posterior distribution.

296

297

298 **Results**


299 **ROH in Soay sheep.**

300 Overall, we quantified a total of 4,806,614 ROH across all 4,879 Soay sheep, with a mean and
301 maximum genetic map lengths of 1.68 and 80.55 cM, respectively. Individual sheep had on average
302 625 ROH (range 470-839) spanning 33.3% (range 27.8 - 58.4%) of the autosomal genetic map.
303 Initially, we visually assessed the distribution of ROH lengths over many classes (Supplementary
304 Figure 1), and eventually clustered them into long, medium and short ROH suitable for modelling
305 (Figure 1a). We calculated three individual inbreeding coefficients F_{ROHlong} , $F_{\text{ROHmedium}}$, and F_{ROHshort}
306 based on these three ROH classes, which varied markedly in their means and distribution in the
307 population (Figure 1a, Supplementary Figure 1). Long ROH made up only 1.3% of the average Soay
308 sheep genome (mean $F_{\text{ROHlong}} = 0.013$), though the distribution is right skewed and shows that long
309 ROH added up to over 20% of the genome in the most inbred individuals. Medium ROH were the
310 most common class in Soay sheep and made up 21.3% of the average autosomal genome while
311 short ROH made up 10.7% on average.

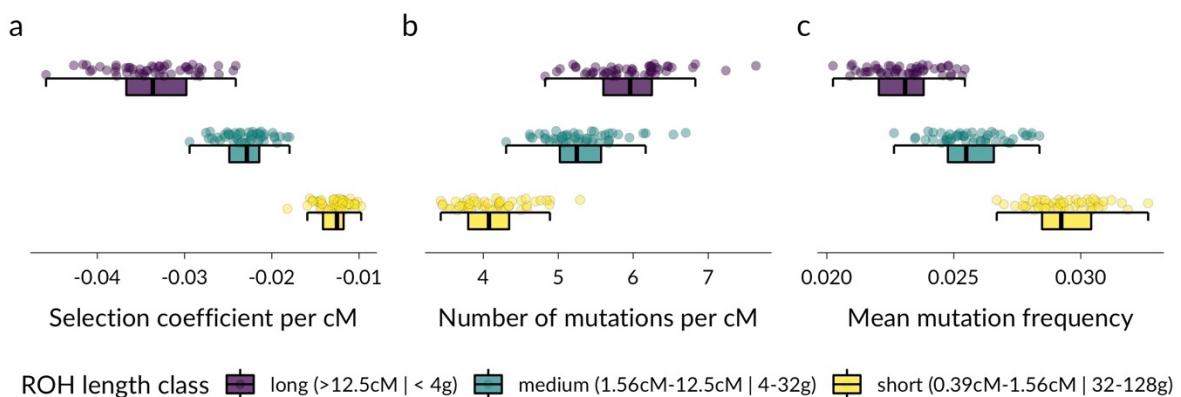
312

313 **Inbreeding depression in survival by ROH length.**

314 Inbreeding depression was stronger when F_{ROH} was based on longer ROH (Figure 1b,
315 Supplementary Table 1). The posterior mean odds-ratio (OR) for $F_{ROHlong}$ was 0.876 (95% CI [0.827-
316 0.927]), or an estimated 12.4 % reduction in the odds of survival for a 1% increase in the proportion
317 of the genome found within long ROH. For $F_{ROHmedium}$, the OR was 0.923 (95% CI [0.875-0.973]),
318 corresponding to only a 7.7% reduction in the odds of survival for the same increase in ROH, and
319 $F_{ROHshort}$ were not associated with differences in survival (OR 0.977, 95% CI [0.850-1.125]). In addition,
320 the posterior distributions of the differences in model estimates for $F_{ROHlong}$, $F_{ROHmedium}$, and $F_{ROHshort}$
321 are also reflecting differences in the estimated effects of inbreeding depression among ROH length
322 classes (Supplementary Figure 2). Lastly, we fitted an alternative model, replacing the three F_{ROH}
323 predictors with the overall inbreeding coefficient F_{ROH} and a second predictor quantifying the mean
324 ROH length per individual. For a given overall inbreeding coefficient F_{ROH} , a one cM increase in mean
325 ROH length led to an estimated reduction in the odds of survival by 71% (OR 0.287, 95% CI[0.094,
326 0.874]), again reflecting stronger inbreeding depression in longer ROH (Supplementary Table 2).

327

328 **Figure 1: Distribution and fitness effects of inbreeding coefficients F_{ROH} based on different ROH lengths**
329 **in Soay sheep.** Panel a shows the distribution of $F_{ROHlong}$, $F_{ROHmedium}$, and $F_{ROHshort}$ in the population, which
330 were multiplied by 100 to represent the percentage of the genome in the respective ROH length class. Panel b
331 shows the model estimates for the effects of the three inbreeding coefficients on first year survival. The effects
332 are presented as odds-ratios, which show the estimated multiplicative change in the odds of survival for a 1%
333 genomic increase in the respective ROH class. The three classes were clustered by their genetic map length in
334 cM which is associated with the expected time to a MRCA in generations (g).


335

336 **Genetic simulations.**

337 To generate baseline expectations and insights into the reasons for differences in mutation load
338 between ROH length classes we used forward genetic simulations. The overall patterns were
339 qualitatively similar for a range of selection and dominance coefficients for new deleterious
340 mutations (Supplementary Figures 3-5). Therefore, we focus here on the results of simulations based

341 on deleterious mutations following a gamma distribution of fitness effects, with mean $s = -0.03$ and
342 shape parameter $\beta = 0.2$, where all mutations were partially recessive with a dominance coefficient
343 $h = 0.05$ (Figure 2). Long ROH had the highest overall mutation load per cM length, which was on
344 average 32% lower in medium ROH and 62% lower in short ROH (Figure 2a). The average frequency
345 of deleterious mutations was also lower in long compared with short ROH, showing that longer ROH
346 are enriched for rarer deleterious mutations (Figure 2c). The simulations also reveal a more nuanced
347 pattern: While the overall mutation load per cM was 32% lower in medium compared to long ROH,
348 the average number of deleterious mutations was only 11% lower (Figure 2b). This pattern emerges
349 because rare, strongly deleterious mutations are quickly removed by purifying selection, leading to
350 a substantially lower mutation load in haplotypes originating 4-32 generations ago compared to
351 haplotypes originating less than 4 generations ago. Short ROH (<1.56 cM), with a MRCA more than
352 32 generations ago had the lowest mutation load and contained substantially fewer deleterious
353 mutation with higher average frequencies (Figure 2).

354

355

356 **Figure 2: Patterns of deleterious mutations in long, medium and short ROH.** Each point represents the
357 mean of 200 individuals of a simulation run. Panel a shows the mean selection coefficient of ROH per cM length,
358 with lower values translating into a larger reduction in individual fitness and therefore representing a higher
359 mutation load. Panel b shows the mean number of deleterious mutations per cM ROH length. Panel c shows
360 the average population frequencies of deleterious mutations.

361

362 Discussion

363 Long ROH originating from young haplotypes caused stronger inbreeding depression and had a
364 higher mutation load than shorter ROH, which is expected when purifying selection acting over more
365 generations has had more time to purge deleterious variation in older haplotypes. A substantial part
366 of the mutation load is purged within only a few tens of generations, causing a difference in
367 inbreeding depression estimated from medium and long ROH, respectively. Our simulations
368 suggest that this is likely due to selection against strongly deleterious mutations present at low

369 frequencies. While this is theoretically expected in small populations (Hedrick & Garcia-Dorado,
370 2016; Kimura, Maruyama, & Crow, 1963; Wang, Hill, Charlesworth, & Charlesworth, 1999), empirical
371 evidence based on actual fitness data is rare. However, deleterious mutations can be predicted from
372 genome-sequence data, which has revealed patterns of population-wide purging due to bottlenecks
373 and small population sizes in Mountain Gorillas, Isle Royale Wolves and Alpine Ibex (Grossen et al.,
374 2020; Robinson et al., 2019; Xue et al., 2015). In Soay sheep, the difference in inbreeding depression
375 between long and short ROH despite thousands of years of isolation as a small population suggests
376 that intermediate and strongly deleterious mutations are unlikely to have been completely purged
377 from the population. Instead, these differences probably reflect a haplotype-level snapshot of the
378 ongoing balance between newly arising strongly deleterious mutations expressed in long ROH, and
379 selection against these mutations leaving shorter ROH with lower a mutation load.

380

381 Our findings have methodological implications for quantifying inbreeding depression and
382 understanding its genetic architecture. Studies of wild animal population commonly use reduced
383 representation methods such as SNP arrays or RAD sequencing for genotyping individuals. SNP
384 densities might therefore not be high enough to reliably detect short ROH. In Soay sheep, most
385 variation in inbreeding depression was captured by medium and long ROH, which can usually be
386 reliably detected with intermediate SNP densities. In studies of inbreeding depression in wild
387 organisms with low N_e and high linkage disequilibrium, resources might therefore be better
388 allocated into increasing the number of individuals rather than increasing SNP densities from tens of
389 thousands of SNPs to whole-genome-sequencing. When studying the genetic basis of inbreeding
390 depression, ROH can also be used to map the underlying loci in genome-wide association studies
391 (GWAS) (Kardos et al., 2016; Pryce et al., 2014; Stoffel et al., 2020). Our results suggest that the
392 minimum ROH length is important when mapping ROH-fitness relationships. When comparing the
393 fitness of individuals with and without ROH at a given genomic location, the statistical power will be
394 highest when only longer ROH are included, as these are more likely to harbour strongly deleterious
395 recessive alleles. Analyses of the effects of different ROH length classes on fitness prior to GWAS
396 analyses could therefore help to determine an optimal minimum ROH length.

397

398 Finally, our analyses provide some fundamental insights into the relationship between deleterious
399 variation, inbreeding depression and purging in a small, wild population. At the haplotype level, we
400 showed that purifying selection constantly removes deleterious variation, causing a difference in the
401 mutation load of IBD haplotypes with different coalescent times. Strongly deleterious mutations are
402 purged relatively quickly, probably because they frequently occur as homozygotes in small

403 populations, which facilitates purging of mutations with large fitness effects despite a relatively low
404 efficiency of selection due to drift (Hedrick & Garcia-Dorado, 2016; Kyriazis, Wayne, & Lohmueller,
405 2021). Yet, inbreeding depression is strong in Soay sheep, and highly inbred individuals are very
406 unlikely to survive their first winter (Figure 1b, Stoffel et al., 2020). Consequently, inbreeding
407 depression in Soay sheep is probably largely a consequence of the combined effects of many weakly
408 recessive deleterious alleles, which is consistent with a genome-wide association study on the
409 genetic basis of inbreeding depression in Soay sheep (Stoffel et al., 2020). In small populations,
410 theory predicts weakly deleterious mutations will drift more often to higher frequencies and fixation,
411 thereby increasing the mutation load and decreasing mean fitness (Kimura et al., 1963). However,
412 this also decreases the variance in deleterious mutations between individuals and therefore the
413 expected strength of inbreeding depression (Hedrick & Garcia-Dorado, 2016), which is why larger
414 populations are predicted to experience even stronger inbreeding depression than for example
415 Soay sheep. Combining sub-genome level information such as ROH with fitness data is key to assess
416 these theoretical predictions and to gain a deeper understanding of the genetic basis and strength
417 of inbreeding depression in wild populations.

418 **Acknowledgements**

419 We thank the National Trust for Scotland for permission to work on St. Kilda and QinetiQ, Eurest and
420 Kilda Cruises for logistics and support. We thank Ian Stevenson and many volunteers who have
421 helped with data collection and management and all those who have contributed to keeping the
422 project going. SNP genotyping was conducted at the Wellcome Trust Clinical Research Facility
423 Genetic Core. This work has made extensive use of the Edinburgh Compute and Data Facility
424 (<http://www.ecdf.ed.ac.uk/>). We are grateful for discussions with Marty Kardos, Jarrod Hadfield,
425 Anna Hewett, Brian Charlesworth and the Wild Evolution Group. We thank Deborah Charlesworth
426 and Emily Humble for detailed comments on earlier versions of the manuscript. The project was
427 funded through an outgoing Postdoc fellowship from the German Science Foundation (DFG)
428 awarded to MAS and a Leverhulme Grant (RPG-2019-072) awarded to JMP and SEJ. Field data
429 collection has been supported by NERC over many years, and most of the SNP genotyping was
430 supported by an ERC Advanced Grant to JMP.

431

432 **Author contributions**

433 JMP and MAS designed the study. JGP is the main Soay sheep project fieldworker and collected
434 samples and life history data. JMP has run the Soay sheep long-term study and organised the SNP
435 genotyping. SEJ built the fundamental genomic database, including genotyping, quality control and
436 linkage mapping. MAS conducted data analyses and drafted the manuscript. MAS, JEP and SEJ
437 jointly contributed to concepts, ideas and revisions of the manuscript.

438

439 **Data and code accessibility**

440 All data to reproduce the analysis will be uploaded to Dryad upon acceptance. The complete
441 analysis scripts are available on GitHub (https://github.com/mastoffel/sheep_roh).

442 **References**

443 Aulchenko, Y. S., Ripke, S., Isaacs, A., & Van Duijn, C. M. (2007). GenABEL: An R library for genome-
444 wide association analysis. *Bioinformatics*, 23(10), 1294-1296.

445 Bérénos, C., Ellis, P. A., Pilkington, J. G., & Pemberton, J. M. (2016). Genomic analysis reveals
446 depression due to both individual and maternal inbreeding in a free-living mammal
447 population. *Molecular Ecology*, 25(13), 3152-3168.

448 Browning, S. R., & Browning, B. L. (2015). Accurate non-parametric estimation of recent effective
449 population size from segments of identity by descent. *The American Journal of Human
450 Genetics*, 97(3), 404-418.

451 Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. *Journal of
452 Statistical Software*, 80(1), 1-28.

453 Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A.
454 (2017). Stan: A probabilistic programming language. *Journal of Statistical Software*, 76(1).

455 Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., & Wilson, J. F. (2018). Runs of homozygosity:
456 Windows into population history and trait architecture. *Nature Reviews Genetics*, 19(4),
457 220-234. doi: 10.1038/nrg.2017.109

458 Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. *Nature Reviews
459 Genetics*, 10(11), 783-796. doi: 10.1038/nrg2664

460 Chen, N., Cosgrove, E. J., Bowman, R., Fitzpatrick, J. W., & Clark, A. G. (2016). Genomic
461 consequences of population decline in the endangered Florida scrub-jay. *Current Biology*,
462 26(21), 2974-2979.

463 Clark, D. W., Okada, Y., Moore, K. H. S., Mason, D., Pirastu, N., Gandin, I., ... Wilson, J. F. (2019).
464 Associations of autozygosity with a broad range of human phenotypes. *Nature
465 Communications*, 10(1), 1-17. doi: 10.1038/s41467-019-12283-6

466 Clutton-Brock, T. H., & Pemberton, J. M. (2004). *Soay sheep: Dynamics and selection in an island
467 population*. Cambridge University Press.

468 Eyre-Walker, A., Woolfit, M., & Phelps, T. (2006). The Distribution of Fitness Effects of New
469 Deleterious Amino Acid Mutations in Humans. *Genetics*, 173(2), 891-900. doi:
470 10.1534/genetics.106.057570

471 Ferenčaković, M., Sölkner, J., Kapš, M., & Curik, I. (2017). Genome-wide mapping and estimation of
472 inbreeding depression of semen quality traits in a cattle population. *Journal of Dairy
473 Science*, 100(6), 4721-4730. doi: 10.3168/jds.2016-12164

474 Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.
475 *Statistical Science*, 7(4), 457-472.

476 Grossen, C., Guillaume, F., Keller, L. F., & Croll, D. (2020). Purgation of highly deleterious mutations
477 through severe bottlenecks in Alpine ibex. *Nature Communications*, 11(1), 1-12.

478 Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W., & Ralph, P. L. (2019). Tree-sequence
479 recording in SLiM opens new horizons for forward-time simulation of whole genomes.
480 *Molecular Ecology Resources*, 19(2), 552-566.

481 Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward genetic simulations beyond the Wright-Fisher
482 model. *Molecular Biology and Evolution*, 36(3), 632-637.

483 Harrisson, K. A., Magrath, M. J. L., Yen, J. D. L., Pavlova, A., Murray, N., Quin, B., ... Sunnucks, P.
484 (2019). Lifetime Fitness Costs of Inbreeding and Being Inbred in a Critically Endangered
485 Bird. *Current Biology*, 29(16), 2711-2717.e4. doi: 10.1016/j.cub.2019.06.064

486 Hedrick, P. W., & Garcia-Dorado, A. (2016). Understanding inbreeding depression, purging, and
487 genetic rescue. *Trends in Ecology & Evolution*, 31(12), 940-952.

488 Hickey, J. M., Kinghorn, B. P., Tier, B., van der Werf, J. H., & Cleveland, M. A. (2012). A phasing and
489 imputation method for pedigree populations that results in a single-stage genomic
490 evaluation. *Genetics Selection Evolution*, 44(1), 9.

491 Hoffman, J. I., Simpson, F., DAVID, P., Rijks, J. M., Kuiken, T., Thorne, M. A. S., ... Dasmahapatra, K.
492 K. (2014). High-throughput sequencing reveals inbreeding depression in a natural
493 population. *Proceedings of the National Academy of Sciences of the United States of
494 America*, 111(10), 3775-3780. doi: 10.1073/pnas.1318945111

495 Huisman, J. (2017). Pedigree reconstruction from SNP data: Parentage assignment, sibship
496 clustering and beyond. *Molecular Ecology Resources*, 17(5), 1009-1024.

497 Huisman, J., Kruuk, L. E., Ellis, P. A., Clutton-Brock, T., & Pemberton, J. M. (2016). Inbreeding
498 depression across the lifespan in a wild mammal population. *Proceedings of the National
499 Academy of Sciences*, 113(13), 3585-3590.

500 Jiang, Y., Xie, M., Chen, W., Talbot, R., Maddox, J. F., Faraut, T., ... Zhang, W. (2014). The sheep
501 genome illuminates biology of the rumen and lipid metabolism. *Science*, 344(6188), 1168-
502 1173.

503 Johnston, S. E., Bérénos, C., Slate, J., & Pemberton, J. M. (2016). Conserved Genetic Architecture
504 Underlying Individual Recombination Rate Variation in a Wild Population of Soay Sheep
505 (*Ovis aries*). *Genetics*, 203(1), 583-598. doi: 10.1534/genetics.115.185553

506 Kardos, M., Åkesson, M., Fountain, T., Flagstad, Ø., Liberg, O., Olason, P., ... Ellegren, H. (2018).
507 Genomic consequences of intensive inbreeding in an isolated wolf population. *Nature
508 Ecology & Evolution*, 2(1), 124-131. doi: 10.1038/s41559-017-0375-4

509 Kardos, M., Luikart, G., & Allendorf, F. W. (2015). Measuring individual inbreeding in the age of
510 genomics: Marker-based measures are better than pedigrees. *Heredity*, 115(1), 63-72. doi:
511 10.1038/hdy.2015.17

512 Kardos, M., Qvarnström, A., & Ellegren, H. (2017). Inferring individual inbreeding and demographic
513 history from segments of identity by descent in *Ficedula flycatcher* genome sequences.
514 *Genetics*, 205(3), 1319-1334.

515 Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G., & Allendorf, F. W. (2016). Genomics advances the
516 study of inbreeding depression in the wild. *Evolutionary Applications*, 9(10), 1205-1218.

517 Kelleher, J., Etheridge, A. M., & McVean, G. (2016). Efficient coalescent simulation and
518 genealogical analysis for large sample sizes. *PLoS Computational Biology*, 12(5), e1004842.

519 Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Neto, L. R. P., Cristobal, M. S., ... Consortium, other
520 members of the I. S. G. (2012). Genome-Wide Analysis of the World's Sheep Breeds
521 Reveals High Levels of Historic Mixture and Strong Recent Selection. *PLOS Biology*, 10(2),
522 e1001258. doi: 10.1371/journal.pbio.1001258

523 Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the Distribution of Selection
524 Coefficients for New Nonsynonymous Mutations Using Large Samples. *Genetics*, 206(1),
525 345-361. doi: 10.1534/genetics.116.197145

526 Kimura, M., Maruyama, T., & Crow, J. F. (1963). The Mutation Load in Small Populations. *Genetics*,
527 48(10), 1303-1312.

528 Kyriazis, C. C., Wayne, R. K., & Lohmueller, K. E. (2020). Strongly deleterious mutations are a
529 primary determinant of extinction risk due to inbreeding depression. *BioRxiv*, 678524. doi:
530 10.1101/678524

531 Kyriazis, C. C., Wayne, R. K., & Lohmueller, K. E. (2021). Strongly deleterious mutations are a
532 primary determinant of extinction risk due to inbreeding depression. *Evolution Letters*, 5(1),
533 33-47. doi: <https://doi.org/10.1002/evl3.209>

534 Morrissey, M. B., Parker, D. J., Korsten, P., Pemberton, J. M., Kruuk, L. E., & Wilson, A. J. (2012). The
535 prediction of adaptive evolution: Empirical application of the secondary theorem of
536 selection and comparison to the breeder's equation. *Evolution: International Journal of
537 Organic Evolution*, 66(8), 2399-2410.

538 Niskanen, A. K., Billing, A. M., Holand, H., Hagen, I. J., Araya-Ajoy, Y. G., Husby, A., ... Jensen, H.
539 (2020). Consistent scaling of inbreeding depression in space and time in a house sparrow
540 metapopulation. *Proceedings of the National Academy of Sciences*, 117(25), 14584-14592.
541 doi: 10.1073/pnas.1909599117

542 Pemberton, T. J., & Szpiech, Z. A. (2018). Relationship between Deleterious Variation, Genomic
543 Autozygosity, and Disease Risk: Insights from The 1000 Genomes Project. *The American
544 Journal of Human Genetics*, 102(4), 658-675. doi: 10.1016/j.ajhg.2018.02.013

545 Pryce, J. E., Haile-Mariam, M., Goddard, M. E., & Hayes, B. J. (2014). Identification of genomic
546 regions associated with inbreeding depression in Holstein and Jersey dairy cattle. *Genetics
547 Selection Evolution*, 46(1). doi: 10.1186/s12711-014-0071-7

548 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., ... Daly, M. J. (2007).
549 PLINK: A tool set for whole-genome association and population-based linkage analyses.
550 *The American Journal of Human Genetics*, 81(3), 559-575.

551 Ralls, K., Sunnucks, P., Lacy, R. C., & Frankham, R. (2020). Genetic rescue: A critique of the evidence
552 supports maximizing genetic diversity rather than minimizing the introduction of putatively
553 harmful genetic variation. *Biological Conservation*, 251, 108784. doi:
554 10.1016/j.biocon.2020.108784

555 Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E., & Wayne, R. K. (2018). Purgling of strongly
556 deleterious mutations explains long-term persistence and absence of inbreeding
557 depression in island foxes. *Current Biology*, 28(21), 3487-3494.

558 Robinson, J. A., Räikkönen, J., Vucetich, L. M., Vucetich, J. A., Peterson, R. O., Lohmueller, K. E., &
559 Wayne, R. K. (2019). Genomic signatures of extensive inbreeding in Isle Royale wolves, a
560 population on the threshold of extinction. *Science Advances*, 5(5), eaau0757.

561 Stoffel, M. A., Johnston, S. E., Pilkington, J. G., & Pemberton, J. M. (2020). Genetic architecture and
562 lifetime dynamics of inbreeding depression in a wild mammal. *BioRxiv*.

563 Szpiech, Z. A., Mak, A. C., White, M. J., Hu, D., Eng, C., Burchard, E. G., & Hernandez, R. D. (2018).
564 Ancestry-dependent enrichment of deleterious homozygotes in runs of homozygosity.
565 *BioRxiv*, 382721.

566 Szpiech, Z. A., Xu, J., Pemberton, T. J., Peng, W., Zöllner, S., Rosenberg, N. A., & Li, J. Z. (2013).
567 Long runs of homozygosity are enriched for deleterious variation. *The American Journal of
568 Human Genetics*, 93(1), 90-102.

569 Thompson, E. A. (2013). Identity by descent: Variation in meiosis, across genomes, and in
570 populations. *Genetics*, 194(2), 301-326.

571 Wang, J., Hill, W. G., Charlesworth, D., & Charlesworth, B. (1999). Dynamics of inbreeding
572 depression due to deleterious mutations in small populations: Mutation parameters and
573 inbreeding rate. *Genetics Research*, 74(2), 165-178. doi: 10.1017/S0016672399003900

574 Xue, Y., Prado-Martinez, J., Sudmant, P. H., Narasimhan, V., Ayub, Q., Szpak, M., ... Cooper, D. N.
575 (2015). Mountain gorilla genomes reveal the impact of long-term population decline and
576 inbreeding. *Science*, 348(6231), 242-245.
577