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Choice information appears in the brain as distributed signals with top-down and bottom-up components that together support
decision-making computations. In sensory and associative cortical regions, the presence of choice signals, their strength, and area
specificity are known to be elusive and changeable, limiting a cohesive understanding of their computational significance.

In this study, examining the mesoscale activity in mouse posterior cortex during a complex visual discrimination task, we found that
broadly distributed choice signals defined a decision variable in a low-dimensional embedding space of multi-area activations,
particularly along the ventral visual stream. The subspace they defined was near-orthogonal to concurrently represented sensory
and motor-related activations, and it was modulated by task difficulty and contextually by the animals’ attention state.

To mechanistically relate choice representations to decision-making computations, we trained recurrent neural networks with the
animals’ choices and found an equivalent decision variable whose context-dependent dynamics agreed with that of the neural data.
In conclusion, our results demonstrated an independent decision variable broadly represented in the posterior cortex, controlled by
task features and cognitive demands. Its dynamics reflected decision computations, possibly linked to context-dependent feedback
signals used for probabilistic-inference computations in variable animal-environment interactions.
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Introduction

Choice signals in the brain reflect a relationship between neu-
ral activity and the animal’s choice during decision mak-
ing [1]. Previous research has focused particularly on per-
ceptual behaviors, using "choice probability" as a metric to
quantify correlations between the activity of neurons and the
trial-to-trial fluctuations in animals’ choices [2]. The inferred
correlations were usually computed by factoring-out task re-
gressors that might inform choices; for instance, a frequently
used paradigm is the random-dot discrimination task, used to
record from neurons in middle temporal visual area (MT) [3].
Since in this area neurons clearly encode the direction of
stimulus motion, choice probability is measured at near-zero
coherence.

Choice signals have also been described using a decision
variable (DV) derived from neural responses that dynami-
cally followed the decision state of the animal [4]. In evi-
dence accumulation tasks—as the random dots task—the DV
is driven by sensory evidence as well as by the animal’s “in-
ternal state”, with weak sensory evidence best revealing in-
ternally driven computations, such as changes of mind [5].
In posterior cortical regions, choice signals have been char-
acterized by a large degree of heterogeneity [6—10]. Most
studies have focused on individual regions, and found that
numerous variables can influence the probability of detect-
ing these signals; for instance, the stimulus-coding strength
of neurons [6, 11], the correlation properties of the net-
work [12, 13], the area location in the sensory hierarchy [14,
15] and even the strategy used by the animal to solve the
task [16]. Furthermore, choice signals can be difficult to
disentangle from coincident task- and behavior-related pro-
cesses, as those associated with the execution of actions, or

with modulatory signals reflecting variability in the attention
state of the animal [17]. This latter process can contextually
enable, route, and gate choice information [18], thus greatly
affecting how choice signals are distributed in these areas.
It is therefore possible that during a task choice signals are
simultaneously represented across multiple areas, with am-
plitudes that, relative to concurrently represented processes,
are areas-specific and contextually modulated by the internal
state of the animal [19].

In this work, we selected a task, recording methodology, and
analytical framework that enabled us to examine this possi-
bility. As the animals engaged in a complex variant of a two-
alternative forced choice (2AFC) orientation discrimination
task [20], we isolated choice signals from sensory and motor-
related activations by performing mesoscale imaging of neu-
ral responses (GCaMP) from the mouse posterior cortex. Us-
ing recent tensor decomposition methods [21] and activity-
mode analysis [22], we isolated choice signals from con-
currently represented sensory and motor-related activations,
and characterized their distinct spatial and temporal proper-
ties across cortical areas. In a reduced space of multi-area
activations, choice signals defined an embedding subspace
for left or right (L/R) decisions that was near-orthogonal to
that of sensory signals and movement components and was
modulated by task difficulty. In visual areas, their spatial
signature was prominent in ventral stream regions, the ar-
eas implicated in the processing of stimulus’ identity. When
monitoring fluctuations in the attentional state of the ani-
mals, we found that sustained attention differentially mod-
ulated the choice signal, but the embedding subspace re-
mained invariant. Modeling the animal behavior with re-
current neural networks (RNNs [23-25]), trained with the
animals’ trial-by-trial decisions, provided mechanistic evi-
dence that the context-dependent representational dynamics
reflected the computations underlying the 2AFC task.
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Fig. 1. Imaging dorsal-parietal areas during an orientation discrimination task. a, Mice were trained on a two-alternative forced choice orientation discrimination task
(2AFC) using an automated setup featuring voluntary head fixation. They signaled a L/R choice by rotating a toy wheel with their front paws. b, Mice rotated the wheel to
position the most vertical of two oriented gratings in the center of the screen. ¢, Trial structure: after a 1 s pre-stimulus period the stimulus was presented, followed by a 1.5s
of open loop (OL) interval where wheel movements were decoupled from stimulus movements. Afterwards, in the closed loop period (CL), wheel rotations resulted in L/R
horizontal shifts of the stimuli. Correct choices were water rewarded; Incorrect choices were followed by a checkerboard pattern presentation. 10's of no movements in the CL
triggered a time out). d, Left: mice performance in the task (fraction of left choices) as a function of angle difference from the target orientation (nominal value of zero). Thick
line, mean (&£ s.e.) across animals; thin lines, individual animals. Right: fraction of timeout trials as a function of difficulty. Timeout trials did not depend on task difficulty.
e, Widefield calcium imaging of the posterior cortex of Thy1-GCaMP6f mice, with retinotopic mapping of 10-12 visual areas (colored contours). f, Simultaneously recorded
fluorescence signals (A F'/ F'), wheel and eye velocities and pupil area. In this example, choice was signaled at t = 3.1 s (sharp increase in wheel velocity).

Results

Mesoscale imaging of dorsal-parietal areas during a
discrimination task.

Using an automated setup featuring voluntary fixation of the
animals’ heads [26] (Fig. la), we trained mice (n = 7) to
carry out a complex version of a 2AFC orientation discrim-
ination task [20]. The animals had to use their front paws
to rotate a toy wheel [27] that controlled the horizontal po-
sition of two circular grating stimuli presented on a screen
positioned in front of them. Each stimulus was presented at
monocular eccentricities with orientations that varied from
trial to trial. To obtain a water reward, mice had to shift the
stimulus most similar to a learned target orientation to the
center of the screen (Fig. 1b, ¢), with the actual learned orien-
tation rarely shown to the animal. Therefore, difficulty had an
invariance to absolute orientations, which had to be ignored
by the animal, and depended only on the relative orientation
between the two stimuli. After reaching performance levels
above 75 % correct (Fig. 1d), we used a macroscope to image
mesoscale GCaMP responses in approximately 12—14 dorsal-
parietal cortical areas (Fig. le; Methods). In individual tri-
als, the neural activity was highly variable, with response
activity associated with the onset of visual stimuli and move-
ments of the limbs, trunk, and eyes, as recently described [28]
(Fig. 11).
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Decomposition of neural responses.

To extract different variables from the neural signal and map
them to defined cortical regions, we adopted a recent variant
of non-negative matrix factorization—locaNMF [21]. This
decomposition method identifies tensor components associ-
ated with specified seeding regions. When seeding on a given
area, locaNMF decomposes the signal into a sum of sepa-
rable spatial-temporal tensors, with spatial components con-
strained by the seeding region and temporal components rep-
resenting the scaling amplitudes of the spatial components.
These temporal vectors are potentially more informative than
a single vector computed as the average across spatial lo-
cations (pixels) within a given area [21]. We aligned all
imaging sessions according to the Allen Common Coordi-
nates Framework (CCF [29], Fig. 2a) and seeded the ini-
tial spatial decomposition using 10 large regions centered
on retinotopically identified areas that extended significantly
beyond area boundaries (Extended Data Fig. 1). Consistent
with the initial seeding, the factorization typically converged
toward components with peak amplitudes within individual
retinotopic areas (Fig. 2b). Depending on the seeding re-
gion, associated temporal components differentially empha-
sized sensory or behavioral variables; for instance, when
seeding on the primary visual cortex, the largest component
(in explained variance, EV) clearly highlighted a stimulus-
evoked response (Fig. 2b). However, the largest components
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within parietal regions [30] (e.g., A, RL) showed negligi-
ble visually driven responses and strong movement-related
activations (Fig. 2b). Each locaNMF component provided
significant explanatory power, with each main component
of a seeding area contributing, on average, 9.6 % of the to-
tal EV (Extended Data Fig. 1). By contrast, the first PCA
component contributed, on average, approximately to 85 %
(Extended Data Fig. 1), being strongly influenced by large
amplitude movement-related activations [31]. For each area,
the proportionality between the surface area and the number
of components significantly contributing to the EV (Meth-
ods) was not always straightforward; for instance, areas AL
and L had commensurate surface area and contributed simi-
larly to the overall EV, but L required about twice as many
components as AL (Extended Data Fig. 1). To identify task-
and behavior-related variables in locaNMF components, we
defined state vectors in a multi-dimensional space of com-
ponent activations (Fig. 2¢). This approach further reduced
the dimensionality of the data by isolating activity dimen-
sions that linearly discriminated pairs of variables. To exam-
ine components associated with visual signals, we defined
a stimulus axis as the difference between vectorized ten-
sor components in the presence and absence of the stimulus
(Methods). This axis remained stable after the stimulus’ ap-
pearance (Extended Data Fig. 2) and the projected locaNMF
components deviated from the baseline about 200 ms after
stimulus onset (Fig. 2d). We quantified the time-dependent
increase of detectability of stimulus components using a d’
discriminability measure, which can be linked to Fisher in-
formation [32, 33], that bounds the variance for estimating
a population-encoded parameter. Different areas contributed
to d’ with different weights, reaching values greater than one
at the peak of stimulus response (Fig. 2d, d’ = 1.38 +0.13,
mean = s.e.). Using only the LocaNMF components from a
particular seeding region allowed us to also quantify the rela-
tive contribution of that area to the d’ discriminability. For the
stimulus variable, the primary and secondary visual cortices
(V1, L) had the largest discriminability (d’ = 1.10 £ 0.09
and d' = 1.12 4 0.13, respectively), followed by area AL
(d’ = 0.51£0.06). When attempting to discriminate the ori-
entation of the contra-lateral visual stimulus, no area carried
sufficient information, even for the most dissimilar orienta-
tion pairs (Extended Data Fig. 3), as expected from the lack
of orientation domains in mouse visual cortex [34] and the
mesoscale spatial resolution of our imaging system.

Besides bottom-up visual inputs, imaged dorsal-parietal re-
gions reflected activations associated with general move-
ments of the body and eyes [35]. Therefore, we defined
state axes associated with wheel and eye movements. Projec-
tions onto these axes resulted in high discriminability of both
types of movements (Fig. 2e, f; peak d’ = 1.29 4 0.07 and
d’' =0.94£0.08 for wheel and eye movements, respectively).
Area-specific projections highlighted larger contributions by
anterior-medial areas (Fig. 2e, f; Extended Data Fig. 2), with
d’ values increasing before or coincidentally with the detec-
tion of movements, suggesting pre-motor contributions (e.g.,
corollary discharges [36]), and reaching values greater than
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one after movement execution.

We also identified aspects of the variability in locaNMF com-
ponents that depended on the attention state of the animal.
Underlying changes in sustained attention can be both task-
related (e.g., engagement or motivational state) and task in-
dependent components (e.g., arousal or alertness) [37, 38].
Accordingly, in individual sessions we observed fluctuations
in performance that correlated with changes in pupil dilation
and reaction times (Extended Data Fig. 4), two biomarkers
associated with changes in sustained attention [39]. Based
on the variability in pupil diameter (Methods), we defined a
state axis that discriminated between high- and low-attention
states (Fig. 2g). Associated d’ values deviated significantly
from zero largely before stimulus onset (after imposed zero
discriminability at trial onset; see Methods). Discriminability
values reached d’ = 0.5 approximately 0.5s after trial onset
and remained above this value throughout the trial duration,
with peak d’ = 1.31 +0.09. The state axis defined by atten-
tional modulations remained stable throughout the duration
of the trial (Extended Data Fig. 2), consistent with periods
of high and low attention that persisted across trials [35].
The anterior-medial visual areas and the retrosplenial cor-
tex contributed most significantly to large d’ discriminability
(Fig. 2g, Extended Data Fig. 2).

Together, these results showed that sensory inputs,
movement-related activations, and attentional signals
were concurrently present in the dorsal-parietal regions, and
could be separated by the locaNMF tensor decomposition,
permitting the identification of their characteristic spatial
and temporal signatures.

Choice signals.

This approach also allowed us to identify choice-related sig-
nals. We adopted a broad operational definition of “choice”
as signals that correlated with animal’s L/R decisions, inde-
pendently of the stimulus and with premotor signatures re-
flecting action-selection [9]. We considered trials in which
the first detected wheel rotation occurred at least half a sec-
ond after stimulus onset. The first detected movement af-
ter stimulus presentation did not always coincide—by def-
inition—with the movement signaling the animal’s choice,
which occurred in the closed-loop (CL, Methods) period
and terminated the trial. However, we confirmed that the
direction of the first movement had a large and signifi-
cant correlation with the final choice ((85+4)% agree-
ment with movement directions), suggesting that the deci-
sion was made quickly after the stimulus presentation (Ex-
tended Data Figs. 4- 5). We then aligned responses rela-
tive to movement times and defined a state axis that lin-
early discriminated clockwise from counterclockwise wheel
rotations (hereafter left and right choice, respectively). Lo-
caNMF projections onto this axis sharply separated left from
right choices (Fig. 3a), reaching peak separation values ap-
proximately 0.15s after movement detection (Fig. 3b, peak
d’ =1.5+0.1), and with the choice axis showing two clearly
stable regions, before and after movement onset (Fig. 3c).
Global and area-specific d’ values started to increase before
movement onset (Fig. 3d). We characterized pre-movement
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Fig. 2. LocaNMF decomposition identifies sensory, behavioral, and attention-related variables. a, Characteristic imaging window (dashed circle) superimposed on
10 cortical areas from the Allen Brain Atlas reference framework. Blue, red, and yellow contours are the reference-aligned area boundaries for V1, PM and RL for each
animal. b, Spatial weights and trial-averaged time-series of the largest locaNMF components for each of the 10 seeding regions (Extended Data Fig. 1) for a representative
animal. Selected trials for the trial-average all presented wheel movements within the 1 s shaded region. ¢, Schematic for the definition of state vectors. For any given pair
of task-related variables, A (t) and B(t) (i.e. locaNMF temporal components), we defined at each time point a state vector S(t) as a trial-averaged unit difference vector
S(t) ~ (A(t)) — (B(t)). In this schematic, the direction of the state vector becomes stable after an event indicated by the green arrow. Vector stability is measured as
the temporal autocorrelation R(S(t),S(t")), (right panel). Projections (cross-validated) of the two variables A (¢) and B(t) onto S separate over time, as quantified by a
d’ discriminability measure. d, Stimulus-related state vector. Left: projections of trials with and without a stimulus response onto the stimulus state vector for a given animal.
Pre-stimulus times were used for no-stimulus conditions. Lines and shaded regions indicate projection averages across trials and s.e.. Middle: Discriminability d” over time,
averaged across all animals. Grey bars on top, epoch used for the time-average of the state vector. Right: area-specific peak d’ scores obtained by defining the state vector
using only the components originating from that area. e, As in d for the wheel movement state vector, aligned to movement-detection time, i.e., separability between trials
with and without a detected wheel movement. f, As in e for saccadic eye movements. g, as in f for sustained attention. High and low attention trials were defined based on
pupil area change, using the highest or lowest 33-percentile of the area-change distribution.
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Fig. 3. Choice signals have pre-motor component and are modulated by task difficulty and attentions. a, Projections on the state vector for choice signals. Wheel
movements signaling either a left or a right choice were aligned to the wheel movement onset. b, Evolution of d’ discriminability relative to movement time. Early and late
choice periods were defined relative to movement onset. ¢, Temporal stability of the state vector for choice. There is a clear change in the contribution of the choice state
vector near the time of movement onset. d, Temporal evolution of area-specific d’ curves (inset: area color code). e, Piecewise linear fits of the curves in d in pre- and
post-movement periods. f, Pre-movement slopes fitted in e for different areas; error bars, 95 % confidence intervals across animals (Cl). g, Times of slope change for different
areas from the fits in e. Data and colors as in f. h, Left: evolution of choice discriminability, d’, in high attention states for easy and hard trials (angle difference > or < 45°).
Right: paired comparisons of peak d’ values from h for each animal (p = 0.003). i, Same as in h for low attention states. Paired differences were not significant (p = 0.50).
j, Schematic representation of the temporal evolution of left and right trajectories with difficulty and attention

components using a piecewise linear regression analysis
(Fig. 3e) applied to d’ curves to quantify the slope of the
fit before the movement as well as the time of the slope
change (Fig. 3f-g; slope = 0.19 £ 0.06d’ /s, time of slope
change = (—0.06 £ 0.02) s). We found a consistent trend for
positive pre-movement slopes (ramping) and pre-movement
slope change times, providing evidence for distributed pre-
movement choice components across these regions.

We reasoned that although evidence accumulation might not
be a significant factor in our task, a decision variable [40]—
reflected in the time-varying d’ values—would still retain
its sensitivity to task difficulty. Indeed, we found that in
high-attention states, d’ curves reflected stronger choice sep-
aration in easy trials than in difficult trials (Fig. 3h; peak
d’ =1.44+0.1 and 1.3+ 0.1, respectively; paired t-test, p =
0.003). In low-attention states, there was a similar trend, but
the difference was not significant (paired t-test, p = 0.4). The
dependence of d’ values on task difficulty in high-attention
states revealed a modulatory effect of attention on choice sig-
nals. However, when we analyzed the average separation be-
tween trajectories across attention states, we found no sig-
nificant difference (difference in peak values, paired t-test,
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p = 0.5). Furthermore, choice axes independently defined in
low- and high-attention states were highly correlated (Pear-
son’s r = 0.72£0.03). Together, these results indicated that
the choice subspace defined by left and right trajectories re-
mained the same across attention states, but attention enabled
difficulty-dependent modulations of the trajectories (Fig. 3j).

Distinct spatial and temporal characteristics of choice
signals.

Choice signals were broadly distributed across multiple ar-
eas, but with distinct spatial and temporal characteristics.
We defined a spatial-distribution index (SDI) that captured
whether several or only a few areas contributed prominently
to the d’ discriminability and found that choice had the largest
SDI values ((30 £ 4) %) compared to sensory, movement and
attentional signals (around 10 %) (Fig. 4a). Distinct inter-
area signatures of choice signals were also evident in the
pairwise angular separation between state axes (Fig. 4b). We
found that, overall, angular distances were greater than 50°,
with the choice axis being near-orthogonal to the sensory,
movement, and attention-related axis. In time, choice axes
computed separately before (—0.1s) and after (0.3 s) move-
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and retrosplenial (RS) regions.

ment onset were stable in the pre- and post-movement pe-
riods and orthogonal to each other. Sensory and movement
components had large angles (around 70°), and the smallest
angles (still over 45°) were observed between the movement
and attentional axes.

To examine area contributions to these differences, we per-
formed a correlation analysis between d’ maps; for example,
d’ maps for stimulus and movement components (Fig. 2e, 1)
had overall similar discriminability, but highlighted distinct
area-specific contributions and, accordingly, the correlation
between the maps was small (Fig. 4c). We systematically
analyzed all pairwise correlations and used hierarchical clus-
tering to identify components with stronger similarity in d’
spatial distributions (Fig. 4d). The stimulus axis was most
dissimilar from others, followed by the cluster of choice axes.
Attention and movement components clustered together, con-
sistent with their individual large pairwise correlation values
(r > 0.5, Fig. 4c¢).

To further examine the area-specific contributions to choice
signals, we divided higher visual areas into three main
groups—ventral (L), dorsal (PM, AM), and parietal (A,
RL, AL) [30]—and separately analyzed somatosensory (SSt,
SSb) and retrosplenial (RS) regions. V1 contributed with an
overall uniform d’ value to all separations (Extended Data
Figs.2 and 6), hence, we did not include it in this analysis of
relative differences. We then computed d’ values using only
the locaNMF components that originated from these grouped
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areas and did this for all variables: visual, movement, choice,
and attention. This resulted in a five-dimensional (5D: ven-
tral, dorsal, parietal, somatosensory and retrosplenial) space,
where the coordinates of a variable reflected the contribu-
tion of a given region to the d’ separability of that vari-
able. When examining discriminability power in 2-D projec-
tions of this 5-D space (Fig. 4e), we found that regions con-
tributing to choice were distinct from those of other compo-
nents—including movement—being most prominent in ven-
tral stream regions, as reflected by the large d’ values ob-
served in these areas (Extended Data Fig. 6). Ventral regions
significantly contributed to visual components, as expected,
while dorsal and parietal regions contributed to movement
variables—especially wheel movements—in agreement with
a previous report [35]. Retrosplenial and somatosensory ar-
eas contributed similarly to choice and movement, with d’
values generally correlated across all variables (r = 0.8; 95 %
confidence intervals (0.61, 0.97), for d’ correlations between
somatosensory and retrosplenial areas across animals).

In summary, distributed choice signals were distinct from
sensory, movement, and attentional components, dominantly
in ventral-stream visual areas and modulated by task diffi-
culty and attention, suggesting that they might reflect the
decision-making computations associated with the discrim-
ination task.

Recurrent Neural Network model of decision dynam-
ics.

| Distributed context-dependent choice information in mouse dorsal-parietal cortex


https://doi.org/10.1101/2021.03.02.433657
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433657; this version posted March 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a
- = 1
Input 7 = Ny Output 'ED
7 65 o \ Left 508
Left stim ~ choice B
F U 740 T\ f »
<
Rgnisim 21 © 4~ \[\Q — e 504
A\ \ O—_ A& _ 202 High attention
: > @) \ /! / Right e —— Low attention
—
Attention \ 9] Y, choice & 9
A _ RNN -90 -60 -30 0 30 60 90
- Angle difference [0, |-|8]
b 1 c d Correlation e 0 Angle (°) 1
_ [ —
= 0 = 0
2os ~ 0.2 : 7,
2 s w 8 30
g06 c | 2 :
o Rl 8 s
§o2) " £ o
° o _ 2
502 & g4 — Lefthard | 3 90
o= N . C
o o . . . . ngl]ht hard! . . . 0 1 2 Z 0 30 60 %0
-90 0 90 0 05 1 15 2 25 Time (s) Angle difference |6, -6,]
Angle difference [0, |-|6] Time (s)
f g h
0.
6 — Easy low att. '
4. — Hard low att. c
4 — Easy high att. | -%
° © 5 | — Hard high att. | 2
2 e <
-0.
0 O- 1 1 1 1 1 1
0 0.5 1 1.5 2 25
Time (s)

Fig. 5. RNN model relates neural representations to DM computations. a, Left: recurrent neural network (RNN) architecture consisting of a module with N = 128
recurrently connected units. The module receives two inputs for the left and right stimuli, and one input for the attentional state. It generates a continuous output that will
determine the choice. Right: Psychometric curves used to determine the proportion of L/R-choice trials in the training set for each difficulty level, depending on the attention
state. b, Psychometric curves from the trained model showing the model generalizes to intermediate values of attention and difficulties. ¢, Projection of L/R easy and hard
trials on the choice axis (state vector) following the same methods used for Fig. 2. Shaded bar denotes the selected time epoch used for state vector averaging. d, The choice
axis became stable quickly after the stimulus presentation (t = 1s). e, State vectors for choice, computed separately in each trial based on difficulty level, were almost parallel
to each other, with the largest deviation staying below 20°. Thus, the network learned a unique choice representation that was independent of task difficulty. f, Discriminability
for choice (d’) was higher in easy than in hard trials. Line and shaded area, mean and 95 % Cl across 10 trained networks with different random initializations. g, Choice was
modulated by attention, as shown by the increase in discriminability values in trials with high attention levels. h, Diagram of the projected trajectories in the space spanned by

the axes of choice and attention.

To examine this possibility, we used RNNs as
implementation-level, mechanistic models of the decision-
making process. Building on previous work showing that
RNNS can capture decision-making computations associated
with 2AFC discrimination tasks [23, 24], we examined the
dynamics of RNNs trained according to the invariance for
absolute orientations present into our task—and learned by
the animals. Furthermore, we trained RNNs with the actual
trial-to-trial choices of the animals, rather than using the
optimal task solution, and introduced variability in attention
states (Fig. 5a). Using the animals’ choices rather than
the task rule, created numerous “contradictory” examples,
where the input evidence for a left or right choice was
non-deterministically associated with left or right output
decisions, even in the easiest trials (e.g., non-zero lapse rate).
As a result, although RNNs were trained to produce L/R
binary choices, they learned analogue outputs that followed
a psychometric probability function (Fig. 5a). Further-
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more, output amplitudes depended only on task difficulty,
reflecting a learned invariance for absolute orientations.
Context-dependent attention modulations (introduced as
an additional binary input) modified output probabilities
and created shallower or steeper psychometric curves in
low or high attention states respectively (Fig. 5a, Extended
Data Fig. 4). Although the model was trained only with a
subset of 13 difficulties and 2 attention states, it was able
to generalize to any difficulty level and range of attention
within the trained boundaries (Fig. 5b). We then analyzed the
internal dynamics of the network by computing choice and
attention axes from RNNs unit responses, as we did for the
neural data with locaNMF components. In the RNNs also,
the choice axis identified a decision variable that represented
L/R choices as separate trajectories in a low-dimensional
embedding space. Furthermore, the separation between
trajectories was modulated by task difficulty, with larger
separations in easy trials. This separation did not depend
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on absolute orientations, as expected from the RNN having
learned this invariance. The choice axis was stable across
levels of difficulty (Fig. 5c).  Attentional modulations
maintained an invariant representational geometry of the
DV across the embedding space (Fig. 5d-h). This was
consistent with observations of the neural data, where
choice and attention axes were near-orthogonal with each
other (Fig. 4b). In summary, the representational similarity
between the RNN and neural dynamics, together with
the lack of neural information provided to the network,
indicated that the contextually-modulated choice signals
observed in locaNMF components indeed represented the
decision-making computations underlying the orientation
discrimination task.

Discussion

Using a tensor decomposition method that retained the spa-
tial information in the responses, and applied to mesoscale
recordings in mouse dorsal-parietal cortices, we isolated
choice signals that were near-orthogonal to sensory-,
movement- and attention-related variables. We showed
that their representational dynamics was consistent with
the decision-making computations underlying the behavioral
task. We also showed that choice signals, although broadly
distributed, were prominent in ventral-stream visual areas
and were modulated by task difficulty, with this modulation
enabled contextually by the attention state of the animal. To-
gether, these results suggest a multiplexed representation of
variables in the posterior cortex, with a widespread distri-
bution of decisional information, possibly reflecting prob-
abilistic inference computations; for instance, information
about the ongoing decision-making process could be used for
perceptual inference with unreliable sensory stimuli, and to
influence sensory-to-decision signal transformations that in-
form future action plans.

Methodological relevance.

We achieved these results by combining two powerful meth-
ods for the analysis of population responses: locaNMF and
activity-mode analysis. LocaNMF reduced the dimension-
ality of the neural data while retaining spatial information,
which would have been lost with traditional dimensional-
ity reduction methods (e.g., PCA). Furthermore, the state
space representation allowed further reduction of dimension-
ality while aligning the dynamics along task and decision-
relevant dimensions. This latter step took place within an
interpretable linear framework, where the angle between the
state axes and d’ values could be directly linked to the lin-
ear discriminability of the underlying variables. The imag-
ing methodology and task design used in this study facili-
tated the identification of distributed choice signals encoded
by sparse populations of cells [41] thanks to the local integra-
tion of these responses. Furthermore, the complexity of the
decision-making task might have influenced the wide spatial
distribution of the representations [42].
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Feedback origin of choice signal.

Choice signals emerged after stimulus onset, were broadly
distributed in the posterior cortex, and could be significantly
detected as early in the visual hierarchy as in V1, suggest-
ing feedback activations from areas causally involved in the
decision-making process. Other non-sensory signals identi-
fied in our recordings, e.g. related to body and eye move-
ments, could also result from feedback activations. Indeed,
feedback signals to the posterior cortex have been exten-
sively documented in the literature, in association with a
great diversity of underlying variables and computations, in-
cluding attentional modulations [43], movement-associated
responses [28], sensory context [44], and predictive cod-
ing [45].

Choice signals have distinctive spatial and temporal
signatures.

The properties of the choice signals met several criteria that
are characteristic of a decision variable. Their pre-movement
components suggested that they did not simply reflect the
execution of a motor plan, nor an “unsigned” pre-motor,
preparatory state [46]. Choice signals did not simply re-
flect bottom-up, stimulus-related information that correlated
with the decision process because, given the task design, the
contra-lateral stimulus orientation was uninformative for L/R
decisions [20], and furthermore, at the mesoscale resolution
used in this study, orientations were not decodable from the
neural signal [47].

Choice signals could be separated from movements. The
cortical localization of movement components was promi-
nent in dorsal-stream regions, consistent with previous re-
ports [28, 35]. Choice signals were localized in retrosplenial
cortex, and in the visual cortex, mostly in ventral stream re-
gions, along the so-called “what” visual pathway [48]. This
was consistent with the task requirements: mice had to evalu-
ate the orientation “content” of both stimuli and make relative
orientation comparisons. Absolute orientations were infor-
mative, as were the locations of the stimuli, which were the
same across trials; thus, in contrast to “where” type of infor-
mation, which is supposedly associated with dorsal stream
regions, solving the task relied on “what” information in the
ventral stream areas.

We also controlled ventral-stream responses did not link to
eye movements (Extended Data Fig. 7), which typically fol-
lowed whole body movements [35]. However, it is still possi-
ble that signals detected in ventral areas were associated with
motor-related components that also carried choice-relevant
information [49].

Attention-mediated modulations were orthogonal to the sub-
space defined by choice variables, with the choice axis re-
maining significantly autocorrelated across time irrespective
of attentional state. This can be described as an isomor-
phic transformation in the embedding space of the decision
variable (DV), where the subspace defined by the L/R tra-
jectories is shifted, without deforming the representational
geometry. The dependence of the decision variable on task
difficulty was clearer in high-attention trials, but not signifi-
cant in low-attention states. This might reflect an actual de-
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pendence of the decision-making process on attention, since
in low-attention states mice might commit to a difficulty-
independent heuristic strategy.

The analysis of angles between state axes highlighted a
large angular separation between variables, with sensory
and movement axes having the smallest separation. This
latter observation agreed with previous reports both at the
local scale of small neuronal assemblies [50], and at the
mesoscale [35], indicating a covariability axis between these
variables. Similarly, the smaller angles observed between the
movement axis and the attentional axis agreed with a recent
report showing that attention enhances distinctive spatial fea-
tures in movement-related activations across these cortical re-
gions [35].

RNN implementation and mechanistic insights.
Recurrent state-space models, including RNNs, have been
previously used in mechanistic investigations of decision-
making processes [23, 24]. Moreover, representational sim-
ilarity analysis of the state-space of RNNs and neural re-
sponses has been successfully used to infer underlying com-
putations [23]. Here, we adopted a similar approach, but
with three main distinguishing features. First, we trained
the network with the animals’ decisions, rather than the task
rule. This constituted a significant departure from previous
research, which added noise to fully-deterministic RNNs to
capture logistic behavioral tuning functions [24, 51]. Instead,
we trained the network with “contradictory” information,
such as that involved in the inconsistent trial-to-trial animals’
decisions, thus exposing the network to the biases and heuris-
tics of the animals. Training with the animal choices was akin
to training with label noise, for which many deep learning al-
gorithms are robust [52]. The RNN outputs effectively imple-
mented two dynamic accumulators providing time-dependent
scores for L/R choices, with the difference between the scores
being proportional to the psychometric function. This result
was probably related to the mathematical observation that if
L/R choices were determined by two accumulators (for the
left or right evidence, respectively), the log-likelihood ratio
of the conditional probabilities for a specific choice, given
the state of the accumulators, can be shown to be proportional
to the psychometric (logistic) function [53, 54]. The second
novelty was that we trained the RNN to learn an invariance
regarding absolute orientations, which were uninformative
for the task choice. Finally, the third novelty concerned atten-
tional modulations. As observed in the neural data, the added
attentional input to the RNN caused an isomorphic shift of the
decision-making manifold, which retained the geometry of
the decision variable. Geometry-preserving isomorphic shifts
in low dimensional embedding spaces, might reflect a general
‘decorrelation’ principle for variables that are concurrently
represented across overlapping cortical networks. These re-
sults confirmed that, mechanistically, the representational dy-
namic of choice signals reflected the decision-making com-
putations underlying the animals’ psychophysical behavior.

Limitations and open questions.
Our results raise several questions to be addressed in future

Orlandi etal. | Distributed context-dependent choice information in mouse dorsal-parietal cortex

studies; for instance, it is unclear whether the broad distribu-
tion of choice signals mirrored equally broad spiking activa-
tions. Regarding anatomical considerations, feedback signals
are known to preferentially target deep layers (five and six)
and layer one [55].Considering that our imaging macroscope
focused on superficial cortical layers and that GCaMP was
expressed across the cortex, it is possible that choice signals
reflected long-range axon-terminal activations and /or depo-
larizations in apical dendritic trees, rather than somatic fir-
ing. Concurrent imaging and electrophysiological recordings
across layers would clarify this point.

Our study relied on correlative measures, therefore loss- and
gain-of-function perturbative experiments will be necessary
to establish causality. Of particular interest would be the
inactivation of lateral visual areas in view of the observed
ventral-stream prominence. Furthermore, patterned optoge-
netic methodologies with single-cell resolution might enable
the stimulation of those neurons that most significantly carry
choice-relevant information in these regions.

In sum, broadly distributed feedback decision signals, hav-
ing a representational dynamics consistent with decision-
making computations underlying the perceptual task, might
represent an activity—and computational—substrate capable
of “molding” early sensory processing and sensory to deci-
sion transformations depending on the underlying decision-
making process for probabilistic-inference computations in
changeable agent-environment interactions [56].

ACKNOWLEDGEMENTS

We thank Rie Nishiyama, Yuka lwamoto, and Yuki Goya for technical support in
multiple aspects of the experiments. We thank O’Hara and CO., LTD., for their
support with the equipment. This work was funded by RIKEN BSI and RIKEN CBS
institutional funding; HFSP postdoctoral fellowship LT000582/2019 to J.O.; JSPS
grants 26290011, 17H06037, 372 C0219129 to A.B.; and a Fujitsu collaborative
grant.

Author Contributions

A.B. and J.O. conceived the project and wrote the
manuscript. M.A., R.A. and D.L. collected the data. M.A.
and J.O. pre-processed the data and J.O. analyzed the data.

Competing Interests

The authors declare no competing interests.

Materials and methods

Experimental procedures. Details of the experimental
procedures (surgeries, behavioral training, recordings of
body and eye movements, imaging methods, and pre-
processing of fluorescence data) have been described in
Ref. [35]. We summarize them here in brief.

Surgeries. All surgical and experimental procedures were ap-
proved by the Support Unit for Animal Resources Develop-
ment of RIKEN CBS. Transgenic mice used in this work
were Thy1-GCaMP6f mice (n = 7). For all reported results,
the number of sessions per animal ranged from 9 to 60, with
a minimum and maximum number of trials per animal from
1000 to 8000. Animals were implanted with a cranial post
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for head fixation and a round chamber (~6 mm diameter) for
optical access to neural recordings.

Behavioral training. Animals were trained in a 2AFC orien-
tation discrimination task. Two oriented Gabor patches were
shown on the left and right side of a screen positioned in front
of the animal at +35° eccentricity relative to the body’s mid-
line. Mice had to report which of the two stimuli matched
a target orientation (vertical, n = 5; horizontal, n = 2). The
smallest orientation difference varied depending on animals,
from 3° to 30°. The largest difference—the easiest discrim-
inations—was £90°. Animals signaled their choice by ro-
tating a rubber wheel with their front paws, which shifted
stimuli horizontally on the screen. For a response to be cor-
rect, the target stimulus had to be shifted to the center of the
screen, upon which the animal was rewarded with 4 pl of wa-
ter. Incorrect responses were discouraged with a prolonged
(10s) inter-trial interval and a flickering checkerboard stim-
ulus (2 Hz). If no response was made within 10s (time-out
trials), neither reward nor discouragement was given. Ani-
mals were imaged after exceeding a performance threshold
of 75 % correct rate for 5-10 consecutive sessions. To work
with a coherent behavioral dataset, we excluded sessions with
exceedingly large fractions of time-outs (>20 %) or with av-
erage performance dropping below 60 %. Every trial con-
sisted of an open-loop period (OL: 1.5s) and a closed-loop
period (CL: Os to 10s), followed by an inter-trial interval
(ITT: 3s to 5s randomized). We recorded cortical responses,
wheel rotations, and eye/pupil videos from a pre-stimulus pe-
riod (1 s duration) until the end of the trial. Stimuli were pre-
sented in the OL period, when wheel rotations did not pro-
duce any stimulus movement.

Saccades, pupil area, and body movements. We monitored
the contralateral eye using a CMOS camera. Automatic
tracking of the pupil position was done with custom soft-
ware (Matlab, Mathworks). We confirmed the accuracy of
pupil tracking by visually inspecting hundreds of trials. Sac-
cade detection was achieved by applying an adaptive elliptic
thresholding algorithm to saccade velocities. We discarded
the saccades that lasted <60 ms and were smaller than 1.5°.
We extracted the time, magnitude, duration, velocity, start,
and landing positions of each saccade. We calculated the av-
erage pupil area for each imaging session by averaging area
values across all trials within the session. Pupil area in every
trial was z-scored for each session.

Wheel detection. We recorded wheel rotations with a rotary
encoder and flagged as potential wheel movement time points
when the velocity had a zero-crossing (i.e., sign change) and
deviated from zero above a fixed threshold (20°).

Imaging. Mice were placed under a macroscope for wide-
field imaging in tandem-lens epifluorescence configuration.
We imaged GCaMPo6f fluorescent signals using a CMOS
camera (pco.edge 5.5).

Pre-processing of fluorescence data. We motion corrected
GCaMP data using a semi-automated control-point selection
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method (MATLAB cpselect). To compute relative fluores-
cence responses, we calculated a grand-average scalar F,’ =

<I§:7,]z;/,t>%y-¢’ with I;,y,t the X YT image tensor in trial 7, ses-

sion j. We then used this scalar to normalize the raw data

tensor ) , = ((I;’fy’t —FS’])) /Fy?. The data in each
trial were then band-pass filtered (0.1 Hz to 12 Hz). Each ten-
sor was compressed with spatial binning (130 pm x 130 pm)
with 50 % overlap). Trial data was further downsampled to

30 fps and low-pass filtered with a cutoff at 8 Hz.

Retinotopy. We used a standard frequency-based method [57]
with slowly moving horizontal and vertical flickering bars.
Visual area segmentation was done based on azimuth and el-
evation gradient inversions. To center and orient maps across
animals, we used the centroid of area V1 and the iso-azimuth
line passing through it.

Alignment to the Allen Mouse Brain Common Coordinate
Framework. Imaging data from each animal was aligned to
the Allen Mouse Brain Common Coordinate Framework
(CCF) following the approach described by Waters [58] In
brief, we extracted the centroids of areas V1, RL and PM, us-
ing them to create a triangle that we aligned to the one from
the Allen CCF by first making the V1 vertices coincide. We
then rotated and scaled the triangle to minimize the distance
between the other vertices while maintaining the original an-
gles.

Data Analysis.

LocaNMF decomposition. LocaNMF analysis was done fol-
lowing the methods described by Saxena [21]. In brief, imag-
ing data cross all trials and sessions was first concatenated
and its dimensionality reduced using singular-value decom-
position (SVD) up to 99 % of the original variance. Lo-
caNMF was initialized using 10 regions based on the Allen
CCF, and corresponded to: V1 (VISp), PM (VISpm), AM
(VISam), A (VISa), SSt (SSp-tr), RL (VISrl), SSb (SSp-bfd),
AL (VISal), VL (VISI and VISli), RS (RSPagl and RSPd)
(Extended Data Fig. 1). A mask in each area was created by
setting a distance D = 1 within the region boundaries and an
exponential decrease (to zero) for pixels outside the bound-
ary. The localization penalty for each pixel was 1 — D (Ex-
tended Data Fig. 1). LocaNMF Rank Line Search was run
with these 10 regions with a localization threshold of 75 %,
and total explained variance of 99 %, resulting on average in
approximately 200 components per animal. After decompo-
sition, temporal components were split back into the original
trial structure. More formally, LocaNMF produces a decom-
position tensor Fy , , ~ > Ay, kC} , for trial i. Where
Az 4,k is the spatial part of component &, and C,?t it’s tem-
poral part. Each spatial part of the components is signifi-
cantly localized and it can be mapped onto its original seed-
ing area. The temporal component captures the unique trial
to trial variability, and all subsequent analysis in the time do-
main have been done using only the temporal part Cli,t of
locaNMF components. Total explained variance (EV) of the
decomposition, was computed by projecting one component
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at a time across the whole time series and checking the rela-
tive explained variance across pixels with the original record-
ing.

Global State Vector definition. We defined a state vector as
a one-dimensional projection of locaNMF temporal compo-
nents C(t) that maximizes the weighted distance between the
trajectories of two trial groups A and B (herein after bold
letters indicate vectors). For each trial group, we defined
average trajectories (A(t)) and (B(t)) and define S(t) =
I % || where o 45 (t) is the pooled standard devi-
ation between the two groups. State vector projections for
the i-th trial were then obtained by the dot product P*(t) =
S(t) - C¥(t), where C*(t) are the temporal locaNMF compo-
nents of trial ¢. Discriminability between the original A and

B groups is then computed as d’' = w i.e., the

pypg(t
difference between the averaged projections of groups A and
B, divided by their pooled standard deviation. To validate
state vectors, projections, and discriminability, we performed
5-fold cross validation, i.e., state vectors were defined using
only 20 % of the trials of each group and projections and d’
were computed on the remaining trials.

State-vector stability. To assess the stability of state vectors,
we computed instantaneous state vectors S(t) using a ‘back-
ward’ 3-frame averaging window (~100 ms) and then com-
puted its autocorrelation C(S(¢),S(¢’)). For sensory, move-
ment, and sustained attention state vectors we chose time-
independent state vector S = S(t*), where t* was chosen
within the largest stability cluster (represented by a gray bar
in the respective figures). For the state vector of choice we
used the original S(t) to keep track of when choice informa-
tion first appeared and whether its signature was unique.

Area-specific state vectors. We defined state vectors for each
of the 10 areas by only using the subset of locaNMF compo-
nents C,ivt that originated from that area. This is akin to first
projecting onto the subspace defined by the components of a
particular area, and then obtaining the associated state vector.

Task-related state vectors. Stimulus: For stimulus state-
vector we used for the first group A all the trials in the time
interval —0.5s to 0.5 s centered on stimulus onset. For group
B, since all trials had stimulus presentation, we took the
same trials on the —1s to Os interval before stimulus pre-
sentation. Contralateral stimulus: We used as group A the
trials where the left stimulus was horizontal and as group
B the trials where the left stimulus was vertical (Extended
Data Fig. 3). Wheel movement: Group A consisted of trials
whose first movement after stimulus presentation occurred at
least 0.5s after stimulus onset and without any saccades de-
tected in the previous 0.5s. These trials were aligned to the
detected movement onset. Group B consisted of trials with
no movement detected on the first 5s after stimulus onset.
These trials were aligned by taking a random frame within
that same interval. Saccades: Defined as for wheel move-
ments. Sustained attention: Sustained attention was mea-
sured by changes in pupil area during the trial. We computed
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the pupil change measure, pA, as the difference between the
maximum pupil area after stimulus onset and the average area
1's before stimulus onset. We labeled ‘high attention’ trials
(group A) those in the top 33-th percentile of the p A distribu-
tion and ‘low attention’ (group B) those in the bottom 33-th
percentile. Choice: L/R choices in each trial were measured
from the direction of the first movement after stimulus on-
set. The state vector for group A was computed from right-
choice trials and for group B using left-choice trials. As for
the detection of wheel movements, we restricted the analysis
to trials where the first movement happened at least 0.5 s after
stimulus onset and with no saccades 0.5 s before the detected
movement. Trials were aligned to the time of movement de-
tection.

Piecewise linear fitting of d' curves. To fit the time-evolving
d’ curves on periods before and after movement onset, we
performed a 2-slope piecewise linear fitting using the Shape
Language Modeling toolbox (MATLAB Central File Ex-
change, John D’Errico (2021). SLM - Shape Language Mod-
eling). The method performs two linear fits in a fixed inter-
val with a single knot between them. We chose the inter-
val —1 s before movement onset up to 95-th percentile of the
peak post-movement response amplitude (typically occurring
around 0.3 s after movement onset). The position of the knot
determined the slope change time.

Spatial-Distribution Index (SDI). The SDI for a given state
1o
global 1) . 100

vector was computed as SDI(%) =

max(d})

where d, refers to the area-specific d’ scores.

Recurrent Neural Network model. The Recurrent Neu-
ral Network (RNN) consisted of a single RNN module with
N =128 neurons (ReLU activations), receiving 3 inputs (left
stimulus, right stimulus, attention level) and producing as an
output a binary response for left or right choices (softmax
activation).

Inputs. The input space consisted of a sequence of 25 frames.
Stimulus orientations were mapped to the range (-1 +1) cor-
responding to —90° to 90° and were presented after the first
10 frames. The difficulty of a trial was encoded by the ab-
solute difference between the two stimulus signals. Atten-
tion was modeled as a constant binary signal (0 or 1), already
present at the beginning of the trial. A small noise (normally
distributed with amplitude 0.01) was added to the input sig-
nals to improve the robustness of the optimization, but it was
irrelevant for the psychometric fits.

Training. For training the network we generated simulated an-
imal responses by computing left or right choices following a
psychometric curve of the form Piesy () = 15 (1= A) +

% where 6 is the difference between the 2 inputs, A the lapse
rate, and « controls the slope. We used a constant A = 0.1
and o = 3/90 for low attention and o = 10/90 for high at-
tention. That is, attention decreased the amount of label noise
during training. To train the network we used 6400 trials per
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difficulty level and chose 13 difficulty levels with angle dif-
ferences uniformly distributed from —90° to 90°. We trained
the network using a batch normalization layer and a custom
loss function consisting of the categorical cross entropy at
the time of stimulus presentation and at the last frame. We
included the stimulus presentation time in the loss function
to force the output to not drift before stimulus presentation,
following a previous procedure [23]. Accuracy during train-
ing was computed by the categorical accuracy at the end of
the trial. The network was implemented with TensorFlow 2.0
and trained using the Adam optimizer for 25 epochs with a
batch size of 640. Note that training the network with the
animal choices made the network robust to overfitting. We
trained 10 different networks by generating a new set of in-
puts and randomly initializing the networks weights.

Analysis. We analyzed the output of the RNN in the same
way we did with the neural data, but using the time series of
the N = 128 neurons instead of the locaNMF components to
define choice and attention state vectors.
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Extended Data Fig. 1. Statistics of locaNMF decomposition. a, Pixel-wise distance penalty maps used to initialize the ten regions
for the locaNMF decomposition. Penalties within the boundaries of each region were 0 and increased exponentially with distance from
the boundary. b, Superposition of our retinotopically aligned animals (blue, red, yellow contours) with the Allen Brain Atlas. ¢, Total
variance explained as a function of the number of components for locaNMF and standard singular-value decomposition (SVD) for a
given animal. d, Blue = relative variance explained with respect to V1 for each of the areas ordered by their variance explained. Red
= surface areas relative to V1. e, Fraction of the total variance explained by the locaNMF components from each region normalized
by the number of pixels in each region. f, Number of components required in each area to reach 99 % of total explained variance,
averaged across animals. This number does not simply reflect area sizes. For instance, VL decomposition resulted in a large number

of components in all animals despite being a small region. g, Average number of components as in f, normalized by the size of each
region.
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Extended Data Fig. 2. Sensory, movements and top-down discriminability statistics across areas. a, Average discriminability d’
of each area for stimulus, wheel movements, saccades, and sustained attention (top to bottom rows). b, Statistics of global d’ values
(ignoring source location), and for each individual area across animals. Individual dots for each animal, middle bar mean, and shaded
area 95 % CI of the mean. Inset: color-code reference for each of the areas. ¢, Stability of each global state vector in time for a
representative example animal. For stimulus, wheel movements, and saccades, the state vector becomes stable right after the event
onset, whereas for sustained attention it is stable throughout the trial.
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Extended Data Fig. 3. Widefield activity contained no information about the contralateral stimulus orientation. a, Time depen-
dence of response projections onto a state vector defined using horizontal or vertical contralateral stimulus trials for a representative
animal. Trajectories did not split throughout the trial. Line is the trial average and shaded areas s.e. b, Statistics of global and area-
specific d’ for the same state-vector. All area-based d’ values were consistent with no discriminability power; each dot is one animal,
middle bar and shaded area are the average across animals and 95 % CI.
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Extended Data Fig. 4. First-movement correlation with choice and attention-dependent performance. a, Fraction of occurrences
when the direction of the first wheel movement coincided with the direction of the last movement in the trial (i.e., the movement
that ended the trial). b, Comparison of overall performance when considering either the first or the last movement (Paired t-test,
p = 0.8). ¢, Reaction times for the first movement depended on attention, being significantly shorter in high attention trials (paired
t-test, p =4-10—5). d, Average performance was consistently higher in high-attention trials (paired t-test, p = 0.02). In all panels,
each dot indicates one animal; middle bar and shaded area are the average across animals and 95 % CI.
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Extended Data Fig. 5. Choice signals can be distinguished in trial time a, Projections onto the state vector for choice defined in
trial-time—instead of movement time— for a representative animal. Only trials where the first movement appeared in the 1.5st0 2.5
window were included. Trajectories started to split within the same window b, Stability of the choice state vector in trial time. A first
signature of stability appears soon after stimulus onset. ¢, Global d’ evolution for the same state vector averaged across animals (left),

and statistics of peak values (right; each dot is one animal, middle bar and shaded area are the average across animals and 95 % Cl).
d’ starts to increase right after stimulus onset and before movement onset.
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Extended Data Fig. 6. Choice-specific area contributions. a, and b, Global and area-based d’ statistics for the choice state vector
in movement time (Fig. 3), before movement onset (left, t = —0.1s), and peak values after movement onset (right, t=0.3 s).
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Extended Data Fig. 7. Ventral stream choice signature is not linked to eye or stimulus movements a, left: Evolution of choice
d’ for area L during trials where the first movement happened within 1s of the stimulus presentation, i.e., the stimulus was always on
the same position in the screen. Right: area-specific d’ 0.2 after movement for the same trials. b, Same as in a, but also with the
constraint that there were no saccades 0.5s before or after the movement onset. ¢, Comparison of peak d’ values in area L for the
three controlled conditions: complete (same as Fig. 3 on the main text), and those shown here in panels a and b.
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