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1 Abstract

Identification of selection signatures between populations is often an important part of a population
genetic study. Leveraging high-throughput DNA sequencing larger sample sizes of populations with
similar ancestries has become increasingly common. This has led to the need of methods capable
of identifying signals of selection in populations with a continuous cline of genetic differentiation.
Individuals from continuous populations are inherently challenging to group into meaningful units
which is why existing methods rely on principal components analysis for inference of the selection
signals. These existing methods require called genotypes as input which is problematic for stud-
ies based on low-coverage sequencing data. Here, we present two selections statistics which we
have implemented in the PCAngsd framework. These methods account for genotype uncertainty,
opening for the opportunity to conduct selection scans in continuous populations from low and/or
variable coverage sequencing data. To illustrate their use, we applied the methods to low-coverage
sequencing data from human populations of East Asian and European ancestries and show that the
implemented selection statistics can control the false positive rate and that they identify the same
signatures of selection from low-coverage sequencing data as state-of-the-art software using high
quality called genotypes. Moreover, we show that PCAngsd outperform selection statistics obtained
from called genotypes from low-coverage sequencing data.

2 Introduction

Natural selection is the main driver of local adaptation. Instead of tracing the adaptive phenotypic
trait, a “reverse ecology” approach is commonly applied [12], where the genetic variant encoding for
a beneficial trait is first identified followed by the underlying mechanism of the adaptive phenotype.
This enables mapping of the genetic architecture of phenotypic adaptability driven by natural
selection ([6] for review on human populations). A common approach to identify candidates under
selection is based on outliers in an empirical distribution of differentiation between two or more
groups of predefined populations. In it simplest form, it finds the variants with the biggest difference
in allele frequency between two predefined populations. One of many methods based on this notion
is Population Branch Statistics [30], an estimator of genetic differentiation based on allelic changes
estimated with the fixation index (Fsr). It identifies candidate regions as strong deviations from
an empirical distribution between a target population, a closely related sister population and an
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outgroup. However, homogeneous discrete groupings of the populations is required for many of
these models, albeit exceptions exist [2].

The reduced expenses for whole genome DNA sequencing, thanks to advanced High-throughput
DNA sequencing technologies, has facilitated larger sample sizes in population genetics studies in
the recent years, including samples with similar genetic ancestry [4, 13, 29, 25, 19, 28]. Identifying
signatures of selection in populations of similar genetic ancestry can results in arbitrary population
assignments when using methodologies that require discrete groups of populations. This can lead
to reduced power and increased false positive rates as allele frequencies are estimated from non-
homogeneous populations. Instead of coercing samples into groups, an alternative approach is to
account for the continuous cline of genetic differentiation in the selection analysis. Recent studies
has shown that principal components analysis (PCA) of genetic data can detect signals of selection
in continuous populations [14, 7]. Briefly, the idea is to use PCA to infer a weight for each variant
which is scaled to reflect genetic drift. Variants with deviating statistics from the null distribution
of what is expected under pure drift are candidates for selection. This approach has been applied
to several dataset, including populations of humans [13, 7, 3], wheat [22], cod [26], turbots [18], and
tiger mosquito [9].

Two commonly used software that accounts for continuous population differentiation when per-
forming selection scans are FastPCA [7] and pcadapt [14, 23]. Both software use called genotypes
as input to obtain the top K principal components (PCs) and variant weights through a truncated
singular value decomposition (SVD) [10, 24]. However, they differ in their derived test statistics.
pcadapt uses robust Mahalanobis distance [15] to evaluate all top K PCs for estimating z-scores,
whereas FastPCA test normalized variant weights for each PC separately. Both test statistics follow
x? distributions from which a p-value for each polymorphic site is obtained.

In this study, we extended the FastPCA [7] and pcadapt [14] selection statistics to account
for genotype uncertainty by leveraging the PCs and variant weights estimated iteratively in the
PCAngsd framework [17] using genotype likelihoods. This allows us to analyze low-coverage data
and naturally impute missing data based on individual allele frequencies estimated from the top
K inferred PCs. We apply the novel methods to populations of East Asian ancestry and Euro-
pean ancestry using the low-coverage data of the 1000 Genome Project [4] and demonstrate that
we can identify known signatures of selection within these two ancestries. The candidates under
selection were verified using the corresponding high quality genotype data from the 1000 Genome
Project. The test statistics are implemented in the PCAngsd framework [17] that is available at
https://github.com/rosemeis/pcangsd.

3 Materials and Methods

We assume that variable sites are diallelic and the major and minor allele are known such that
genotypes are expected to follow a Binomial model. In low-coverage sequencing data, genotypes
are unobserved and genotype likelihoods are therefore used instead to account for the uncertainty
in sequencing process. We use the iterative procedure in PCAngsd [17] to estimate individual allele
frequencies that can be seen as the underlying parameters in the Binomial sampling processes of the
genotypes accounting for population structure. In the following, we will denote N as the number
of individuals and M as the number of sites. We can then define the posterior genotype dosage as
follows for individual 7 in site j
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2
E[Gij | Xij, 7i5) = > g P(Gij = g| Xij, 7ij), (1)
g=0

fori=1,...,Nand j=1,...,M, where P(G;; = g| X;j;,7;;) is the posterior genotype probability
of genotype g with X being the observed sequencing data, and 7 being the individual allele fre-
quency. Details of deriving the posterior genotype from genotype likelihoods can be found in the
supplementary material (Equation S1-S2). Missing data is imputed based on population structure
based on the posterior genotype dosages. We standardize the dosage under the assumption of a
Binomial model,

yiy = ElGy; U{”’ﬁ”]i 2f; @
2f;(1—=£5)

Here f is the estimated allele frequency at site j based on all of the samples. We then perform
truncated SVD [10] on the full standardized data matrix (N x M) to extract the top K principal
components (PCs) that capture population structure in the dataset

Y = UpgiSinr Vi, (3)

where Uy, k) represents the captured population structure of the individuals and V;.x) represents
the scaled variant weights, while S;.) is the diagonal matrix of singular values. This low-rank
approximation along with the standardized matrix Y are all we need to estimate the two test
statistics for low-coverage sequencing data.

3.1 FastPCA statistic

The selection statistic derived in Galinsky et al. (2016) [7], hereafter referred to as FastPCA, tries
to detect selection by looking for variants that significantly differentiate from genetic drift along an
axis of genetic variation. They define the selection statistics for the k-th principal component to
be the properly normalized variant weights, using the properties of an eigenvector, such that they
are standard normal distributed. The selection statistics are then defined as follows in our setting
for genotype likelihood data

djk = Ujk\/M, (4)

djk ~ N(Oa 1)7 (5)

d?k ~ X%v (6)

forj =1,...,.M and k = 1,..., K. vj is the variant weight for the kth component at site j.

The squared statistic will then follow a y2-distribution with 1 degree of freedom. This statistic is
implemented in the PCAngsd framework and referred to as PCAngsd-S1.

3.2 pcadapt statistic

The test statistic implemented in pcadapt [14] is based on a robust Mahalanobis distance of the
standardized estimates in a multiple linear regression for each site. The regression model is defined
as follows in our setting for genotype likelihood data
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yvi = Upn.x)Bj + €, (7)

forj =1,..., M, with 3; being the regression coefficients, and €;, the residual vector for site j. The
coefficients are easily derived using the normal equation and properties of the previously computed
truncated SVD (Equation 3), thus 8; = Sj1.x)V{[;1:x]- A z-score of the regression coefficients in
site j are defined as

o M AT “

with §; being the vector of low-rank approximations in site j (Equation 3). The test statistic is
computed as a robust Mahalanobis distance of z;, where the squared distance will be X3 distributed
as described in Luu et al. (2016) [14]. We use standardized expected genotypes y;; (Equation 2) for
genotype likelihood data, hereafter referred to as PCAngsd-S2, instead of using known genotypes as
pcadapt. Note, that we correct for inflation using the genomic inflation factor [5], inline with the
recommendations [14], in all analysis based on the pcadapt or PCAngsd-S2 statistics. See QQ-plot
in Figure S1 and S2 for examples of the uncorrected PCAngsd-S2 test statistic.

3.3 1000 Genomes Project data

We applied the two selection statistics implemented in the PCAngsd framework to the low-coverage
data of the 1000 Genomes Project (phase 3). Specifically, we tested two sets of populations, one
with Fast Asian ancestry with 400 unrelated individuals from four East Asian populations (CHB,
CHS, CDX, and KHV), and one with European ancestry with 404 unrelated individuals from four
European populations (CEU, GRB, IBS, and TSI). High quality genotype data is available for all
the individuals analyzed. First, we calculated genotype likelihoods (GL) from the low-coverage data
using ANGSD [8], restricting to polymorphic sites with a minor allele frequency of 5% in the high
quality genotype data for each set of populations. In total 5.8 and 6 million polymorphic sites are
retained in the Asian and European population sets, respectively. We used the GL data as input to
PCAngsd to compute the two selection statistics (PCAngsd-S1, PCAngsd-S2) for the population sets.
To verify the results obtained from the low-coverage data, we also analyzed the same variable sites
from the high quality genotype (HQG) data using PCAngsd, pcadapt (default settings), and FastPCA
(fastmode: YES, following [7]).

To compare the performance of pcadapt and FastPCA on low-coverage data, we called genotypes
for the same variants described above from the low-coverage data using bcftools [11] and generated
two data sets, one excluding all genotype calls with genotype quality < 20 (CG standard) and one
including all called genotypes (CG*).

4 Results and Discussion

To test the performance of the two selection statistics (PCAngsd-S1 and PCAngsd-S2), implemented
in PCAngsd, on continuous genetic differentiation in low-coverage data sets, we used data from
the 1000 Genomes Project [4]. We tested four populations with East Asian ancestry and four
populations with Furopean ancestry and identified known signatures of selection in both ancestries.
We compared the results to FastPCA and pcadapt applied to HQG data and two data sets based on
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called genotypes from the low-coverage data, CG standard where all genotype calls with a genotype
quality lower than 20 were excluded and CG* containing all called genotypes.

We applied the selection statistics to 400 individuals from four populations (CHB, CHS, KHV,
CDX) with East Asian ancestry. First, we performed PCA on the GL data using PCAngsd [17]
where we observed a continuous separation between the northern (CHB, CHS) and southern (KHV,
CDX) populations on the first principal component (PC) (Figure 1). FastPCA and pcadapt obtained
a similar pattern on the HQG data (Figure 1). PC2 obtained from PCAngsd and pcadapt separate the
Vietnamese Kinh population (KHV) and Chinese Dai population (CDX) (Figure 1). When applied
to the CG standard data, FastPCA and pcadapt could not recover the continuous separation on
PC1. Instead we observe within population variance driven by the bias from genotype calling on
low depth data when genotype quality filters are applied [20]. Therefore, CG standard data was not
used for downstream selection scan comparisons. The PCA obtained from genotype data without
quality filter CG* did not show the same problems and recovered the continuous separation on PC1
and was included in the following selection scan analyses 1.
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Figure 1: PC1 against PC2 of four East Asian populations obtained from PCAngsd, FastPCA and pcadapt.
HQG: High quality genotype data, Low: Low-coverage data, CG standard: Called genotypes from low-
coverage data with genotype quality threshold on 20, CG*: Called genotypes from low-coverage data.

We applied the test statistics on the variant weights inferred along the two PCs and scan for
genomic regions with significant differentiation on the continuous north-to-south cline on PC1 and
separation of KHV and CDX on PC2. We identify several candidates under selection along PC1
(Figure 2). After multiple testing correction using Bonferroni (p-value < 9 x 107%, «a = 0.05),
we find significant signals of differentiation in variants overlapping FADS2 (chrll), IGH cluster
(chr14), ABCC11 (chrl6), and LILRAS3 (chrl9). These signatures of selection have been described
in previous studies of selection on continuous differentiation in Han Chinese populations [13, 3].
Interestingly, PCAngsd also identifies a genomic region overlapping CRI on the low coverage data,
previously described by Chiang and colleagues [3] and the NIPT data [13]. We find a similar signal
using the other software on the HQG although not significant. FastPCA and pcadapt find the same
candidates with significant differentiation when applied to the HQG data.

Both PCAngsd and pcadapt identify population structure on PC2 separating CDX and KHV
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and find the same two significant candidate regions: HLA-cluster (chr6) (also observed in [3]) and
Olfactory cluster (chrll) (Figure 2). The variants overlapping the Olfactory cluster show strong
LD pattern on both sides of the centromere, a challenging region to assemble potentially resulting
in systematic biases, however, we do note that the pattern is present both on the HQG and low-
coverage data (Figure 2 and S1). PCAngsd-S2 and pcadapt identify a single significant variant on
chr3 and chr9 in the HQG data. Following a test for Hardy-Weinberg equilibrium (HWE) accounting
for population structure [16], we find that these two variants are the only top hits among selection
candidates that significantly deviate from HWE (Table S1). This indicates genotype calling related
biases as the variants are not candidates under selection in the low-coverage sequencing data.

When FastPCA and pcadapt are applied to the low depth data, CG*, not all of these signals are
identified despite PC1 separating the four populations. We observed highly inflated statistics with
significant false positive signals present genome-wide blurring the signals observed on the HQG data
(Figure 2).
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Figure 2: Selection scan of East Asian populations. QQ and Manhattan plots of the selection
statistics from PCAngsd, FastPCA and pcadapt applied to the four East Asian populations obtained. Red
horizontal line is the Bonferroni adjusted significance level. PCAngsd-S2 and pcadapt has been corrected
for genomic inflation. HQG: High quality genotype data, Low: Low-coverage data, CG*: Called genotypes
from low-coverage data.

Similarly to the populations with East Asian ancestry, we also performed selection scans of
404 individuals from four populations (CEU, GBR, IBS, TSI) with European ancestry. We know
from previous research that lactase persistence and skin and hair pigmentation distributions show a
north-south cline within European populations [1, 21, 27], where the northern European populations
have higher lactase persistence and lighter pigmentation than the southern European populations.
We first performed PCA on the GL data using PCAngsd [17] (Figure 3) where we observed a
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continuous separation between the northern (CEU, GBR) and southern (TSI, IBS) populations on
the first PC. FastPCA and pcadapt obtained a similar pattern on the HQG data (Figure 3). As for
the East Asian scenario, FastPCA and pcadapt could not recover the continuous separation on PC1
on the CG standard data which was excluded from further analysis. The PCA obtained from CG*
data set recovered the continuous separation on PC1 and was used in the following selection scan
analyses 3.

HQG - PCAngsd HQG - FastPCA CG standard - FastPCA CG* - FastPCA

025

0.15

PC2
-
=
.
2
PC2
PC2
03 02 01 00 01 02 03

005
0

0.05
R
ST
1 0.

005 0.00 0.05 005 0.00 005 005 000 005 010 015 0.05 0.00 0.05 0.10
PC1 PC1 PC1 PC1

Low - PCAngsd HQG - pcadapt CG standard - pcadapt CG* - pcadapt

025

020

0.15

N

IR

PRY A

PC2
0.10
e,
0

o
S
-4

0.05

0.00

PC2

010 005 000 005 0.10
PC2

005 000 005 010 0.5

e,
3
>

005

0.10

-0.10 005 0.00 005 005 0.00 005 €015 010 -005 000 0.05 -0.05 0.00 005
PC1 PC1 PC1 PC1

Figure 3: PC1 against PC2 of four European populations obtained from PCAngsd, FastPCA and pcadapt.
HQG: High quality genotype data, Low: Low-coverage data, CG* : Called genotypes from low-coverage data.

Next, we calculated the selection statistics along PC1 that display a north-south cline in the
European populations. We find that both PCAngsd-S1 and PCAngsd-S2 statistics behaves as ex-
pected under the null hypothesis for most sites(Figure 4). Similarly the statistics obtained from
FastPCA and pcadapt follows the expectation, although, the latter required genomic inflation cor-
rection [5], on both HQG and CG*. After multiple testing correction, all software identify two genomic
regions with significant genetic differentiation overlapping two gene clusters: LCT/MCM6 (chr2)
and OCA2/HERC?2 (chrl5) (Figure 4). These results are inline with previous research on these
populations [1, 21, 27].
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Figure 4: Selection scan of European populations. QQ and manhattan plots of the selection statistics
from PCAngsd, FastPCA and pcadapt applied to the four European populations obtained. Red horizontal
line is the Bonferroni adjusted significance level. PCAngsd-S2 and pcadapt has been corrected for genomic
inflation. HQG: High quality genotype data, LOW: Low-coverage data, CG*: Called genotypes from low-
coverage data.

For genotype calling from low-coverage data uncertain genotype calls are often excluded by
applying a genotype quality threshold. After applying a genotype quality threshold of 20 both
FastPCA and pcadapt identify within population biases on the first PC (see Figure 1 and 3).
However, as the second PC to some extent recover the population structure, we applied FastPCA
and pcadapt to the standard genotype calls. In the selection scan of the East Asian populations
pcadapt recovered the same candidates regions as the HQG data, whereas FastPCA identified many
false positive regions both on PC1 and PC2 (Figure S3). For the European populations, we observe
highly inflated statistics on both PCs and many false positive selection signatures were identified
genome-wide by both software (Figure S4). From these observations, it is evident that genotype
calling of low-coverage data requires ad-hoc filters for each test scenario. Similarly, in a recent
low coverage study Chiang and colleagues also used extensive filters, including machine learning
algorithms, to exclude outlier samples and variants prior to computing the selection statistics for
the Han chinese population [3]. In contrast, we show that the PCAngsd framework consistently
obtain well-behaving selection statistics in both scenarios from low-coverage data without the need
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for ad-hoc quality filters on either variant calls or sample selection.

A limitation of the PC-based selection scans are their capability of detecting selection in scenarios
of non-continuous population structure. We show an example of this in Figure S5, where we have
applied the three software to three populations with distinct ancestry (CEU, CHB, YRI). As also
shown in the original study of FastPCA [7], it has low power in data sets with higher Fsp between
the populations, where we see deflated test statistics due to being inversely scaled with the inferred
large eigenvalues of the corresponding tested PC for PCAngsd-S1 and FastPCA. We see the opposite
pattern for PCAngsd-S2 and pcadapt, where the test statistics are very inflated, even after correction
with genomic control, leading to many false positives. We reckon that Fsr based selection scans
are more appropriate in such scenarios with evident population clusters.

In conclusion, we have implemented two PC-based test statistics to perform selection scans in
the PCAngsd (v.0.99) framework that performs iterative inference of population structure based
on either GL or genotype data. This makes it possible to scan for selection genome-wide in data
sets of low and/or variable coverage data sampled from genetically continuous populations. We
show that the signatures of selection obtained from the low coverage in both the East Asian and
European populations were on par with those from the high quality genotype data obtained from
existing state-of-the-art software using called genotypes. The PCAngsd framework also reduces the
need to rely on ad-hoc filters on SNP sites and/or samples. All obtained candidates for selection
identified from the low-coverage data have been described in other studies targeting signatures of
selection in European and East Asian ancestries. The PCAngsd framework is freely available at
https://github.com/rosemeis/pcangsd.
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Supplementary Material

Posterior expectation of the genotype

We are using the iterative algorithm in PCAngsd to estimate individual allele frequencies 7 [17]. With
the assumption of Hardy-Weinberg proportions, we can derive the posterior genotype probability
using the genotype likelihoods as follows for individual ¢ in site j:

(S1)

i P(X,; |Gy = 9)P(Giy = 9] 71

S22 o P(Xij|Gij = ¢)P(Gij = g’ | 7i5)

g

7?(-7,2]u g= 07
P(Gij = g|#i;) = 27i;(1 = 7ig), g=1,
(l_fr’ij)27 922
Here g is the genotype and P(X | G = g) is the genotype likelihood. The posterior expectation
of the genotype is thus given by:

2
E[Gij | Xij, 7i5) = > g P(Gij = g| Xij, 7ij), (S2)

9=0

which we use in our selection statistics to account for uncertainty in the genotypes in low-coverage
data.
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Figure S1: PCAngsd results on the high quality genotype dataset of the Asian populations in the 1000
Genomes Project. PCA plot of the four Asian populations showing the separation of Northern and Southern
Asia on PC1 and PC2 separating KHV and CDX (A). QQ-plot of the test statistics, including PCAngsd-S2
statistics before and after genomic inflation correction (B). Manhattan plot of the selection scan of PC1
(C) and PC2 (D) based on the PCAngsd-S1 statistic and PCAngsd-S2 (E) of both PCs. Manhattan plots
from PCAngsd-S2 has been corrected for genomic inflation. Red horizontal line is the Bonferroni adjusted
significance level.
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Figure S2: PCAngsd results on the high quality genotype dataset of the European populations in the 1000
Genomes Project. PCA plot of the four European populations showing the separation of Northern and
Southern Europe on PC1 (A). QQ-plot of the test statistics, including PCAngsd-S2 statistics before and
after genomic inflation correction B. Manhattan plot of the selection scan based on the PCAngsd-S1 (C)
and PCAngsd-S2 (D) test statistics along PC1. Manhattan plots from PCAngsd-S2 has been corrected for
genomic inflation. Red horizontal line is the Bonferroni adjusted significance level.
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Figure S3: PC1 against PC2, QQ-plots and Manhattan plots of the selection statistics from FastPCA and
pcadapt applied to the four East Asian populations obtained. Red horizontal line is the Bonferroni adjusted
significance level. pcadapt has been corrected for genomic inflation. CG standard: Called genotypes from
low-coverage data with a genotype quality threshold on 20.
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Figure S4: PC1 against PC2, QQ-plots and Manhattan plots of the selection statistics from FastPCA and
pcadapt applied to the four European populations obtained. Red horizontal line is the Bonferroni adjusted
significance level. pcadapt has been corrected for genomic inflation. CG standard: Called genotypes from
low-coverage data with a genotype quality threshold on 20.
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Figure S5: PC1 against PC2, QQ-plots and Manhattan plots of the selection statistics obtained from
PCAngsd, FastPCA and pcadapt applied to a European (CEU), Asian (CHB), and African (AFR) population.
Red horizontal line is the Bonferroni adjusted significance level. pcadapt has been corrected for genomic
inflation. HQG: High quality genotype data.
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Chrom ID Position Al A2 F p-value

3 rs149768401 100365528 C G -0.40  1.20 x 10712
6 rs41542812 32629931 G C  0.086 0.42

9 rs115349067 117013044 C A  -0.26 1.26 x 1077
11 rs7101761 49598178 G A -0.068 0.071

11 rs72643559 61620274 C T  -0.039 0.23

14 rs1071803 106209119 T C  0.022 1

16 rs17822931 48258198 C T  -0.015 0.64

19 rs434124 54809336 C G  -0.011 1

Table S1: Hardy-Weinberg equilibrium test using PCANGSD on the HQG data from the four East Asian
populations. The table only contains the significant top hits from the selection analyses. F: inbreeding
coefficient.
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