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One Sentence Summary

We show that proteome folding stability censuses are ill-defined because they earmark hidden

information on conformation and ligand binding.

Abstract

Methods that assay protein foldedness with proteomics have generated censuses of protein folding
stabilities in biological milieu. Surprisingly, different censuses poorly correlate with each other. Here,
we show that methods targeting foldedness through monitoring amino acid sidechain reactivity also
detect changes in conformation and ligand binding. About one quarter of cysteine or methionine
sidechains in proteins in mammalian cell lysate increase in reactivity upon chemical denaturant titration
consistent with two-state unfolding. Paradoxically, up to one third decreased reactivity, which were
enriched in proteins with functions relating to unfolded protein stress. One protein, chaperone HSPAS,
displayed changes arising from ligand and cofactor binding. Unmasking this hidden information should
improve efforts to understand both folding and the remodeling of protein function directly in complex

biological settings.

Main text

The maturation of an active protein is typically reliant upon the nascent polypeptide folding into a

complex topology. Folding involves a thermodynamic component, which describes the free energy
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difference between the folded state and unfolded state at equilibrium (folding stability, AG). Folding
also involves other sequential processing steps, such as post-translational modifications and transport.
Because folding is fraught with potential mishaps including misfolding and aggregation, in cells a
“proteostasis” network oversees all steps related to synthesis, folding and degradation (1). In
mammalian cells this network consists of several hundred proteins, including molecular chaperone
families (e.g. heat shock protein families 40, 70 and 90), the ubiquitin-proteosome system, autophagy

and stress response systems (2).

Proteostasis imbalance is implicated in diseases involving inappropriate protein aggregation, including
neurodegeneration (3). As such, there has been extensive interest in determining how protein
foldedness varies for proteomes inside cells in healthy and disease contexts (1, 4, 5). A canonical
approach for measuring protein folding stability of a purified protein involves measuring the abundance
of folded and unfolded states in different concentrations of chaotropes, such as urea or guanidine
hydrochloride, or exposure to increasing temperature. This approach yields measures of AG or other
correlates of AG such as chemical denaturation midpoint (Cn) or thermal melting midpoint (T,,) values
that are informative in the case where the protein folds by a two-state equilibrium mechanism. Recent
advances have allowed this canonical strategy to measure protein folding stabilities in biological
extracts, thereby enabling the en masse determination of folding stabilities of proteins (6—13).
Measurement strategies have targeted differences between the folded and unfolded states, such as
aggregation propensity, sensitivity of solvent exposed amino acid sidechains to reactive chemicals,

which we hereon refer to as residue labeling, and protease cleavage susceptibility (14).

Despite all this new information on protein folding censuses, it remains untested how generally
applicable the approaches used for studying purified proteins are when applied to complex cellular
milieu. In biological settings these methods are also likely to report on other features of proteins
including conformational change, ligand binding and protein network organization. We investigated this
question and hereon report remarkable additional complexity in the data, as well as a strategy to

unmask hidden information pertaining to protein function in complex biological milieu.

Methodological differences yield poorly correlated measures of thermodynamic proteome stability

First, we examined 20 datasets from 12 studies that reported high-quality protein folding stability data,
which used limited proteolysis, residue labelling and thermal profiling methods to assay foldedness

(complete reference details are provided in Table S1). These studies reported T, or C, values which, for


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85

86
87

88
89
90

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

two-state folding models indicate the conditions of equal populations of unfolded and folded protein
(i.e. where AG equals zero). We hypothesized that if these values authentically report on two-state
protein folding stability the different datasets should correlate with one another. To test this hypothesis
we first scaled each T, or C, dataset to range between 0 and 1, to account for the inherently different
magnitudes of T,, and Cy, values, and then performed pairwise comparisons between datasets. Linear
regressions fitted to each comparison revealed a strong positive relationship in stabilities when
comparing datasets derived from the same methodology, particularly among thermal profiling data (Fig.
1; lower diagonal datasets 7 - 20). This conclusion was not dependent on the species from which the
protein stability was measured, suggesting that closely related proteins from different species behave
similarly in terms of the T,, and Cp, values. However, comparisons between the datasets derived from
different methodologies, such as thermal profiling versus residue labelling, revealed poor correlations at
best and none at worst. This lack of correlation was supported by Spearman’s correlation coefficients
calculated for each comparison (Fig. 1; upper diagonal), whereby significant positive correlations were
primarily observed between datasets derived from the same methodology. One notable exception was
residue labeling dataset 4 (15), which was moderately correlated with 14 of the 15 thermal profiling
datasets. However, closer inspection of dataset 4 revealed that only 17% of the quantified data
reported Cn, values, because these were the only data that fitted well to a two-state unfolding curve. It
thus follows that 83% of the data was disregarded as not fitting to the two-state model (see Table S1 for
complete reference details). By contrast, between 66% and 99%, or 66% and 69% of proteins were
reported to be well fitted to two-state unfolding isotherms in other thermal profiling and residue
labelling datasets, respectively. Collectively, these findings suggested that the most canonical and
simple patterns of unfolding, i.e. those that look like two-state unfolding curves were indeed the most
likely to report on two-state-like protein unfolding behavior and to correlate with different apparent
folding stability datasets. More intriguing however was that such two-state like stability values
encompass only a fraction of the data available. Hence the remaining data likely was more applicably

explained by complex unfolding mechanisms or mechanisms distinct to folding.

Residue labelling techniques reveal nuanced and heterogenous changes in protein conformation due
to chemical denaturation

To further examine which data can be appropriately explained in terms of two-state folding or not, we
collected our own dataset of apparent folding stability using tetraphenylethene maleimide (TPE-MI) as a

probe for unfolded proteins. TPE-MI reacts with exposed cysteine free thiols that are otherwise buried
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91 in the folded state (6). Free cysteine thiols are the least surface-exposed residue of all amino acids in

92  globular proteins so provide an excellent target for examining protein foldedness (16). We first

93 performed a urea denaturation curve of purified B-lactoglobulin, which is a model globular protein

94  containing a single buried free thiol residue, and unfolds via two-state-like behavior (Fig. S1). The rate of
95 reaction of TPE-MI with B-lactoglobulin was proportional to the anticipated exposure of the buried thiol
96 upon two-state unfolding. The relationship between rate of reaction and urea concentration yielded a
97 Cm consistent with that obtained from intrinsic tryptophan fluorescence and in accordance with other

98  published results on B-lactoglobulin folding (17).

99  To use TPE-MI on a proteome-wide scale we created denaturation curves of cell lysate with urea (Fig.
100  2A). Lysates were prepared from mouse neuroblastoma cells (Neuro2a) subjected to Stable Isotope
101  Labeling by Amino acids in Cell culture (SILAC) using light or heavy (*3C L-lysine and *3C,**N L-arginine)
102 isotopes for quantitation of reactivity. In essence, lysate from light-isotope labeled cells was used as the
103 “native” control versus lysate from heavy-isotope labeled cells prepared with different concentrations of
104 urea. The light and heavy-isotope labeled samples were each reacted with TPE-MI before mixing and
105 guantitation for the level of reactivity. The extent of cysteine reactivity was determined from the
106 change in abundances of peptides with unreacted cysteines normalized to the ratio of peptides from the

107  same protein that lacked cysteine (Fig. 2A).

108  To determine the underlying trends in cysteine reactivity as a function of urea concentration we

109 clustered the cysteine peptide reactivity profiles using an unbiased computational approach of fuzzy-c
110 means (18, 19). This analysis yielded four distinct patterns of cysteine response to urea titration (clusters
111 1-4) shown in Fig. 2B. Cluster 1 was defined by no systematic change in reactivity with urea

112 concentration. Clusters 2 and 3 both showed a progressive increase in cysteine thiol reactivity, which
113 was anticipated for greater exposure of buried thiols upon denaturation. Cluster 2 differed from cluster
114 3 by showing reactivity changes first occurring at higher urea concentrations whereas the changes

115 occurred at lower urea concentrations for cluster 3. Cluster 4, representing one third of the identified
116 cysteine peptides, revealed a systematic decrease in reactivity upon increasing concentrations of urea.
117  This was counter to the anticipated increase in reactivity expected from the exposure of buried cysteine
118 residues induced by denaturation, suggesting that distinct processes were occurring in some proteins in
119  response to urea titration that led to greater burial of exposed cysteine thiols (discussed in more detail

120 below).
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121 To determine which of the data were most consistent with a two-state folding mechanism, individual
122 cysteine reactivity curves were fitted to a two-state unfolding curve and assessed for goodness of fit

123 (Fig. 2C). Consistent with the greater reactivity upon urea denaturation, clusters 2 and 3 contained the
124  most peptides with good fits defined by an R? > 0.9 (Fig. 2C). However, the peptides in cluster 2 were the
125  only group that showed a significant correlation between the fitted Cn, values with those of existing

126 census datasets described herein previously in Fig. 1 (Fig. 2D). Given that the published datasets were
127  pre-filtered in the original studies to be consistent with two-state unfolding, this finding demonstrates
128  anauthenticity in this subset of data for tracking bona fide two-state unfolding events. The peptides in
129 cluster 3 did not share this correlation with other datasets, and may be a diagnostic of reactivity

130 reporting on non-two-state folding mechanisms such as multistate or non-reversible folding, or other

131 non-folding related mechanisms (Fig. 2D).

132  Toinvestigate whether the general conclusions made from the TPE-MI dataset can be drawn in datasets
133 derived from other residue labeling methods for foldedness, we re-examined the pre-processed peptide
134  quantitation from dataset 4 (15) according to our clustering procedures. Dataset 4 monitored

135 methionine exposure in the lysate of human cell line, HCA2-hTert, by a free radical oxidation approach
136 in different concentrations of the denaturant guanidine hydrochloride (15). This dataset was therefore
137 analogous to the TPE-MI approach but independent in multiple parameters of chemical denaturant

138  (guanidine hydrochloride versus urea), species (human versus mouse), target residue for labelling

139  (methionine versus cysteine) and research team (independent research labs).

140 Despite these differences in parameters, the clustering procedures resulted in a strikingly similar

141  grouping of the methionine oxidation data to the TPE-MI dataset (Fig. 2E — note however the direction
142  of change is inverted due to the nature of the measurements) that illustrates several fundamental

143 consistent conclusions. First was that the data formed 4 clusters with similar patterns of response.
144  Second was that there were broadly consistent proportions of peptides in the different clusters. Most
145 notably was the consistent cluster for increased protection upon denaturant titration that indicated

146 changes inconsistent with unfolding.

147  Together the TPE-MI and methionine oxidation data indicated that with an unbiased clustering
148  procedure only about one quarter of residue labeling data in chemical denaturation curves of
149 mammalian proteomes can be confidently described as consistent with a two-state unfolding

150 mechanism. Most notably, this independent dataset confirmed the observation that a substantial
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151 portion of the reactivity changes measured in the presence of denaturant cannot be satisfactorily

152  explained by unfolding.

153

154  Residue labeling patterns earmark protein conformational rearrangement as well as unfolding

155  To investigate protein properties that explain the different patterns of response to urea titration, we
156  first examined the physicochemical characteristics of the peptides in each cluster (and the proteins to
157  which they belong to; Fig. 3A). We examined properties predicted from amino-acid composition that
158 pertained to likely burial of the target residues in the folded state, including charge, hydrophobicity,
159 likelihood to reside in regions of secondary structure and relative solvent exposure for individual

160 peptides associated with each cluster. Several characteristics stood out. Notably the peptides in clusters
161 2 and 3, which we have thus far demonstrated to have best consistency with two-state folding

162 mechanisms, were most likely to contain hydrophobic and solvent-buried residues, and least likely to be
163 in unstructured protein regions which is in accordance with this conclusion (Fig. 3B). For the parent

164  proteins that have known structures (around 20% of the proteins identified), the extent of solvent

165 exposure of the labelled cysteine residue further supported the conclusion that cysteines in cluster 2
166 and 3 were in buried regions of proteins and hence became exposed upon denaturation (Fig. S2A). For
167 completeness of analysis, we did not identify any enrichment for other protein features, such as

168 whether the peptides resided in active sites, binding sites, functional motifs, disulfide bonds or

169 annotated domains (Fig. S2B—D). While the proportion of residues located within annotated PFAM

170 domains was relatively high (more than 70% in every cluster), this was anticipated due to the likelihood

171 of free thiols being buried in the folded state of most proteins (20).

172 Because individual proteins may include multiple cysteine-containing peptides that fall into different
173 clusters, we next grouped proteins into categories based on which cluster the peptides belonged to (Fig.
174  3A). More than half of the peptides belonged to proteins that contained at least one other cysteine

175 peptide from a different cluster (Fig. 3C). Proteins with such peptides were considered “multi-clustered”
176 and separated from proteins that contained cysteine peptides exclusively in one of the other four

Ill

177 clusters (which we hereon call “uni-clustered”) for further analysis. Of the multi-clustered proteins, one-
178  third had at least one cysteine peptide which decreased in reactivity (i.e. was in cluster 4) and one or
179 more cysteine peptides for which reactivity increased in the presence of higher concentrations of urea,
180  which suggested multimodal impacts on the protein during denaturation. It is reasonable to predict that

181 such proteins are larger and multi-domain. Indeed, multi-clustered proteins were more likely to have a
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182 larger molecular mass and contain more annotated PFAM domains than uni-clustered proteins,

183 consistent with this conclusion (Fig. 3D-E; two-sample t-test, p<0.001). Also of note was the consistency
184  in predicted physicochemical features for uni-clustered proteins whose peptides were associated with
185  cluster 2, which featured elevated hydrophobicity and lower solvent exposure compared to the other
186  uni-clustered and multi-clustered categories (Fig. S3E). This result further supported the conclusion that
187 proteins containing solely cluster 2 peptides were the most likely to display two-state unfolding and that
188  the other proteins with mixed clusters displayed more complex unfolding or other non-folding changes

189 in response to urea titration.

190 In addition to physicochemical properties, we also examined the molecular functions of proteins

191  assigned to the uni- and multi-clustered protein categories. Protein-protein interaction analysis using
192  the STRING database revealed no difference in the number of direct high-confidence protein binding
193 partners between uni- versus multi-clustered proteins (Fig. 3F). However, the average node degree (the
194  number of protein-protein interactions within each cluster) was up to four-fold higher in multi-clustered
195 proteins than among uni-clustered proteins (Fig. 3G) . This result was consistent with the anticipation
196  that multi-clustered proteins are more likely to be multi-domained and larger in size. It therefore follows
197 that such proteins would operate in larger functional networks, which display coordinated changes in
198 cysteine reactivity. By comparison, uni-clustered proteins, particularly those in cluster 2, were more

199 likely to be poorly interconnected. This conclusion is consistent with an anticipation that these proteins
200  were simpler globular proteins whereby the data reported solely on their foldedness and not their

201 function in networks.

202  Gene ontology (GO) analysis was investigated for each of the protein categories to examine the

203 possibility of a coordinated functional response corresponding to the cysteine reactivity changes (Fig.
204 3H). Of the 34 significantly enriched top-level GO terms in the multi-clustered proteins, half

205 encompassed mechanisms pertaining to binding and protein complexes or proteostasis response

206 mechanisms such as protein folding machinery. The enrichment of proteostasis mechanisms was striking
207 in that it pointed to the thiol reactivity changes arising in part as functional responses to the stimulus of
208 denaturation by urea. More specifically, three of the GO terms (chaperonin-containing T-complex,

209 G0:0005832; cellular response to heat, GO:0034605; and protein folding, GO:0006457) related to the
210  stimulus of denaturation. In other words, changes in thiol reactivity appeared to earmark changes in
211 ligand binding or the conformation of select proteins that have functions in responding to unfolded

212 proteins that accumulate at higher concentrations of urea. A parallel analysis of the methionine
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213 oxidation data (dataset 4) yielded nine identical GO terms (Fig. 3G for common terms, Fig. S3 for all
214  dataset 4 specific terms). This result was further striking in that data from a distinct method, species
215  and denaturant led to a conserved GO enrichment of terms related to responses to unfolded proteins,
216  including identical terms of chaperonin-containing T-complex (GO:0005832) and protein folding

217  (GO:0006457). These data therefore led us to conclude that multi-clustered proteins were likely to
218 encompass functional responses to protein denaturation. By contrast, GO analysis of uni-clustered

219 proteins showed no conserved terms between the two datasets (Fig. S4).
220

221 Residue reactivity captures features of chaperone conformational change in lysate

222  To decipher the molecular mechanisms that underlie the functional responses to unfolded protein, we
223 next focused on a class of proteins that we expected to have functions in engaging with unfolded

224  proteins, i.e. molecular chaperones. 42 proteins annotated with the ontology term “chaperone-

225 mediated protein folding” machinery (GO:0061077) were identified across the protein groups,

226  particularly in the multi-clustered proteins (Fig. S5). One of these proteins HSPA8 (HSC70; P63017) is the
227 cognate heat shock protein 70 (Hsp70), which showed 3 cysteine peptides in different clusters (Fig 4A).
228 HSPAS binds to unfolded proteins in concert with J-domain protein co-chaperones and nucleotide

229  exchange factors (14). Together they drive protein folding through ATP-dependent cyclical binding and
230 release (21). A conserved structural feature of Hsp70 proteins are four modules: an N-terminal

231 nucleotide binding domain (NBD), a substrate binding domain (SBDB), a helical lid domain (SBDa), and a
232 disordered C-terminal tail of variable length (22). The disordered tail of HSPA8 comprises an EEVD motif

233  that mediates interactions with cofactors such as J-domain protein DNAJB1.

234 One peptide from the NBD, containing Cys17, became more reactive to TPE-MI at urea concentrations
235  greater than 4 M (Fig. 4A). The other two peptides were from the SBDa domain, containing Cys574 and
236  Cys603, and these both became more protected in concentrations of urea between 3 —5 M (Fig. 4A).
237 We also identified one peptide from DNAJB1, that contained two cysteine residues (Cys267, Cys269).
238  These cysteines displayed a complex biphasic (but overall decreased) reactivity profile upon exposure to
239 increasing concentrations of urea (Fig. 4A). We therefore postulated that the changes in cysteine

240 reactivity in HSPA8 and possibly cofactor DNAJB1 upon urea titration may arise due to allosteric

241 conformational changes resulting from their binding and engagement with unfolded proteins.
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242  To test this hypothesis, we examined thiol reactivity changes in a reconstituted HSPAS8 system in vitro
243 that comprised of purified human HSPAS8, DNAJB1 and a well characterized model client, malate

244  dehydrogenase (MDH2) (23) (Fig. 4B, detailed structural models shown in Fig. S6). To look specifically for
245  changes resulting from interaction with denatured client, TPE-MI reactivity was compared between

246  reconstituted systems containing native versus thermally-denatured MDH2 using tandem mass tag

247 (TMT) isotopic labelling (Fig. 4B).

248 First, we assessed the system without added ATP. Under this condition HSPA8 and DNAJB1 can bind to
249 non-native MDH2 substrate to form a stable complex (24, 25). More specifically, the SBDa domain of an
250 Hsp70 protein (DnakK) has been shown to interact with substrate when the chaperone is in the ADP-

251 bound state (26). We saw no change in reactivity of the HSPA8 NBD peptide containing Cys17 (Fig. 4C)
252  suggesting that the increase in reactivity observed above 4 M urea titration in lysate was attributable to
253 NBD unfolding. In contrast, the SBDa domain peptide containing Cys574 decreased in reactivity (one-
254  sample t-test, p=0.033). This result therefore suggested that the decrease in reactivity observed in the

255  SBDa region during urea denaturation arose from substrate and/or ligand binding.

256 In DNAJB1, we observed two cysteine peptides in the reconstituted system. One peptide, containing
257  Cysl79, is located close to the hinge between two B-barrel-like subdomains (CTDI and CTDII) that binds
258  to substrates (Fig. S6). The second, containing two closely-adjacent cysteines (Cys267, Cys269), is

259 located in the homodimer interface. It is important to note that we could not ascribe reactivity changes
260  to asingle cysteine within this peptide, thus the changes represent an average across these residues.
261  The peptide containing Cys267 and Cys269 became significantly more reactive under these conditions
262 (Fig. 4E; one-sample t-test, p=0.023). The central location of this peptide within the homodimeric

263 interface of DNAJB1 suggested that accumulated client binding altered the conformation of DNAJB1 to

264  expose the structure nearby these cysteines.

265 Next we examined the effect of adding supplemental ATP to the reconstituted system, which we

266  predicted would fuel HSPA8 to undergo the full catalytic cycle and therefore release accumulated

267  complexes of HSPA8 and DNAJB1 bound to client (22). The Cys574 peptide from HSPA8 became more
268  reactive under these conditions, which is in agreement with HSPAS8 disengaging client and/or DNAJB1.
269 Intriguingly, the Cys179 peptide from DNAJB1 showed increased reactivity (Fig. 4C; one-sample t-test,
270  p=0.023). Of note, this peptide is close to the region of DNAJB1 shown to bind the EEVD motif of HSPAS
271  (27), suggesting a level of deprotection when client-bound complexes of the HSPA8-DNAJB1 machinery

272 are dissociated. While this is an attractive hypothesis, we could not exclude the possibility of other
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273 allosteric changes associated with DNAJB1 activity. Namely, intramolecular J-domain interactions with
274  the hinge region occur near this residue which are modulated by DNAJB1 engagement with HSPAS (23,
275  28-30). The peptide in DNAJB1 containing (Cys267, Cys269) was no longer protected (Fig. 4C; one-

276  sample t-test, p=0.26), which is consistent with the lack of accumulated substrate-chaperone complexes
277  that would otherwise drive the conformational changes at the dimer interface described above. These
278 results exemplify how residue exposure methodology can track functionally relevant conformational

279 changes in chaperone machinery distinct from unfolding events in complex cellular milieu.
280
281 Conclusions

282  Collectively, our findings reveal hidden complexity in proteome-wide datasets targeting foldedness with
283 residue labeling approaches. Namely, we demonstrate that a substantial component of the changes

284  seeninresidue labeling datasets applied to study proteome denaturation by chemical denaturants are
285 better explained by changes in protein conformation and ligand interactions than unfolding. These

286  findings have two implications of note. First is that analysis of the peptides (and proteins) that generate
287  denaturation curves most similar to two-state unfolding curves provides the most consistent correlation
288 between methodological approaches and provide a more robust core census list of stability

289 measurements. This is a critical point with respect to the retrospective consideration of whole proteome
290 stability datasets because it appears that upwards of two thirds of the data previously fitted to a

291 measure of folding stability may be more appropriately explained by changes in conformation or ligand
292 association. Other proteomics approaches have drawn general conclusions that are in agreement with
293 our findings here, namely how changes in proteome solubility encode information on rewired protein
294 interaction networks (31-33). Others have also shown that ligand interactions can modulate the thermal
295 melting profiles of proteins in lysate (8, 34, 35), and recent commentary speculates this is one among a
296  range of biophysical effects that could contribute to a protein’s observed thermal stability (36). The

297  workflow presented here provides a useful strategy to delineate changes arising from unfolding from

298  these other attributes of proteins.

299  The second implication is that the ability to determine subtle changes in tertiary and quaternary
300 conformation with domain-level resolution distinguishes amino-acid specific methods from thermal melt
301 and aggregation-based techniques. Subtle changes in protein conformation mediate protein-protein

302 interactions underlying many cellular functions. However, the dynamic and often transient nature of

10
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303 these interactions can make them challenging to quantify in cells en masse and requires sensitive but
304 non-specific conformational probes capable of distinguishing domain-specific changes. Overall, the data
305 presented here support the ability of residue labelling methodologies such as TPE-MI to fill this void,
306  providing quantitative insight into aspects of protein conformation beyond stability and unfolding. We
307 anticipate this to open the door for studies on proteome structure and function in natural intact

308 biological settings, including live cells or other complex biological milieu.

309

11


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

310 References and Notes

311 1.  W.E. Balch, R. I. Morimoto, A. Dillin, J. W. Kelly, Adapting Proteostasis for Disease Intervention.
312 Science. 319, 916-919 (2008).

313 2.  G.G. Jayaraj, M. S. Hipp, F. U. Hartl, Functional Modules of the Proteostasis Network. Cold Spring
314 Harb Perspect Biol. 12, a033951 (2020).

315 3. J.Labbadia, R. I. Morimoto, The Biology of Proteostasis in Aging and Disease. Annu Rev Biochem.
316 84, 435-464 (2015).

317 4, E. Braselmann, J. L. Chaney, P. L. Clark, Folding the proteome. Trends Biochem. Sci. 38, 337-344
318 (2013).

319 5. D. Cox, C. Raeburn, X. Sui, D. M. Hatters, Protein aggregation in cell biology: An aggregomics
320 perspective of health and disease. Seminars in Cell & Developmental Biology (2018),
321 doi:10.1016/).SEMCDB.2018.05.003.

322 6. M. Z. Chen, N. S. Moily, J. L. Bridgford, R. J. Wood, M. Radwan, T. A. Smith, Z. Song, B. Z. Tang, L.
323 Tilley, X. Xu, G. E. Reid, M. A. Pouladi, Y. Hong, D. M. Hatters, A thiol probe for measuring unfolded
324 protein load and proteostasis in cells. Nat Commun. 8, 474 (2017).

325 7. F.Lliu, H. Meng, M. C. Fitzgerald, Large-Scale Analysis of Breast Cancer-Related Conformational
326 Changes in Proteins Using SILAC-SPROX. J. Proteome Res. 16, 3277-3286 (2017).

327 8. D. M. Molina, R. Jafari, M. Ignatushchenko, T. Seki, E. A. Larsson, C. Dan, L. Sreekumar, Y. Cao, P.
328 Nordlund, Monitoring drug target engagement in cells and tissues using the cellular thermal shift

329 assay. Science. 341, 84—87 (2013).

330 9. M. M. Savitski, F. B. M. Reinhard, H. Franken, T. Werner, M. F. Savitski, D. Eberhard, D. Martinez

331 Molina, R. Jafari, R. B. Dovega, S. Klaeger, B. Kuster, P. Nordlund, M. Bantscheff, G. Drewes,
332 Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 346, 1255784
333 (2014).

334 10. M. M. Savitski, N. Zinn, M. Faelth-Savitski, D. Poeckel, S. Gade, I. Becher, M. Muelbaier, A. J.

335 Wagner, K. Strohmer, T. Werner, S. Melchert, M. Petretich, A. Rutkowska, J. Vappiani, H. Franken,
336 M. Steidel, G. M. Sweetman, O. Gilan, E. Y. N. Lam, M. A. Dawson, R. K. Prinjha, P. Grandi, G.

337 Bergamini, M. Bantscheff, Multiplexed proteome dynamics profiling reveals mechanisms

338 controlling protein homeostasis. Cell. 173, 260-274.e25 (2018).

339 11. S.Schopper, A. Kahraman, P. Leuenberger, Y. Feng, |. Piazza, O. Miiller, P. J. Boersema, P. Picotti,
340 Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled
341 mass spectrometry. Nat Protoc. 12, 2391-2410 (2017).

342 12. C.S.H.Tan, K. D. Go, X. Bisteau, L. Dai, C. H. Yong, N. Prabhu, M. B. Ozturk, Y. T. Lim, L. Sreekumar,
343 J. Lengqvist, V. Tergaonkar, P. Kaldis, R. M. Sobota, P. Nordlund, Thermal proximity coaggregation
344 for system-wide profiling of protein complex dynamics in cells. Science. 359, 1170-1177 (2018).

12


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

345 13. |. Becher, A. Andrés-Pons, N. Romanov, F. Stein, M. Schramm, F. Baudin, D. Helm, N. Kurzawa, A.
346 Mateus, M.-T. Mackmull, A. Typas, C. W. Miller, P. Bork, M. Beck, M. M. Savitski, Pervasive Protein
347 Thermal Stability Variation during the Cell Cycle. Cell. 173, 1495-1507.e18 (2018).

348 14. T.J. Magliery, J. ). Lavinder, B. J. Sullivan, Protein stability by number: high-throughput and
349 statistical approaches to one of protein science’s most difficult problems. Curr Opin Chem Biol. 15,
350 443-451 (2011).

351 15. E.J. Walker, J. Q. Bettinger, K. A. Wellg, J. R. Hryhorenko, S. Ghaemmaghami, Global analysis of
352 methionine oxidation provides a census of folding stabilities for the human proteome. PNAS. 116,
353 6081-6090 (2019).

354 16. S. M. Marino, V. N. Gladyshev, Cysteine function governs its conservation and degeneration and
355 restricts its utilization on protein surfaces. J. Mol. Biol. 404, 902-916 (2010).

356 17. P.Busti, C. A. Gatti, N. J. Delorenzi, Some aspects of beta-lactoglobulin structural properties in
357 solution studied by fluorescence quenching. Int. J. Biol. Macromol. 23, 143-148 (1998).

358 18. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Springer Science &
359 Business Media, 1981).

360 19. C. Doring, M.-J. Lesot, R. Kruse, Data analysis with fuzzy clustering methods. Computational
361 Statistics & Data Analysis. 51, 192-214 (2006).

362 20. G. Chakafana, T. Zininga, A. Shonhai, The Link That Binds: The Linker of Hsp70 as a Helm of the
363 Protein’s Function. Biomolecules. 9 (2019).

364 21. S.K.Sharma, P. De los Rios, P. Christen, A. Lustig, P. Goloubinoff, The kinetic parameters and
365 energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol. 6, 914-920 (2010).

366 22. R.Rosenzweig, N. B. Nillegoda, M. P. Mayer, B. Bukau, The Hsp70 chaperone network. Nat. Rev.
367 Mol. Cell Biol. 20, 665—680 (2019).

368 23. N.B. Nillegoda, J. Kirstein, A. Szlachcic, M. Berynskyy, A. Stank, F. Stengel, K. Arnsburg, X. Gao, A.

369 Scior, R. Aebersold, D. L. Guilbride, R. C. Wade, R. |. Morimoto, M. P. Mayer, B. Bukau, Crucial

370 HSP70 co—chaperone complex unlocks metazoan protein disaggregation. Nature. 524, 247-251
371 (2015).

372 24. A. Ahmad, A. Bhattacharya, R. A. McDonald, M. Cordes, B. Ellington, E. B. Bertelsen, E. R. P.

373 Zuiderweg, Heat shock protein 70 kDa chaperone/Dnal cochaperone complex employs an unusual
374 dynamic interface. Proc Natl Acad Sci U S A. 108, 18966—-18971 (2011).

375 25.  W. Han, P. Christen, Mechanism of the Targeting Action of DnaJ in the DnaK Molecular Chaperone
376 System. J. Biol. Chem. 278, 19038-19043 (2003).

377 26. A. Mashaghi, S. Bezrukavnikov, D. P. Minde, A. S. Wentink, R. Kityk, B. Zachmann-Brand, M. P.

378 Mavyer, G. Kramer, B. Bukau, S. J. Tans, Alternative modes of client binding enable functional
379 plasticity of Hsp70. Nature. 539, 448—-451 (2016).

13


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

380 27. H.Suzuki, S. Noguchi, H. Arakawa, T. Tokida, M. Hashimoto, Y. Satow, Peptide-Binding Sites As
381 Revealed by the Crystal Structures of the Human Hsp40 Hdj1 C-Terminal Domain in Complex with
382 the Octapeptide from Human Hsp70. Biochemistry. 49, 8577-8584 (2010).

383 28. T.R. M. Barends, R. W. W. Brosi, A. Steinmetz, A. Scherer, E. Hartmann, J. Eschenbach, T. Lorenz, R.

384 Seidel, R. L. Shoeman, S. Zimmermann, R. Bittl, I. Schlichting, J. Reinstein, Combining
385 crystallography and EPR: crystal and solution structures of the multidomain cochaperone Dnal.
386 Acta Crystallogr D Biol Crystallogr. 69, 1540-1552 (2013).

387 29. J.C.Borges, H. Fischer, A. F. Craievich, C. H. I. Ramos, Low Resolution Structural Study of Two
388 Human HSP40 Chaperones in Solution DJA1 from subfamily A and DJB4 from subfamily B have
389 different quaternary structures. J. Biol. Chem. 280, 13671-13681 (2005).

390 30. R.Ch,0.Cl, F.Cy,T.Il,C. Dm, Conserved central domains control the quaternary structure of type |
391 and type Il Hsp40 molecular chaperones. J Mol Biol. 383, 155—-166 (2008).

392 31. T.A. Maatta, M. Rettel, S. Sridharan, D. Helm, N. Kurzawa, F. Stein, M. M. Savitski, Aggregation and
393 disaggregation features of the human proteome. Mol Syst Biol. 16 (2020).

394 32. X.Sui, D. E. V. Pires, A. R. Ormsby, D. Cox, S. Nie, G. Vecchi, M. Vendruscolo, D. B. Ascher, G. E.
395 Reid, D. M. Hatters, Widespread remodeling of proteome solubility in response to different protein
396 homeostasis stresses. Proc Natl Acad Sci USA. 117, 2422-2431 (2020).

397 33. E.W.J. Wallace, J. L. Kear-Scott, E. V. Pilipenko, M. H. Schwartz, P. R. Laskowski, A. E. Rojek, C. D.

398 Katanski, J. A. Riback, M. F. Dion, A. M. Franks, E. M. Airoldi, T. Pan, B. A. Budnik, D. A. Drummond,
399 Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell.
400 162, 1286-1298 (2015).

401 34. A. Mateus, N. Kurzawa, |. Becher, S. Sridharan, D. Helm, F. Stein, A. Typas, M. M. Savitski, Thermal
402 proteome profiling for interrogating protein interactions. Mol Syst Biol. 16 (2020) (available at
403 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057112/).

404 35. N. Kurzawa, |. Becher, S. Sridharan, H. Franken, A. Mateus, S. Anders, M. Bantscheff, W. Huber, M.
405 M. Savitski, A computational method for detection of ligand-binding proteins from dose range
406 thermal proteome profiles. Nature Communications. 11, 5783 (2020).

407 36. B. Seashore-Ludlow, H. Axelsson, T. Lundback, Perspective on CETSA Literature: Toward More
408 Quantitative Data Interpretation. SLAS Discov. 25, 118-126 (2020).

409 37. A.lJarzab, N. Kurzawa, T. Hopf, M. Moerch, J. Zecha, N. Leijten, Y. Bian, E. Musiol, M. Maschberger,

410 G. Stoehr, I. Becher, C. Daly, P. Samaras, J. Mergner, B. Spanier, A. Angelov, T. Werner, M.

411 Bantscheff, M. Wilhelm, M. Klingenspor, S. Lemeer, W. Liebl, H. Hahne, M. M. Savitski, B. Kuster,
412 Meltome atlas—thermal proteome stability across the tree of life. Nature Methods. 17, 495-503
413 (2020).

414 38. W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-
415 bonded and geometrical features. Biopolymers. 22, 2577-2637 (1983).

14


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

416
417

418
419

420
421
422
423

424
425
426

427
428
429
430
431
432

433
434
435
436
437

438
439
440

441
442
443

444
445
446

447
448
449

450
451
452
453

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

available under aCC-BY 4.0 International license.

W. G. Touw, C. Baakman, J. Black, T. A. H. te Beek, E. Krieger, R. P. Joosten, G. Vriend, A series of
PDB-related databanks for everyday needs. Nucleic Acids Res. 43, D364-D368 (2015).

B. Mészaros, G. Erdos, Z. Dosztdnyi, IUPred2A: context-dependent prediction of protein disorder as
a function of redox state and protein binding. Nucleic Acids Res. 46, W329-W337 (2018).

D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T.
Doncheva, J. H. Morris, P. Bork, L. J. Jensen, C. von Mering, STRING v11: protein-protein
association networks with increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47, D607-D613 (2019).

Z. Chen, P. Zhao, F. Li, A. Leier, T. T. Marquez-Lago, Y. Wang, G. |. Webb, A. |. Smith, R. J. Daly, K.-C.
Chou, J. Song, iFeature: a Python package and web server for features extraction and selection
from protein and peptide sequences. Bioinformatics. 34, 2499-2502 (2018).

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P.
Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, . Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nature Methods. 17, 261-272 (2020).

Y. Perez-Riverol, A. Csordas, J. Bai, M. Bernal-Llinares, S. Hewapathirana, D. J. Kundu, A. Inuganti, J.
Griss, G. Mayer, M. Eisenacher, E. Pérez, J. Uszkoreit, J. Pfeuffer, T. Sachsenberg, S. Yilmaz, S.
Tiwary, J. Cox, E. Audain, M. Walzer, A. F. Jarnuczak, T. Ternent, A. Brazma, J. A. Vizcaino, The
PRIDE database and related tools and resources in 2019: improving support for quantification
data. Nucleic Acids Res. 47, D442-D450 (2019).

P. Leuenberger, S. Ganscha, A. Kahraman, V. Cappelletti, P. J. Boersema, C. von Mering, M.
Claassen, P. Picotti, Cell-wide analysis of protein thermal unfolding reveals determinants of
thermostability. Science. 355 (2017).

R. N. Ogburn, L. Jin, H. Meng, M. C. Fitzgerald, Discovery of Tamoxifen and N-Desmethyl Tamoxifen
Protein Targets in MCF-7 Cells Using Large-Scale Protein Folding and Stability Measurements. J.
Proteome Res. 16, 4073-4085 (2017).

J. H. Roberts, F. Liu, J. M. Karnuta, M. C. Fitzgerald, Discovery of age-related protein folding
stability differences in the mouse brain proteome graphical abstract HHS public access. J Proteome
Res. 15, 4731-4741 (2016).

I. Becher, T. Werner, C. Doce, E. A. Zaal, |. Togel, C. A. Khan, A. Rueger, M. Muelbaier, E. Salzer, C.
R. Berkers, P. F. Fitzpatrick, M. Bantscheff, M. M. Savitski, Thermal profiling reveals phenylalanine
hydroxylase as an off-target of panobinostat. Nature Chemical Biology. 12, 908-910 (2016).

H. Franken, T. Mathieson, D. Childs, G. M. A. Sweetman, T. Werner, |. Togel, C. Doce, S. Gade, M.
Bantscheff, G. Drewes, F. B. M. Reinhard, W. Huber, M. M. Savitski, Thermal proteome profiling for
unbiased identification of direct and indirect drug targets using multiplexed quantitative mass
spectrometry. Nature Protocols. 10, 1567-1593 (2015).

15


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

454 50. T.P. Miettinen, J. Peltier, A. Hartlova, M. Gierliniski, V. M. Jansen, M. Trost, M. Bjorklund, Thermal

455 proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor

456 palbociclib. The EMBO journal, €98359 (2018).

457 51. K. A.Ball, K.J. Webb, S. J. Coleman, K. A. Cozzolino, J. Jacobsen, K. R. Jones, M. H. B. Stowell, W. M.
458 Old, An isothermal shift assay for proteome scale drug-target identification. Communications

459 Biology. 3, 1-10 (2020).

460 52. S.Sridharan, N. Kurzawa, T. Werner, |. Glnthner, D. Helm, W. Huber, M. Bantscheff, M. M. Savitski,
461 Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP.
462 Nature Communications. 10, 1155 (2019).

463

464

16


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

465  Acknowledgements

466  We thank Professors Paul Gooley and Heath Ecroyd for helpful discussions and careful reading of the
467 manuscript. We also thank Dr. Yuning Hong (La Trobe University) for providing TPE-MI, and the Bio21
468 Melbourne Mass Spectrometry and Proteomics facility. Funding: This work was funded by grants to
469 D.M.H. (National Health and Medical Research Council APP1161803) and to D.M.H. and G.E.R.

470 (Australian Research Council DP170103093); Author contributions: D.C., N.B.N., G.E.R., and D.M.H.
471 designed the research; D.C. and C.A. performed the research and analyzed the data; and D.C. and

472 D.M.H. wrote the manuscript; Competing interests: Authors declare no competing interests. Data and
473 materials availability: The mass spectrometry raw data files and preprocessed identification datasets
474  have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the
475  data set identifiers PXD022587 and PXD022640. All other relevant data and analysis code are available
476  from 10.5281/zeno0do.4280621 and 10.5281/zenodo.4287767 respectively.

477

478  Supplementary Materials:

479 Materials and Methods
480 Figures S1-S6

481 Table S1

482 External Datasets S2-S4

17


https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432609; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

483 Figures

*%

Proteolysis
Human
1
s =
(5] o
R

o
(=)
Y s,ueuleadg

*
i
5 @
-

Human
3

*%k * % *% *% *x *%k **x *% ** *% *% *% *%

Residue labelling

Mouse

YA R

]

NN N R NAR NS R
TR NN SR NSNS NSE

10

11

12

14

Thermal profiling

15

16

17

18

19

PR AR AR IR R

PLdEakaba0ALIECaEIEI0 LA

.
s
-
1
L
-
-
-
P
-+
E o

ababaRaLILIE L ACILITE

——
e
-
»
>
&
-
Fe
3
-

IAATATAVATAAAIAY
VNN NN
VNN
VNN
A

rd
rd
ra
v
~
rd
v
-

¥
/
Va

Mouse
2

v
#
18

[(s]
=y
(=]

Da 1 2 4 5 6 1 12 13 14 15 16 17
Human Human Mouse Human Mouse

484 Proteolysis Residue labelling Thermal profiling

=3
)
w
@
—_-~

485 Fig. 1: Limited correlations between measures of folding in published proteome stability datasets. Shown are pairwise cross-
486 correlations of normalized protein folding stability measures (T, or C»). The bottom diagonal shows hexbin density plots, where
487 data point density tiles (grayscale) are overlayed with the fitted linear regression and corresponding 95% C.I. (red; in most cases
488 intervals are too small to be seen). The upper diagonal shows pairwise Spearman’s coefficients (R) represented in the form of a
489 heatmap, overlayed with significance denoted by * (p < 0.05) or ** (p < 0.01). Datasets are ordered according to species of
490 origin (human or mouse) and method of stability measure (limited proteolysis, residue labelling or thermal profiling). Datasets
491 were derived from the following publications; Leuenberger et al., 2017, Science (1), Ogburn et al., 2017, J Proteome Res. (2,3),
492 Walker et al., 2019, PNAS (4), Roberts et al., 2016, J Proteome Res. (5,6), Jarzab et al., 2020, Nat Methods. (7, 8, 9, 16, 17, 20),
493 Becher et al., 2016, Nat Chem Biol. (10), Franken et al., 2015, Nat Protoc. (11), Miettinen et al., 2018, EMBO J. (8), Savitski et al.,
494 2018, Cell. (13, 14), Ball et al., 2020, Commun Biol. (15), Savitski et al., 2014, Science. (18), Sridharan et al., 2019, Nat Commun.
495 (19). Complete reference information is provided in Table S1.
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Fig. 2: Residue labelling methods reveal patterns of change inconsistent with two-state unfolding during chemical
denaturation. (A) Schematic representation of the workflow used to detect conformational change using TPE-MI following
chemical denaturation. (B) Clustering of cysteine-peptide TPE-MI reactivity profiles as a function of urea concentration using
fuzzy c-means. Families of individual peptide traces are shown where the color saturation reflects the cluster membership score
for each peptide, such that the darkest traces are representative of the typical response for each cluster. Data (n=3) were
smoothed by significance scaling and loess smoothing. The proportion of total peptides assigned to each cluster is also
indicated. (C) Histogram of goodness-of-fit among individual peptides following fitting to a two-state unfolding curve. (D) Cross-
correlation analysis of peptides in each cluster to previously published stability datasets (list of datasets in Table S1). Correlation
heatmap is colored according to the Spearman’s correlation coefficient (R) and significance is denoted by * (p < 0.05) or ** (p <
0.01). Datasets are ordered according to species of origin (human or mouse) and method of stability measure (limited
proteolysis, residue labelling or thermal profiling). Missing points (gray line) indicate fewer than 5 proteins in common. (E)
Corresponding clustering analysis of an independent published residue labeling dataset (dataset 4) that targeted oxidation of
exposed Met residues (15). Data here is represented as per panel B.
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512 Fig. 3: Functional responses to denaturation drive heterogeneous changes in reactivity within single proteins (A) Schematic
513 overview of peptide cluster patterns and how proteins are grouped depending on the composition of cysteine peptides from
514 multiple clusters. The left graph shows a schematic reactivity profile of each of the four clusters. Peptides are then assigned to
515 their parent protein, which may be deemed “uni-clustered” if only consisting of cysteine-containing peptides from a single
516 cluster, or “multi-clustered” where cysteine-containing peptides from a single protein are associated with more than one
517 cluster. (B) Mean z-score for predicted/extracted physiochemical features according to peptide amino acid composition. (C)
518 Venn diagram depicting proportion of proteins for which peptides were found in each cluster combination. (D) Molecular

519 weight of and (E) number of annotated PFAM domains in proteins to which clustered peptides are assigned. (F) Number of
520 high-confidence first-shell protein-protein interactions and (G) inter-cluster node interaction degree annotated in STRINGdb

521 (v11.0, score > 0.7) for proteins found in each cluster. (H) Gene ontology terms enriched among multi-clustered proteins.
522 Enrichment was determined using Panther GOSlim Fisher’s over-representation test with false-discovery rate correction.
523 Common themes are denoted; A = protein folding and stress response, B = binding and complexes. Dark bars denote exact
524 terms found to also be enriched among multi-clustered proteins in published dataset 4. Panels D-G show individual protein
525 datapoints overlayed with mean = S.D. Mean of combined uni-clustered proteins is shown as dotted grey line. Uni-clustered
526 proteins were compared to those associated with multiple clusters via t-test with Welch’s correction, *** denotes p < 0.001,

527 **** denotes p < 0.0001, ns denotes p > 0.05.
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528

529 Fig. 4: Detection of distinct HSPA8 conformations by residue labeling approaches. (A) Changes in thiol reactivity of HSPA8 and
530 DNAJB1 peptides in Neuro2a lysate titrated with urea, colored according to their assigned cluster. (B) Schematic for

531 recombinant client-binding assay. Human HSPA8 and DNAJB1 were incubated with native or heat-denatured client MDH2.

532 Nucleotide binding domain (NBD; ruby), substrate binding domains (SBDB; green and SBDa; grey) and cofactor interaction

533 region (IR; teal) are shown on protein backbones, and representative cysteine residues are colored according to the cluster
534 their respective peptides were assigned (orange, red, purple and blue correspond to clusters 1 — 4 respectively, black was not
535 observed). In the case of DNAJB1, dimer is shown with second monomer desaturated. Detailed structural models are shown in
536 Fig. S6. (C) Change in cysteine reactivity of peptides derived from human HSPA8 and DNAJB1 when incubated with heat-

537 denatured MDH2. Recombinant reaction components were incubated in the absence or presence of exogenous ATP prior to

538 TPE-MlI labelling. Shown is mean + S.D. (n=4), and deviations from the expected mean of 1 were tested using a one-sample t-
539 test (* denotes p < 0.05, ns denotes p > 0.05).

540

541
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Materials and Methods
Materials

All materials were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise indicated. The
mouse neuroblastoma cell line Neuro2a (N2a) was obtained from lab cultures originating from the

American Type Culture Collection and screened for mycoplasma contamination. TPE-MI was stored as
stocks (10 mM in DMSO) in the dark at 4 °C before use. Recombinant human HSPA8 and DNAJB1 were

purified as previously described (23).

Correlation of published proteome stability datasets

Published basal proteome stability datasets were collected as follows. First 813 articles were collected

.

from PubMed keyword searches performed on July 31 2020 for “thermal proteome profiling”, “thermal

2 n u

proteome unfolding”, “folding stability proteome”, “limited proteolysis proteome”, “proteome
denaturation labelling”, “proteome unfolding label” and “SPROX proteome”. Abstracts were filtered
manually for evidence of containing primary experimental datasets for protein stability under control
conditions derived from either human or mouse samples. Of these 12 papers were selected as suitable.
Datasets were then assigned into one of three categories based on methodology: limited proteolysis,

residue labelling and thermal profiling. Complete details for the selected resources, including specific

supplementary materials files for each dataset, are provided in Table S1.

Datasets were collected from the relevant supplementary materials analyzed with custom scripts
written in Python programming language. The logic of the scripts was to collect the reported protein
stabilities provided by each source, and where necessary map the protein identifiers to UniProt
Accession numbers. Proteins were mapped to KEGG Orthology (KO) identifiers using previously
established protocols (37) available via cross-referencing from UniProt https://www.uniprot.org/.
Stability measures of different datasets were filtered as per the goodness-of-fit criteria used in the
original study, then normalized to 1 to enable cross correlation (i.e. to account for different scales for
thermal denaturation values (T,,) and chemical denaturation values (Cn)). Spearman’s correlation
coefficients and p-values were calculated in a pairwise manner for all proteins found to be commonly

quantified in a given pair of datasets.

Recombinant B-lactoglobulin denaturation

A stock solution of recombinant B-lactoglobulin was prepared in PBS (pH 7.4), before being diluted to a

final concentration of 250 uM in triplicate in urea prepared at concentrations ranging from 0 — 6 M.
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Samples were then equilibrated in denaturant for 4 h at 25 °C, before being labelled with TPE-MI (or the
vehicle control DMSO) at a final concentration of 50 uM. Immediately after addition of the labelling
reagent, samples were transferred to clear-bottom 96-well UVStar plate (Grenier BioOne). TPE-MI
(350/20 nm ex, 465/20 nm em) and intrinsic tryptophan (295/10 nm ex, 360/20 em) fluorescence was
read every 60 seconds for 60 minutes using a CLARIOstar (BMG Labtech) with shaking at 200 rpm for 5
seconds prior to each cycle. In the case of TPE-MI, the first 9 minutes of linear increase in fluorescence
were fitted with linear regression to derive the rate of reaction which was used for subsequent fitting.
Both the TPE-MI rate and tryptophan fluorescence data was fitted via non-linear least squares

regression to a two-state unfolding curve.

Cell culture

Neuro2a cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; ThermoFisher Scientific)
supplemented with 10% (v/v) fetal bovine serum (ThermoFisher Scientific) and 1 mM L-glutamine
(ThermoFisher Scientific). In the case of isotopically labelled cultures (SILAC), cells were cultured in
DMEM (Silantes) supplemented with either unlabeled (light) or *3C L-lysine and 3C,**N L-arginine, along
with 10% (v/v) dialyzed foetal bovine serum (ThermoFisher Scientific ) and 1 mM L-glutamine (Silantes).
Cells were cultured in isotopically labeled media for at least 8 doublings prior to use. Cells were
maintained at 37 °C in a humidified incubator with 5% atmospheric CO, and were reseeded into fresh
culture flasks once at 80% confluency following mechanical dissociation. For plating, cell count and
viability were automatically determined using a Countess trypan blue assay (ThermoFisher Scientific).

Cells were seeded in 6 or 12 well plates (Corning) and grown for at least 18 h before treatment.

Lysate preparation and chemical denaturation

Following treatment, cells were washed once in PBS before being mechanically harvested in fresh PBS
and centrifuged at 150 g for 5 min. Cell pellets were then resuspended in lysis buffer (50 mM Tris, pH
8.0, 0.8 % (v/v) IGEPAL CA-630, 1.5 mM MgCl,) containing cOmplete Mini, EDTA-free Protease Inhibitor
Cocktail (Sigma) and 250 U benzonase (Sigma), then incubated on ice for 30 min. Lysate was then
centrifuged at 20,000 g for 10 min to pellet cell debris, and the resultant supernatant transferred to a
fresh Eppendorf tube. Total protein concentration was then determined using a Pierce BCA protein
assay (Thermo Scientific) with bovine-serum albumin as the mass standard. A standard volume of lysate
was distributed to aliquots of urea prepared at concentrations ranging from 0 — 6 M in water from an 8
M stock for which the concentration was determined by measuring the refractive index. In the case of

SILAC lysate, light and heavy-labelled samples were combined at a 1:1 ratio prior to denaturation.
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88 Samples were then equilibrated in denaturant for 4 h at 25 °C. Following denaturation, lysate aliquots
89  were labelled with TPE-MI to a final concentration of 100 uM for 30 min at 25 °C, then immediately

90 transferred to a 5-fold excess (v/v) of ice-cold acetone and stored at -20 °C overnight.

91 Sample preparation for mass spectrometry

92 Samples were pelleted at 20,000 g for 30 min at 4 °C. Protein pellets were solubilized in 100 pul of 8 M

93 urea in 50mM triethylammonium bicarbonate (TEAB), and incubated with shaking at 37 °C for 45 min.

94  Proteins were reduced using 10mM tris(2-carboxyethyl)phosphine, pH 8.0, and alkylated with 10mM

95 iodoacetamide for 45 min, before being digested with 2 pg trypsin (ThermoFisher Scientific) overnight

96  with shaking at 37 °C. Peptides were then desalted via solid-phase extraction using an Oasis HLB 1 cc Vac

97 Cartridge (catalogue number 186000383, Waters Corp., USA) that was pre-equilibrated by washing.

98 Samples were collected in fresh tubes and lyophilized (VirTis Freeze Dryer, SP Scientific). The lyophilized

99 peptides were subjected to another round of BCA assay as above so as to normalize for similar loading
100 onto the mass spectrometer. The final concentration of peptides was 0.1 pg/ul in 2% (v/v) ACN

101  containing 0.05% (v/v) trifluoroacetic acid.

102 NanoESI-LC-MS/MS

103 Samples were analyzed by nanoESI-LC-MS/MS using a Orbitrap Fusion Lumos Tribrid mass spectrometer
104  (Thermo Scientific) fitted with a nanoflow reversed-phase-HPLC (Ultimate 3000 RSLC, Dionex). The nano-
105 LC system was equipped with an Acclaim Pepmap nano-trap column (Dionex—C18, 100 A, 75 pmx 2 cm)
106 and an Acclaim Pepmap RSLC analytical column (Dionex—C18, 100 A, 75 umx 50 cm). For each LC-

107 MS/MS experiment, 0.6 ug of the peptide mix was loaded onto the enrichment (trap) column at an

108  isocratic flow of 5 pl min™ of 3% ACN containing 0.1% (v/v) formic acid for 5 min before the enrichment
109 column was switched in-line with the analytical column. The eluents used for the LC were 0.1% (v/v)
110  formic acid (solvent A) and 100% ACN/0.1% formic acid (v/v) (solvent B). The gradient used (300 nl

111 min~) was from 3-22% B in 90 min, 22—-40% B in 10 min and 40-80% B in 5 min then maintained for 5
112 min before re-equilibration for 8 min at 3% B prior to the next analysis. All spectra were acquired in

113 positive ionization mode with full scan MS acquired from m/z 400-1500 in the FT mode at a mass

114  resolving power of 120,000 after accumulating to an AGC target value of 5.00e®, with a maximum

115 accumulation time of 50 ms. Lockmass of 445.12002 was used. Data-dependent HCD MS/MS of charge
116 states > 1 was performed using a 3 s scan method, at an AGC target value of 1.00e* a maximum

117 accumulation time of 54 ms, a normalized collision energy of 35%, and with spectra acquired at a 7,500

118 mass resolving power of 15,000. Dynamic exclusion was used for 45 s.
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119 In the case of TMT-labelled samples, data were obtained on an Orbitrap Eclipse Tribrid mass

120 spectrometer using nanoESI-LC parameters as described above. All spectra were acquired in positive
121 mode with full scan mode full scan MS from m/z 300—1600 in the FT mode at 120,000 mass resolving
122 power after accumulating to a target value 5.00e° and with maximum accumulation time of 50 ms.
123 Lockmass of 445.12002 was used. A preferred inclusion list containing doubly and triply masses of

124  tryptic peptides belonging to HSPA8 (P11142), DNAJB1 (P25685) and MDH2 (P00346) was created to
125 increase the coverage of identifiable peptides from these proteins. Data-dependent HCD MS/MS of
126 precursors that matches the inclusion list then other charge states > 1 were performed using a 3 s scan
127 method, 0.7m/z isolation width, target value of 5.00e* a maximum accumulation time of 54 ms, a

128 normalized collision energy of 35% and at a 30,000 mass resolving power (with TurboTMT mode) to

129 resolve the low mass TMT reporter mass. Dynamic exclusion was used for 45 s

130  Peptide identification

131 Initial data analysis of raw data generated during this study was carried out using Proteome Discoverer
132 (v2.1; ThermoFisher Scientific) or MaxQuant (v 1.6.3.4) against the Swissprot Mus Musculus database
133 (downloaded 04/07/2016; containing 16,795 entries). Searches were conducted with 20 ppm mass

134 tolerance for MS, and 0.2 Da for MS/MS, with one missed cleavage allowed and match between runs
135 enabled. Variable modifications included methionine oxidation, N-terminal protein acetylation, N-

136  terminal methionine cleavage and SILAC-Lys6, Arg10, while the carbamidomethylcysteine modification
137  was fixed. The false discovery rate maximum was set to 0.005% at the peptide identification level (actual
138  was 0.005 for each replicate) and 1% at the protein identification level. All other parameters were left as

139 default.

140 Ratio correction and scaling

141 Further analysis was performed with custom Python scripts. The logic was as follows. First, the common
142 contaminant protein keratin was removed. Quantified proteins were considered as those identified by
143 at least two unique peptides, one of which contained a cysteine residue, and the average peptide

144  abundance ratio for the non-cysteine-containing peptides was calculated for each protein at each urea
145 concentration. The mean non-cysteine abundance ratio was used to correct the corresponding cysteine-
146 containing peptide(s) for any change in overall protein abundance caused by the treatment, yielding the
147 corrected cysteine ratio. The corrected cysteine ratio was normalized to the native sample (0 M Urea),

148 such that no change resulting from urea denaturation would yield a ratio of 1.
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149  The resultant data was then scaled with a p-value weighted correction. This correction weights the
150 mean corrected cysteine ratio of biological replicates (n=3) according to the relative confidence with
151  which it deviates from the expected value (in this case, 1) as per equation 1:

1 —m

152 R =
—20P

153 where m corresponds to the mean of the corrected cysteine ratios and p corresponds to the p-value
154  derived from a one-sample t-test of the corrected cysteine ratios against the expected value at a single
155  denaturant concentration. To improve confidence in the trends of the corrected peptide ratios across
156  urea concentrations, the data were subsequently smoothed with Locally Estimated Scatterplot

157  Smoothing (LOESS). The resultant curves for the peptide ratios across urea concentrations were

158 clustered by using fuzzy-c means, where the optimal number of clusters was first estimated using the
159  kneed package before manual inspection of £ 2 centroids to achieve minimal redundancy in clustered
160 patterns. For all subsequent bioinformatic analyses, peptides were then assigned to clusters with the

161 highest membership score.

162 Peptide and protein properties

163  The curves for the peptide ratios across urea concentrations were fitted with a sigmoidal two-state
164 unfolding model as per equation 2:
a—»b

m X (Cp — [d])
1+e TXG

165 y=b+

166  where a and b correspond to the top and bottom plateaus respectively, C,, corresponds to the

167 denaturant concentration at which both the folded and unfolded states are equally populated at

168 equilibrium (assuming two-state protein folding), [d] corresponds to denaturant concentration, and m
169 corresponds to the slope. Tand G correspond to the temperature (298.15 K) and gas constants,

170  respectively. Fits were filtered according to the following criteria: (1) R* > 0.75, (2) absolute value of a
171  and b less than 10, (3) fitted C,, within the range of denaturant concentrations tested, (4) relative error
172 in Cn less than 0.5, and (5) value at 0 M urea in greater than at 6 M urea. The fitted Cn, values were then

173 compared against the published datasets as described above.

174 Physicochemical properties for individual cysteine residues, peptides and proteins of interest were
175 compiled from various databases and extraction/prediction platforms, including UniProt

176 https://www.uniprot.org/, PFAM https://pfam.xfam.org/, Protein Data Bank
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177 https://www.ebi.ac.uk/pdbe/, DSSP (38, 39), IUPred2A (40), STRINGdb (41), PantherGOSlim
178  http://pantherdb.org, and iFeature (42).

179 HSP70 client denaturation assay

180 Pig heart L-malate dehydrogenase (MDH2; Roche, catalogue # 10127256001) and recombinant human
181 HSPA8 were prepared in HEPES buffer (50 mM HEPES, pH 7.5, 50 mM KCI, 5 mM MgCl,, 2 mM DTT) to a
182  final concentration of 5 UM and 2 uM, respectively, in the presence or absence of recombinant human
183 DNAJB1 (1 uM). In the case of heat-denatured samples, MDH2 aliquots were heated to 42 °C for 10 min
184  then returned to 37 °C in a thermocycler (BioRad), while native samples were maintained at 37 °C.

185 MDH2 was then combined with the remaining reaction components in the absence or presence of 2 mM
186  ATP (New England Biosciences, catalogue # P0756S), then incubated at 37 °C for 30 min in a heating

187 block. Samples were then labelled with 100 uM TPE-MI for 15 min at 25 °C before being diluted into 1 ml
188 ice cold acetone and incubated at -20 °C overnight. Samples, including a pooled control sample, were
189 prepared for mass spectrometry using the Preomics iST-NHS (Preomics, catalogue # P.0.00026) and TMT
190 11-plex labelling (ThermoFisher, catalogue # A37725) kits according to the manufacturer’s protocol. The
191 pooled channel was added to each biological replicate to support efficient normalization between

192 replicates. Resultant peptides were analyzed using a TMT based MS methodology as described above.
193  The collected spectra were searched against a custom database containing sequences for HSPAS8

194  (P11142), DNAJB1 (P25685) and MDH2 (P00346) sequences downloaded from UniProt. The search was
195  conducted as above, with the following alterations: the MS2 reporter ion was set to TMT 11-plex,

196  isotopic distribution correction applied according to the product data sheet and the fixed

197  carbamidomethylcysteine was replaced with the Preomics alkylation (+113.084 Da).

198 Filtering and further analysis of the dataset was then carried out with custom Python scripts. The logic
199  was as follows. Raw intensities for peptides with no missed cleavages were scaled according to the

200 molar contribution of the corresponding protein to each reaction. The mean peptide abundance ratio
201  for non-cysteine peptides in each protein that were quantified across all channels containing that

202 protein, was then calculated. The non-cysteine intensity was used to correct the corresponding cysteine-
203  containing peptide(s) for any change in overall protein abundance, resulting in the corrected cysteine
204 ratio. In the case of HSPAS8 peptides, the corrected cysteine ratio was then normalised to the native

205 HSPA8 sample, and finally the change in corrected cysteine ratio is reported as the mean of two

206  technical replicates.
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207  Statistical analysis and data availability

208  Statistical analyses were performed either using the scipy module in python (43) or using GraphPad

209 Prism (v 8.4.3). The exact p values, raw values and statistical details are provided in Dataset S2.

210  The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via
211  the PRIDE (44) partner repository with the data set identifiers PXD022587 and PXD022640. All other
212 data and analysis code are available from 10.5281/zeno0do.4280621 and 10.5281/zenodo.4287767

213 respectively.
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Fig. S1: TPE-MI reports on unfolding of recombinant B-lactoglobulin. Relates to Fig. 2. (A) Structure of B-lactoglobulin, a model
globular protein, adapted from PDB entry 1CJ5. Pertinent residues are highlighted in magenta (cysteine) and green
(tryptophan). (B) Chemical denaturation of recombinant B-lactoglobulin in the presence of TPE-MI. Samples were equilibrated
for 4 hours at room temperature before addition of TPE-MI, and TPE-MI fluorescence was monitored every 60 sec for 1 h. (C)
The initial rate of reaction is calculated from B via linear regression, and fitted to a denaturation curve. Curve is compared to
intrinsic tryptophan fluorescence, also fitted to a denaturation curve. (D) Fitted C,, derived from C, compared using t-test in
GraphPad Prism. In panels B — D, data shown is mean + SD of 3 replicates, and is representative of 2 independent experiments.
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Fig. S2: Residue and protein physicochemical properties. Relates to Fig. 3. Individual cysteine residues contained within
clustered peptides were assessed for (A) their relative surface exposure in experimentally determined structures available via
the Protein Data Bank, (B) the proportion of residues annotated as a functional feature in UniProt, and (C) the proportion of
residues located within curated PFAM domains. (D) The proportion of disordered residues in proteins associated with each
cluster as predicted by IUPred2. (E) Mean z-score for predicted or extracted physiochemical features according to protein
amino acid composition. Panels A and D show individual protein datapoints overlayed with mean + S.D. Mean of clustered
peptides (A) or combined uni-clustered proteins (D) is shown as dotted grey line.
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240

Gene ontology terms enriched among multi-cluster proteins identified in published residue labelling dataset 4 (15).

Relates to Fig. 3. Enrichment determined using Panther GOSIlim Fisher’s overrepresentation test with false-discovery rate

Fig. S3

protein folding and stress response, B = binding and complexes. Dark bars denote
exact terms found to also be enriched among multi-cluster proteins in the TPE-MI dataset.

correction. Common themes are denoted; A
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Fig. S4: Gene ontology terms enriched among uni-clustered proteins. Relates to Fig. 3. Enrichment for (A) TPE-MI and (B) (15)

datasets determined using Panther GOSlim Fisher’s overrepresentation test with false-discovery rate correction. The outer-
most terms for each hierarchical GO family which was significantly enriched (P < 0.05) are shown, colored according to the
cluster with which they were associated.
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247

248 Fig. S5: Enrichment of chaperone machinery among multi-clustered proteins. Relates to Fig. 4. (A) Venn diagram depicting
249 proportion of chaperone proteins for which peptides were found in each cluster combination. (B) Number and proportion of
250 proteins in each cluster associated with “chaperone-mediated protein folding” gene ontology term (GO:0061077). Gene names
251 for individual proteins are listed within the bars.

252
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253

254 Fig. S6: Structural models for chaperone client-binding reaction components. Relates to Fig. 4. (A) Ribbon structure of HSPA8
255 (models built with PDB 4H5R, 3AGY and 4KBQ). Nucleotide binding domain (NBD; ruby), substrate binding domains (SBD
256 green, SBDa dark-grey) and cofactor binding motif (EEVD motif; teal) are shown on protein backbones. (B) Ribbon structure of
257 DNAJB1 (model built with PDB 3AGZ and 1HDJ), with dimer composed of two monomers colored dark and light grey

258 respectively. J-domain (salmon) and HSPAS8 binding region (teal) are shown on protein backbones, and C-terminal domains
259 (CTDI and CTDII) are indicated by brackets. (C) Ribbon structure of MDH2 (PDB 1MLD). In all panels, cysteine residues are

260 labelled and colored according to the cluster their respective peptides were assigned (orange, red, purple and blue correspond
261 to clusters 1 — 4 respectively, black was not observed), and dotted lines represent sequence regions with missing structural
262 information.

263
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