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One Sentence Summary 11 

We show that proteome folding stability censuses are ill-defined because they earmark hidden 12 

information on conformation and ligand binding. 13 

Abstract 14 

Methods that assay protein foldedness with proteomics have generated censuses of protein folding 15 

stabilities in biological milieu. Surprisingly, different censuses poorly correlate with each other.  Here, 16 

we show that methods targeting foldedness through monitoring amino acid sidechain reactivity also 17 

detect changes in conformation and ligand binding. About one quarter of cysteine or methionine 18 

sidechains in proteins in mammalian cell lysate increase in reactivity upon chemical denaturant titration 19 

consistent with two-state unfolding.  Paradoxically, up to one third decreased reactivity, which were 20 

enriched in proteins with functions relating to unfolded protein stress. One protein, chaperone HSPA8, 21 

displayed changes arising from ligand and cofactor binding. Unmasking this hidden information should 22 

improve efforts to understand both folding and the remodeling of protein function directly in complex 23 

biological settings. 24 

 25 

Main text 26 

The maturation of an active protein is typically reliant upon the nascent polypeptide folding into a 27 

complex topology.  Folding involves a thermodynamic component, which describes the free energy 28 
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difference between the folded state and unfolded state at equilibrium (folding stability, ∆G).  Folding 29 

also involves other sequential processing steps, such as post-translational modifications and transport.  30 

Because folding is fraught with potential mishaps including misfolding and aggregation, in cells a 31 

“proteostasis” network oversees all steps related to synthesis, folding and degradation (1).  In 32 

mammalian cells this network consists of several hundred proteins, including molecular chaperone 33 

families (e.g. heat shock protein families 40, 70 and 90), the ubiquitin-proteosome system, autophagy 34 

and stress response systems (2).   35 

Proteostasis imbalance is implicated in diseases involving inappropriate protein aggregation, including 36 

neurodegeneration (3). As such, there has been extensive interest in determining how protein 37 

foldedness varies for proteomes inside cells in healthy and disease contexts (1, 4, 5).  A canonical 38 

approach for measuring protein folding stability of a purified protein involves measuring the abundance 39 

of folded and unfolded states in different concentrations of chaotropes, such as urea or guanidine 40 

hydrochloride, or exposure to increasing temperature.  This approach yields measures of ∆G or other 41 

correlates of ∆G such as chemical denaturation midpoint (Cm) or thermal melting midpoint (Tm) values 42 

that are informative in the case where the protein folds by a two-state equilibrium mechanism. Recent 43 

advances have allowed this canonical strategy to measure protein folding stabilities in biological 44 

extracts, thereby enabling the en masse determination of folding stabilities of proteins (6–13).  45 

Measurement strategies have targeted differences between the folded and unfolded states, such as 46 

aggregation propensity, sensitivity of solvent exposed amino acid sidechains to reactive chemicals, 47 

which we hereon refer to as residue labeling, and protease cleavage susceptibility (14).    48 

Despite all this new information on protein folding censuses, it remains untested how generally 49 

applicable the approaches used for studying purified proteins are when applied to complex cellular 50 

milieu. In biological settings these methods are also likely to report on other features of proteins 51 

including conformational change, ligand binding and protein network organization.  We investigated this 52 

question and hereon report remarkable additional complexity in the data, as well as a strategy to 53 

unmask hidden information pertaining to protein function in complex biological milieu. 54 

Methodological differences yield poorly correlated measures of thermodynamic proteome stability 55 

First, we examined 20 datasets from 12 studies that reported high-quality protein folding stability data, 56 

which used limited proteolysis, residue labelling and thermal profiling methods to assay foldedness 57 

(complete reference details are provided in Table S1).  These studies reported Tm or Cm values which, for 58 
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two-state folding models indicate the conditions of equal populations of unfolded and folded protein 59 

(i.e. where ∆G equals zero). We hypothesized that if these values authentically report on two-state 60 

protein folding stability the different datasets should correlate with one another. To test this hypothesis 61 

we first scaled each Tm or Cm dataset to range between 0 and 1, to account for the inherently different 62 

magnitudes of Tm and Cm values, and then performed pairwise comparisons between datasets.  Linear 63 

regressions fitted to each comparison revealed a strong positive relationship in stabilities when 64 

comparing datasets derived from the same methodology, particularly among thermal profiling data (Fig. 65 

1; lower diagonal datasets 7 - 20). This conclusion was not dependent on the species from which the 66 

protein stability was measured, suggesting that closely related proteins from different species behave 67 

similarly in terms of the Tm and Cm values. However, comparisons between the datasets derived from 68 

different methodologies, such as thermal profiling versus residue labelling, revealed poor correlations at 69 

best and none at worst. This lack of correlation was supported by Spearman’s correlation coefficients 70 

calculated for each comparison (Fig. 1; upper diagonal), whereby significant positive correlations were 71 

primarily observed between datasets derived from the same methodology.  One notable exception was 72 

residue labeling dataset 4 (15), which was moderately correlated with 14 of the 15 thermal profiling 73 

datasets.  However, closer inspection of dataset 4 revealed that only 17% of the quantified data 74 

reported Cm values, because these were the only data that fitted well to a two-state unfolding curve.  It 75 

thus follows that 83% of the data was disregarded as not fitting to the two-state model (see Table S1 for 76 

complete reference details). By contrast, between 66% and 99%, or 66% and 69% of proteins were 77 

reported to be well fitted to two-state unfolding isotherms in other thermal profiling and residue 78 

labelling datasets, respectively.  Collectively, these findings suggested that the most canonical and 79 

simple patterns of unfolding, i.e. those that look like two-state unfolding curves were indeed the most 80 

likely to report on two-state-like protein unfolding behavior and to correlate with different apparent 81 

folding stability datasets. More intriguing however was that such two-state like stability values 82 

encompass only a fraction of the data available.  Hence the remaining data likely was more applicably 83 

explained by complex unfolding mechanisms or mechanisms distinct to folding. 84 

 85 

Residue labelling techniques reveal nuanced and heterogenous changes in protein conformation due 86 

to chemical denaturation 87 

To further examine which data can be appropriately explained in terms of two-state folding or not, we 88 

collected our own dataset of apparent folding stability using tetraphenylethene maleimide (TPE-MI) as a 89 

probe for unfolded proteins. TPE-MI reacts with exposed cysteine free thiols that are otherwise buried 90 
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in the folded state (6). Free cysteine thiols are the least surface-exposed residue of all amino acids in 91 

globular proteins so provide an excellent target for examining protein foldedness (16).  We first 92 

performed a urea denaturation curve of purified β-lactoglobulin, which is a model globular protein 93 

containing a single buried free thiol residue, and unfolds via two-state-like behavior (Fig. S1). The rate of 94 

reaction of TPE-MI with β-lactoglobulin was proportional to the anticipated exposure of the buried thiol 95 

upon two-state unfolding. The relationship between rate of reaction and urea concentration yielded a 96 

Cm consistent with that obtained from intrinsic tryptophan fluorescence and in accordance with other 97 

published results on β-lactoglobulin folding (17). 98 

To use TPE-MI on a proteome-wide scale we created denaturation curves of cell lysate with urea (Fig. 99 

2A).  Lysates were prepared from mouse neuroblastoma cells (Neuro2a) subjected to Stable Isotope 100 

Labeling by Amino acids in Cell culture (SILAC) using light or heavy (13C L-lysine and 13C,15N L-arginine) 101 

isotopes for quantitation of reactivity.  In essence, lysate from light-isotope labeled cells was used as the 102 

“native” control versus lysate from heavy-isotope labeled cells prepared with different concentrations of 103 

urea.  The light and heavy-isotope labeled samples were each reacted with TPE-MI before mixing and 104 

quantitation for the level of reactivity.  The extent of cysteine reactivity was determined from the 105 

change in abundances of peptides with unreacted cysteines normalized to the ratio of peptides from the 106 

same protein that lacked cysteine (Fig. 2A).  107 

To determine the underlying trends in cysteine reactivity as a function of urea concentration we 108 

clustered the cysteine peptide reactivity profiles using an unbiased computational approach of fuzzy-c 109 

means (18, 19). This analysis yielded four distinct patterns of cysteine response to urea titration (clusters 110 

1–4) shown in Fig. 2B. Cluster 1 was defined by no systematic change in reactivity with urea 111 

concentration.  Clusters 2 and 3 both showed a progressive increase in cysteine thiol reactivity, which 112 

was anticipated for greater exposure of buried thiols upon denaturation. Cluster 2 differed from cluster 113 

3 by showing reactivity changes first occurring at higher urea concentrations whereas the changes 114 

occurred at lower urea concentrations for cluster 3.  Cluster 4, representing one third of the identified 115 

cysteine peptides, revealed a systematic decrease in reactivity upon increasing concentrations of urea.  116 

This was counter to the anticipated increase in reactivity expected from the exposure of buried cysteine 117 

residues induced by denaturation, suggesting that distinct processes were occurring in some proteins in 118 

response to urea titration that led to greater burial of exposed cysteine thiols (discussed in more detail 119 

below).   120 
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To determine which of the data were most consistent with a two-state folding mechanism, individual 121 

cysteine reactivity curves were fitted to a two-state unfolding curve and assessed for goodness of fit 122 

(Fig. 2C).  Consistent with the greater reactivity upon urea denaturation, clusters 2 and 3 contained the 123 

most peptides with good fits defined by an R2 > 0.9 (Fig. 2C). However, the peptides in cluster 2 were the 124 

only group that showed a significant correlation between the fitted Cm values with those of existing 125 

census datasets described herein previously in Fig. 1 (Fig. 2D). Given that the published datasets were 126 

pre-filtered in the original studies to be consistent with two-state unfolding, this finding demonstrates 127 

an authenticity in this subset of data for tracking bona fide two-state unfolding events. The peptides in 128 

cluster 3 did not share this correlation with other datasets, and may be a diagnostic of reactivity 129 

reporting on non-two-state folding mechanisms such as multistate or non-reversible folding, or other 130 

non-folding related mechanisms (Fig. 2D).   131 

To investigate whether the general conclusions made from the TPE-MI dataset can be drawn in datasets 132 

derived from other residue labeling methods for foldedness, we re-examined the pre-processed peptide 133 

quantitation from dataset 4 (15) according to our clustering procedures. Dataset 4 monitored 134 

methionine exposure in the lysate of human cell line, HCA2-hTert, by a free radical oxidation approach 135 

in different concentrations of the denaturant guanidine hydrochloride (15).  This dataset was therefore 136 

analogous to the TPE-MI approach but independent in multiple parameters of chemical denaturant 137 

(guanidine hydrochloride versus urea), species (human versus mouse), target residue for labelling 138 

(methionine versus cysteine) and research team (independent research labs).  139 

Despite these differences in parameters, the clustering procedures resulted in a strikingly similar 140 

grouping of the methionine oxidation data to the TPE-MI dataset (Fig. 2E – note however the direction 141 

of change is inverted due to the nature of the measurements) that illustrates several fundamental 142 

consistent conclusions.  First was that the data formed 4 clusters with similar patterns of response.  143 

Second was that there were broadly consistent proportions of peptides in the different clusters.  Most 144 

notably was the consistent cluster for increased protection upon denaturant titration that indicated 145 

changes inconsistent with unfolding.   146 

Together the TPE-MI and methionine oxidation data indicated that with an unbiased clustering 147 

procedure only about one quarter of residue labeling data in chemical denaturation curves of 148 

mammalian proteomes can be confidently described as consistent with a two-state unfolding 149 

mechanism. Most notably, this independent dataset confirmed the observation that a substantial 150 
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portion of the reactivity changes measured in the presence of denaturant cannot be satisfactorily 151 

explained by unfolding.  152 

 153 

Residue labeling patterns earmark protein conformational rearrangement as well as unfolding 154 

To investigate protein properties that explain the different patterns of response to urea titration, we 155 

first examined the physicochemical characteristics of the peptides in each cluster (and the proteins to 156 

which they belong to; Fig. 3A). We examined properties predicted from amino-acid composition that 157 

pertained to likely burial of the target residues in the folded state, including charge, hydrophobicity, 158 

likelihood to reside in regions of secondary structure and relative solvent exposure for individual 159 

peptides associated with each cluster. Several characteristics stood out. Notably the peptides in clusters 160 

2 and 3, which we have thus far demonstrated to have best consistency with two-state folding 161 

mechanisms, were most likely to contain hydrophobic and solvent-buried residues, and least likely to be 162 

in unstructured protein regions which is in accordance with this conclusion (Fig. 3B). For the parent 163 

proteins that have known structures (around 20% of the proteins identified), the extent of solvent 164 

exposure of the labelled cysteine residue further supported the conclusion that cysteines in cluster 2 165 

and 3 were in buried regions of proteins and hence became exposed upon denaturation (Fig. S2A). For 166 

completeness of analysis, we did not identify any enrichment for other protein features, such as 167 

whether the peptides resided in active sites, binding sites, functional motifs, disulfide bonds or 168 

annotated domains (Fig. S2B–D). While the proportion of residues located within annotated PFAM 169 

domains was relatively high (more than 70% in every cluster), this was anticipated due to the likelihood 170 

of free thiols being buried in the folded state of most proteins (20). 171 

Because individual proteins may include multiple cysteine-containing peptides that fall into different 172 

clusters, we next grouped proteins into categories based on which cluster the peptides belonged to (Fig. 173 

3A). More than half of the peptides belonged to proteins that contained at least one other cysteine 174 

peptide from a different cluster (Fig. 3C). Proteins with such peptides were considered “multi-clustered” 175 

and separated from proteins that contained cysteine peptides exclusively in one of the other four 176 

clusters (which we hereon call “uni-clustered”) for further analysis. Of the multi-clustered proteins, one-177 

third had at least one cysteine peptide which decreased in reactivity (i.e. was in cluster 4) and one or 178 

more cysteine peptides for which reactivity increased in the presence of higher concentrations of urea, 179 

which suggested multimodal impacts on the protein during denaturation. It is reasonable to predict that 180 

such proteins are larger and multi-domain. Indeed, multi-clustered proteins were more likely to have a 181 
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larger molecular mass and contain more annotated PFAM domains than uni-clustered proteins, 182 

consistent with this conclusion (Fig. 3D–E; two-sample t-test, p<0.001). Also of note was the consistency 183 

in predicted physicochemical features for uni-clustered proteins whose peptides were associated with 184 

cluster 2, which featured elevated hydrophobicity and lower solvent exposure compared to the other 185 

uni-clustered and multi-clustered categories (Fig. S3E). This result further supported the conclusion that 186 

proteins containing solely cluster 2 peptides were the most likely to display two-state unfolding and that 187 

the other proteins with mixed clusters displayed more complex unfolding or other non-folding changes 188 

in response to urea titration.  189 

In addition to physicochemical properties, we also examined the molecular functions of proteins 190 

assigned to the uni- and multi-clustered protein categories. Protein-protein interaction analysis using 191 

the STRING database revealed no difference in the number of direct high-confidence protein binding 192 

partners between uni- versus multi-clustered proteins (Fig. 3F). However, the average node degree (the 193 

number of protein-protein interactions within each cluster) was up to four-fold higher in multi-clustered 194 

proteins than among uni-clustered proteins (Fig. 3G) . This result was consistent with the anticipation 195 

that multi-clustered proteins are more likely to be multi-domained and larger in size. It therefore follows 196 

that such proteins would operate in larger functional networks, which display coordinated changes in 197 

cysteine reactivity. By comparison, uni-clustered proteins, particularly those in cluster 2, were more 198 

likely to be poorly interconnected.  This conclusion is consistent with an anticipation that these proteins 199 

were simpler globular proteins whereby the data reported solely on their foldedness and not their 200 

function in networks.  201 

Gene ontology (GO) analysis was investigated for each of the protein categories to examine the 202 

possibility of a coordinated functional response corresponding to the cysteine reactivity changes (Fig. 203 

3H).  Of the 34 significantly enriched top-level GO terms in the multi-clustered proteins, half 204 

encompassed mechanisms pertaining to binding and protein complexes or proteostasis response 205 

mechanisms such as protein folding machinery. The enrichment of proteostasis mechanisms was striking 206 

in that it pointed to the thiol reactivity changes arising in part as functional responses to the stimulus of 207 

denaturation by urea.  More specifically, three of the GO terms (chaperonin-containing T-complex, 208 

GO:0005832; cellular response to heat, GO:0034605; and protein folding, GO:0006457) related to the 209 

stimulus of denaturation.  In other words, changes in thiol reactivity appeared to earmark changes in 210 

ligand binding or the conformation of select proteins that have functions in responding to unfolded 211 

proteins that accumulate at higher concentrations of urea.  A parallel analysis of the methionine 212 
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oxidation data (dataset 4) yielded nine identical GO terms (Fig. 3G for common terms, Fig. S3 for all 213 

dataset 4 specific terms).  This result was further striking in that data from a distinct method, species 214 

and denaturant led to a conserved GO enrichment of terms related to responses to unfolded proteins, 215 

including identical terms of chaperonin-containing T-complex (GO:0005832) and protein folding 216 

(GO:0006457). These data therefore led us to conclude that multi-clustered proteins were likely to 217 

encompass functional responses to protein denaturation. By contrast, GO analysis of uni-clustered 218 

proteins showed no conserved terms between the two datasets (Fig. S4).  219 

 220 

Residue reactivity captures features of chaperone conformational change in lysate 221 

To decipher the molecular mechanisms that underlie the functional responses to unfolded protein, we 222 

next focused on a class of proteins that we expected to have functions in engaging with unfolded 223 

proteins, i.e. molecular chaperones.  42 proteins annotated with the ontology term “chaperone-224 

mediated protein folding” machinery (GO:0061077) were identified across the protein groups, 225 

particularly in the multi-clustered proteins (Fig. S5). One of these proteins HSPA8 (HSC70; P63017) is the 226 

cognate heat shock protein 70 (Hsp70), which showed 3 cysteine peptides in different clusters (Fig 4A).  227 

HSPA8 binds to unfolded proteins in concert with J-domain protein co-chaperones and nucleotide 228 

exchange factors (14).  Together they drive protein folding through ATP-dependent cyclical binding and 229 

release (21). A conserved structural feature of Hsp70 proteins are four modules: an N-terminal 230 

nucleotide binding domain (NBD), a substrate binding domain (SBDβ), a helical lid domain (SBDα), and a 231 

disordered C-terminal tail of variable length (22). The disordered tail of HSPA8 comprises an EEVD motif 232 

that mediates interactions with cofactors such as J-domain protein DNAJB1. 233 

One peptide from the NBD, containing Cys17, became more reactive to TPE-MI at urea concentrations 234 

greater than 4 M (Fig. 4A). The other two peptides were from the SBDα domain, containing Cys574 and 235 

Cys603, and these both became more protected in concentrations of urea between 3 – 5 M (Fig. 4A).  236 

We also identified one peptide from DNAJB1, that contained two cysteine residues (Cys267, Cys269).  237 

These cysteines displayed a complex biphasic (but overall decreased) reactivity profile upon exposure to 238 

increasing concentrations of urea (Fig. 4A). We therefore postulated that the changes in cysteine 239 

reactivity in HSPA8 and possibly cofactor DNAJB1 upon urea titration may arise due to allosteric 240 

conformational changes resulting from their binding and engagement with unfolded proteins. 241 
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To test this hypothesis, we examined thiol reactivity changes in a reconstituted HSPA8 system in vitro 242 

that comprised of purified human HSPA8, DNAJB1 and a well characterized model client, malate 243 

dehydrogenase (MDH2) (23) (Fig. 4B, detailed structural models shown in Fig. S6). To look specifically for 244 

changes resulting from interaction with denatured client, TPE-MI reactivity was compared between 245 

reconstituted systems containing native versus thermally-denatured MDH2 using tandem mass tag 246 

(TMT) isotopic labelling (Fig. 4B).   247 

First, we assessed the system without added ATP.  Under this condition HSPA8 and DNAJB1 can bind to 248 

non-native MDH2 substrate to form a stable complex (24, 25).  More specifically, the SBDα domain of an 249 

Hsp70 protein (DnaK) has been shown to interact with substrate when the chaperone is in the ADP-250 

bound state (26).  We saw no change in reactivity of the HSPA8 NBD peptide containing Cys17 (Fig. 4C) 251 

suggesting that the increase in reactivity observed above 4 M urea titration in lysate was attributable to 252 

NBD unfolding. In contrast, the SBDα domain peptide containing Cys574 decreased in reactivity (one-253 

sample t-test, p=0.033).  This result therefore suggested that the decrease in reactivity observed in the 254 

SBDα region during urea denaturation arose from substrate and/or ligand binding.  255 

In DNAJB1, we observed two cysteine peptides in the reconstituted system.  One peptide, containing 256 

Cys179, is located close to the hinge between two β-barrel-like subdomains (CTDI and CTDII) that binds 257 

to substrates (Fig. S6). The second, containing two closely-adjacent cysteines (Cys267, Cys269), is 258 

located in the homodimer interface.  It is important to note that we could not ascribe reactivity changes 259 

to a single cysteine within this peptide, thus the changes represent an average across these residues. 260 

The peptide containing Cys267 and Cys269 became significantly more reactive under these conditions 261 

(Fig. 4E; one-sample t-test, p=0.023).  The central location of this peptide within the homodimeric 262 

interface of DNAJB1 suggested that accumulated client binding altered the conformation of DNAJB1 to 263 

expose the structure nearby these cysteines. 264 

Next we examined the effect of adding supplemental ATP to the reconstituted system, which we 265 

predicted would fuel HSPA8 to undergo the full catalytic cycle and therefore release accumulated 266 

complexes of HSPA8 and DNAJB1 bound to client (22).  The Cys574 peptide from HSPA8 became more 267 

reactive under these conditions, which is in agreement with HSPA8 disengaging client and/or DNAJB1. 268 

Intriguingly, the Cys179 peptide from DNAJB1 showed increased reactivity (Fig. 4C; one-sample t-test, 269 

p=0.023). Of note, this peptide is close to the region of DNAJB1 shown to bind the EEVD motif of HSPA8 270 

(27), suggesting a level of deprotection when client-bound complexes of the HSPA8-DNAJB1 machinery 271 

are dissociated. While this is an attractive hypothesis, we could not exclude the possibility of other 272 
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allosteric changes associated with DNAJB1 activity. Namely, intramolecular J-domain interactions with 273 

the hinge region occur near this residue which are modulated by DNAJB1 engagement with HSPA8 (23, 274 

28–30).  The peptide in DNAJB1 containing (Cys267, Cys269) was no longer protected (Fig. 4C; one-275 

sample t-test, p=0.26), which is consistent with the lack of accumulated substrate-chaperone complexes 276 

that would otherwise drive the conformational changes at the dimer interface described above. These 277 

results exemplify how residue exposure methodology can track functionally relevant conformational 278 

changes in chaperone machinery distinct from unfolding events in complex cellular milieu.  279 

 280 

Conclusions 281 

Collectively, our findings reveal hidden complexity in proteome-wide datasets targeting foldedness with 282 

residue labeling approaches. Namely, we demonstrate that a substantial component of the changes 283 

seen in residue labeling datasets applied to study proteome denaturation by chemical denaturants are 284 

better explained by changes in protein conformation and ligand interactions than unfolding. These 285 

findings have two implications of note. First is that analysis of the peptides (and proteins) that generate 286 

denaturation curves most similar to two-state unfolding curves provides the most consistent correlation 287 

between methodological approaches and provide a more robust core census list of stability 288 

measurements. This is a critical point with respect to the retrospective consideration of whole proteome 289 

stability datasets because it appears that upwards of two thirds of the data previously fitted to a 290 

measure of folding stability may be more appropriately explained by changes in conformation or ligand 291 

association. Other proteomics approaches have drawn general conclusions that are in agreement with 292 

our findings here, namely how changes in proteome solubility encode information on rewired protein 293 

interaction networks (31–33). Others have also shown that ligand interactions can modulate the thermal 294 

melting profiles of proteins in lysate (8, 34, 35), and recent commentary speculates this is one among a 295 

range of biophysical effects that could contribute to a protein’s observed thermal stability (36). The 296 

workflow presented here provides a useful strategy to delineate changes arising from unfolding from 297 

these other attributes of proteins.   298 

The second implication is that the ability to determine subtle changes in tertiary and quaternary 299 

conformation with domain-level resolution distinguishes amino-acid specific methods from thermal melt 300 

and aggregation-based techniques. Subtle changes in protein conformation mediate protein-protein 301 

interactions underlying many cellular functions. However, the dynamic and often transient nature of 302 
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these interactions can make them challenging to quantify in cells en masse and requires sensitive but 303 

non-specific conformational probes capable of distinguishing domain-specific changes. Overall, the data 304 

presented here support the ability of residue labelling methodologies such as TPE-MI to fill this void, 305 

providing quantitative insight into aspects of protein conformation beyond stability and unfolding. We 306 

anticipate this to open the door for studies on proteome structure and function in natural intact 307 

biological settings, including live cells or other complex biological milieu.  308 
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Figures 483 

 484 

Fig. 1: Limited correlations between measures of folding in published proteome stability datasets. Shown are pairwise cross-485 
correlations of normalized protein folding stability measures (Tm or Cm). The bottom diagonal shows hexbin density plots, where 486 
data point density tiles (grayscale) are overlayed with the fitted linear regression and corresponding 95% C.I. (red; in most cases 487 
intervals are too small to be seen). The upper diagonal shows pairwise Spearman’s coefficients (R) represented in the form of a 488 
heatmap, overlayed with significance denoted by * (p < 0.05) or ** (p < 0.01). Datasets are ordered according to species of 489 
origin (human or mouse) and method of stability measure (limited proteolysis, residue labelling or thermal profiling). Datasets 490 
were derived from the following publications; Leuenberger et al., 2017, Science (1), Ogburn et al., 2017, J Proteome Res. (2,3), 491 
Walker et al., 2019, PNAS (4), Roberts et al., 2016, J Proteome Res. (5,6), Jarzab et al., 2020, Nat Methods. (7, 8, 9, 16, 17, 20), 492 
Becher et al., 2016, Nat Chem Biol. (10), Franken et al., 2015, Nat Protoc. (11), Miettinen et al., 2018, EMBO J. (8), Savitski et al., 493 
2018, Cell. (13, 14), Ball et al., 2020, Commun Biol. (15), Savitski et al., 2014, Science. (18), Sridharan et al., 2019, Nat Commun. 494 
(19). Complete reference information is provided in Table S1. 495 
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 496 

Fig. 2: Residue labelling methods reveal patterns of change inconsistent with two-state unfolding during chemical 497 
denaturation. (A) Schematic representation of the workflow used to detect conformational change using TPE-MI following 498 
chemical denaturation. (B) Clustering of cysteine-peptide TPE-MI reactivity profiles as a function of urea concentration using 499 
fuzzy c-means. Families of individual peptide traces are shown where the color saturation reflects the cluster membership score 500 
for each peptide, such that the darkest traces are representative of the typical response for each cluster.  Data (n=3) were 501 
smoothed by significance scaling and loess smoothing.  The proportion of total peptides assigned to each cluster is also 502 
indicated. (C) Histogram of goodness-of-fit among individual peptides following fitting to a two-state unfolding curve. (D) Cross-503 
correlation analysis of peptides in each cluster to previously published stability datasets (list of datasets in Table S1). Correlation 504 
heatmap is colored according to the Spearman’s correlation coefficient (R) and significance is denoted by * (p < 0.05) or ** (p < 505 
0.01). Datasets are ordered according to species of origin (human or mouse) and method of stability measure (limited 506 
proteolysis, residue labelling or thermal profiling).  Missing points (gray line) indicate fewer than 5 proteins in common. (E) 507 
Corresponding clustering analysis of an independent published residue labeling dataset (dataset 4) that targeted oxidation of 508 
exposed Met residues (15). Data here is represented as per panel B. 509 
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 510 

 511 

Fig. 3: Functional responses to denaturation drive heterogeneous changes in reactivity within single proteins (A) Schematic 512 
overview of peptide cluster patterns and how proteins are grouped depending on the composition of cysteine peptides from 513 
multiple clusters.  The left graph shows a schematic reactivity profile of each of the four clusters. Peptides are then assigned to 514 
their parent protein, which may be deemed “uni-clustered” if only consisting of cysteine-containing peptides from a single 515 
cluster, or “multi-clustered” where cysteine-containing peptides from a single protein are associated with more than one 516 
cluster. (B) Mean z-score for predicted/extracted physiochemical features according to peptide amino acid composition. (C) 517 
Venn diagram depicting proportion of proteins for which peptides were found in each cluster combination. (D) Molecular 518 
weight of and (E) number of annotated PFAM domains in proteins to which clustered peptides are assigned. (F) Number of 519 
high-confidence first-shell protein-protein interactions and (G) inter-cluster node interaction degree annotated in STRINGdb 520 
(v11.0, score > 0.7) for proteins found in each cluster. (H) Gene ontology terms enriched among multi-clustered proteins. 521 
Enrichment was determined using Panther GOSlim Fisher’s over-representation test with false-discovery rate correction. 522 
Common themes are denoted; A = protein folding and stress response, B = binding and complexes. Dark bars denote exact 523 
terms found to also be enriched among multi-clustered proteins in published dataset 4. Panels D-G show individual protein 524 
datapoints overlayed with mean ± S.D. Mean of combined uni-clustered proteins is shown as dotted grey line. Uni-clustered 525 
proteins were compared to those associated with multiple clusters via t-test with Welch’s correction, *** denotes p < 0.001, 526 
**** denotes p < 0.0001, ns denotes p > 0.05. 527 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/


21 

 

 528 

Fig. 4: Detection of distinct HSPA8 conformations by residue labeling approaches.  (A) Changes in thiol reactivity of HSPA8 and 529 
DNAJB1 peptides in Neuro2a lysate titrated with urea, colored according to their assigned cluster. (B) Schematic for 530 
recombinant client-binding assay. Human HSPA8 and DNAJB1 were incubated with native or heat-denatured client MDH2.  531 
Nucleotide binding domain (NBD; ruby), substrate binding domains (SBDβ; green and SBDα; grey) and cofactor interaction 532 
region (IR; teal) are shown on protein backbones, and representative cysteine residues are colored according to the cluster 533 
their respective peptides were assigned (orange, red, purple and blue correspond to clusters 1 – 4 respectively, black was not 534 
observed). In the case of DNAJB1, dimer is shown with second monomer desaturated.  Detailed structural models are shown in 535 
Fig. S6. (C) Change in cysteine reactivity of peptides derived from human HSPA8 and DNAJB1 when incubated with heat-536 
denatured MDH2. Recombinant reaction components were incubated in the absence or presence of exogenous ATP prior to 537 
TPE-MI labelling. Shown is mean ± S.D. (n=4), and deviations from the expected mean of 1 were tested using a one-sample t-538 
test (* denotes p < 0.05, ns denotes p > 0.05). 539 

 540 

 541 
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Materials and Methods 27 

Materials 28 

All materials were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise indicated. The 29 

mouse neuroblastoma cell line Neuro2a (N2a) was obtained from lab cultures originating from the 30 

American Type Culture Collection and screened for mycoplasma contamination. TPE-MI was stored as 31 

stocks (10 mM in DMSO) in the dark at 4 °C before use. Recombinant human HSPA8 and DNAJB1 were 32 

purified as previously described (23). 33 

Correlation of published proteome stability datasets 34 

Published basal proteome stability datasets were collected as follows.  First 813 articles were collected 35 

from PubMed keyword searches performed on July 31st 2020 for “thermal proteome profiling”, “thermal 36 

proteome unfolding”, “folding stability proteome”, “limited proteolysis proteome”, “proteome 37 

denaturation labelling”, “proteome unfolding label” and “SPROX proteome”. Abstracts were filtered 38 

manually for evidence of containing primary experimental datasets for protein stability under control 39 

conditions derived from either human or mouse samples. Of these 12 papers were selected as suitable.  40 

Datasets were then assigned into one of three categories based on methodology: limited proteolysis, 41 

residue labelling and thermal profiling. Complete details for the selected resources, including specific 42 

supplementary materials files for each dataset, are provided in Table S1. 43 

Datasets were collected from the relevant supplementary materials analyzed with custom scripts 44 

written in Python programming language. The logic of the scripts was to collect the reported protein 45 

stabilities provided by each source, and where necessary map the protein identifiers to UniProt 46 

Accession numbers. Proteins were mapped to KEGG Orthology (KO) identifiers using previously 47 

established protocols (37) available via cross-referencing from UniProt https://www.uniprot.org/. 48 

Stability measures of different datasets were filtered as per the goodness-of-fit criteria used in the 49 

original study, then normalized to 1 to enable cross correlation (i.e. to account for different scales for 50 

thermal denaturation values (Tm) and chemical denaturation values (Cm)). Spearman’s correlation 51 

coefficients and p-values were calculated in a pairwise manner for all proteins found to be commonly 52 

quantified in a given pair of datasets. 53 

Recombinant β-lactoglobulin denaturation 54 

A stock solution of recombinant β-lactoglobulin was prepared in PBS (pH 7.4), before being diluted to a 55 

final concentration of 250 µM in triplicate in urea prepared at concentrations ranging from 0 – 6 M. 56 
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Samples were then equilibrated in denaturant for 4 h at 25 °C, before being labelled with TPE-MI (or the 57 

vehicle control DMSO) at a final concentration of 50 µM. Immediately after addition of the labelling 58 

reagent, samples were transferred to clear-bottom 96-well UVStar plate (Grenier BioOne). TPE-MI 59 

(350/20 nm ex, 465/20 nm em) and intrinsic tryptophan (295/10 nm ex, 360/20 em) fluorescence was 60 

read every 60 seconds for 60 minutes using a CLARIOstar (BMG Labtech) with shaking at 200 rpm for 5 61 

seconds prior to each cycle. In the case of TPE-MI, the first 9 minutes of linear increase in fluorescence 62 

were fitted with linear regression to derive the rate of reaction which was used for subsequent fitting. 63 

Both the TPE-MI rate and tryptophan fluorescence data was fitted via non-linear least squares 64 

regression to a two-state unfolding curve. 65 

Cell culture 66 

Neuro2a cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; ThermoFisher Scientific) 67 

supplemented with 10% (v/v) fetal bovine serum (ThermoFisher Scientific) and 1 mM L-glutamine 68 

(ThermoFisher Scientific). In the case of isotopically labelled cultures (SILAC), cells were cultured in 69 

DMEM (Silantes) supplemented with either unlabeled (light) or 13C L-lysine and 13C,15N L-arginine, along 70 

with 10% (v/v) dialyzed foetal bovine serum (ThermoFisher Scientific ) and 1 mM L-glutamine (Silantes). 71 

Cells were cultured in isotopically labeled media for at least 8 doublings prior to use. Cells were 72 

maintained at 37 °C in a humidified incubator with 5% atmospheric CO2 and were reseeded into fresh 73 

culture flasks once at 80% confluency following mechanical dissociation. For plating, cell count and 74 

viability were automatically determined using a Countess trypan blue assay (ThermoFisher Scientific). 75 

Cells were seeded in 6 or 12 well plates (Corning) and grown for at least 18 h before treatment. 76 

Lysate preparation and chemical denaturation 77 

Following treatment, cells were washed once in PBS before being mechanically harvested in fresh PBS 78 

and centrifuged at 150 g for 5 min. Cell pellets were then resuspended in lysis buffer (50 mM Tris, pH 79 

8.0, 0.8 % (v/v) IGEPAL CA-630, 1.5 mM MgCl2) containing cOmplete Mini, EDTA-free Protease Inhibitor 80 

Cocktail (Sigma) and 250 U benzonase (Sigma), then incubated on ice for 30 min. Lysate was then 81 

centrifuged at 20,000 g for 10 min to pellet cell debris, and the resultant supernatant transferred to a 82 

fresh Eppendorf tube. Total protein concentration was then determined using a Pierce BCA protein 83 

assay (Thermo Scientific) with bovine-serum albumin as the mass standard. A standard volume of lysate 84 

was distributed to aliquots of urea prepared at concentrations ranging from 0 – 6 M in water from an 8 85 

M stock for which the concentration was determined by measuring the refractive index.  In the case of 86 

SILAC lysate, light and heavy-labelled samples were combined at a 1:1 ratio prior to denaturation. 87 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/


4 
 

Samples were then equilibrated in denaturant for 4 h at 25 °C. Following denaturation, lysate aliquots 88 

were labelled with TPE-MI to a final concentration of 100 µM for 30 min at 25 °C, then immediately 89 

transferred to a 5-fold excess (v/v) of ice-cold acetone and stored at -20 °C overnight. 90 

Sample preparation for mass spectrometry 91 

Samples were pelleted at 20,000 g for 30 min at 4 °C. Protein pellets were solubilized in 100 µl of 8 M 92 

urea in 50mM triethylammonium bicarbonate (TEAB), and incubated with shaking at 37 °C for 45 min. 93 

Proteins were reduced using 10mM tris(2-carboxyethyl)phosphine, pH 8.0, and alkylated with 10mM 94 

iodoacetamide for 45 min, before being digested with 2 µg trypsin (ThermoFisher Scientific) overnight 95 

with shaking at 37 °C. Peptides were then desalted via solid-phase extraction using an Oasis HLB 1 cc Vac 96 

Cartridge (catalogue number 186000383, Waters Corp., USA) that was pre-equilibrated by washing. 97 

Samples were collected in fresh tubes and lyophilized (VirTis Freeze Dryer, SP Scientific). The lyophilized 98 

peptides were subjected to another round of BCA assay as above so as to normalize for similar loading 99 

onto the mass spectrometer. The final concentration of peptides was 0.1 µg/µl in 2% (v/v) ACN 100 

containing 0.05% (v/v) trifluoroacetic acid. 101 

NanoESI-LC-MS/MS 102 

Samples were analyzed by nanoESI-LC-MS/MS using a Orbitrap Fusion Lumos Tribrid mass spectrometer 103 

(Thermo Scientific) fitted with a nanoflow reversed-phase-HPLC (Ultimate 3000 RSLC, Dionex). The nano-104 

LC system was equipped with an Acclaim Pepmap nano-trap column (Dionex—C18, 100 Å, 75 µm× 2 cm) 105 

and an Acclaim Pepmap RSLC analytical column (Dionex—C18, 100 Å, 75 µm× 50 cm). For each LC-106 

MS/MS experiment, 0.6 µg of the peptide mix was loaded onto the enrichment (trap) column at an 107 

isocratic flow of 5 µl min−1 of 3% ACN containing 0.1% (v/v) formic acid for 5 min before the enrichment 108 

column was switched in-line with the analytical column. The eluents used for the LC were 0.1% (v/v) 109 

formic acid (solvent A) and 100% ACN/0.1% formic acid (v/v) (solvent B). The gradient used (300 nl 110 

min−1) was from 3–22% B in 90 min, 22–40% B in 10 min and 40–80% B in 5 min then maintained for 5 111 

min before re-equilibration for 8 min at 3% B prior to the next analysis. All spectra were acquired in 112 

positive ionization mode with full scan MS acquired from m/z 400–1500 in the FT mode at a mass 113 

resolving power of 120,000 after accumulating to an AGC target value of 5.00e5, with a maximum 114 

accumulation time of 50 ms. Lockmass of 445.12002 was used. Data-dependent HCD MS/MS of charge 115 

states > 1 was performed using a 3 s scan method, at an AGC target value of 1.00e4, a maximum 116 

accumulation time of 54 ms, a normalized collision energy of 35%, and with spectra acquired at a 7,500 117 

mass resolving power of 15,000. Dynamic exclusion was used for 45 s. 118 
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In the case of TMT-labelled samples, data were obtained on an Orbitrap Eclipse Tribrid mass 119 

spectrometer using nanoESI-LC parameters as described above. All spectra were acquired in positive 120 

mode with full scan mode full scan MS from m/z 300–1600 in the FT mode at 120,000 mass resolving 121 

power after accumulating to a target value 5.00e5 and with maximum accumulation time of 50 ms. 122 

Lockmass of 445.12002 was used. A preferred inclusion list containing doubly and triply masses of 123 

tryptic peptides belonging to HSPA8 (P11142), DNAJB1 (P25685) and MDH2 (P00346) was created to 124 

increase the coverage of identifiable peptides from these proteins. Data-dependent HCD MS/MS of 125 

precursors that matches the inclusion list then other charge states > 1 were performed using a 3 s scan 126 

method, 0.7m/z isolation width, target value of 5.00e4, a maximum accumulation time of 54 ms, a 127 

normalized collision energy of 35% and at a 30,000 mass resolving power (with TurboTMT mode) to 128 

resolve the low mass TMT reporter mass. Dynamic exclusion was used for 45 s  129 

Peptide identification 130 

Initial data analysis of raw data generated during this study was carried out using Proteome Discoverer 131 

(v2.1; ThermoFisher Scientific) or MaxQuant (v 1.6.3.4) against the Swissprot Mus Musculus database 132 

(downloaded 04/07/2016; containing 16,795 entries). Searches were conducted with 20 ppm mass 133 

tolerance for MS, and 0.2 Da for MS/MS, with one missed cleavage allowed and match between runs 134 

enabled. Variable modifications included methionine oxidation, N-terminal protein acetylation, N-135 

terminal methionine cleavage and SILAC-Lys6, Arg10, while the carbamidomethylcysteine modification 136 

was fixed. The false discovery rate maximum was set to 0.005% at the peptide identification level (actual 137 

was 0.005 for each replicate) and 1% at the protein identification level. All other parameters were left as 138 

default. 139 

Ratio correction and scaling 140 

Further analysis was performed with custom Python scripts. The logic was as follows.  First, the common 141 

contaminant protein keratin was removed. Quantified proteins were considered as those identified by 142 

at least two unique peptides, one of which contained a cysteine residue, and the average peptide 143 

abundance ratio for the non-cysteine-containing peptides was calculated for each protein at each urea 144 

concentration. The mean non-cysteine abundance ratio was used to correct the corresponding cysteine-145 

containing peptide(s) for any change in overall protein abundance caused by the treatment, yielding the 146 

corrected cysteine ratio. The corrected cysteine ratio was normalized to the native sample (0 M Urea), 147 

such that no change resulting from urea denaturation would yield a ratio of 1.  148 
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The resultant data was then scaled with a p-value weighted correction. This correction weights the 149 

mean corrected cysteine ratio of biological replicates (n=3) according to the relative confidence with 150 

which it deviates from the expected value (in this case, 1) as per equation 1: 151 

끫殊 =  
1 −  끫殴−20끫殺  152 

where m corresponds to the mean of the corrected cysteine ratios and p corresponds to the p-value 153 

derived from a one-sample t-test of the corrected cysteine ratios against the expected value at a single 154 

denaturant concentration. To improve confidence in the trends of the corrected peptide ratios across 155 

urea concentrations, the data were subsequently smoothed with Locally Estimated Scatterplot 156 

Smoothing (LOESS).  The resultant curves for the peptide ratios across urea concentrations were 157 

clustered by using fuzzy-c means, where the optimal number of clusters was first estimated using the 158 

kneed package before manual inspection of ± 2 centroids to achieve minimal redundancy in clustered 159 

patterns. For all subsequent bioinformatic analyses, peptides were then assigned to clusters with the 160 

highest membership score. 161 

Peptide and protein properties 162 

The curves for the peptide ratios across urea concentrations were fitted with a sigmoidal two-state 163 

unfolding model as per equation 2: 164 

끫毌 =  끫殞 +  
끫殜 −  끫殞

1 +  끫殤끫殴 × (끫歬끫殴 − [d])T × G  165 

where a and b correspond to the top and bottom plateaus respectively, Cm corresponds to the 166 

denaturant concentration at which both the folded and unfolded states are equally populated at 167 

equilibrium (assuming two-state protein folding), [d] corresponds to denaturant concentration, and m 168 

corresponds to the slope. T and G  correspond to the temperature (298.15 K)  and gas constants, 169 

respectively. Fits were filtered according to the following criteria: (1) R2 > 0.75, (2) absolute value of a 170 

and b less than 10, (3) fitted Cm within the range of denaturant concentrations tested, (4) relative error 171 

in Cm less than 0.5, and (5) value at 0 M urea in greater than at 6 M urea. The fitted Cm values were then 172 

compared against the published datasets as described above. 173 

Physicochemical properties for individual cysteine residues, peptides and proteins of interest were 174 

compiled from various databases and extraction/prediction platforms, including UniProt 175 

https://www.uniprot.org/, PFAM https://pfam.xfam.org/, Protein Data Bank 176 
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https://www.ebi.ac.uk/pdbe/, DSSP (38, 39), IUPred2A (40), STRINGdb (41), PantherGOSlim 177 

http://pantherdb.org, and iFeature (42). 178 

HSP70 client denaturation assay 179 

Pig heart L-malate dehydrogenase (MDH2; Roche, catalogue # 10127256001) and recombinant human 180 

HSPA8 were prepared in HEPES buffer (50 mM HEPES, pH 7.5, 50 mM KCl, 5 mM MgCl2, 2 mM DTT) to a 181 

final concentration of 5 µM and 2 µM, respectively, in the presence or absence of recombinant human 182 

DNAJB1 (1 µM). In the case of heat-denatured samples, MDH2 aliquots were heated to 42 °C for 10 min 183 

then returned to 37 °C in a thermocycler (BioRad), while native samples were maintained at 37 °C. 184 

MDH2 was then combined with the remaining reaction components in the absence or presence of 2 mM 185 

ATP (New England Biosciences, catalogue # P0756S), then incubated at 37 °C for 30 min in a heating 186 

block. Samples were then labelled with 100 µM TPE-MI for 15 min at 25 °C before being diluted into 1 ml 187 

ice cold acetone and incubated at -20 °C overnight. Samples, including a pooled control sample, were 188 

prepared for mass spectrometry using the Preomics iST-NHS (Preomics, catalogue # P.O.00026) and TMT 189 

11-plex labelling (ThermoFisher, catalogue # A37725) kits according to the manufacturer’s protocol. The 190 

pooled channel was added to each biological replicate to support efficient normalization between 191 

replicates. Resultant peptides were analyzed using a TMT based MS methodology as described above. 192 

The collected spectra were searched against a custom database containing sequences for HSPA8 193 

(P11142), DNAJB1 (P25685) and MDH2 (P00346) sequences downloaded from UniProt. The search was 194 

conducted as above, with the following alterations: the MS2 reporter ion was set to TMT 11-plex, 195 

isotopic distribution correction applied according to the product data sheet and the fixed 196 

carbamidomethylcysteine was replaced with the Preomics alkylation (+113.084 Da). 197 

Filtering and further analysis of the dataset was then carried out with custom Python scripts. The logic 198 

was as follows.  Raw intensities for peptides with no missed cleavages were scaled according to the 199 

molar contribution of the corresponding protein to each reaction. The mean peptide abundance ratio 200 

for non-cysteine peptides in each protein that were quantified across all channels containing that 201 

protein, was then calculated. The non-cysteine intensity was used to correct the corresponding cysteine-202 

containing peptide(s) for any change in overall protein abundance, resulting in the corrected cysteine 203 

ratio.  In the case of HSPA8 peptides, the corrected cysteine ratio was then normalised to the native 204 

HSPA8 sample, and finally the change in corrected cysteine ratio is reported as the mean of two 205 

technical replicates. 206 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432609doi: bioRxiv preprint 

https://www.ebi.ac.uk/pdbe/
http://pantherdb.org/
https://doi.org/10.1101/2021.02.24.432609
http://creativecommons.org/licenses/by/4.0/


8 
 

Statistical analysis and data availability 207 

Statistical analyses were performed either using the scipy module in python (43) or using GraphPad 208 

Prism (v 8.4.3). The exact p values, raw values and statistical details are provided in Dataset S2. 209 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 210 

the PRIDE (44) partner repository with the data set identifiers PXD022587 and PXD022640. All other 211 

data and analysis code are available from 10.5281/zenodo.4280621 and 10.5281/zenodo.4287767 212 

respectively.  213 

  214 
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 215 

Fig. S1: TPE-MI reports on unfolding of recombinant β-lactoglobulin. Relates to Fig. 2. (A) Structure of β-lactoglobulin, a model 216 
globular protein, adapted from PDB entry 1CJ5. Pertinent residues are highlighted in magenta (cysteine) and green 217 
(tryptophan). (B) Chemical denaturation of recombinant β-lactoglobulin in the presence of TPE-MI. Samples were equilibrated 218 
for 4 hours at room temperature before addition of TPE-MI, and TPE-MI fluorescence was monitored every 60 sec for 1 h. (C) 219 
The initial rate of reaction is calculated from B via linear regression, and fitted to a denaturation curve. Curve is compared to 220 
intrinsic tryptophan fluorescence, also fitted to a denaturation curve. (D) Fitted Cm derived from C, compared using t-test in 221 
GraphPad Prism. In panels B – D, data shown is mean ± SD of 3 replicates, and is representative of 2 independent experiments. 222 

  223 
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 224 

 225 

Fig. S2: Residue and protein physicochemical properties. Relates to Fig. 3. Individual cysteine residues contained within 226 
clustered peptides were assessed for (A) their relative surface exposure in experimentally determined structures available via 227 
the Protein Data Bank, (B) the proportion of residues annotated as a functional feature in UniProt, and (C) the proportion of 228 
residues located within curated PFAM domains. (D) The proportion of disordered residues in proteins associated with each 229 
cluster as predicted by IUPred2. (E) Mean z-score for predicted or extracted physiochemical features according to protein 230 
amino acid composition. Panels A and D show individual protein datapoints overlayed with mean ± S.D. Mean of clustered 231 
peptides (A) or combined uni-clustered proteins (D) is shown as dotted grey line.  232 

 233 
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 235 

 236 

Fig. S3: Gene ontology terms enriched among multi-cluster proteins identified in published residue labelling dataset 4 (15). 237 
Relates to Fig. 3. Enrichment determined using Panther GOSlim Fisher’s overrepresentation test with false-discovery rate 238 
correction. Common themes are denoted; A = protein folding and stress response, B = binding and complexes. Dark bars denote 239 
exact terms found to also be enriched among multi-cluster proteins in the TPE-MI dataset. 240 
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 241 

Fig. S4: Gene ontology terms enriched among uni-clustered proteins. Relates to Fig. 3. Enrichment for (A) TPE-MI and (B) (15) 242 
datasets determined using Panther GOSlim Fisher’s overrepresentation test with false-discovery rate correction. The outer-243 
most terms for each hierarchical GO family which was significantly enriched (P < 0.05) are shown, colored according to the 244 
cluster with which they were associated. 245 

  246 
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 247 

Fig. S5: Enrichment of chaperone machinery among multi-clustered proteins. Relates to Fig. 4. (A) Venn diagram depicting 248 
proportion of chaperone proteins for which peptides were found in each cluster combination. (B) Number and proportion of 249 
proteins in each cluster associated with “chaperone-mediated protein folding” gene ontology term (GO:0061077). Gene names 250 
for individual proteins are listed within the bars.  251 

  252 
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 253 

Fig. S6: Structural models for chaperone client-binding reaction components. Relates to Fig. 4. (A) Ribbon structure of HSPA8 254 
(models built with PDB 4H5R, 3AGY and 4KBQ). Nucleotide binding domain (NBD; ruby), substrate binding domains (SBDβ 255 
green, SBDα dark-grey) and cofactor binding motif (EEVD motif; teal) are shown on protein backbones. (B) Ribbon structure of 256 
DNAJB1 (model built with PDB 3AGZ and 1HDJ), with dimer composed of two monomers colored dark and light grey 257 
respectively. J-domain (salmon) and HSPA8 binding region (teal) are shown on protein backbones, and C-terminal domains 258 
(CTDI and CTDII) are indicated by brackets. (C) Ribbon structure of MDH2 (PDB 1MLD). In all panels, cysteine residues are 259 
labelled and colored according to the cluster their respective peptides were assigned (orange, red, purple and blue correspond 260 
to clusters 1 – 4 respectively, black was not observed), and dotted lines represent sequence regions with missing structural 261 
information. 262 
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