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Abstract

Hematological measures are important intermediate clinical phenotypes for many acute 

and chronic diseases. Hematological measures are highly heritable, and although genome-wide 

association studies (GWAS) have identified thousands of loci containing trait-associated 

variants, the causal genes underlying these associations are often uncertain. To better 

understand the underlying genetic regulatory mechanisms, we performed a transcriptome-

wide association study (TWAS) using PrediXcan to systematically investigate the association 

between genetically-predicted gene expression and hematological measures in 54,542 

individuals of European ancestry from the Genetic Epidemiology Research on Adult Health and 

Aging (GERA) cohort. We found 239 significant gene-trait associations with hematological 

measures. Among this set of 239 associations, we replicated 71 at p < 0.05 with same direction 

of effect for the blood cell trait in a meta-analysis of TWAS results consisting of up to 35,900 

European ancestry individuals from the Women�s Health Initiative (WHI), the Atherosclerosis 

Risk in Communities Study (ARIC), and BioMe Biobank. We further attempted to refine this list 

of candidate genes by performing conditional analyses, adjusting for individual variants 

previously associated with these hematological measures, and performed further fine-mapping 

of TWAS loci.  To assist with the interpretation of TWAS findings, we designed an R Shiny 

application to interactively visualize TWAS results, one genomic locus at a time, by integrating 

our TWAS results with additional genetic data sources (GWAS, TWAS from other gene 

expression reference panels, conditional analyses, known GWAS variants, etc.). Our results and 

R Shiny application highlight frequently overlooked challenges with TWAS and illustrate the 

complexity of TWAS fine-mapping efforts.
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Author Summary

Transcriptome-wide association studies (TWAS) have shown great promise in furthering our 

understanding of the genetic regulatory mechanisms underlying complex trait variation. 

However, interpreting TWAS results can be incredibly complex, especially in large-scale 

analyses where hundreds of signals appear throughout the genome, with multiple genes often 

identified in a single chromosomal region. Our research demonstrates this complexity through 

real data examples from our analysis of hematological traits, and we provide a useful web 

application to visualize TWAS results in a broadly approachable format. Together, our results 

and web application illustrate the importance of interpreting TWAS studies in context and 

highlight the need to carefully examine results in a region-wide context to draw reasonable 

conclusions and formulate mechanistic hypotheses.

Introduction

Hematological measures (red cell, white cell, and platelet traits) have a critical role in 

oxygen transport, immunity, infection, thrombosis, and hemostasis and are associated with 

many acute and chronic diseases, including autoimmunity, asthma, cardiovascular disease, and 

COVID-19 [1-5]. Genome-wide association studies (GWAS) have identified thousands of loci 

containing such trait-associated variants, and previous Mendelian randomization and 

phenome-wide association study analyses have highlighted the likely causal role of blood cell 

trait-associated genetic variants in a variety of disorders, including autoimmune conditions and 
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coronary heart disease [1-3]. Unfortunately, these individual SNP-based GWAS make it difficult 

to identify regulatory variants with small effect sizes which in aggregate impact the same gene, 

even in very large sample sizes, and they identify regions of associated variants whose 

biological function is often not clear [6]. Thus, utilizing a gene-based method to aggregate the 

effect of multiple regulatory variants may increase the study power to identify novel trait-

associated loci and elucidate mechanisms of biological function.

A transcriptome-wide association study (TWAS) is one gene-based method which 

systematically investigates the association between genetically predicted gene expression and 

phenotypes of interest [6-9]. Here, we report results from a large TWAS of hematological 

measures using the PrediXcan method [6] to analyze data from 54,542 individuals of European 

ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort 

(our discovery data set) [10] [11]. Hematological phenotypes are particularly good candidates 

for TWAS analysis due to the availability of large RNA-sequencing datasets in a relevant tissue 

type, high heritability across traits, and the large number of known genetic associations, most 

with poorly understood mechanisms and target genes. We perform this analysis using whole 

blood RNA-sequencing in 922 individuals from the Depression Genes and Networks (DGN) [12] 

study as our primary reference panel. After association analysis of imputed gene transcript 

levels with hematological indices in GERA, we performed conditional analyses, adjusting for 

variants previously identified to affect hematological measures, to evaluate if TWAS-identified 

genes represented novel statistical signals or were primarily driven by variants known from 

GWAS [3]. These direct conditional analyses represent a major advantage of the use of 

individual level data for our TWAS analyses, since these conditional tests could not be 
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performed as easily or accurately using summary statistic-based methods. We replicated our 

significant set of gene-trait associations in a meta-analyzed sample of TWAS results containing 

18,100 individuals from the Women�s Health Initiative (WHI), 9,345 individuals from the 

Atherosclerosis Risk in Communities Study (ARIC), and 8,455 individuals from Mount Sinai 

BioMe Biobank (BioMe), all of European ancestry (Supplementary Table 1). We also compared 

the TWAS results from the primary DGN reference panel to three additional reference panels 

(whole blood and Epstein-Barr virus (EBV) transformed lymphocytes from the Genotype-Tissue 

Expression (GTEx) Project [13], and monocytes from the Multi-Ethnic Study of Atherosclerosis 

(MESA)[14]); these are considered secondary reference panels due to their smaller sample 

sizes. These additional analyses helped us to determine if relevant tissues with smaller sample 

sizes support our primary TWAS findings with DGN.

We employ several strategies to improve our understanding and interpretation of 

complex genomic regions containing multiple TWAS-identified genes. First, we used FOCUS 

(fine-mapping of causal gene sets [15]) to seek to identify a set of causal genes within genomic 

loci containing multiple significant TWAS gene-trait associations. FOCUS is a software used to 

fine-map TWAS statistics at genomic risk regions, while accounting for linkage disequilibrium 

(LD) among variants and predicted expression correlation among genes at those risk regions. 

Second, we present a novel web-based tool for integrating and visualizing TWAS and GWAS 

results, as well as results from multiple expression reference datasets. Additionally, we discuss 

frequently overlooked challenges of TWAS interpretation, such as failure to consider the 

number of proximal genes which cannot be accurately imputed with a given reference panel, 

but which may still be influenced by variants identified in GWAS studies.  Our results illustrate 
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the complexity of TWAS fine-mapping efforts but do provide one resource for clarifying likely 

gene targets for blood cell trait-related genetic loci. However, consideration of additional 

annotation resources and TWAS limitations is necessary for confident identification of gene 

targets. 

Results

We applied the PrediXcan method to identify expression-trait associations using individual 

level genotype and phenotype data from the GERA non-Hispanic white ethnic group. Analyzed 

blood cell traits included platelet count (PLT), red blood cell counts (red blood cell count (RBC), 

hematocrit (HCT), hemoglobin (HGB), mean corpuscular volume (MCV), and red cell distribution 

width (RDW) indices), and white blood cell counts (white blood cell count (WBC), monocyte 

count (MONO), neutrophil count (NEUTRO), and lymphocyte count (LYMPH) indices). We used 

DGN whole blood expression panel weights from PredictDB (a database of weights provided by 

PrediXcan; see URLs) to predict gene expression levels in GERA. Among the 11,538 genes in the 

DGN expression panel, 11,438 genes were predicted in GERA and 51% of those genes achieved 

DGN model R2 > 0.05 (see Supplementary Table 2 for model R2 values for significant genes and 

Supplementary Table 3 for genes included in DGN but not predicted in GERA). The number of 

GERA variants used for prediction was equal to the number of variants included in the 

prediction model (i.e. complete variant matching) for 74% of the predicted genes; the 

remaining genes used fewer variants from GERA than were included in the prediction models. 

We tested each of the 11,438 predicted genes individually for association with each of the 10 
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blood cell traits (BCTs), resulting in a Bonferroni-corrected p-value threshold of p < 4.37 X 10-7. 

Through the subsequent study analyses, we will refer to these results as �marginal TWAS�.

Overall, we identified 295 statistically significant marginal TWAS associations (p < 4.37 X 10-

7), with each BCT having at least one significant association (Supplementary Table 2). Among 

these, 47 marginal TWAS associations fell into the major histocompatibility complex (MHC) or 

HLA region (GRCh37; chr 6: 28,477,797 - 33,448,354) and were not considered in subsequent 

analyses (Supplementary Table 4); disentangling a set of causal genes within the MHC region is 

exceptionally difficult due to the highly polymorphic genetic loci and complex LD in the region. 

Another 9 significant associations included genes which contained only a single variant in the 

prediction model. These associations were also not included in subsequent analyses 

(Supplementary Table 4). The remaining 239 significant associations include genes predicted 

from 2 to 112 variants, with a median of 21 variants used in predictive models. Among this set 

of 239 associations, we replicated 71 at p < 0.05 with same direction of effect for the blood cell 

trait in TWAS meta-analysis.

Conditional analysis of significant TWAS genes on known GWAS variants 

To determine whether any of the 239 remaining significant gene-trait associations were 

novel signals, not driven by any previously reported genome-wide significant variant, we 

performed conditional analysis. Since we performed TWAS with individual level data, we 

conditioned the predicted gene expression value of each statistically significant marginal TWAS 

gene on the set of nearby (within ± 1 Mb of the gene) sentinel GWAS variants within the BCT 

category (RBC, WBC, PLT) from the largest current European ancestry focused GWAS for BCTs 
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[3]. We found that 222 (93%) of all marginal TWAS significant associations were attenuated by 

known GWAS variants and became non-significant (p > 4.37 X 10-7) upon conditional analysis. 

Another 15 of the associations remained significant after conditional analysis, and the 

remaining 2 associations did not have GWAS reported variants within a 1 Mb window of the 

gene (Supplementary Table 5). We attempted to replicate these 17 conditionally significant 

findings in a TWAS meta-analysis which included up to 32,036 European ancestry individuals 

from 3 cohorts: ARIC, WHI, and BioMe. Two of the 17 conditionally significant gene-trait 

associations (HIST1H2BO-HGB and HIST1H2BO-RDW) included in the replication set met the 

stringent significance threshold (p < 2.94 X 10-3). However, HIST1H2BO is situated within 1 Mb 

of the MHC region already excluded above (GRCh37; chr 6: 28,477,797 - 33,448,354), with this 

signal potentially reflecting long range LD with the MHC region, and has poor model R2 = 0.016. 

Additionally, OR2B6 associated with HGB, MCV, and RWD; ZNF192 associated with HGB, MCV, 

and RDW; and ZSCAN12 associated with MCV meet a more lenient significance threshold (p < 

0.05). Yet, OR2B6, ZNF192, and ZSCAN12 are also located on chromosome 6 within 

approximately 500kb of the MHC region and all have poor model R2 < 0.015. The remaining 7 

gene-trait associations did not meet any replication criteria.

Characterization of TWAS Identified loci

Previously reported GWAS sentinel variants were at least partly responsible for and 

attenuated 93% of the significant marginal TWAS signals. Thus, we next examined if TWAS 

aided fine-mapping and identification of regulatory mechanisms at these loci. To better 

contextualize if fine-mapping in GERA was consistent in additional cohorts, we also examined 

replication of TWAS significant genes in these known loci. The 239 marginal TWAS associations 
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reside in 120 trait-specific, physically non-overlapping cis loci (i.e. the cis region of each locus is 

± 1 Mb of the locus�s TWAS sentinel gene start and stop positions). Over half (57%) of these loci 

contain only a single significant gene, while another 19% contain two significant genes. The 

remaining 24% of non-overlapping loci contain three or more significant genes, with up to 11 

significant genes at a single locus. These 120 loci contain 87 unique index genes (defined as the 

most significant TWAS gene within the locus). Most loci do not contain a TWAS gene that 

replicates in meta-analysis (67% total; that is 47% of all loci are single-gene loci that do not 

replicate plus 20% of all loci are multi-gene loci that do not contain any gene that replicates, 

even at a marginal level). Ten percent of all loci are single-gene loci that meet a marginal 

replication threshold (p < 0.05), and 20% of all loci are multi-gene loci that meet this marginal 

threshold for at least one gene at the locus. The remaining 4 loci (3%) contain multiple TWAS 

genes with at least one gene meeting a strict replication threshold (p < 2.09 X 10-4) 

(Supplementary Table 2). These include the following index gene-phenotype associations: 

TRIM68-MCV, USP49-MCV, PSMD3-NEUTRO, and PSMD3-WBC.

TWAS fine-mapping

In order to facilitate TWAS fine-mapping and allow for better interpretation of whether 

a given TWAS-identified gene is truly likely to associate with BCT variation, or whether it is likely 

to be a spurious association due to correlation of expression with nearby genes or other 

factors, we created an R Shiny application to interactively visualize TWAS sentinel genes in 

context, one locus at a time. The application allows us to integrate multiple sources of 

information from our primary TWAS analysis, including gene expression prediction models, 

TWAS meta-analysis, TWAS using secondary reference panels (whole blood and EBV 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432444
http://creativecommons.org/licenses/by/4.0/


10

transformed lymphocytes from GTEx, and monocytes from MESA), GWAS analysis of all BCTs, 

and correlation among genetic variants (i.e. LD) and among predicted gene expression levels. 

We highlight several loci to demonstrate the utility of the application, showcase some of the 

challenges that arise when TWAS identifies multiple significant genes at a single locus, and 

illustrate some of the complexities that are inherent in TWAS fine-mapping. In the sections that 

follow, we feature TWAS genes that fall into loci with a low, intermediate, or high level of 

complexity. All the figures in the following sections originate from the R Shiny application 

(http://shiny.bios.unc.edu/gera-twas/), which could be readily adapted to future TWAS analyses 

for other complex traits.

HK1 locus The HK1 gene is known to be associated with several red blood cell traits including 

hemoglobin, mean corpuscular volume, hematocrit, mean corpuscular hemoglobin, red blood 

count, and red blood cell distribution width in GWAS analyses [3] and is a Mendelian gene for 

hemolytic anemia [MIM 142600]. Our TWAS results confirm previously reported HK1 GWAS 

associations with HCT and MCV (assigned based on nearest gene for lead GWAS variants). The 

marginal TWAS tests for association between HK1 and  HCT (p = 3.84 X 10-8) and MCV (p = 1.05 

X 10-7) are statistically significant (Fig 1); associations are all but eliminated by conditional 

analysis on known GWAS sentinel variants (HCT p = 2.58 X 10-1; MCV p = 4.36 X 10-2); HK1 with 

HCT replicates in meta-analysis (p = 4.63 X 10-2); and HK1 is the most significant TWAS gene 

among only two other genes (HKDC1 and TSPAN15) implicated by GWAS at these loci, with the 

other two genes showing no TWAS signal.
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[ insert Figure 1 ]

Figure 1. HK1 locus (locus 60; chr 10: 70,029,740 - 72,161,638; trait = MCV) from R Shiny. 

TWAS results (top panel) and GWAS results (bottom panel). Marginal and conditional results for 

HK1 are presented in the top panel. Black colored genes and variants denote those previously 

reported by UK Biobank and BCX GWAS [3], blue variants denote those not previously reported 

as UK Biobank and BCX GWAS sentinel variants.

CREB5 locus The marginal TWAS tests for association between CREB5 and NEUTRO (p = 1.41 X 

10-12) and WBC (p = 4.01 X 10-10) are the only TWAS significant associations at this locus (Fig 2A), 

and associations are essentially eliminated by conditional analysis on known GWAS sentinel 

variants (NEUTRO p = 9.04 X 10-1; WBC p =3.97 X 10-1). However, at this locus, both CREB5 and 

JAZF1 (TWAS NEUTRO p = 5.26 X 10-3, WBC p = 2.42 X 10-3) have previously been annotated as 

being the nearest and/or assigned gene for one or more GWAS sentinel variants. Predicted 

gene expression for CREB5 and JAZF1 are not highly correlated (r2 between 0.0 - 0.2) and 

appear to share only a single, non-significant predictive model variant (Fig 2B). CREB5 and JAZF1 

both replicate at a lenient significance threshold for NEUTRO (p = 1.25 X 10-2, p = 8.98 X 10-3, 

respectively), and CREB5 also replicates at a lenient threshold for WBC (p = 2.61 X 10-2) but 

JAZF1-WBC does not replicate (p = 0.11). Both genes appear in the GTEx whole blood (GWB) 

and MESA monocyte (MSA) secondary reference panels, but neither gene meets the 

significance threshold for either reference panel. Importantly, Human Protein Atlas [16] reports 

that CREB5 is enhanced in blood and brain tissues and is specifically cell type enriched for 
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NEUTRO [17]. JAZF1 on the other hand has low tissue specificity [18]. Together the TWAS, 

GWAS, and Human Protein Atlas results point to CREB5 as the most likely, and most biologically 

plausible, gene over JAZF1 at this locus.

[ insert Figure 2 ]

Figure 2: CREB5 locus (locus 40; chr 7: 27,338,940 - 29,865,511; trait = NEUTRO) from R Shiny. 

TWAS results (top panels) and GWAS results (bottom panels). Marginal TWAS result displayed 

in (A), with Black colored genes and variants denoting those previously reported by GWAS, blue 

variants denote those not previously reported as GWAS sentinel variants. (B) Mirrored-

Manhattan locus-zoom plot displaying genes connected to their predictive model variants. 

Color scale, increasing from light grey to red, indicates the predicted expression correlation (r2) 

between the index TWAS gene and all other genes in the locus and the LD between the index 

variant and all other variants in the locus.

CD164 locus The CD164 gene is known to play a role in hematopoiesis [19, 20] and has been 

associated with several blood cell indices in GWAS analyses [3]. Our TWAS results prioritize 

CD164 over other genes at the locus as being significantly associated with MCV (p = 2.54 X 10-12) 

and categorize it into a multi-gene locus along with MICAL1 (p = 4.20 X 10-7) (Fig 3A). 

Conditional analysis on sentinel GWAS variants all but eliminates the TWAS signal for both 

CD164 (p = 8.61 X 10-2) and MICAL1 (p = 1.26 X 10-1). Interestingly, Fig 3B shows that CD164 and 

MICAL1 are not highly correlated in their predicted gene expression (r2: 0.2 - 0.4), and do not 
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share any predictive model variants. We also note that both genes replicate in meta-analysis at 

a lenient threshold (CD164 p = 1.56 X 10-3; MICAL1 p = 7.06 X 10-3; Fig 3C). Additionally, while 

MICAL1 is not available in secondary reference panels, CD164 meets the TWAS significance 

threshold for its association with MCV in GTEx whole blood and MESA monocytes (GTEx p = 

2.61 X 10-9 and MESA p = 4.09 X 10-8). Thus, the evidence at this locus suggests that expression 

of CD164 and MICAL1 are both reasonable candidates for being regulated by red cell-associated 

genetic variants although we note that Human Protein Atlas reports low tissue specificity for 

MICAL1 [21].

[ insert Figure 3 ]

Figure 3. CD164 locus (locus 36; chr 6: 108,687,717 - 110,703,762; trait = MCV) from R Shiny. 

(A) Marginal TWAS results in the top panel and GWAS results in the bottom panel. Black colored 

genes and variants denote those previously implicated by GWAS, and blue colored genes and 

variants denote those not previously implicated by GWAS. (B) Mirrored-Manhattan locus-zoom 

plot displaying genes connected to their predictive model variants. TWAS results in the top 

panel, GWAS results in the bottom panel. Color scale, increasing from light grey to red, 

indicates the predicted expression correlation (r2) between the index TWAS gene and all other 

genes in the locus and the LD between the index variant and all other variants in the locus. (C) 

Comparison of marginal TWAS (left panel) and TWAS meta-analysis (rightpanel). Black colored 

genes denote those previously implicated by GWAS sentinel variants, and blue genes denote 

those not previously implicated by GWAS sentinel variants.
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PSMD3 locus The PSMD3 locus contains a much higher level of complexity because it falls into a 

region containing many marginal TWAS genes, has a complex gene-gene correlation and LD 

pattern, and includes a combination of genes previously reported by GWAS as well as genes 

that have not been reported by GWAS. Thus, TWAS results do not clearly pinpoint the most 

likely causal gene. While PSMD3 appears as the index TWAS gene associated with WBC (Fig 4A), 

8 other genes are also TWAS significant at this locus. Five of those genes (IKZF3, GSDMB, 

ORMDL3, MED24, CCR7) replicate at a lenient significance threshold (p < 0.05), and PSMD3 

replicates at a more stringent threshold (p < 2.09 X 10-4) (Fig 4C). We see a complex network of 

shared model variants and correlation/LD patterns in Fig 4B, notably with MED24 and CCR7 (the 

next most significant genes at this locus) being only slightly correlated (r2 between 0.2 - 0.4) 

with PSMD3. The FOCUS fine-mapping results (Fig 4D) correspond to the TWAS results and 

indicate PSMD3 and MED24 as the most likely causal genes at the locus, each having posterior 

inclusion probabilities (PIPs) equal to 1.0. PIPs for all other genes at this locus, including CCR7, 

are less than 0.021 (Fig 4D).

[ insert Figure 4 ]

Figure 4. PSMD3 locus (locus 101; chr 17: 37,137,050 - 39,154,213; trait = white blood cell 

count). (A) displays marginal TWAS results (top panel) and GWAS results (bottom panel), with 

genes and variants colored in blue and black to denote those not reported by GWAS and those 

reported by GWAS, respectively. (B) is a mirrored-Manhattan locus-zoom plot displaying genes 

connected to their predictive model variants with TWAS results (top panel) and GWAS results 
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(bottom panel). Color scale, increasing from light grey to red, indicates the predicted expression 

correlation (r2) between the index TWAS gene and all other genes in the locus and the LD 

between the index variant and all other variants in the locus. (C) presents marginal TWAS 

results (left panel) and meta-analysis TWAS results (right panel), with genes colored in blue and 

black to denote those not reported by GWAS and those reported by GWAS, respectively. (D) 

displays the FOCUS posterior inclusion probabilities (PIPs) for each gene at this locus.

Discussion

We performed a large-scale TWAS using PrediXcan on 54,542 GERA individuals of 

European ancestry and present compelling evidence that results from marginal TWAS analyses 

alone cannot illuminate causal genes at loci for complex traits. We also present results of 

conditional analysis of the TWAS significant genes. While 17 gene-trait associations did remain 

significant after conditional analysis or contained no known GWAS sentinel variants within a 1 

Mb region of the gene, we found no substantive evidence from meta-analysis nor secondary 

reference panels to support these associations as novel discoveries for BCTs. Conditional 

analyses suggest that nearly all our TWAS findings are driven at least in part by GWAS sentinel 

variants from the largest recent European focused GWAS analysis for BCTs [3]. Most gene-trait 

associations no longer meet our TWAS-wide significance threshold after conditioning on GWAS 

sentinels. This is perhaps not surprising given the greater statistical power for this GWAS 

analysis, which was conducted in 563,085 participants. However, for 61 gene-trait associations 

(26%), some residual signal (p < 0.05) remains after conditioning on GWAS. For example, 
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although JAK2 is a well-known blood cell-associated signal from GWAS [3] and the Mendelian 

disease literature for platelet disorders [MIM 147796], its association with platelet count 

remained statistically significant after conditional analysis. Thus, our TWAS results suggest that 

there are likely additional regulatory variants at the JAK2 locus which are not tagged by current 

GWAS single variants. Similarly, for other gene-trait associations retaining some residual 

significance after conditional analysis our results suggest that additional small-effect regulatory 

variants remain to be discovered for these genes which associate with blood cell indices. This 

illustrates the power advantages from aggregate tests like TWAS.

We grouped the 239 TWAS-wide significant gene-trait associations into 120 loci for fine-

mapping. To effectively interpret these results, we introduce an R Shiny application which 

integrates TWAS and GWAS information into locus-specific, interactive visualizations which we 

use to assist with TWAS fine-mapping and interpretation. We show the utility of the R Shiny 

application in this endeavor by highlighting the varying levels of complexity at several TWAS loci 

and demonstrating where TWAS aligns with or provides advantages over GWAS. For example, 

the HK1-MCV locus shows a very simple genomic locus in which we find that TWAS confirms 

what we already know from GWAS. HK1 is the predominant glucose phosphorylating enzyme in 

mammalian tissues that share a strict dependence on glucose utilization for their physiologic 

functions, such as brain, erythrocytes, platelets, lymphocytes, and fibroblasts [22], and coding 

variants in HK1 are known to be associated with hemolytic anemia due to hexokinase deficiency 

[MIM 142600], providing a clear link to red blood cell related traits. The CREB5 locus further 

demonstrates one of the advantages of TWAS over GWAS in that the TWAS results provide 

clarity regarding the likely causal gene at the locus. At this locus, CREB5 and JAZF1 have both 
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been implicated by GWAS, again, likely assigned based on their physical proximity to the GWAS 

sentinel variant. However, CREB5 shows a strong TWAS signal, replicates in the much smaller 

meta-analysis sample, and Human Protein Atlas provides clear evidence of enrichment in blood 

(specifically neutrophils), as compared to JAZF1, which shows low blood and immune cell 

specificity [16-18]. These results in aggregate support CREB5 as the likely causal gene at this 

locus, even though CREB5 may not be the closest gene in proximity to all sentinel GWAS 

variants within the region.

We specifically highlight the challenges, particularly at multi-gene loci, which should be 

taken into consideration when interpreting TWAS findings, including total and/or predicted 

expression correlation, shared predictive model variants, relevance of reference tissue panel, 

biological plausibility, etc.  Furthermore, we demonstrate the importance of interpreting TWAS 

results in context. Although TWAS is useful for prioritizing candidate causal genes, researchers 

should guard against the hasty conclusion that the most significant gene is the only causal gene 

or even the most likely causal gene. For example, the conclusion at the CD164 locus is not 

entirely clear based on TWAS results. While TWAS points to CD164 as the causal gene, as does 

existing knowledge of the gene�s biological function, taking the full context of this locus into 

consideration, it is not out of the realm of possibilities that both CD164 and MICAL1 are causal 

at this locus. Furthermore, at the PSMD3 locus we see potentially misleading TWAS results 

when marginal TWAS statistics are interpreted alone. The PSMD3-WBC association appears as 

the sentinel gene at this locus. However, there are several pieces of evidence which support 

other genes, including CCR7,  as the most likely biologically plausible causal gene at the locus. 

First, PSMD3 and MED24 are ubiquitously expressed across tissues in Human Protein Atlas  and 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432444
http://creativecommons.org/licenses/by/4.0/


18

have low tissue specificity and no immune cell specificity [16, 23, 24]. Additionally, results for 

these two genes differ slightly by reference panel. MED24 appears in all secondary reference 

panels, but only exceeds the significance threshold in GWB and MSA. On the other hand, 

PSMD3 only appears in the MSA reference panel and is not statistically significant in that panel. 

Second, CCR7 is TWAS significant, it replicates at a lenient threshold in meta-analysis, and is 

enriched for expression in blood and lymphoid tissues, especially T-cells [25]. However, CCR7 is 

not highly correlated with nor does it appear to share model variants with PSMD3, and the 

FOCUS results show a posterior inclusion probability of only 0.001. Finally, CCR7 is known to be 

involved in the migration of neutrophils to lymph nodes [26]. While it is certainly possible at 

multi-gene TWAS loci for multiple genes at the locus to be contributing to trait regulation, it is 

also possible for spurious or non-relevant genes to be identified based on shared eQTLs across 

tissues which are not relevant to a given trait or correlation of gene expression.

Moreover, proximal genes which cannot be accurately imputed with a given reference 

panel, but which may still be influenced by variants identified by GWAS studies, must also be 

considered. For example, the gene colony-stimulating factor 3 (CSF3), which has a known key 

role in the production, differentiation, and function of granulocytes [MIM 138970], is also 

situated within the PSMD3 locus. However, this gene has very low constitutive expression in 

whole blood [27], and it is not depicted in Fig 4 because a predictive model could not be fit for 

this gene in the DGN reference panel (likely due to very low expression); therefore, CFS3 cannot 

be detected as a possible target gene at this locus (Supplementary Table 7 contains CSF3, along 

with other genes that have been assigned by one or more GWAS variants but are not included 

in DGN). This genomic region is extremely complex and highly pleiotropic, and any 
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interpretation of this locus using TWAS results alone is likely to be overly simplistic. This 

complex locus shows the importance of considering statistical evidence from TWAS, GWAS, and 

FOCUS fine-mapping as well as trait biology in the interpretation of TWAS findings.

While we have used PrediXcan and pre-calculated PredictDB weights for our analysis, 

we note a limitation in doing so. The variants included in PredictDB were not always available in 

our analytical cohort (generally due to poor imputation quality), so some predictive models did 

not use all PredictDB weights. We note that 70% of our TWAS significant genes were predicted 

with complete variant matching (i.e. used all model variants) and 85% of TWAS significant 

genes used at least 90% of model variants; we have included this information in Supplementary 

Table 2 for transparency, and these details should be taken into account when interpreting 

TWAS results.

The cohorts that we have included in our TWAS meta-analysis also pose some 

limitations on our ability to replicate GERA TWAS sentinel genes. The smaller sample sizes of 

the meta-analyzed cohorts are likely the primary reason why GERA TWAS sentinel genes fail to 

replicate. Additionally, it may be the case that major contributing variants exhibit differential 

allele frequencies across cohorts; although this is less likely than in multi-ethnic analyses 

because all cohorts are of European ancestry, it could still contribute to poorer power for 

replication. Furthermore, differences in imputation quality across cohorts could also explain the 

failure to replicate TWAS sentinel genes in meta-analysis. Thus, future investigations using 

homogeneously imputed data are needed to ensure consistency in imputation quality across 

cohorts.
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Although FOCUS, in some cases, helps to identify a set of the most likely causal genes at 

a locus, we have shown that it does not always provide enough evidence above and beyond 

TWAS to fully identify a putative causal gene set at a complex locus. Additionally, FOCUS 

performs a summary statistics-based TWAS method and then proceeds to fine-mapping the 

TWAS results from this method. However, we performed TWAS using PrediXcan, and thus, the 

fine-mapping results from FOCUS may not exactly match our PrediXcan TWAS results. In future, 

the FOCUS software could be extended to take pre-calculated TWAS results as input (using the 

TWAS method of the researcher�s choosing), bypassing the need to use GWAS summary 

statistics or to re-compute predicted gene expression. Our analysis is primarily conducted using 

whole blood TWAS weights only, with supplemental TWAS results available in our app for a few 

other blood-related tissues (whole blood and EBV transformed lymphocytes from GTEx and 

monocytes from MESA) ; we felt this was the most prudent approach to limit false positives and 

reduce needed multiple testing correction, versus an approach using TWAS weights in, for 

example, all GTEx tissues, particularly given the relatively large whole blood gene expression 

dataset available from DGN (N = 922). However, this choice could be inappropriate if the main 

relevant tissue at some blood cell-related loci is not in fact whole blood, and it limits our ability 

to use FOCUS fine-mapping to overcome choice of tissue for TWAS training. Joint/multiple 

tissue TWAS approaches such as UTMOST [9] and MR-JTI [8] could be employed in the future to 

assess the relevance of other tissues at blood-cell related loci.

In summary, we found that TWAS results enrich our understanding of GWAS, can help to 

explain trait variation, and are superior to merely selecting the nearest gene. We have shown 

that the gene, or genes, implicated in TWAS, in some cases, clearly overlap with what is known 
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in GWAS and from prior knowledge of important genes in hematopoietic processes. However, 

while we show that TWAS may help in some cases to pinpoint likely causal genes, we 

emphasize the need for investigators to carefully interpret TWAS results alone, out of context. 

We introduce an R Shiny application and demonstrate its utility in assisting researchers in this 

endeavor by leveraging the TWAS and GWAS information available from the analytical cohort 

and interactively visualizing results one locus at a time. The results of this analysis are 

accessible online at http://shiny.bios.unc.edu/gera-twas/, and we also make the layout of this 

application available for others to import and analyze their own TWAS results in an R package 

called LocusXcanR, which is available on GitHub (https://github.com/amanda-

tapia/LocusXcanR). Together with a clearer understanding of the relationship between TWAS 

and GWAS results and subject matter expertise, TWAS results can help us formulate 

mechanistic hypotheses for functional experimental validation.

Materials and Methods

All cohorts are described individually below. We analyze 10 hematological phenotypes 

(platelet count, red blood cell count, hematocrit, hemoglobin, mean corpuscular volume, red 

cell distribution width, white blood cell count, monocyte count, neutrophil count, and 

lymphocyte count) across all cohorts.

Ethics statement:
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We here performed secondary data analysis on deidentified data only (exempt 

research). All individual studies included were approved by relevant local institutional review 

boards, and participants provided written informed consent.

PrediXcan method:

PrediXcan [6] is a gene-based association test that prioritizes genes which are likely to 

be causal for the phenotype. It implements an elastic net-based method for selecting variants 

associated with gene expression in a given reference panel, and then uses those variants to 

predict gene expression in a cohort with only genotype data. We downloaded the PrediXcan 

software (see URLs) along with its prepackaged weights for gene expression data from 

PredictDB (see URLs). Weights for gene expression using RNA sequencing data were obtained 

from the Genotype-Tissue Expression project (version 7) [13] (whole blood, genes= 6208; and 

EBV transformed lymphocytes, genes=3000), Depression Genes and Networks [12] (whole 

blood, genes=11538, n=922), and Multi-Ethnic Study of Atherosclerosis (Europeans only, 

monocytes, genes=4647) [14].  Imputed genotypes for all cohorts were filtered for imputation 

quality based on R2 > 0.3; variants not meeting this threshold were excluded from the analysis. 

We use DGN as our primary reference panel for all TWAS analyses as it is the largest single 

whole blood RNA-seq dataset.

Included cohorts:

These TWAS analyses were limited to self-reported white or European ancestry 

participants, for easy comparability with the DGN European ancestry eQTL panel, including 
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input of LD information into the R Shiny application (see R Shiny Methods), and with the largest 

single-ancestry blood cell trait GWAS.  

Genetic Epidemiology Research on Adult Health and Aging (GERA) The GERA cohort includes 

over 100,000 adults who are members of the Kaiser Permanente Medical Care Plan, Northern 

California Region (KPNC) and consented to research on the genetic and environmental factors 

that affect health and disease, linking together clinical data from electronic health records, 

survey data on demographic and behavioral factors, and environmental data with genetic data 

[10] [11].  By self-report, the GERA cohort is 81% White and 19% minority. Each GERA 

participant provided a saliva sample for extraction of DNA, which was conducted at KPNC using 

Oragene kits (DNA Genotek Inc., Ottawa, ON, Canada). DNA samples were genotyped at the 

Genomics Core Facility of UCSF. Genotyping was completed as previously described [10] using 4 

different custom Affymetrix Axiom arrays with ethnic-specific content to increase genomic 

coverage. In addition to the QC protocols performed during genotyping, a total of six subjects, 

all female, were dropped due to sex non-agreement according to the Plink v1.07 --geno option 

and variants with more than 10% missingness were removed. Genotype data were phased 

without external reference using Eagle v2.3 and then imputed to 1000 Genomes Phase 3 v5 

using Minimac3. Principal components analysis was used to characterize genetic structure in 

this European sample [11]. Hematological measures were extracted from medical records. In 

individuals with multiple measurements, the first visit with complete white blood cell 

differential (if any) was used for each participant. Otherwise, the first visit was used. In total, 

54,542 non-Hispanic White individuals with hematological measures were included in the 

analysis.
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Women�s Health Initiative (WHI) WHI originally enrolled 161,808 women aged 50-79 between 

1993 and 1998 at 40 centers across the US, including both a clinical trial (including three trials 

for hormone therapy, dietary modification, and calcium/vitamin D) and an observational study 

arm [28]. WHI recruited a socio-demographically diverse population representative of US 

women in this age range. Two WHI extension studies conducted additional follow-up on 

consenting women from 2005-2010 and 2010-2015. Genotyping was available on some WHI 

participants through the WHI SNP Health Association Resource (SHARe) resource, which used 

the Affymetrix 6.0 array (~906,600 SNPs, 946,000 copy number variation probes) and on other 

participants through the MEGA array [29]. Imputation and association analysis was performed 

separately in individuals with Affymetrix only, MEGA only, and both Affymetrix and MEGA data. 

For variants with both Affymetrix and MEGA genotypes available, MEGA genotypes were used. 

In total, 18,100 self-reported white women with hematological phenotypes were included. All 

WHI subcohorts were imputed to 1000 Genomes Phase 3. Six sub-cohorts from the WHI study 

were included in the meta-analysis and phenotypes were not collected uniformly across the 

cohorts. Sample size information for each phenotype is contained in Supplementary Table 8.

Atherosclerosis Risk in Communities Study (ARIC) The ARIC study was initiated in 1987 and 

recruited participants age 45-64 years from 4 field centers (Forsyth County, NC; Jackson, MS; 

northwestern suburbs of Minneapolis, MN; Washington County, MD) to study cardiovascular 

disease and its risk factors [30], including the participants of self-reported European ancestry 

included here. Standardized physical examinations and interviewer-administered 

questionnaires were conducted at baseline (1987-89), three triennial follow-up examinations, a 

fifth examination in 2011-13, a sixth exam in 2016-2017 and a seventh exam in 2018-2019. 
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Genotyping was performed through the CARe consortium Affymetrix 6.0 array [31]. ARIC 

European American genotype data were imputed to Haplotype Reference Consortium (HRC) 

[32]. In total, 9,345 European ancestry participants with hematological phenotypes were 

included in the analysis. All phenotypes were adjusted for study site, age, age squared, sex, and 

top ten PCs and were inverse normalized.

Mount Sinai BioMe Biobank

The Mount Sinai BioMe Biobank, founded in September 2007, is an ongoing, broadly consented 

EHR-linked bio- and data repository that enrolls participants non-selectively from the Mount 

Sinai Medical Center patient population. The BioMe Biobank draws from a population of over 

70,000 inpatient and 800,000 outpatient visits annually from over 30 broadly selected clinical 

sites of the Mount Sinai Medical Center (MSMC). As of September 2020, BioMe has enrolled 

more than 50,000 patients that represent a broad racial, ethnic and socioeconomic diversity 

with a distinct and population-specific disease burden, characteristic of the communities served 

by Mount Sinai Hospital. BioMe participants are predominantly of African (AA, 24%), 

Hispanic/Latino (HL, 35%), European (EA, 32%), and other ancestry (OA, 10%). All blood cell 

phenotype data, as well as demographic variables, were extracted from the patients� EHRs. 

Genotyping was performed using the Illumina GSA array (~640.000 variants) and genotype data 

were imputed using the �1000G Phase 3 v5� reference panel. In total, 8,455 European ancestry 

participants with hematological phenotypes were included in the analysis. All phenotypes were 

adjusted for study site, age, age squared, sex, and top ten PCs and were inverse normalized. 

The BioMe Biobank Program operates under a Mount Sinai Institutional Review Board-

approved research protocol. All study participants provided written informed consent.
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Conditional analysis:

For each statistically significant TWAS gene-trait association, the effect of predicted 

gene expression was conditioned on a set of previously reported GWAS sentinel variants from 

[3] meeting the following criteria: 1) the sentinel variant fell within a 1Mb region of the TWAS 

gene, 2) the trait with which the GWAS variant was associated matched the TWAS analytical 

trait or was within the same trait category as the analytical trait (platelets, red blood cell indices 

[hematocrit, hemoglobin, mean corpuscular volume, red blood cell count, red blood cell 

distribution width], white blood cell indices [white blood cell count, neutrophils, monocytes, 

lymphocytes]), and 3) the GWAS variant met an imputation quality threshold of R2 > 0.3. We 

used a modified version of the cpgen R package (see cpgen Methods) to perform the 

conditional analysis, accounting for a PLINK KING-robust kinship matrix [33], which used only 

genotyped variants and excluded those with minor allele frequency less than 5% and those 

missing more than 1% of SNPs.

Meta-analysis and replication with ARIC, WHI, BioMe:

In order to replicate the conditionally significant gene-trait association, we tested each 

association via a meta-analysis of the ARIC, WHI, and BioMe cohorts. As described above, 

PrediXcan was used to facilitate gene expression imputation and association in each cohort 

separately, and the meta-analysis association test was conducted using METAL [34]. 
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Replication of the GERA significant gene-trait associations was performed using meta-

analyzed TWAS results from ARIC, WHI, and BioMe. Nine gene-trait associations remained 

statistically significant after conditional analysis; for this set of genes, we defined a Bonferroni-

corrected statistically significant replication threshold at p-value < 5.56 X 10-3. For the fine-

mapping analysis, statistical significance of replicated genes was qualified based on two 

different thresholds -- a stringent threshold Bonferroni-corrected for all 239 statistically 

significant TWAS gene-trait associations at p-value < 2.09 X 10-4, and a more lenient threshold 

at p-value < 0.05.

FOCUS:

We used the Fine-mapping Of CaUsal gene Sets (FOCUS) [15] software to fine-map 

TWAS statistics at genomic risk regions. As input, we used GWAS summary data from GERA 

along with eQTL weights from PredictDB Depression Genes and Networks whole blood data, 

and the European LD reference panel from 1000 Genomes Phase 3. The software outputs a 

credible set of genes at each locus which can be used to explain observed genomic risk.

Fine-mapping loci and locus categories:

Fine-mapping loci refers to fine-mapping analysis of trait-specific genomic locations that 

contain, and are centered at, sentinel TWAS genes. That is, we take the set of trait-specific 

statistically significant TWAS genes, select the most significant gene in the set (the sentinel 

gene), and assign it to a locus along with any other statistically significant TWAS genes within a 

1Mb window of the sentinel gene. We then select the next most significant TWAS gene which 
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has not yet been assigned to a locus and continue in this fashion until all statistically significant 

TWAS genes have been assigned to a locus.

We define locus categories based on whether the locus contains a single gene or 

multiple genes and whether the locus replicates in TWAS meta-analysis at either a lenient or 

strict threshold. Thus, locus categories are defined as follows: 1=single gene locus, strict 

replication (p < 2.09E-04); 2=single gene locus, replication (p < 0.05); 3=single gene locus, no 

replication; 4=multi gene locus, strict replication (p < 2.09E-04); 5=multi gene locus, replication 

(p < 0.05); 6=multi gene locus, no replication.

R Shiny:

We use R�s convenient Shiny package (version 1.5.0, implemented in R 4.0.3) to produce 

the web application which displays our GERA TWAS results. The IdeogramTrack 

(https://rdrr.io/bioc/Gviz/man/IdeogramTrack-class.html) uses Genome Reference Consortium 

Human Build 37 (GRCh37) and UCSC cytogentic bands from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/. All GERA TWAS results were 

produced using PrediXcan as described above. 

For GWAS results, GERA phenotypes (log10 transformed for WBC subtypes) were based 

on inverse normalized residuals and adjusted for sex, age, age-squared, and the first 10 genetic 

principal components; analysis was done with Bolt LMM as implemented in rvtests [35], as used 

in the meta-analyses reported in [3]. We excluded those without a valid date of blood cell count 

measurement, with age < 18 years, or with discordant genotypic and phenotypic sex, as well as 
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those with no blood cell trait data. The cohort also has longitudinal data; we preferentially 

selected the first visit with complete data for all measures. If no visit had complete data, we 

used the first available visit. We also excluded extreme blood cell measures: WBC>200x109 

cells/L, HGB>20 g/dL, HCT>60%, and PLT>1000x109 cells/L. For WBC subtypes, we analyzed 

log10-transformed absolute counts obtained by multiplying relative counts with total WBC 

count. Custom Axiom arrays used for GERA genotyping have been previously described [36] 

[37], as has genotype calling with apt-probeset-genotype and generation of PCs using 

EIGENSOFT4.2 [11].

GERA conditional analysis results were produced using cpgen as described below. 

Known GWAS sentinel variants were obtained from [3]. Model weights and model variants 

were taken from our primary DGN reference panel from PredictDB (or secondary reference 

panels GWB, GTL, or MSA from PredictDB). Correlation of predicted expression among genes at 

the locus was calculated using R�s cor() function, and LD among variants was computed using 

plink --r2 (https://zzz.bwh.harvard.edu/plink/ld.shtml). We used ggplot2() to produce all 

figures, except the network visualization used visNetwork(). Tables were produced using the DT 

package (https://www.rdocumentation.org/packages/DT/versions/0.16).

cpgen:

We used the R package cpgen to perform conditional analysis of TWAS-significant genes, while 

accounting for a KING kinship matrix. However, cpgen is designed in such a way that it performs 

eigenvalue decomposition on the cohort sample for every function call. Since we had 239 
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TWAS-significant associations, this would have required eigenvalue decomposition on a sample 

of N ~ 55,000 for each of those 239 associations, a computationally burdensome calculation. 

Thus, we slightly modified the cpgen script. Specifically, we computed the eigenvalue 

decomposition on the GERA sample outside of the cpgen script (for each phenotype), and then 

subsequently loaded the appropriate eigenvectors and eigenvalues into the program, modifying 

the script so that it could take these eigenvectors and eigenvalues as input.

Acknowledgements

The data and materials included in this report result from collaboration between multiple 

studies and organizations. The authors thank the staff and participants of GERA. The authors 

also thank the WHI investigators and staff for their dedication, and the study participants for 

making the program possible. A listing of WHI investigators can be found at: 

https://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigat

or%20Long%20List.pdf. The authors thank the staff and participants of the ARIC study for their 

important contributions. The authors also thank all participants in the Mount Sinai Biobank all 

our recruiters who have assisted and continue to assist in data collection and management and 

are grateful for the computational resources and staff expertise provided by Scientific 

Computing at the Icahn School of Medicine at Mount Sinai.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432444
http://creativecommons.org/licenses/by/4.0/


31

URLs

cpgen: https://github.com/cheuerde/cpgen

FOCUS: https://github.com/bogdanlab/focus

Human Protein Atlas: https://www.proteinatlas.org/

LocusXcanR R package for R Shiny application: https://github.com/amanda-tapia/LocusXcanR 

LocusXcanR R Shiny application for GERA results: http://shiny.bios.unc.edu/gera-twas/

METAL: https://genome.sph.umich.edu/wiki/METAL_Documentation

Online Mendelian Inheritance in Man (OMIM): https://www.omim.org/

PLINK KING kinship matrix: https://www.cog-genomics.org/plink/2.0/distance#make_king

PredictDB: http://predictdb.org/

PrediXcan: https://github.com/hakyimlab/PrediXcan

R Shiny: https://shiny.rstudio.com/
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