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Abstract

Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on
differences in the proportion of cell types or on differentially expressed genes. In many cases these
differences are driven by changes in cell interactions which are challenging to infer without spatial
information. To determine cell-cell interactions that differ between conditions we developed the
Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis
with regression-based modeling to identify differential cell type interactions and the proteins that
underlie them. We tested CINS on a disease case control and on an aging human dataset. In both
cases CINS correctly identifies cell type interactions and the ligands involved in these interactions.
We performed additional mouse aging scRNA-Seq experiments which further support the

interactions identified by CINS.
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Introduction

The ability to profile the expression of genes at the single cell level has revolutionized gene
expression studies. Single cell RNA-Seq (scRNA-Seq) studies resulted in insights related to the
cell type composition of tissues (1, 2), changes in cell type composition in various diseases and
states (3), various differentiation pathways used within cells (4) and more. However, while
scRNA-Seq provides valuable information about expression within cells, it is hard to use it to study
interaction between cells. The main problem is that once cells are extracted it is very challenging

to determine the spatial relationships among them (5).

Recently, a number of technologies have emerged for profiling single cell expression data with
spatial resolution (6-9). These technologies often combine Fluorescence in situ hybridization
(FISH) techniques with rapid sequencing technologies to provide information on the spatial
expression of thousands of genes at various resolutions (10, 11). A number of recent computational
methods have been developed to allow for the study of signaling pathways involved in cell-cell
interactions from this type of spatially-resolved expression data (12, 13). However, while spatial
transcriptomics studies are promising there are several challenges involved in employing this
technique to study intercellular interactions. First, these techniques are still in their infancy and
most labs do not have access or ability to perform such studies at the single cell resolution. More
importantly, spatial transcriptomics often requires the fixation of the samples which limits their
usage and can negatively impact their ability to accurately profile molecular quantities (10). In
addition, spatial transcriptomics methods can scan only a small region of the tissue and so cannot

be applied to large number of conditions and samples that are studied using scRNA-Seq.

Here we present a new method, the Cell Interaction Network Inference (CINS) pipeline, that

enables researchers to study cell type interactions in sSCRNA-Seq data. CINS involves two major
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steps. First, it uses sScRNA-Seq data from multiple samples of a similar condition (i.e. disease, age,
etc.) to learn Bayesian networks which highlight the cell types whose distributions are co-varying
under different conditions. Next, for the significant interactions identified in the Bayesian network
analysis, CINS learns a regression model with ligand-target interaction matrix (14) that identifies

the key ligands and targets that participate in the interactions between these cell types.

We tested CINS by applying it to both, disease and aging datasets. Using results of prior studies
we show that CINS correctly identifies known interacting cell type pairs and ligands associated
with these interactions. We also discuss several novel predictions made by CINS. Finally, we show
that a number of CINS predicted cell type interactions are supported by a new scRNA-Seq lung

aging dataset we profiled.

Results

The Cell Interaction Network Inference (CINS) Pipeline

We developed the Cell Interaction Network Inference (CINS) pipeline which uses single cell (sc)
RNA-seq expression data to infer cell-cell interactions (Fig. 1). Given repeated experiments of the
same condition / system CINS uses annotated cell type information to construct a Bayesian
network (BN) that models causal relationships between different cell types. For this, CINS first
discretizes the proportion data for each cell type using a Gaussian Mixture Model (GMM) with
only two components and then learns a BN that models the joint probability distribution of the cell
type mixtures observed for each sample. Significant causal relationships are determined based on
bootstrapping. Next, for each of the significant pairs identified we infer the molecular pathways

involved in the interactions by learning a ligand-target regression (LTR) model with ligand-target
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interaction database from NicheNet (14). The LTR model aims to explain changes in target genes
as a function of changes in their activating ligands allowing CINS to identify the most significant

ligands that regulate the cell-cell interactions.

Inferring cell type interactions using Bootstrapped Bayesian Network

We first studied a lung disease scRNA-Seq dataset (15). The lung disease dataset contained
scRNA-Seq data for 28 healthy (controls) and 32 Idiopathic Pulmonary Fibrosis (IPF) individuals.
A total of 250,942 cells were profiled for these individuals. Cell type annotations were assigned
based on the original study and we used the detailed assignments that provided information on 39

cell types.

We used CINS to explore differential cell type interactions between IPF and control samples. For
this, we constructed two different networks based on the cells profiled for each condition. We next
performed bootstrap analysis to determine the significance of each edge in each condition. Edges
that appear in the majority of bootstrap iterations likely represent real relationships in the data
rather than noise (16, 17). Resulting BNs for the two conditions are presented in Fig. 2A&B. As
the figures show, there are some edges that appear for both conditions. These include Basal to
Goblet cell interactions, which agrees with the fact that club cell’s attachment sites are provided
by Basal cell (18). However, there are also many differences between edges selected for the two
condition networks. Tab. 1 summarized the top differences based on the signed difference in edge
count in 100 bootstrap iterations for IPF and control (See Tab. S1 for differences for all detected
edges). Several of the highest scoring edges are supported by prior work. For example, the edge

from Treg to Fibroblast cell is supported by a previous study suggesting that Treg’s can negatively
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regulate fibroblast activity (19). The edge between cDC2 and cDCl is also supported by recent
work showing that cDC2 and cDCl1 are cross-talking with each other (20). Several other top

scoring edges are supported by the literature as referenced in Tab. 1.

Inferring ligand-target interactions for significant cell type pairs

While the BNs discussed above identify pairs of cell types that likely interact in disease, the
network does not show which genes and protein products participate in the interactions. To infer
such gene-gene interactions across cells we developed a ligand-target regression (LTR) model. For
cell type pairs identified in the BNs our LTR model uses a set of ligands in the first cell type to
predict the expression values of their known targets in the second cell type. The LTR model uses
the LASSO algorithm which enables the identification of a small set of key ligands predicted to
participate in the interaction observed in the BN. We trained the model using a five-fold cross

validation strategy. See Methods for details.

The LTR method was applied to all significant pairs identified by the BN. Tab. S2 presents top
scoring ligands for several cell type pairs. Tab. S3 presents top scoring ligands for one cell type
pair (Fibroblast -> Lymphatic cell). Several of the top LTR ligands are known to play an important
role in the activated cell (Lymphatic cell). For example, the highest scoring ligand identified by
LTR is “FGF2” which was identified as a critical gene for lymphangiogenesis (21). Another highly
ranked ligand, “TGFB1”, can also accelerate lymphatic regeneration in wound repair (22). Tab.
S4 presents top ranked ligands for another pair (Treg cell -> Fibroblast), several of which have
also been shown to participate in the interaction between these cell types. For example, fibroblast

express IL13 receptor and may behave as an inflammatory cell if stimulated by 1L-13 (23), and
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TGFB1-3 (including TGFB1 and TGFB2 in the table) are all involved in promoting collagen

production in fibroblasts (24).

Identified ligands are primarily involved in cell-cell interactions

To test if the predicted ligands are indeed impacting cell type-cell type interactions or mainly
represent autocrine relationships we compared the activity of top predicted ligands within and
between cell types. For this, we compared the performance of the LTR method for top edges to
the performance of a similar method that only uses information from a single cell type. Specifically,
if the BN predicted a significant interaction between cell types A -> B, we first trained LTR using
the ligands of A and the targets of B (as we did above) and compared the performance to a LTR

model which uses the ligands expressed in B to predict targets in B (autocrine model).

Results for the significant edges in the IPF and control datasets is presented in Fig. 3A. Fig. 3B.
presents the results for the same pairs (so x axis is fixed based on the BN significance) but with
the LTR trained using only the ligands of the second cell type. As can be seen, when using the
ligand of the predicted interacting cell type LTR obtained a higher average correlation with a p-
value of 0.034 (using the scipy function in Python for computing Pearson correlation p-values). In
contrast, when using the same cell type for both ligands and targets the Pearson correlation is much
lower (Fig. 3B). We also evaluated the performance of the LTR method on the predicted cell type
interactions by comparing the results we obtained with the real ligand-target interaction matrix to
results obtained using a random ligand-target interaction matrix. We found that for most of the

random assignments the resulting LASSO models contained only a Bias term with all coefficients
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set to 0 (Fig. S3). This indicates that expression of the ligands did not provide any useful

information about the expression of the targets when using the random interaction matrix.

Application to a scRNA-Seq dataset on lung aging

We next applied CINS to another, smaller, scRNA-Seq dataset which studied lung aging in mice
(25). The dataset profiled lung cells in 15 mice, 8 young (three-month, 3M) and 7 old (24-month,
24M). The 14,813 cells profiled in this study were assigned to one of 34 cell types in the original
paper. We again learned 100 bootstrapped BNs for the two conditions (young and old) and
compared the resulting networks. We found 11 edges to be differentially present between the two
conditions when using an edge threshold count of 20 (Fig. 4 and Tab. S5). These included an edge
between Capillary-endothelial-cell and Type 1-pneumocyte cells which are known to jointly form
thin air-blood barriers used for gas exchange (26). Another pair was Ciliated and Club cells, of
which the ratio is reported to alert significantly between young and old mouse lung (25). We next
performed LTR analysis on the significant edges (Fig. 5). The top ranked ligand in Ciliated cells,
TNF is known to regulate CC16 gene production, which plays a role in immunomodulatory activity
in Club cells (27). Apoe, a ligand identified for the macrophage to goblet edge, is produced by

macrophages to negatively modulate goblet cell hyperplasia (28).

As we did for the IPF study we compared the performance of the LTR method using ligands from
the BN identified edges (A -> B) and ligands from the same cell type (B) to predict target
expression for genes in B. We observed a Pearson correlation of 0.67 when using the ligands from

vs. Pearson correlation of 0.31 when using the ligands from B. And it is noticed that when
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randomizing the interactions the LTR method again failed to identify any significant correlation

between predicted and real expression for the targets (Fig. S3).

Computational Validation of Significant Edges using a second aging mouse lung dataset

To test the predictions of the aging BN and to validate them using an independent cohort we next
performed additional scRNA-Seq experiments on young and old mice to generate a pilot sScCRNA-
Seq dataset on lung aging. For this, we profiled four young and four old mice of the Fendrr-floxed
genotype recently generated in the Kaminski laboratory. We obtained 71,562 cells that were
clustered, annotated, and assigned to 20 cell types that overlapped with the cell types assigned by
Angelidis I et al. (25). We next used the combined data (from (26) and from our new experiments)
to learn a joint BN. Several of the predicted interactions were further supported by our new data.
Specifically, we found 19 cell type pairs for which the addition of our new data enhanced both the
presence of the edge and the direction predicted when performing the bootstrap analysis. Tab. S6
presents the top 10 enhanced pairs based on the overall bootstrap score (See Tab. S9 for all
enhanced pairs). For example, the interaction between Neutrophils and Gamma Delta T cell is
enhanced from edge count of 40 to 61 and was reported by recent studies that
neutrophils can suppress Gamma Delta T cell’s activation involved in the resolution of
inflammation (29). And the interaction between B Cell and CD4+ T Cell is enhanced from -16 to
-19 (being negative means that old lung has less), and is supported by other studies that B cell will
activate CD4 T cells in human cutaneous leishmaniasis infection led by Viannia (30). In addition,
we also found that T-cell-B-cell interactions were calculated to occur less often in older samples,

which further validates the comparison between old and young mice (31).

We next focused on the top five predicted interactions in Tab. S6 (all with an absolute enhanced

bootstrap score larger than 15). Permutation analysis indicates that identifying such a large number
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of edges supported by both studies is significant (p-value = 0.05, Methods and Fig. 6, and see
Tab. S11 for result of other threshold values). We applied LTR to the cell type pairs in Tab. S6 to
find important ligand genes. Tab. S7 presents the top predicted ligand genes. Several of these (red

font) are supported by prior studies on the interaction between these cell types.
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Discussion

To enable the study of cell type — cell type interactions using sSCRNA-Seq data we developed a
method termed Cell Interaction Network Inference (CINS). CINS first learns a Bayesian network
between cell types (BN) using repeated samples. Significant cell type pairs identified by the BN
are further studied to infer the ligands that regulate these interactions. CINS is implemented in

python and R and can be downloaded from www.github.com/CINS.

While CINS can be applied to any dataset with multiple samples, it is most appropriate for datasets
containing case and control or multiple conditions. For such datasets CINS can infer not only the
significant interactions within a condition but also those interactions that differ between the

condition and that may partially explain the differences between the conditions studied.

We first applied CINS to study a case and control dataset profiling lung expression from IPF
patients and controls. CINS identified several significant differences between the interactions
observed for IPF patients and for healthy individuals. These include the interaction from Treg to
Fibroblast cells which is supported by a recent study that found Treg can negatively regulate
fibroblast activity (19) , and the edge between cDC2 and c¢DCI1 is also supported by recent work

showing that cDC2 and cDCI1 are cross-talking with each other (20).

For many of the identified significant interactions CINS was also able to identify key ligands
involved in the interactions. For example, “FGF2” which was identified as a critical gene for
lymphangiogenesis (21), and one more highly ranked ligand, “TGFB1”, can also accelerate

lymphatic regeneration in wound repair (22).

We next applied CINS to a lung scRNA-Seq aging dataset and identified a number of significant

pairs that differ between young and old mice. To validate predicted interactions we performed
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additional experiments in which we profiled scRNA-Seq expression in 4 additional young and old
mice and then used the combined dataset to learn a joint network. As we showed, the network we
learned identified a significant number of interactions that are supported by both datasets. These
include the interactions between Neutrophils and Gamma Delta T cell (29), and between B Cell
and CD4+ T Cell (30, 31) which are both supported by previous studies. CINS was again able to
identify key ligands involved in these interactions, TNF, identified as the top ligand in the
interaction between neutrophils and Gamma Delta T cells was previously identified as expressed
in neutrophils (32) and as a regulator of immune cells Gamma Delta T cells (33), and TNFSF18
identified in interactions between CD4+ T cells and Vascular Endothelial Cells, was also

previously reported to mediate the interactions between immune cells and endothelial cells (34).

While CINS can be successfully applied to several scRNA-Seq studies, it does have several
limitations. First, it can only be applied if multiple samples are profiled since the BN part requires
several repeated samples to compute relationships between cells. In addition, because BNs do not
allow self edges interactions between cells of the same type cannot be identified by CINS. Finally,
since it uses a bootstrap approach to infer significance it can miss important interactions if not

enough samples and / or cells are available.

CINS is one of the first methods to enable the inference of cell type interactions in scCRNA-Seq
data from repeated samples. Given the growing popularity of this method, and its increased use in
clinical studies which are currently less amenable to spatial transcriptomics techniques we believe

that CINS provides a solution to an important problem that is not currently addressed.
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Methods

We developed a pipeline for modeling interactions between cells of different types from scRNA-
Seq data. Our method first identifies cell types that are likely interacting and then tries to provide

a mechanistic model to explain how such interactions are manifested at the molecular level.

Datasets

We tested CINS using three scRNA-Seq datasets. The first compared gene expression in lungs of
healthy and Idiopathic Pulmonary Fibrosis (IPF) with accession number of GSE136831 (15). This
dataset contained 28 controls and 32 IPF patients with a total of 243,472 cells and the expression
levels for 45,947 genes in each cell. We used the original annotations and included in the model
all 39 cell types with at least 100 cells. The second dataset studied lung aging in mice with
accession number of GSE124872 (25). This dataset contained 8 three-month-old mice and 7 24-
month-old mice for which a total of 14,813 cells were profiled. For each cell the expression levels
of 21,969 were provided. Each cell was assigned by the authors to one of 34 cell types. The third
dataset was a new dataset in which we profiled single cell expression in four young (25 weeks)
and four old (2x 103 weeks; 2x 120 weeks, Supporting Methods) Fendrr-floxed mouse lungs. This
dataset contained a total of 71,562 cells with expression values for 45,947 genes. These cells were
originally assigned to 37 cell types based on the expression of canonical cell type markers. To
combine the two aging datasets we identified a joint subset of 20 cell types identified by both and

only used cells assigned to on these cell types in our combined BN analysis.

Information about ligands and their targets were obtained from a recent paper (14) which provided

targets for 688 ligands.

Single-cell sequencing of Fendrr-floxed Mice
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Animal procedures had been approved by the Institutional Animal Care and Use Committee
(IACUC). We created a floxed allele of Fendrr via two-guide, two-oligo CRISPR/Cas mediated
cleavage and recombination essentially as described in Yang et al. (35). A generated mouse which
had the expected conditional allele was bred with C57BL/6J mice to establish the colony and to
sort the floxed allele from any other possible mutant alleles. Three female and five male mice in
two age groups (young: 23 weeks, old: ranging from 103 to 120 weeks; four mice per group) were
euthanized, and lungs were harvested and minced in small pieces with a scalpel. Lung pieces were

dissociated using the enzyme Liberase TL (Roche).

Single RNA molecules of single cells were barcoded using the 10x chromium single-cell
technology according to the manufacturer’s instructions (Single Cell 3" Reagent Kits v2, 10x
Genomics, USA). Barcodes were used to assign reads to cell and quality control was performed to
remove low quality cells (Supporting Methods). Generated sequencing data is available at GEO
accession number GSE165638. A modified version of the standard Seurat pipeline was employed
to normalize, cluster and annotate the raw counts single-cell expression data for downstream
analysis (36). Briefly, the percent of mitochondrially-expressed genes was calculated for each
individual cellbarcode using the PercentageFeatureSet function. Next, unique molecular identifier
(UMI) counts were log normalized with a scale factor of 10,000 UMIs per cell and then natural
log transformed using a pseudocount of one. Following log normalization, the top 3500 variable
genes within the dataset were determined using Seurat’s implementation of the
FindVariableFeatures function with the “vst” parameter. Next, the gene-level scaling of the data
was performed using the ScaleData function. Each feature was centered to have a mean of zero
and scaled by the standard deviation of each feature. The percent of mitochondrially-expressed

genes captured within each cell were regressed out during scaling by using the “vars.to.regress”
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parameter. To reduce the dimensionality of the dataset and to identify genes contributing the most
variability to the underlying manifold of the dataset, Principal Component Analysis (PCA) was
performed using the scaled data and the 3500 variable genes calculated determined for the dataset.
Following exploration of the PCs (Supporting Methods), the first 75 PCs were selected for
clustering and UMAP projection. The quality of subject and age representation within each cluster

was assessed prior to cell type annotation to note any subject- or age-specific biases.
Cell type assignment of Fendrr-floxed mice

To assign a specific cellular identity to each cluster, differentially expressed markers were
determined and assessed within the context of canonical marker genes. Briefly, a differential gene
expression test using Wilcoxon Rank Sum test was performed that compared the gene expression
within a specific cluster to expression within all cells outside of that cluster. The resulting list of
cluster-specific marker genes was assessed and cell types were ascribed based on expression of
canonical marker genes. Clusters displaying canonical markers for multiple cell types were flagged

as multiplets and were omitted from downstream analysis.

Cell type quantification and discretization

We use the cell type annotations provided by each of the study. To use Bayesian network to learn
relationships between cell type we first discretize the proportion of each cell type in each sample.
Discretization is cell type specific (i.e. different cell type will be assigned different values for the
same proportion quantity) and is learned using an unsupervised method based on Gaussian Mixture
Model (GMM) with two components. Specifically, let [xi, IR L x}v] be the fraction

(percentage) of the ith cell type in the N samples. We learn a two components GMM for these
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values and then assign each value to the class with the higher likelihood for this value. The target

function of the GMM aims to maximize the log likelihood:
(', ', 2Y) = Eiloalog (Zheo TV (ch, ik, 04) (1)

Where V' represents gaussian distribution and (7}, uk, o%) represent proportion, mean and

standard deviation parameters for the kzh component of the ith cell type.

Following convergence, each proportion value x/, is assigned to one of the two classes. We assign
labels to the two classes such that the component with lower mean parameter is assigned a value
of 0 and the second is assigned a value of 1. This leads to a learned cell type specific cutoff such
that all samples with a value less than that cutoff are assigned to 0 and all those above are assigned
to 1. However, the number of 0’s and 1’s is not pre-determined and may be highly skewed in either
direction based on the distribution of the fractions. See Fig. S1 for examples of assignments. To
learn GMMs we used the Python package “sklearn” with a maximum iteration number of 500 and

a convergence threshold of 10**-4.
Learning a cell type Bayesian network

We use the discretized cell type values to learn a cell type Bayesian network. Bayesian network is
a probabilistic graphical model that uses directed acyclic graph to represent joint probability
distributions. The absence of an edge can indicate independence and / or conditional independence.
Bayesian networks are parameterized as <G, P> where G = <V, E> is a directed acyclic graph with

V as variables and E as directed edges, and P is conditional probability for each node:
P(V) = P(Vy,Vy, ..., Vo) = 132, P(VylPa(V)) )

Where Pa(V;) is parent node set of V; according to G.
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To learn a Bayesian network using the discretized cell type proportion data. we iterate between
network learning and parameter estimation. We initialize the network using the Hiton Parents and
Children strategy which is based on marginal association among variables (37). Next we iterate a
search strategy, that uses penalized Hill-Climbing to add, flip or remove edges based on the

Bayesian Information Criterion (BIC) score:
BIC = logP(D|0,G) — %Dim(G)logQ 3)

For this, we used the “rsmax2” function from the R library “bnlearn”, which implements the

iterative Penalized Maximization algorithm to construct a Bayesian network.

To obtain confidence values for edges (predicted interactions) in the network we followed previous
learning methods that utilized a bootstrap strategy (16, 17). For each iteration of the bootstrap we
first randomly sample 80% of all single cells in the dataset. Next, we used these cells to determine
cell type frequencies in each sample and to perform the discretization and network learning as
described above. This step is repeated 100 times, and for which we counted the presence of all
directed edges. While the direction of an edge in a Bayesian network does not always imply casual

interactions (38), we observed that significant edges were also very consistent in their direction

(Tab. S1).

Ligand-Target Regression (LTR) Model

The bootstrapping method presented above provides a small set of significant interactions between
some of the cell types in the dataset. To obtain a mechanistic explanation for these interactions,
and to identify the interacting genes between the two cell types we focused on ligand-target

interactions. Specifically, for a directed edge between cell A and B we learned a regression model
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to explore the underlying gene interactions between A and B. Our assumption is that if these two
cell types indeed interact, then ligand gene expression data in cell A should be able to explain
some of the expression changes observed in cell type B. To identify the set of ligands in A

predicted to activate or repress genes in B we optimized the following model:

min YI( X lenloyaq — T(t))z + Allal| 4)

Where [ represents an input (known) ligand-target interaction matrix (14), L is a vector of log
values for the ligand expression fold change levels in cell type A, a represents the (unobserved)
ligand activation vector, T represents log value of gene expression fold change levels for target
genes in cell type B and 4 is a penalty parameter. Here we used a L/ penalty which usually leads
to the selection of relatively few non zero values (corresponding to relatively few activated ligands

in cell type A).

Setting A1y = Ity L1y, transforms the optimization problem to

. 2
min YI(EtAepany — Tw) + Alall )

Which is a standard least absolute shrinkage and selection operator (LASSO) model. For this, we
used the “LASSOCV” function from the Python library “scikit-learn”, which implements the

LASSO cross validation.
Training and Test for Ligand-Target Regression (LTR) Model

We used a five-fold cross validation to train and test the optimization model: We split the dataset
into three parts, training, validation and test. We first use the validation set to select the optimal
penalty term A and then retrain the using the entire data and the selected A to obtain the model used

for the fold test data. Evaluation of predicted values is based on the average Pearson correlation


https://doi.org/10.1101/2021.02.22.432206
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432206; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

between the predicted and actual expression changes for each fold. Following testing we use the
average product between the log fold change and coefficient value « in the five-fold training

models to rank the list of active ligands.

Joint plots of Bayesian Network and LTR model scores for cell type pairs

To jointly plot the Bayesian network bootstrap score and the Pearson correlation regression score
for each cell type pair, we first converted the edge count to log value. For the Pearson correlation
we used the average correlation for the five-fold results. For both IPF lung data and lung aging
data, cell pairs with edge count smaller than 20 are removed (See Tab. S10 for details). Note that
for some of the pairs we tried to model using LASSO the learning terminated with coefficients of
0 for all ligands (this happened for all runs of the random interaction matrix as we mention in
Results and to a few of the CV runs of the cell-cell and intra-cell models). In such cases these

models were removed from the correlation analysis.
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Tab. 1 Top differential cell type interactions identified by CINS for the IPF dataset. The IPF-
Control column lists the difference in the number of times the edge between the two cells was
identified in 100 bootstrap runs for each of the two datasets. Negative values indicate that it was
identified more for the Control whereas positive numbers mean that the interaction is more
prevalent in IPF. For all listed edges the interaction was only identified in for one of the two
datasets (score of 100 or -100).

cell_typel cell_type2 IPF- Reference
Control

Macrophage Ciliated -100 | There is strong interaction between ciliated cell and
Macrophage in COVID-19 critical cases (39)

Fibroblast Lymphatic -100 | Fibroblast produce extracellular matrix which is
critical to lymph node microenvironment (40)

cDC2 DC_Mature 100

cDC2 cDC1 -100 | ¢cDC2 and cDC1 are cross-talking with each other
(20)

Macrophage cDCl1 100

Mesothelial Aberrant_Basaloid 100

Macrophage_Alveolar | pDC -100 | Macrophage_Alveolar (AM) and pDC are involved in
antiviral immune, and pDC will be activated if the
AM defense line is broken (41)

Myofibroblast VE_Venous -100 | Injury lets endothelial cells transform to
myofibroblast (42)

Ciliated ncMonocyte -100 | Ciliated cells may contribute to monocyte inflow in
COVID-19 (39)

Multiplet VE_Capillary_B 100

B_Plasma Mesothelial -100 | Excess plasma cells are found with mesothelial cells
on effusion cytology smear (43)

VE_Capillary_B SMC -100

Pericyte SMC 100 | Brain pericytes and vascular SMC comprise mural
cells which is important to support blood vessels (44)

ncMonocyte Multiplet 100

ncMonocyte DC_Mature -100

T_Regulatory Fibroblast 100 | Treg cell regulates fibroblast in lung (19)

VE_ Arterial VE_Venous 100

T T_Regulatory 100

VE_Peribronchial Pericyte 100 | One pericyte can communicate with more than one
endothelial cells (45)

T_Regulatory DC_Langerhans -100
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Figure Legends

Figure 1. Overview of CINS. (a) Cell type information is discretized by learning Gaussian
Mixture Model (GMM) for the fraction of cells of this type in each sample. (b) A Bayesian network
(BN) is learned using the discretized cell abundance information. Bootstrapping is performed to
identify significant interactions between cell types. (¢) For pairs identified in the directed bootstrap
BN analysis, a ligand-target regression (LTR) model is learned. In this model we use expression
of ligands in the cell type with the outgoing edge to predict the expression of targets genes in the
cell type with incoming edge. (d) Finally, LTR is used to select key ligands that underlie the cell-

cell interactions identified in the BN. cell interaction.

Figure 2. Bayesian Networks (BN) learned for lung cell types in healthy and IPF individual.
(a) BN for controls (healthy individuals). (b) BN for IPF patients. Nodes represent specific cell
types and are colored accordingly, edges represent directed interactions between the cell types.

Edge width corresponds to its bootstrap score.
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Figure 3. Interactions learned by the BN are more significant than interactions between cells
of the same type. Comparison between the ability of the LTR model to predict target expression
when learning the model using cells identified by the BN (a) and the same cell type (b). The x axis
represents the bootstrapped edge count (significance) of the interaction in the BN for a cell type

pair, and the y axis represents the LTR model performance (higher is better) for the same cell pair.

Figure 4. Aging Bayesian Networks. (a) BN for young mice. (b) BN for adult mice. Nodes and

edges notations and colorings are similar to those used in Fig. 2.

Figure 5. LTR comparison for the aging data. Comparison between the ability of the LTR model
to predict target expression when learning the model using cells identified by the BN (a) and the

same cell type (b).

Figure 6. Permutation analysis highlights the agreement between the two aging networks. (a)
Top — Learning combined networks using real data. Bottom — Learning combined networks using
permutation analysis of cell type fractions in the new data. (b) Overlap in bootstrapped edges
between the original and combined model when using the real data (red dashed line) and the

permutation data (blue distribution).
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