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Abstract 

Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on 

differences in the proportion of cell types or on differentially expressed genes. In many cases these 

differences are driven by changes in cell interactions which are challenging to infer without spatial 

information. To determine cell-cell interactions that differ between conditions we developed the 

Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis 

with regression-based modeling to identify differential cell type interactions and the proteins that 

underlie them.  We tested CINS on a disease case control and on an aging human dataset. In both 

cases CINS correctly identifies cell type interactions and the ligands involved in these interactions. 

We performed additional mouse aging scRNA-Seq experiments which further support the 

interactions identified by CINS. 
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Introduction 

The ability to profile the expression of genes at the single cell level has revolutionized gene 

expression studies. Single cell RNA-Seq (scRNA-Seq)  studies resulted in insights related to the 

cell type composition of tissues (1, 2), changes in cell type composition in various diseases and 

states (3), various differentiation pathways used within cells (4) and more. However, while 

scRNA-Seq provides valuable information about expression within cells, it is hard to use it to study 

interaction between cells. The main problem is that once cells are extracted it is very challenging 

to determine the spatial relationships among them (5).  

Recently, a number of technologies have emerged for profiling single cell expression data with 

spatial resolution (6-9). These technologies often combine Fluorescence in situ hybridization 

(FISH) techniques with rapid sequencing technologies to provide information on the spatial 

expression of thousands of genes at various resolutions (10, 11). A number of recent computational 

methods have been  developed  to allow for the study of signaling pathways involved in cell-cell 

interactions from this type of spatially-resolved expression data (12, 13). However, while spatial 

transcriptomics studies are promising there are several challenges   involved in employing this 

technique to study intercellular interactions. First, these techniques are still in their infancy and 

most labs do not have access or ability to perform such studies at the single cell resolution. More 

importantly, spatial transcriptomics often requires the fixation of the samples which limits their 

usage and can negatively impact their ability to accurately profile molecular quantities (10). In 

addition, spatial transcriptomics methods can scan only a small region of the tissue and so cannot 

be applied to large number of conditions and samples that are studied using scRNA-Seq. 

Here we present a new method, the Cell Interaction Network Inference (CINS) pipeline, that 

enables researchers to study cell type interactions in scRNA-Seq data. CINS involves two major 
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steps. First, it uses scRNA-Seq data from multiple samples of a similar condition (i.e. disease, age, 

etc.)  to learn Bayesian networks which highlight the cell types whose distributions are co-varying 

under different conditions. Next, for the significant interactions identified in the Bayesian network 

analysis,  CINS learns a regression model with ligand-target interaction matrix (14) that identifies 

the key ligands and targets that participate in the interactions between these cell types. 

We tested CINS by applying it to both, disease and aging datasets. Using results of prior studies 

we show that CINS correctly identifies known interacting cell type pairs and ligands associated 

with these interactions. We also discuss several novel predictions made by CINS. Finally, we show 

that a number of CINS predicted cell type interactions are supported by a new scRNA-Seq lung 

aging dataset we profiled.  

 

Results 

The Cell Interaction Network Inference (CINS) Pipeline 

We developed the Cell Interaction Network Inference (CINS) pipeline which uses single cell (sc) 

RNA-seq expression data to infer cell-cell interactions (Fig. 1). Given repeated experiments of the 

same condition / system CINS uses annotated cell type information to construct a Bayesian 

network (BN) that models causal relationships between different cell types. For this, CINS first 

discretizes the proportion data for each cell type using a Gaussian Mixture Model (GMM) with 

only two components and then learns a BN that models the joint probability distribution of the cell 

type mixtures observed for each sample. Significant causal relationships are determined based on 

bootstrapping. Next, for each of the significant pairs identified we infer the molecular pathways 

involved in the interactions by learning a ligand-target regression (LTR) model with ligand-target 
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interaction database from NicheNet (14). The LTR model aims to explain changes in target genes 

as a function of changes in their activating ligands allowing CINS to identify the most significant 

ligands that regulate the cell-cell interactions.  

 

Inferring cell type interactions using Bootstrapped Bayesian Network 

We first studied a lung disease scRNA-Seq dataset (15). The lung disease dataset contained 

scRNA-Seq data for 28 healthy (controls) and 32 Idiopathic Pulmonary Fibrosis (IPF) individuals. 

A total of 250,942 cells were profiled for these individuals. Cell type annotations were assigned 

based on the original study and we used the detailed assignments that provided information on 39 

cell types.  

We used CINS to explore differential cell type interactions between IPF and control samples. For 

this, we constructed two different networks based on the cells profiled for each condition. We next 

performed bootstrap analysis to determine the significance of each edge in each condition. Edges 

that appear in the majority of bootstrap iterations likely represent real relationships in the data 

rather than noise (16, 17).  Resulting BNs for the two conditions are presented in Fig. 2A&B. As 

the figures show, there are some edges that appear for both conditions. These include Basal to 

Goblet cell interactions, which agrees with the fact that club cell’s attachment sites are provided 

by Basal cell (18). However, there are also many differences between edges selected for the two 

condition networks. Tab. 1 summarized the top differences based on the signed difference in edge 

count in 100 bootstrap iterations for IPF and control (See Tab. S1 for differences for all detected 

edges). Several of the highest scoring edges are supported by prior work. For example, the edge 

from Treg to Fibroblast cell is supported by a previous study suggesting that Treg’s can negatively 
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regulate fibroblast activity (19). The edge between cDC2 and cDC1 is also supported by recent 

work showing that cDC2 and cDC1 are cross-talking with each other (20). Several other top 

scoring edges are supported by the literature as referenced in Tab. 1. 

 

Inferring ligand-target interactions for significant cell type pairs  

While the BNs discussed above identify pairs of cell types that likely interact in disease, the 

network does not show which genes and protein products participate in the interactions. To infer 

such gene-gene interactions across cells we developed a ligand-target regression (LTR) model. For 

cell type pairs identified in the BNs our LTR model uses a set of ligands in the first cell type to 

predict the expression values of their known targets in the second cell type. The LTR model uses 

the LASSO algorithm which enables the identification of a small set of key ligands predicted to 

participate in the interaction observed in the BN. We trained the model using a five-fold cross 

validation strategy. See Methods for details.  

The LTR method was applied to all significant pairs identified by the BN. Tab. S2 presents top 

scoring ligands for several cell type pairs. Tab. S3 presents top scoring ligands for one cell type 

pair (Fibroblast -> Lymphatic cell). Several of the top LTR ligands are known to play an important 

role in the activated cell (Lymphatic cell). For example, the highest scoring ligand identified by 

LTR is <FGF2= which was identified as a critical gene for lymphangiogenesis (21). Another highly 

ranked ligand, <TGFB1=, can also accelerate lymphatic regeneration in wound repair (22). Tab. 

S4 presents top ranked ligands for another pair (Treg cell -> Fibroblast), several of which have 

also been shown to participate in the interaction between these cell types. For example, fibroblast 

express IL13 receptor and may behave as an inflammatory cell if stimulated by IL-13 (23), and 
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TGFB1-3 (including TGFB1 and TGFB2 in the table) are all involved in  promoting collagen 

production in fibroblasts (24).   

 

Identified ligands are primarily involved in cell-cell interactions  

To test if the predicted ligands are indeed impacting cell type-cell type interactions or mainly 

represent autocrine relationships we compared the activity of top predicted ligands within and 

between cell types. For this, we compared the performance of the LTR method for top edges to 

the performance of a similar method that only uses information from a single cell type. Specifically, 

if the BN predicted a significant interaction between cell types A -> B, we first trained LTR using 

the ligands of A and the targets of B (as we did above) and compared the performance to a LTR 

model which uses the ligands expressed in B to predict targets in B (autocrine model). 

Results for the significant edges in the IPF and control datasets is presented in Fig. 3A. Fig. 3B. 

presents the results for the same pairs (so x axis is fixed based on the BN significance) but with 

the LTR trained using only the ligands of the second cell type. As can be seen, when using the 

ligand of the predicted interacting cell type LTR obtained a higher average correlation with a p-

value of 0.034 (using the scipy function in Python for computing Pearson correlation p-values). In 

contrast, when using the same cell type for both ligands and targets the Pearson correlation is much 

lower (Fig. 3B).  We also evaluated the performance of the LTR method on the predicted cell type 

interactions by comparing the results we obtained with the real ligand-target interaction matrix to 

results obtained using a random ligand-target interaction matrix. We found that for most of the 

random assignments the resulting LASSO models contained only a Bias term with all coefficients 
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set to 0 (Fig. S3). This indicates that expression of the ligands did not provide any useful 

information about the expression of the targets when using the random interaction matrix. 

 

Application to a scRNA-Seq dataset on lung aging 

We  next applied CINS to another, smaller, scRNA-Seq dataset which studied lung aging in  mice 

(25). The dataset profiled lung cells in 15 mice, 8 young (three-month, 3M) and 7 old (24-month, 

24M). The 14,813 cells profiled in this study were assigned to one of 34 cell types in the original 

paper. We again learned 100 bootstrapped BNs for the two conditions (young and old) and 

compared the resulting networks. We found 11 edges to be differentially present between the two 

conditions when using an edge threshold count of 20 (Fig. 4 and Tab. S5). These included an edge 

between Capillary-endothelial-cell and Type 1-pneumocyte cells which are known to jointly form 

thin air-blood barriers used for gas exchange (26). Another pair was Ciliated and Club cells, of 

which the ratio is reported to alert significantly between young and old mouse lung (25).  We next 

performed LTR analysis on the significant edges (Fig. 5). The top ranked ligand in Ciliated cells, 

TNF is known to regulate CC16 gene production, which plays a role in immunomodulatory activity 

in Club cells (27). Apoe, a ligand identified for the macrophage to goblet edge, is produced by 

macrophages to negatively modulate goblet cell hyperplasia (28).  

As we did for the IPF study we compared the performance of the LTR method using ligands from 

the BN identified edges (A -> B) and ligands from the same cell type (B) to predict target 

expression for genes in B. We observed a Pearson correlation of 0.67 when using the ligands from 

vs. Pearson correlation of 0.31 when using the ligands from B. And it is noticed that when 
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randomizing the interactions the LTR method again failed to identify any significant correlation 

between predicted and real expression for the targets (Fig. S3).   

Computational Validation of Significant Edges using a second aging mouse lung dataset 

To test the predictions of the aging BN and to validate them using an independent cohort we next 

performed additional scRNA-Seq experiments on young and old mice to generate a pilot scRNA-

Seq dataset on lung aging. For this, we profiled four young and four old mice of the Fendrr-floxed 

genotype recently generated in the Kaminski laboratory. We obtained 71,562 cells that were 

clustered, annotated, and assigned to 20 cell types that overlapped with the cell types assigned by 

Angelidis I et al. (25). We next used the combined data (from (26) and from our new experiments) 

to learn a joint BN. Several of the predicted interactions were further supported by our new data. 

Specifically, we found 19 cell type pairs for which the addition of our new data enhanced both the 

presence of the edge and the direction predicted when performing the bootstrap analysis. Tab. S6 

presents the top 10 enhanced pairs based on the overall bootstrap score (See Tab. S9 for all 

enhanced pairs). For example, the interaction between Neutrophils and Gamma Delta T cell is 

enhanced from edge count of 40 to 61 and was reported by recent studies that 

neutrophils can suppress Gamma Delta T cell’s activation involved in the resolution of 

inflammation (29). And the interaction between B Cell and CD4+ T Cell is enhanced from -16 to 

-19 (being negative means that old lung has less), and is supported by other studies that B cell will 

activate CD4 T cells in human cutaneous leishmaniasis infection led by Viannia (30). In addition, 

we also found that T-cell-B-cell interactions were calculated to occur less often in older samples, 

which further validates the comparison between old and young mice (31). 

We next focused on the top five predicted interactions in Tab. S6 (all with an absolute enhanced 

bootstrap score larger than 15). Permutation analysis indicates that identifying such a large number 
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of edges supported by both studies is significant (p-value = 0.05, Methods and Fig. 6, and see 

Tab. S11 for result of other threshold values). We applied LTR to the cell type pairs in Tab. S6 to 

find important ligand genes. Tab. S7 presents the top predicted ligand genes. Several of these (red 

font) are supported by prior studies on the interaction between these cell types.  
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Discussion 

To enable the study of cell type – cell type interactions using scRNA-Seq data we developed a 

method termed Cell Interaction Network Inference (CINS). CINS first learns a Bayesian network 

between cell types (BN) using repeated samples. Significant cell type pairs identified by the BN 

are further studied to infer the ligands that regulate these interactions. CINS is implemented in 

python and R and can be downloaded from www.github.com/CINS. 

While CINS can be applied to any dataset with multiple samples, it is most appropriate for datasets 

containing case and control or multiple conditions. For such datasets CINS can infer not only the 

significant interactions within a condition but also those interactions that differ between the 

condition and that may partially explain the differences between the conditions studied.  

We first applied CINS to study a case and control dataset profiling lung expression from IPF 

patients and controls. CINS identified several significant differences between the interactions 

observed for IPF patients and for healthy individuals. These include the interaction from Treg to 

Fibroblast cells which is supported by a recent study that found Treg can negatively regulate 

fibroblast activity (19) , and the edge between cDC2 and cDC1 is also supported by recent work 

showing that cDC2 and cDC1 are cross-talking with each other (20).  

For many of the identified significant interactions CINS was also able to identify key ligands 

involved in the interactions. For example, <FGF2= which was identified as a critical gene for 

lymphangiogenesis (21), and one more highly ranked ligand, <TGFB1=, can also accelerate 

lymphatic regeneration in wound repair (22).  

We next applied CINS to a lung scRNA-Seq aging dataset and identified a number of significant 

pairs that differ between young and old mice. To validate predicted interactions we performed 
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additional experiments in which we profiled scRNA-Seq expression in 4 additional young and old 

mice and then used the combined dataset to learn a joint network. As we showed, the network we 

learned identified a significant number of interactions that are supported by both datasets. These 

include the interactions between Neutrophils and Gamma Delta T cell (29), and between B Cell 

and CD4+ T Cell (30, 31) which are both supported by previous studies. CINS was again able to 

identify key ligands involved in these interactions, TNF, identified as the top ligand in the 

interaction between neutrophils and Gamma Delta T cells was previously identified as expressed 

in neutrophils (32) and as a regulator of immune cells Gamma Delta T cells (33), and TNFSF18 

identified in interactions between CD4+ T cells and Vascular Endothelial Cells, was also 

previously reported to mediate the interactions between immune cells and endothelial cells (34).  

While CINS can be successfully applied to several scRNA-Seq studies, it does have several 

limitations. First, it can only be applied if multiple samples are profiled since the BN part requires 

several repeated samples to compute relationships between cells. In addition, because BNs do not 

allow self edges interactions between cells of the same type cannot be identified by CINS. Finally, 

since it uses a bootstrap approach to infer significance it can miss important interactions if not 

enough samples and / or cells are available.  

CINS is one of the first methods to enable the inference of cell type interactions in scRNA-Seq 

data from repeated samples. Given the growing popularity of this method, and its increased use in 

clinical studies which are currently less amenable to spatial transcriptomics techniques we believe 

that CINS provides a solution to an important problem that is not currently addressed.  
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Methods 

We developed a pipeline for modeling interactions between cells of different types from scRNA-

Seq data. Our method first identifies cell types that are likely interacting and then tries to provide 

a mechanistic model to explain how such interactions are manifested at the molecular level.  

Datasets 

We tested CINS using three scRNA-Seq datasets. The first compared gene expression in lungs of 

healthy and Idiopathic Pulmonary Fibrosis (IPF) with accession number of GSE136831 (15). This 

dataset contained 28 controls and 32 IPF patients with a total of 243,472 cells and the expression 

levels for 45,947 genes in each cell. We used the original annotations and included in the model 

all 39 cell types with at least 100 cells. The second dataset studied lung aging in mice with 

accession number of GSE124872 (25). This dataset contained 8 three-month-old mice and 7 24-

month-old mice for which a total of 14,813 cells were profiled. For each cell the expression levels 

of 21,969 were provided. Each cell was assigned by the authors to one of 34 cell types. The third 

dataset was a new dataset in which we profiled single cell expression in four young (25 weeks) 

and four old (2x 103 weeks; 2x 120 weeks, Supporting Methods) Fendrr-floxed mouse lungs. This 

dataset contained a total of 71,562 cells with expression values for 45,947 genes. These cells were 

originally assigned to 37 cell types based on the expression of canonical cell type markers. To 

combine the two aging datasets we identified a joint subset of 20 cell types identified by both and 

only used cells assigned to on these cell types in our combined BN analysis. 

Information about ligands and their targets were obtained from a recent paper (14) which provided 

targets for 688 ligands. 

Single-cell sequencing of Fendrr-floxed Mice 
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Animal procedures had been approved by the Institutional Animal Care and Use Committee 

(IACUC). We created a floxed allele of Fendrr via two-guide, two-oligo CRISPR/Cas mediated 

cleavage and recombination essentially as described in Yang et al. (35). A generated mouse which 

had the expected conditional allele was bred with C57BL/6J mice to establish the colony and to 

sort the floxed allele from any other possible mutant alleles. Three female and five male mice in 

two age groups (young: 23 weeks, old: ranging from 103 to 120 weeks; four mice per group) were 

euthanized, and lungs were harvested and minced in small pieces with a scalpel. Lung pieces were 

dissociated using the enzyme Liberase TL (Roche).  

Single RNA molecules of single cells were barcoded using the 10× chromium single-cell 

technology according to the manufacturer’s instructions (Single Cell 3′ Reagent Kits v2, 10× 

Genomics, USA). Barcodes were used to assign reads to cell and quality control was performed to 

remove low quality cells (Supporting Methods). Generated sequencing data is available at GEO 

accession number GSE165638. A modified version of the standard Seurat pipeline was employed 

to normalize, cluster and annotate the raw counts single-cell expression data for downstream 

analysis (36). Briefly, the percent of mitochondrially-expressed genes was calculated for each 

individual cellbarcode using the PercentageFeatureSet function. Next, unique molecular identifier 

(UMI) counts were log normalized with a scale factor of 10,000 UMIs per cell and then natural 

log transformed using a pseudocount of one. Following log normalization, the top 3500 variable 

genes within the dataset were determined using Seurat’s implementation of the 

FindVariableFeatures function with the <vst= parameter. Next, the gene-level scaling of the data 

was performed using the ScaleData function. Each feature was centered to have a mean of zero 

and scaled by the standard deviation of each feature. The percent of mitochondrially-expressed 

genes captured within each cell were regressed out during scaling by using the <vars.to.regress= 
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parameter. To reduce the dimensionality of the dataset and to identify genes contributing the most 

variability to the underlying manifold of the dataset, Principal Component Analysis (PCA) was 

performed using the scaled data and the 3500 variable genes calculated determined for the dataset. 

Following exploration of the PCs (Supporting Methods), the first 75 PCs were selected for 

clustering and UMAP projection. The quality of subject and age representation within each cluster 

was assessed prior to cell type annotation to note any subject- or age-specific biases. 

Cell type assignment of Fendrr-floxed mice 

To assign a specific cellular identity to each cluster, differentially expressed markers were 

determined and assessed within the context of canonical marker genes. Briefly, a differential gene 

expression test using Wilcoxon Rank Sum test was performed that compared the gene expression 

within a specific cluster to expression within all cells outside of that cluster. The resulting list of 

cluster-specific marker genes was assessed and cell types were ascribed based on expression of 

canonical marker genes. Clusters displaying canonical markers for multiple cell types were flagged 

as multiplets and were omitted from downstream analysis. 

 

Cell type quantification and discretization 

We use the cell type annotations provided by each of the study. To use Bayesian network to learn 

relationships between cell type we first discretize the proportion of each cell type in each sample. 

Discretization is cell type specific (i.e. different cell type will be assigned different values for the 

same proportion quantity) and is learned using an unsupervised method based on Gaussian Mixture 

Model (GMM) with two components. Specifically, let [�1� , �2� , ⋯ ��� ⋯ , ��� ] be the fraction 

(percentage) of the ith cell type in the N samples.  We learn a two components GMM for these 
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values and then assign each value to the class with the higher likelihood for this value. The target 

function of the GMM aims to maximize the log likelihood: 

ý�(�� ,  Ā�, Σ�) =  3 log (3 �ý� �(��� , Āý� , σý� )1ý=0 )��=1                                                                     (1) 

Where �  represents gaussian distribution and ( �ý� , Āý� , σý� ) represent proportion, mean and 

standard deviation parameters for the kth component of the ith cell type.  

Following convergence, each proportion value ���  is assigned to one of the two classes. We assign 

labels to the two classes such that the component with lower mean parameter is assigned a value 

of  0 and the second is assigned a value of 1. This leads to a learned cell type specific cutoff such 

that all samples with a value less than that cutoff are assigned to 0 and all those above are assigned 

to 1. However, the number of 0’s and 1’s is not pre-determined and may be highly skewed in either 

direction based on the distribution of the fractions. See Fig. S1 for examples of assignments. To 

learn GMMs we used the Python package <sklearn= with a maximum iteration number of 500 and 

a convergence threshold of 10**-4. 

Learning a cell type Bayesian network  

We use the discretized cell type values to learn a cell type Bayesian network. Bayesian network is 

a probabilistic graphical model that uses directed acyclic graph to represent joint probability 

distributions.  The absence of an edge can indicate independence and / or conditional independence. 

Bayesian networks are parameterized as <G, P> where G = <V, E> is a directed acyclic graph with 

V as variables and E as directed edges, and P is conditional probability for each node: 

ÿ(�) =  ÿ(�1, �2, & . , ��) = / ÿ(��|ÿ�(��))��=1                                                                         (2) 

Where ÿ�(��) is parent node set of �� according to G. 
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To learn a Bayesian network using the discretized cell type proportion data. we iterate between 

network learning and parameter estimation. We initialize the network using the Hiton Parents and 

Children strategy which is based on marginal association among variables (37). Next we iterate a 

search strategy, that uses penalized Hill-Climbing to add, flip or remove edges based on the 

Bayesian Information Criterion (BIC) score: 

þ�ÿ = ý��ÿ(Ā|Θ, �) 2 12 Ā�þ(�)ý��Ā                                                                                      (3) 

For this, we used the <rsmax2= function from the R library <bnlearn=, which implements the 

iterative Penalized Maximization algorithm to construct a Bayesian network.  

To obtain confidence values for edges (predicted interactions) in the network we followed previous 

learning methods that utilized a bootstrap strategy (16, 17). For each iteration of the bootstrap we 

first randomly sample 80% of all single cells in the dataset. Next, we used these cells to determine 

cell type frequencies in each sample and to perform the discretization and network learning as 

described above. This step is repeated 100 times, and for which we counted the presence of all 

directed edges. While the direction of an edge in a Bayesian network does not always imply casual 

interactions (38), we observed that significant edges were also very consistent in their direction 

(Tab. S1).  

 

Ligand-Target Regression (LTR) Model  

The bootstrapping method presented above provides a small set of significant interactions between 

some of the cell types in the dataset. To obtain a mechanistic explanation for these interactions, 

and to identify the interacting genes between the two cell types we focused on ligand-target 

interactions. Specifically, for a directed edge between cell A and B we learned a regression model 
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to explore the underlying gene interactions between A and B.  Our assumption is that if these two 

cell types indeed interact, then ligand gene expression data in cell A should be able to explain 

some of the expression changes observed in cell type B. To identify the set of ligands in A 

predicted to activate or repress genes in B we optimized the following model:  

min� 3 (  3 �(�,þ)�(þ)�(þ) 2 �(�)�þ )2 + ÿ‖�‖��                                                                                           (4) 

Where � represents an input (known) ligand-target interaction matrix (14), � is a vector of log 

values for the ligand expression fold change levels in cell type A, � represents the (unobserved) 

ligand activation vector, � represents log value of gene expression fold change levels for target 

genes in cell type B and ÿ is a penalty parameter. Here we used a L1 penalty which usually leads 

to the selection of relatively few non zero values (corresponding to relatively few activated ligands 

in cell type A).  

Setting ý(�,þ) =  �(�,þ) �(þ), transforms the optimization problem to 

min� 3 (3 ý(�,þ)�(þ) 2 �(�)�þ )2 + ÿ‖�‖��                                                                                          (5) 

Which is a standard least absolute shrinkage and selection operator (LASSO) model. For this, we 

used the <LASSOCV= function from the Python library <scikit-learn=, which implements the 

LASSO cross validation. 

Training and Test for Ligand-Target Regression (LTR) Model  

We used a five-fold cross validation to train and test the optimization model: We split the dataset 

into three parts, training, validation and test. We first use the validation set to select the optimal 

penalty term ÿ and then retrain the using the entire data and the selected ÿ to obtain the model used 

for the fold test data. Evaluation of predicted values is based on the average Pearson correlation 
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between the predicted and actual expression changes for each fold. Following testing we use the 

average product between the log fold change and coefficient value � in the five-fold training 

models to rank the list of active ligands. 

Joint plots of Bayesian Network and LTR model scores for cell type pairs 

To jointly plot the Bayesian network bootstrap score and the Pearson correlation regression score 

for each cell type pair, we first converted the edge count to log value. For the Pearson correlation 

we used the average correlation for the five-fold results. For both IPF lung data and lung aging 

data, cell pairs with edge count smaller than 20 are removed (See Tab. S10 for details). Note that 

for some of the pairs we tried to model using LASSO the learning terminated with coefficients of 

0 for all ligands (this happened for all runs of the random interaction matrix as we mention in 

Results and to a few of the CV runs of the cell-cell and intra-cell models). In such cases these 

models were removed from the correlation analysis. 
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Tab. 1 Top differential cell type interactions identified by CINS for the IPF dataset. The IPF-

Control column lists the difference in the number of times the edge between the two cells was 

identified in 100 bootstrap runs for each of the two datasets. Negative values indicate that it was 

identified more for the Control whereas positive numbers mean that the interaction is more 

prevalent in IPF. For all listed edges the interaction was only identified in for one of the two 

datasets (score of 100 or -100).   

cell_type1 cell_type2 IPF-

Control 

Reference 

Macrophage Ciliated -100 There is strong interaction between ciliated cell and 

Macrophage in COVID-19 critical cases (39) 

Fibroblast Lymphatic -100 Fibroblast produce extracellular matrix which is 

critical to lymph node microenvironment (40) 

cDC2 DC_Mature 100  

cDC2 cDC1 -100 cDC2 and cDC1 are cross-talking with each other 

(20) 

Macrophage cDC1 100  

Mesothelial Aberrant_Basaloid 100  

Macrophage_Alveolar pDC -100 Macrophage_Alveolar (AM) and pDC are involved in 

antiviral immune, and pDC will be activated if the 

AM defense line is broken (41) 

Myofibroblast VE_Venous -100 Injury lets endothelial cells transform to 

myofibroblast (42) 

Ciliated ncMonocyte -100 Ciliated cells may contribute to monocyte inflow in 

COVID-19 (39) 

Multiplet VE_Capillary_B 100  

B_Plasma Mesothelial -100 Excess plasma cells are found with mesothelial cells 

on effusion cytology smear (43) 

VE_Capillary_B SMC -100  

Pericyte SMC 100 Brain pericytes and vascular SMC comprise mural 

cells which is important to support blood vessels (44) 

ncMonocyte Multiplet 100  

ncMonocyte DC_Mature -100  

T_Regulatory Fibroblast 100 Treg cell regulates fibroblast in lung (19) 

VE_Arterial VE_Venous 100  

T T_Regulatory 100  

VE_Peribronchial Pericyte 100 One pericyte can communicate with more than one 

endothelial cells (45) 

T_Regulatory DC_Langerhans -100  
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Figure Legends 

Figure 1. Overview of CINS. (a) Cell type information is discretized by learning Gaussian 

Mixture Model (GMM) for the fraction of cells of this type in each sample. (b) A Bayesian network 

(BN) is learned using the discretized cell abundance information. Bootstrapping is performed to 

identify significant interactions between cell types. (c) For pairs identified in the directed bootstrap 

BN analysis, a ligand-target regression (LTR) model is learned. In this model we use expression 

of ligands in the cell type with the outgoing edge to predict the expression of targets genes in the 

cell type with incoming edge. (d) Finally, LTR is used to select key ligands that underlie the cell-

cell interactions identified in the BN. cell interaction. 

 

Figure 2. Bayesian Networks (BN) learned for lung cell types in healthy and IPF individual. 

(a) BN for controls (healthy individuals). (b) BN for IPF patients. Nodes represent specific cell 

types and are colored accordingly, edges represent directed interactions between the cell types. 

Edge width corresponds to its bootstrap score.  
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Figure 3. Interactions learned by the BN are more significant than interactions between cells 

of the same type. Comparison between the ability of the LTR model to predict target expression 

when learning the model using cells identified by the BN (a) and the same cell type (b). The x axis 

represents the bootstrapped edge count (significance) of the interaction in the BN for a cell type 

pair, and the y axis represents the LTR model performance (higher is better) for the same cell pair.

  

 

Figure 4. Aging Bayesian Networks. (a) BN for young mice. (b) BN for adult mice. Nodes and 

edges notations and colorings are similar to those used in Fig. 2.  

 

Figure 5. LTR comparison for the aging data. Comparison between the ability of the LTR model 

to predict target expression when learning the model using cells identified by the BN (a) and the 

same cell type (b).  

 

Figure 6. Permutation analysis highlights the agreement between the two aging networks. (a) 

Top – Learning combined networks using real data. Bottom – Learning combined networks using 

permutation analysis of cell type fractions in the new data. (b) Overlap in bootstrapped edges 

between the original and combined model when using the real data (red dashed line) and the 

permutation data (blue distribution). 
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