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Abstract		

Structure-based	drug	discovery	efforts	require	knowledge	of	where	drug-binding	

sites	are	located	on	target	proteins.	To	address	the	challenge	of	finding	druggable	

sites,	we	developed	a	machine-learning	algorithm	called	TACTICS	(Trajectory-based	

Analysis	of	Conformations	To	Identify	Cryptic	Sites),	which	uses	an	ensemble	of	

molecular	structures	(such	as	molecular	dynamics	simulation	data)	as	input.		First,	

TACTICS	uses	k-means	clustering	to	select	a	small	number	of	conformations	that	

represent	the	overall	conformational	heterogeneity	of	the	data.	Then,	TACTICS	uses	

a	random	forest	model	to	identify	potentially	bindable	residues	in	each	selected	

conformation,	based	on	protein	motion	and	geometry.		Lastly,	residues	in	possible	

binding	pockets	are	scored	using	fragment	docking.		As	proof-of-principle,	TACTICS	

was	applied	to	the	analysis	of	simulations	of	the	SARS-CoV-2	main	protease	and	

methyltransferase	and	the	Yersinia	pestis	aryl	carrier	protein.		Our	approach	

recapitulates	known	small-molecule	binding	sites	and	predicts	the	locations	of	sites	

not	previously	observed	in	experimentally	determined	structures.		The	TACTICS	

code	is	available	at	https://github.com/Albert-Lau-Lab/tactics_protein_analysis.	
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Introduction		

Designing	allosteric	modulators	requires	a	knowledge	of	which	parts	of	the	protein	

can	bind	ligands	with	high	affinity.	This	is	not	a	trivial	task,	especially	in	cases	where	

the	binding	site	can	be	classified	as	<cryptic=.		A	cryptic	site	can	be	broadly	defined	

as	a	site	that	is	apparent	when	a	ligand	is	bound	to	it	but	difficult	to	detect	when	no	

ligand	is	present(1).		One	proposed	mechanism	for	cryptic	site	formation	is	the	

<induced	fit=	mechanism,	in	which	the	ligand	causes	the	protein	to	adopt	a	

conformation	that	it	would	otherwise	not	adopt.		Another	proposed	mechanism	is	

<conformational	selection=,	in	which	ligands	bind	and	stabilize	pocket-containing	

conformations	that	are	rare	(but	not	nonexistent)	in	unbound	proteins.		It	is	likely	

that	many	cryptic	sites	undergo	a	combination	of	these	mechanisms(2),(3),(4).		The	

exact	definition	of	a	cryptic	pocket	is	subject	to	debate;	a	particularly	difficult	

question	involves	the	classification	of	sites	that	are	visible	in	some	unbound	

structures	but	are	hidden	in	other	structures.		Some	classify	these	sites	as	cryptic(5),	

but	this	is	not	universally	accepted(1).		Finding	a	cryptic	site	on	a	protein	does	not	

guarantee	that	the	protein	is	druggable.		For	a	cryptic	site	to	be	of	interest	for	drug	

design,	it	must	also	be	allosteric:	the	binding	site9s	conformation	must	influence	the	

protein9s	function(6).		Despite	this	caveat,	the	ability	to	find	cryptic	pockets	opens	

up	an	additional	promising	avenue	for	drug	design.	

A	variety	of	algorithms	have	been	developed	to	study	binding	sites	(both	

cryptic	and	non-cryptic).		Some	algorithms	characterize	the	behavior	of	known	

pockets.		Many	of	these	algorithms	analyze	molecular	dynamics	(MD)	simulations,	
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including	EPOCK(7),	POVME(8),(9),(10),	and	TRAPP(11),(12),(13).		These	

algorithms	are	useful	for	characterizing	the	behavior	of	known	pockets,	but	their	

reliance	on	prior	knowledge	of	binding	pocket	locations	limits	their	use	on	poorly	

understood	proteins.	

Other	algorithms	predict	the	locations	of	previously	unknown	pockets.		Some	

take	a	static	structure	(such	as	a	PDB	file)	as	input,	such	as	LIGSITE(14),	

KVFinder(15),	COACH(16),	COFACTOR(17),	ConCavity(18),	FPocket(19),	GalaxySite	

(20),	ghecom(21),	DoGSite(22),	and	FTMAP(23).		This	approach	can	sometimes	

provide	druggability	scores	of	predicted	pockets,	as	seen	in	PRANK(24)	and	

DoGSiteScorer(25).		Using	a	single	structure	reduces	computational	time	but	makes	

it	difficult	to	find	cryptic	sites	that	are	not	present	in	all	conformations.		Using	these	

programs	on	MD	trajectories	would	require	users	to	either	run	them	on	each	frame	

(which	is	computationally	expensive)	or	select	individual	frames	to	be	analyzed	

(which	increases	the	time	and	expertise	required).		Other	algorithms	use	MD	

simulations;	these	algorithms	consider	multiple	protein	conformations	and	thus	are	

sometimes	able	to	find	cryptic	sites.	One	variety	of	MD	procedure	is	<mixed-solvent	

MD=,	in	which	proteins	are	simulated	in	a	system	containing	both	water	and	small-

molecule	probes(26),(27),(28),(29),(30),(31).		The	probes	may	interact	with	the	

binding	sites	on	the	protein,	revealing	the	sites9	locations.		Probes	can	open	pockets	

that	operate	by	the	induced	fit	mechanism.		The	SWISH	procedure(2),(32)	combines	

the	use	of	probes	with	enhanced	sampling.		A	procedure	somewhat	similar	to	

mixed-solvent	MD	<wraps=	the	protein	in	a	coating	of	ligand	before	MD	

simulation(33).		While	these	procedures	are	extremely	powerful,	they	require	
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specialized	simulations.		This	prevents	their	use	on	precomputed	trajectories.	

Other	algorithms	that	find	pockets	or	binding	sites	take	the	results	of	

precomputed	MD	simulations	that	may	not	include	probes.		EPOSBP	(34),	

trj_cavity(35),	MDPocket(36),	D3Pockets(37),	and	NanoShaper(38),(39)	begin	with	

geometry-based	pocket	finders	that	neglect	physicochemical	properties;	then	they	

analyze	the	newly	found	pockets.		Pocketron(40)	begins	with	NanoShaper,	then	

performs	detailed	analyses	with	an	emphasis	on	characterizing	allosteric	regulation.				

FTDyn(41)	docks	small	probes	onto	frames	from	precomputed	MD	trajectories	in	

order	to	find	bindable	regions.		The	exposon	procedure(42)	uses	correlated	changes	

in	solvent-accessible	surface	area	to	find	cryptic	pockets.		Each	of	these	procedures	

can	be	quite	useful,	but	all	have	limitations.		Some	do	not	consider	physicochemical	

properties	(such	as	those	examined	in	fragment	docking),	leaving	users	uncertain	

about	the	extent	to	which	geometrically	reasonable	pockets	will	bind	ligands.		Other	

programs	run	on	each	frame	of	the	trajectory,	making	it	time	consuming	to	run	the	

software	and	interpret	the	output	for	long	simulations.		Users	can	mitigate	this	by	

selecting	individual	frames	for	analysis	(e.g.,	through	clustering),	but	this	increases	

the	workflow9s	complexity.		By	incorporating	the	abilities	to	both	select	individual	

frames	for	analysis	and	consider	physicochemsitry	into	a	single	software	package,	

TACTICS	fulfils	a	unique	niche.	

CryptoSite(5)	takes	a	different	approach	by	calculating	its	own	MD	

trajectories	without	probes	within	the	algorithm.	The	JEDI	procedure(43)	also	

includes	probe-free	MD	simulations,	with	the	JEDI	score	used	as	a	collective	variable	
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to	enhance	sampling.			However,	the	procedure	requires	users	to	define	a	region	of	

interest,	limiting	the	applicability	to	proteins	lacking	any	information	about	cryptic	

site	locations.	

Each	of	these	strategies	has	advantages	and	disadvantages.		Mixed-solvent	

MD	probes	can	open	cryptic	pockets	that	operate	by	the	induced-fit	mechanism.		

However,	mixed-solvent	MD	simulations	must	avoid	undesirable	interactions	

between	probe	molecules.		Strategies	for	this	include	adding	repulsion	between	

probes(30),	choosing	probes	that	do	not	aggregate(26),	and	simulating	each	probe	

type	separately(27).		MD	simulations	without	probes	avoid	the	issue	of	probe-probe	

interactions,	but	they	risk	missing	cryptic	sites	that	require	induced	fit.		Because	

many	cryptic	sites9	opening	mechanisms	include	conformational	selection	(in	

addition	to	induced	fit),	it	is	possible	that	probe-free	simulations	will	expose	part	(if	

not	all)	of	the	existing	cryptic	sites.			

Developers	of	pocket-finding	software	must	also	consider	whether	their	

approach	should	analyze	existing	MD	simulations	or	run	MD	within	the	algorithm.	

The	latter	strategy	allows	software	users	who	are	unfamiliar	with	MD	to	explore	

conformational	space	without	the	effort	of	learning	to	set	up	their	own	simulation.	

However,	automatic	system	generation	may	prevent	users	from	studying	proteins	

that	require	specialized	or	nonstandard	conditions.	Software	that	takes	

precomputed	MD	trajectories	assumes	that	users	have	the	knowledge	necessary	to	

set	up	and	run	an	MD	simulation.	However,	it	gives	users	more	flexibility	in	the	

types	of	simulations	that	can	be	studied.	Software	that	analyzes	precomputed	
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trajectories	also	permits	trajectories	calculated	for	other	studies	to	be	repurposed	

as	TACTICS	input	for	pocket-finding	research.		

The	ability	of	machine	learning	(ML)	to	find	trends	in	complex	data	makes	it	

a	promising	technique	for	the	nontrivial	task	of	predicting	small	molecule	binding	

sites.		A	few	algorithms	that	find	binding	sites	use	machine	learning(16),(5),	but	

most	do	not.	Machine	learning	has	the	potential	to	substantially	improve	binding	

site	prediction,	including	prediction	of	<cryptic	pockets=	that	are	not	present	in	

crystal	structures(1).	Thus	efforts	to	apply	ML	and	other	cutting-edge	

computational	techniques	to	the	prediction	of	binding	sites	can	have	substantial	

impacts	on	the	process	of	designing	drugs.		

We	designed	and	implemented	a	machine	learning	algorithm	that	finds	

druggable	pockets	within	MD	trajectories.	The	algorithm	is	named	TACTICS	

(<Trajectory-based	Analysis	of	Conformations	To	Identify	Cryptic	Sites=).		As	

described	below,	TACTICS	correctly	identifies	several	known	or	predicted	ligand	

binding	sites	in	SARS-CoV-2	proteins.	It	also	predicts	several	novel	binding	sites	in	

the	SARS-CoV-2	29-O	RNA	methyltransferase	and	the	Yersinia	pestis	aryl	carrier	

protein.	These	predicted	sites	provide	new	opportunities	for	drug	development.	The	

TACTICS	software	is	freely	available	so	that	it	can	be	used	to	find	druggable	sites	in	

other	proteins.		
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Methods	

ML	Training	Database	Generation		

The	ML	model	used	in	TACTICS	was	trained	using	a	database	of	crystal	structures.	

Each	protein	in	the	database	has	a	single	<holo=	structure	with	a	ligand	bound	in	the	

cryptic	site	and	up	to	50	<apo=	structures	without	a	ligand	in	the	site.	These	

ensembles	of	structures	are	designed	to	imitate	MD	trajectories	in	which	a	few	

frames	have	the	cryptic	site	that	is	absent	in	most	frames.	

Database	construction	began	with	a	reconstruction	of	the	Cryptosite	

Database(5).	Each	cryptic	site	in	this	database	has	an	<apo=	structure	with	the	site	

hidden	and	a	<holo=	structure	with	a	ligand	in	the	cryptic	site.	The	original	database	

contains	the	AMPAR	LBD	twice.		Both	entries	were	removed	from	the	reconstructed	

database.	

After	the	Cryptosite	Database	was	reconstructed,	it	was	extended	using	a	

procedure	similar	to	that	used	in	Beglov	et	al.(3).	For	each	database	protein,	the	

PDB9s	95%	sequence	identity	cluster	was	downloaded.	This	provided	additional	apo	

structures	to	be	compared	with	each	holo	structure.	This	is	important	because	the	

database	is	designed	to	mimic	MD	trajectories	in	which	many	frames	may	have	the	

pocket	region	in	conformations	different	from	the	bound	conformation.		While	the	

percentage	of	time	that	a	pocket	is	open	in	an	MD	trajectory	is	likely	to	be	system-

dependent,	it	is	reasonable	to	suppose	that	ensembles	of	conformations	generated	

by	MD	would	frequently	have	high	ratios	of	apo-like	structures	to	holo-like	
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structures.		The	ML	training	database	was	designed	to	mimic	this.	

MODELLER(44)	was	used	to	match	the	holo	structure9s	residue	numbers	

with	those	of	each	structure	in	the	cluster.	PyMOL(45)	was	used	to	select	residues	in	

the	holo	structure	within	9	Å	of	the	co-crystallized	ligand;	these	residues	were	used	

to	align	the	holo	structure	with	each	extended-	database	structure.	All	extended-site	

structures	with	a	ligand	other	than	water	or	a	metal	within	5	�A	of	the	holo	ligand	

were	removed	from	the	database.	This	was	done	because	no	apo	structures	should	

have	the	cryptic	site	bound.	

Our	procedure	assumes	that	in	the	Cryptosite	database,	cryptic	sites	are	

closed	(or	otherwise	unbindable)	in	all	unbound	(<apo=)	structures.		However,	some	

<apo=	structures	may	have	the	cryptic	site	partially	or	fully	open	and	bindable	

despite	the	absence	of	ligand(3).	This	shortcoming	of	the	present	database	may	

impact	the	ML	model9s	accuracy.		This	is	because	the	ML	training	procedure	seeks	to	

identify	how	protein	conformations	differ	when	cryptic	sites	are	bound	or	unbound;	

when	the	bound	and	unbound	structures	resemble	each	other,	this	is	impossible.		

Eliminating	this	shortcoming	would	be	difficult:	proteins	exist	in	a	spectrum	of	

conformations	with	more	or	less	accessible	cryptic	sites,	and	classifying	

intermediate	states	as	either	bindable	or	unbindable	would	require	arbitrary	

decisions.	

An	additional	shortcoming	is	presented	by	the	variability	in	the	number	of	

apo	structures	per	holo	structure.	Some	proteins	have	been	crystallized	more	often	

than	others,	resulting	in	a	biased	distribution	of	crystal	structures.	To	reduce	the	
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severity	of	this	issue,	a	maximum	of	50	apo	structures	per	holo	structure	was	used.	

This	does	not	completely	eliminate	the	issue,	as	proteins	with	fewer	than	50	

structures	will	be	undersampled.	However,	it	reduces	the	issue9s	severity.		

ML	Model	Construction		

A	machine	learning	model	was	constructed	to	find	cryptic	sites.	The	model	predicts	

the	likelihood	that	a	given	residue	in	a	given	structure	is	part	of	an	accessible	cryptic	

site.	The	model	was	designed	to	return	False	for	residues	that	are	not	part	of	a	

cryptic	site,	and	for	residues	that	are	part	of	a	cryptic	site	that	is	not	accessible	in	

the	input	structure.	It	is	only	intended	to	return	True	when	the	input	structure	

contains	an	accessible	cryptic	site.		

The	model	uses	several	features.	One	feature	is	the	ConCavity	score	for	each	

residue(18).	ConCavity	is	a	pocket	detection	algorithm	that	considers	the	geometry	

of	the	input	structure	and	(if	allowed	by	the	user)	the	sequence	conservation	of	each	

residue.		It	has	been	used	in	other	multi-step	pocket	finding	algorithms(5),(16).		

ConCavity	has	the	option	of	only	using	the	structural	information	(ignoring	

sequence	conservation);	TACTICS	uses	this	option.		Including	sequence	

conservation	in	ConCavity	may	improve	TACTICS9s	results;	this	might	be	added	to	

future	versions	of	the	software.		ConCavity9s	structure-based	approach	starts	by	

using	Ligsite(14)	to	determine	which	points	near	the	protein	are	part	of	geometric	

pockets.		ConCavity	then	clusters	these	points	into	binding	sites	and	uses	these	sites	

to	assign	scores	to	each	residue.		It	considers	only	a	single	structure.	
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Another	feature	in	TACTICS9s	ML	model	is	the	change	in	ConCavity	score	

between	the	current	structure	and	a	reference	structure.		This	feature	can	only	be	

calculated	from	conformational	ensembles	such	as	MD	trajectories,	so	it	sets	

TACTICS	apart	from	algorithms	that	work	on	a	single	structure.		The	feature	was	

included	to	increase	TACTICS9s	ability	to	find	cryptic	sites.		It	is	important	because	

flexibility	has	been	observed	to	be	associated	with	cryptic	site	locations(3).		The	

reference	structure	must	be	provided	by	the	software	user.		It	is	expected	that	the	

reference	structure	will	usually	be	the	first	frame	of	the	MD	trajectory,	but	another	

structure	can	be	chosen	(as	long	as	it	is	aligned	to	the	MD	trajectory	and	has	

identical	residue	numbering).	

A	druggable	cryptic	pocket	should	include	more	than	one	residue.	The	model	

considers	this	by	including	as	a	feature	the	average	ConCavity	score	of	the	residues	

to	either	side	(in	the	sequence)	of	the	residue	in	question.	It	might	be	useful	to	

consider	spatially	close	residues	that	may	not	be	close	on	the	sequence;	future	

versions	of	TACTICS	may	add	this	capability.		The	model	also	considers	the	change	

in	sequence	neighbors9	ConCavity	scores	between	the	current	structure	and	the	

reference	structure.		

The	model	includes	the	change	in	³-carbon	position	between	the	current	

structure	and	the	reference	structure.	It	also	includes	the	neighbors9	average	change	

in	³-carbon	position.	The	values	of	these	features	were	calculated	for	each	residue	

of	each	structure	in	the	database.	

The	input	trajectory	must	be	aligned	so	that	the	protein9s	center	of	mass	does	
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not	move	over	the	course	of	the	simulation.		If	this	is	not	done,	then	the	entire	

protein9s	motion	will	incorrectly	be	included	when	calculating	changes	in	³-carbon	

positions.		Alignment	must	be	done	by	the	user	prior	to	running	TACTICS.	

20%	of	the	data	was	randomly	selected	and	set	aside	as	a	test	set	for	

evaluating	the	model9s	performance.		Testing	data	was	not	used	to	train	the	model.		

Model	performance	was	carried	out	using	the	area	under	the	receiver	operating	

characteristic	(abbreviated	AUROC	or	ROC-AUC).		The	statistics	behind	the	AUROC	

merit	a	brief	discussion.		As	the	confidence	threshold	required	for	the	model	to	

classify	an	item	as	True	is	varied,	the	number	of	true	and	false	positives	also	varies.		

The	receiver	operating	characteristic	(ROC)	is	a	graph	of	true	positive	rate	vs.	false	

positive	rate	as	the	confidence	threshold	is	varied.	The	area	under	the	ROC	curve	

(AUROC)	is	the	fraction	of	the	time	that	the	model	will	assign	higher	confidence	to	a	

randomly	chosen	positive	sample	than	to	a	randomly	chosen	negative	sample(46).		

The	advantage	of	the	AUROC	over	the	(conceptually	simpler)	percent	accuracy	

metric	is	that	the	latter	is	biased	if	the	dataset	has	unequal	numbers	of	positive	and	

negative	samples.		The	AUROC	has	been	used	to	quantify	the	performance	of	other	

pocket-finding	algorithms(5),(16);	it	was	selected	to	quantify	the	performance	of	

TACTICS9s	ML	model.	

Scikit-learn(47)	was	used	to	train	a	random	forest	model	on	the	80%	of	the	

data	that	was	not	set	aside.	Three-fold	cross-validation	was	used	to	select	

hyperparameter	values.(After	training	the	model	on	the	training	dataset,	the	AUROC	

score	was	calculated	on	the	test	dataset.	A	result	of	0.856	was	obtained.	This	AUROC	
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was	calculated	on	a	dataset	of	crystal	structures,	while	the	ultimate	application	of	

the	model	is	to	MD	trajectories.	Our	use	of	this	score	assumes	that	the	

conformations	in	the	crystal	structure	dataset	are	representative	of	what	would	be	

seen	in	MD	simulation	data.		The	extent	to	which	this	assumption	is	true	impacts	the	

extent	to	which	our	AUROC	can	be	assumed	to	represent	performance	on	MD	data.		

Nevertheless,	the	score	is	useful	as	a	rough	estimate	of	whether	the	model	is	likely	

to	be	useful.	After	calculating	the	AUROC,	the	model	was	re-trained	on	the	entire	

database	(composed	of	both	the	training	and	testing	sets).			

Incorporating	The	ML	Model	Into	A	Larger	Algorithm		

As	useful	as	the	ML	model	is,	it	was	observed	to	predict	an	unrealistic	number	pf	

pockets.		While	it	is	difficult	to	quantify	the	number	of	false	positives	without	a	

complete	knowledge	of	which	parts	of	the	protein	are	bindable,	models	that	predict	

overly	large	numbers	of	pockets	are	likely	to	be	flawed(3).		To	mitigate	the	issue	of	

falspe	positives,	the	ML	model	was	incorporated	into	a	more	complex	algorithm	

(TACTICS).	The	algorithm	starts	by	using	MDAnalysis(48),(49)	to	perform	k-means	

clustering	on	the	MD	trajectory.	Then	the	ML	model	is	run	on	the	centroid	of	each	

cluster.	Instead	of	outputting	a	binary	True/False	prediction,	the	ML	model	is	used	

to	predict	the	probability	of	each	residue	being	in	a	cryptic	site.	The	algorithm	

rejects	the	prediction	if	the	confidence	is	below	a	user-	specified	threshold;	the	

default	value	is	0.8.	This	high	value	reduces	the	number	of	false	positives.	The	

algorithm	also	rejects	the	prediction	if	the	standard	deviation	of	ML	scores	among	

all	clusters	of	the	trajectory	is	below	a	certain	threshold.	The	default	value	is	0.25.	
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This	is	done	because	cryptic	pockets	are	expected	to	open	and	close;	a	residue	that	

always	has	a	high	score	is	unlikely	to	be	part	of	a	cryptic	pocket.		

The	above	procedure	generates	a	set	of	residues	that	are(predicted	to	be	

part	of	cryptic	pockets.	These	residues	are	clustered	based	on	their	proximity	to	

each	other;	the	result	is	a	set	of	predicted	binding	regions.	To	investigate	which	

predicted	sites	are	likely	to	be	druggable,	fragment	docking	is	performed	on	each	

site.	AutoDock	Vina(50)	is	used	for	the	docking;	the	fragments	are	the	16	molecules	

used	by	FTMap(41)	and	Cryptosite(5):	acetaldehyde,	acetamide,	acetone,	

acetonitrile,	benzaldehyde,	benzene,	cyclohexane,	dimethyl	ether,	ethane,	ethanol,	

isobutanol,	isopropanol,	methylamine,	phenol,	urea,	and	N,N	dimethylformamide.	

Docking	is	performed	in	a	box	surrounding	the	predicted	binding	site;	the	default	is	

to	add	8	Å	in	each	dimension.	As	in	Cryptosite,	each	residue9s	<dock	score=	is	

calculated	by	counting	the	number	of	times	that	a	docked	fragment	ligand	is	within	

3.5	Å	of	the	residue.	The	dock	score	is	used	here	to	verify	and	expand	upon	the	ML	

predictions.	It	is	expected	that	predictions	are	more	likely	to	be	accurate	when	the	

residues	with	high	ML	scores	are	in	the	same	region	as	residues	with	high	dock	

scores.	Substantial	differences	between	docking	and	ML	results	may	indicate	

inaccurate	ML	predictions.	They	may	also	represent	cases	where	docking	has	found	

additional	residues	that	are	important	for	binding	but	were	missed	by	the	ML	

model.		Figure	1A	shows	a	flowchart	of	the	TACTICS	algorithm.	

Visualizing	the	Results		

To	facilitate	the	process	of	interpreting	TACTICS9s	results,	a	procedure	was	
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developed	for	visualizing	the	results	in	PyMOL(45).	Residues	that	are	highlighted	by	

the	ML	algorithm	are	shown	as	sticks.	Dock	scores	are	shown	as	b-factor	putty.	The	

<search	spaces=	where	docking	ligands	are	allowed	to	be	are	drawn	as	boxes.	Each	

time	that	the	code	runs,	it	creates	a	file	with	PyMOL	commands	to	display	the	

results.		Figure	1B	shows	typical	TACTICS	output.	

	

Boxes indicate the 

edges of regions that 

fragments are 

allowed to dock in. 

Residue coloring 

and thickness are 

determined by 

fragment dock 

scores. 

Black sticks indicate 

residues with high 

ML scores. 

Figure 1. The design of TACTICS.  A. Flowchart describing the TACTICS algorithm.  B. 

Sample image from typical TACTICS output, with labels emphasizing key features. 

A 

B 
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SARS-CoV-2	Simulation	System	Preparation	

The	SARS-CoV-2	main	protease	(nsp5)	model	is	based	on	PDB	ID	6Y2E(51).		

Hydrogens	were	added	using	CHARMM(52).		The	system	was	neutralized	and	

solvated	with	~150	mM	KCl	for	a	total	system	size	of	126,736	atoms.		A	weak	center	

of	mass	restraint	was	applied	to	N,	CA,	and	C	atoms	of	residues	19-21,	36-38,	and	

80-82	during	equilibration.		No	restraints	were	used	during	production	simulations.	

The	initial	atomic	model	of	the	SARS-CoV-2	29-O	RNA	methyltransferase	

(nsp10/nsp16	heterodimer)	is	based	on	PDB	ID	6W61.		It	was	prepared	

in	CHARMM-GUI(53).	Missing	amino	acids	in	nsp10	were	added	using	

the	Modloop	server(54).	All	crystallographic	waters	and	coordinated	Zn2+	ions	were	

included.	The	system	was	neutralized	and	solvated	with	~150	mM	KCl	for	a	total	

system	size	of	65,958	atoms.		Zn2+	coordinating	cysteines	were	deprotonated	but	

retain	a	neutral	charge	using	a	custom	force	field	topology.		This	was	done	to	mimic	

the	geometry	of	the	coordination	bond	without	introducing	a	nonexistent	negative	

charge	on	the	sulfur	atoms.		To	prevent	the	dislodging	of	the	Zn2+	ion	from	its	

binding	cavity,	a	10	kcal/mol/Å2	harmonic	restraint	was	applied	between	the	

Zn2+	ion	and	each	coordinating	cysteine	residue.	A	1	kcal/mol/Å2	harmonic	potential	

position	restraint	is	applied	to	C³	atoms	in	core	regions	of	the	nsp10/nsp16	dimer	

(residues	70-72,	86-88,	and	171-173	in	nsp16)	to	keep	the	protein	centered	within	

the	box.		These	restraints	were	used	during	both	equilibration	and	production.	
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SARS-CoV-2	REST-2	Simulations		

All	REST2	simulations(55)	were	carried	out	in	NAMD2.13(56).	The	CHARMM36	

force	field	was	used	for	protein	and	ions(57),(58),(59)	while	the	TIP3P	model	

was	used	for	water(60).	The	nsp10/nsp16	dimer	and	the	protease	were	subjected	

to	energy	minimization	and	a	1	ns	equilibration	under	NPT	conditions	at	1	atm	and	

300	K.	All	REST2	simulations	used	an	NPT	ensemble	at	1	atm,	with	the	effective	

temperature	ranging	from	300	to	350	K,	spanning	across	12	replicas	for	each	

system.	Solute	tempering	is	applied	to	protein	atoms	only	and	exchange	attempt	

frequency	is	set	to	every	2	ps.	A	1	ns	pre-production	REST2	simulation	was	carried	

out	to	initialize	exchange	probabilities.	Each	replica	was	simulated	for	50	ns	to	

obtain	exchange	probabilities	between	20%	and	30%.	

For	equilibration,	pre-production,	and	production	simulations,	a	timestep	of	

2	fs	was	used.	Periodic	boundary	conditions	were	used.		All	electrostatic	

interactions	were	computed	using	the	particle-mesh	Ewald	(PME)	algorithm,	and	

short-range,	non-bonded	interactions	were	truncated	at	12	Å.	

ArCP	Simulations		

The	Aryl	Carrier	Protein	(ArCP)	simulation	systems	are	based	on	PDB	structures	

5TTB	(apo)(61),	2N6Y	(holo)(62),	and	2N6Z	(loaded)(62).		The	loaded	and	holo	

structures	each	have	a	phosphopantetheine	(PP)	<arm=	attached	to	Ser52	and	the	

loaded	form	harbors	a	salicylate	at	the	end	of	this	arm;	these	moieties	were	

parameterized	using	CGenFF(63),(64),(65).		Each	protein	(apo,	holo,	and	loaded)	
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was	minimized	in	a	vacuum	before	being	solvated	in	a	water	box	whose	sides	are	

60Å	wide.		17	sodium	atoms	and	18	chlorine	atoms	were	added,	neutralizing	the	

system	and	providing	a	concentration	of	150	mM	NaCl.		Each	system	underwent	

three	rounds	of	60,000	ps	equilibration	at	300K	using	Langevin	dynamics.		

Equilibration	and	production	simulations	used	an	NPT	ensemble.	

For	each	system,	the	simulation	was	run	in	NAMD	using	the	CHARMM36	

force	field.	The	simulations	were	carried	out	at	300	K	and	1	atm	with	periodic	

boundary	conditions.	A	timestep	of	2	femtoseconds	was	used,	and	a	trajectory	

snapshot	was	written	every	500	timesteps	(1	ps).	A	total	of	200	ns	of	simulation	

data	was	obtained,	and	the	latter	100	ns	was	used	for	TACTICS	analysis.	

Running	TACTICS	

While	default	values	exist	for	TACTICS	parameters,	these	values	may	not	be	optimal	

for	all	systems.		Poor	parameter	choices	may	lead	to	TACTICS	not	finding	few	(if	

any)	pockets	or	finding	unreasonably	many	pockets.		Finding	the	best	parameter	

values	may	require	running	TACTICS	with	several	values	and	evaluating	which	run	

has	the	most	reasonable	results.		This	introduces	an	unfortunate	subjectivity	into	

the	TACTICS	workflow.		But	eliminating	all	user-defined	parameters	would	risk	

compromising	the	software9s	ability	to	generate	useful	results	across	a	diverse	

range	of	input	protein	systems.	

The	tunable	parameters	are	as	follows.		num_clusters	is	the	number	of	

frames	from	the	trajectory	that	will	be	selected	for	TACTICS	analysis.		Frame	
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selection	uses	k-means	clustering.		The	number	of	frames	displayed	in	the	TACTICS	

output	may	sometimes	be	less	than	num_clusters;	this	occurs	if	there	are	frames	

with	no	pockets.		Values	of	roughly	3-15	are	expected	to	be	reasonable	for	most	

situations;	it	is	recommended	to	start	with	a	value	near	8.		ml_score_thresh	is	

the	minimum	ML	score	needed	to	be	considered	when	clustering	residues	into	

binding	sites.		The	default	value	is	0.8;	substantial	variation	may	be	needed	but	

values	of	0.5-0.9	should	work	for	most	systems.		ml_std_thresh	is	the	maximum	

standard	deviation	between	frames	that	a	residues	ML	score	must	have	for	the	

residue	to	be	considered	when	clustering	residues	into	binding	sites.		It	may	also	

benefit	from	substantial	variation;	the	default	value	is	0.25	and	values	from	roughly	

0.05	to	0.4	are	suggested.	

It	should	be	emphasized	that	the	trajectories	should	be	aligned	before	

running	TACTICS.		This	removes	the	motion	of	the	entire	protein	that	would	affect	

the	ML	model9s	change-in-position	features.		More	information	on	how	to	run	

TACTICS	can	be	found	in	the	software9s	README	file.	

For	the	main	protease,	we	used	num_clusters=8,	

ml_score_thresh=0.6,	and	ml_std_thresh=0.09.		For	the	

methyltransferase,	we	used	num_clusters=8,	ml_score_thresh=0.6,	and	

ml_std_thresh=0.1875.		For	the	ArCP,	we	used	num_clusters=13,	

ml_score_thresh=0.6,	and	ml_std_thresh=0.15.		Each	trajectory	was	

aligned	using	MDAnalysis(49),(48).	

Using	TACTICS	to	analyze	large	datasets	is	computationally	intensive.		Thus	
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we	divided	the	data	into	chunks	and	ran	TACTICS	on	each	chunk.		For	each	SARS-

CoV-2	protein,	we	ran	TACTICS	on	the	first	20	ns,	the	next	20	ns,	and	the	last	10	ns.		

Analyzing	the	ArCP	simulations	was	less	computationally	demanding,	so	these	

simulations	were	not	divided	into	chunks.	

Analyzing	Proteins	With	Non-Standard	Components	

Our	SARS-CoV-2	methyltransferase	simulations	included	2	zinc	ions.		Our	ArCP	

simulations	included	a	covalently	attached	phosphopantetheine	(PP)	arm.		These	

atoms	can	be	expected	to	impact	ligand	binding	to	any	nearby	sites	by,	for	example,	

steric	hindrance.		Ignoring	these	non-standard	components	during	TACTICS	analysis	

might	introduce	inaccuracies.		Including	them	in	TACTICS	analysis	required	special	

consideration;	the	procedure	is	expected	to	be	useful	for	other	proteins	with	non-

standard	components.	

TACTICS	requires	each	residue	name	be	one	of	the	standard	amino	acids.		

Additionally,	each	residue	must	have	an	alpha	carbon	(atom	name	CA).		TACTICS	

deletes	atoms	that	do	not	meet	these	conditions.		A	relatively	straightforward	way	of	

getting	TACTICS	to	recognize	coordinated	zinc	atoms	is	to	change	their	residue	

names	from	Zn	to	an	amino	acid	and	change	their	atom	names	to	CA.		Based	on	how	

TACTICS	works	(including	ConCavity	and	AutoDock	Vina,	which	it	runs),	we	believe	

that	approximating	coordinated	zincs	as	alpha	carbons	is	reasonable.		Because	both	

methyltransferase	zinc	atoms	coordinate	with	multiple	residues	in	the	protein,	we	

expect	the	zincs9	electrostatic	effects	to	be	minor	enough	that	ignoring	them	does	

not	dramatically	impact	our	results.		(Atoms	with	strong	hydrophobicity	or	
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hydrogen-bond	formation	favorability	would	impact	fragment	docking.)		The	alpha-

carbon	approximation	acknowledges	that	zinc	atoms	create	excluded	volume;	thus,	

making	the	approximation	is	preferable	to	letting	TACTICS	delete	the	zincs.	

In	the	case	of	the	ArCP,	the	loaded	and	holo	forms	have	a	PP	arm	covalently	

attached	to	a	serine	residue.		The	modified	residue	already	has	an	alpha	carbon,	but	

it	must	be	renamed	to	an	amino	acid	(e.g.	Ser)	before	TACTICS	analysis.		We	also	had	

to	rename	an	atom	with	atom	name	<CS=;	the	atom	is	supposed	to	be	carbon	but	

TACTICS	attempted	to	parse	the	<CS=	as	cesium.	

Results	

To	demonstrate	the	capabilities	of	TACTICS,	we	applied	the	algorithm	to	three	

proteins.		Two	of	them	are	SARS-CoV-2	proteins	(main	protease	and	

methyltransferase).		TACTICS	finds	previously	reported	binding	sites	and	novel	sites	

in	these	proteins.		The	third	protein	(aryl	carrier	protein)	is	relatively	small	and	has	

significant	posttranslational	modifications;	it	illustrates	the	versatility	of	TACTICS	

for	unusual	systems.		The	SARS-CoV-2	proteins	were	simulated	using	REST2(55),	

while	the	aryl	carrier	protein	was	simulated	using	equilibrium	MD.		This	

demonstrates	TACTICS9s	ability	to	analyze	conformational	ensembles	generated	

through	a	variety	of	methods.	

SARS-CoV-2	Main	Protease	

The	SARS-CoV-2	main	protease	(M-pro;	nsp5),	is	responsible	for	cleaving	the	

polyprotein	produced	from	translation	of	the	viral	RNA	genome.	Specifically,	M-pro	
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cleaves	the	peptide	bond	after	glutamine	residues	most	frequently	occurring	in	the	

recognition	sequence	Leu-Gln-(Ser,	Ala,	Gly)(51)	(66).	Peptide	cleavage	by	M-pro	

occurs	by	a	catalytic	dyad	of	cysteine	and	histidine	residues	in	the	active	site(67).	

While	cleavage	after	glutamine	residues	has	been	observed	for	the	main	proteases	

of	other	coronaviruses,	including	SARS-CoV(68)	and	MERS(69),	it	has	not	been	

frequently	observed	in	human	proteases(66).	From	a	therapeutic	perspective,	this	

reduces	the	probability	of	off-target	effects	and	makes	M-pro	a	promising	target	for	

drug	design.	Most	notably,	the	binding	of	peptidomimetic	inhibitors	to	the	

proteolytic	active	site	has	been	explored	as	a	means	to	inactivate	the	protease(70).	

By	mimicking	the	geometry	of	the	substrate,	these	inhibitors	become	<trapped=	in	

the	active	site,	often	by	the	creation	of	a	covalent	bond	with	the	catalytic	

cysteine(70),	thus	inactivating	the	protein.	M-pro	is	an	obligate	homodimer	

stabilized	by	interactions	between	the	N-terminal	<finger=	residues	of	one	monomer	

and	a	glutamate	residue	in	the	active	site	of	the	opposite	monomer(51)	(71).	The	

requirement	of	dimerization	for	proteolytic	activity	presents	another	opportunity	

for	drug	development(72);	the	dimer	interface	has	been	more	recently	explored	as	a	

potential	allosteric	drug-binding	site(73).	

M-Pro	has	been	an	especially	common	target	for	structural-biological	efforts	

to	find	allosteric	pockets.		MD-based	approaches	have	been	applied	to	M-

Pro(74),(75),(76);	large-scale	crystallography	screens	have	also	been	carried	

out(77),(78).		Because	the	protein9s	ligand-binding	characteristics	are	relatively	

well-studied,	M-Pro	is	a	good	choice	for	examining	TACTICS9s	ability	to	rediscover	

known	binding	sites.		To	obtain	an	ensemble	of	M-pro	conformers	suitable	for	
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analysis	with	TACTICS,	we	performed	replica	exchange	with	solute	tempering	

(REST2)	molecular	dynamics	simulations	of	the	apo	M-pro	dimer.		This	is	useful	for	

assessing	TACTICS9s	veracity	and	usefulness.	

TACTICS	identifies	the	main	protease	active	site.		At	various	points	in	the	

simulation,	TACTICS	identifies	residues	including	H41,	F140,	and	H163.		These	

residues	are	important	for	binding,	as	shown	by	their	interactions	with	inhibitors	

that	bind	to	the	active	site	(51),(79)	,(80)	and	simulated	interactions	with	a	peptide	

substrate(81).		The	binding	site	is	shown	in	Figure	2	A,	B	and	Supplemental	Figure	

S1.		To	the	left	of	the	crystallized	ligand	in	the	figure,	TACTICS	identifies	additional	

residues	as	druggable.		Many	of	these	residues	were	also	highlighted	in	the	

Folding@Home	results(74),	underscoring	the	likelihood	that	these	residues	are	

bindable.		Because	TACTICS	was	designed	with	an	emphasis	on	finding	cryptic	sites	

and	minimizing	false	positives,	it	uses	ml_std_thresh	to	filter	out	residues	whose	

scores	don9t	change.		Thus	it	is	not	obvious	that	TACTICS	would	be	able	to	find	

active	sites	(which	might	be	expected	to	remain	visible	throughout	the	simulation).		

However,	enzymes	can	be	highly	flexible,	particularly	when	unbound(82).		

Additionally,	ml_std_thresh	was	set	to	a	low	value	for	the	main	protease.		Thus	

TACTICS9s	ability	to	find	the	active	site	is	not	entirely	unexpected.		This	success	is	an	

example	of	the	software9s	versatility.	

TACTICS	also	identifies	a	known	allosteric	site	in	the	main	protease.		A	ligand	

is	crystallized	at	this	site	in	PDB	ID	5RGJ(77);	while	the	crystal	structure	has	a	ligand	

bound	to	each	protomer	of	the	dimer,	the	two	ligands	are	extremely	close	to	each	

other.		This	ligand	has	been	shown	to	decrease	the	protease9s	activity(73).		The	
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binding	site	is	shown	in	Figure	2	C,	D	and	Supplemental	Figure	S2.		In	the	

conformation	shown,	the	pocket	is	larger	than	needed	to	accommodate	the	ligand	

A B 

 

C D 

E F 

Figure 2. Selected images from the TACTICS output for the SARS-CoV-2 main protease.  

A. The TACTICS output for a frame in which the active site is found.  B. The same as 

(A), with the active-site inhibitor called 13b added from PDB structure 6Y2F.  C. 

TACTICS output for a frame in which a known allosteric site is found.  This site binds a 

ligand called x0425 or Z1401276297.  The x0425-binding allosteric site is found in the 

teal and green residues at the top of the image.  In this image, the dimer interface is 

also high-scoring (red residues in center). D. The same as (C), with the known inhibitor 

called x0425 or Z1401276297 added from PDB ID 5RGJ.  E. TACTICS output for a frame 

in which a known binding site at the dimer interface is found.  F. The same as (E), with 

the known inhibitor x1187 or Z2643472210 added from PDB ID 5RFA. 
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from	5RGJ.		Thus	it	is	plausible	that	larger	ligands	could	bind	to	this	site.	

The	dimer	interface	is	another	potential	drug	target	identified	by	TACTICS.		

Dimerization	is	expected	to	be	important	to	protease	activity(83),	so	ligands	that	

bind	at	the	dimer	interface	and	disrupt	dimerization	are	likely	candidates	for	drugs.		

PDB	ID	5RFA	has	two	molecules	of	the	compound	x1187	bound	at	the	dimer	

interface(77).		Each	molecule	interacts	with	both	protomers.		Experimental	results	

suggest	that	x1187	inhibits	dimerization	and	protease	activity(73),	confirming	the	

importance	of	the	dimer	interface.		Results	on	x1187	show	the	complexity	of	the	

dimer	interface9s	behavior;	x1187	binds	the	dimer	form	in	the	crystal	structure(77)	

but	inhibits	dimerization	in	experimental	tests(73).		TACTICS	correctly	predicts	that	

the	region	where	x1187	binds	is	druggable.		This	is	shown	in	Figure	2	E,	F	and	

Supplemental	Figure	S3..		The	MD	simulation	contains	C-terminal	residues	that	are	

missing	from	the	crystal	structure;	some	of	these	residues	would	sterically	clash	

with	the	ligand	in	its	crystallized	pose.		It	is	plausible	that	these	residues	could	move	

to	accommodate	the	ligand	in	an	induced-fit	mechanism.		Despite	the	uncertainty	

regarding	the	conformational	and	ligand-binding	characteristics	of	this	site,	the	fact	

that	TACTICS	identifies	the	site	as	druggable	demonstrates	the	algorithm9s	ability	to	

find	experimentally	validated	binding	sites.			

	 The	x1187-binding	site	is	close	to	where	AT7519	has	been	crystallized(78).		

In	some	frames	where	TACTICS	identifies	the	x1187	site,	the	predicted	site	location	

also	includes	some	residues	involved	in	binding	AT7519.		TACTICS	is	less	successful	

at	identifying	AT7519-binding	residues	than	x1187-binding	residues.		AT7519	

shows	relatively	small	antiviral	activity(78).		The	weak	antiviral	activity	and	
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incomplete	identification	by	TACTICS	raise	the	possibility	that	the	site	could	be	less	

favorable	to	ligand	binding	than	other	sites.		

	

SARS-CoV-2	29-O	RNA	Methyltransferase	

During	the	COVID-19	pandemic,	one	of	the	many	promising	druggable	targets	is	the	

SARS-CoV-2	29-O	RNA	methyltransferase	(MTase).	This	MTase	is	responsible	for	RNA	

cap	formation,	which	is	critical	for	viral	RNA	invasion.	The	active	form	of	the	MTase	

exists	as	a	heterodimer	of	the	catalytic	nsp16	and	the	activating	zinc	finger	protein	

nsp10	(84,85).	Currently,	two	druggable	sites,	universal	to	all	protein	and	nucleotide	

methyltransferases,	 have	 been	 identified:	 the	 SAM	 cofactor	 and	 the	 RNA	 cap	

substrates	(84,86).	Indeed,	several	small-molecule	inhibitors	have	been	designed	to	

exploit	 these	 binding	 sites	 with	 high	 efficacy	 in	 other	 protein	 and	 nucleotide	

methyltransferases	 (87,88).	 Although	 little	 functional	 information	 exists	 for	 the	

SARS-CoV-2	MTase	specifically,	it	shares	a	striking	94.5%	sequence	identity	with	the	

SARS-CoV-1	 MTase	 (89),	 which	 has	 been	 functionally	 well-characterized	 (90).	

Therefore,	another	potential	druggable	site-specific	on	the	SARS-CoV-2	MTase	is	the	

dimer	 interface	 of	 nsp10	 and	 nsp16,	 as	 SARS-CoV-1	 MTase	 activity	 can	 be	 fully	

diminished	by	subtle	alteration	in	the	interfacial	contacts	of	nsp10	and	nsp16	(90).	

Although	the	SARS-CoV-2	MTase	crystal	structure	shows	that	the	interface	consists	

of	a	large	network	of	polar	and	hydrophobic	contacts,	this	interface	may	potentially	

harbor	potent	cryptic	pockets	that	can	be	revealed	through	MD	simulations.	Here,	we	

utilize	replica	exchange	with	solute	tempering	(REST2)	(55),	a	Hamiltonian	replica	
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exchange	method,	to	effectively	sample	the	conformational	space	of	the	SARS-CoV-2	

MTase	in	order	to	identify	known	and	cryptic	binding	sites	with	TACTICS.	

Crystal	structures	of	the	SARS-CoV-2	MTase	in	complex	with	an	RNA	cap	and	

Sinefugin,	a	SAM	cofactor	analog	and	MTase	 inhibitor,	have	been	resolved	(84,85),	

serving	as	benchmarkable	sites	for	TACTICS.	In	the	apo	form	of	the	MTase,	both	the	

RNA	 cap	 and	 SAM	 cofactor	 binding	 sites	 are	 already	 able	 to	 accommodate	 their	

respective	molecule.		

Some	of	the	residues	recognized	by	TACTICS	have	been	previously	reported	

to	 impact	 RNA	 binding.		 At	 various	 points	 in	 the	 simulation,	 TACTICS	 recognizes	

residues	including	Y132,	K170,	H174,	and	E203.		All	of	these	residues	were	found	to	

impact	 RNA	 binding	 and	 enzyme	 activity	 in	mutation	 experiments	 on	 the	 related	

MERS	methyltransferase(91).		The	RNA	binding	site	was	found	in	frames	throughout	

the	simulation.		Figure	3	A,	B	shows	the	TACTICS	output	for	a	frame	in	which	the	RNA	

site	is	found.	

TACTICS	is	most	successful	at	 identifying	the	part	of	the	binding	site	that	is	

farthest	from	nsp10	and	the	catalytic	site.		In	addition	to	identifying	residues	known	

to	 bind	 RNA,	 TACTICS	 identifies	 conformations	 in	 which	 the	 RNA-binding	 pocket	

contains	 additional	 residues.	 	 In	 some	 conformations,	 certain	 residues	 in	 the	 loop	

between	 helices	 a9	 and	a10	 (residues	 235-241)	 are	 included	 in	 the	 pocket;	 key	

residues	include	N235,	P236,	and	I237.		The	inclusion	of	these	residues	is	controlled	

by	the	position	of	the	loop	between	a2	and	a3	(residues	17-41)	and	the	loop	between	

b8	 and	 b9	 (residues	 196-203).	 	 L27	 and	 S202	 are	 particularly	 important	 for	

controlling	access	to	the	expanded	pocket	(Supplemental	Figure	S4F).		Figure	3	C,	D	
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and	Supplemental	Figure	S4	show	this	expanded	pocket.	 	In	another	conformation,	

the	RNA-binding	pocket	includes	L27,	Y222,	and	H225;	this	conformation	is	shown	in	

Figure	3	E,	F	and	Supplemental	Figure	S5.	 	Folding@Home(74)	 identifies	 residues	

near	 the	 site	predicted	by	TACTICS;	 residues	 identified	by	Folding@Home	 include	

A 

B 

E 

F 

 

 

Figure 3. TACTICS locates the MTase RNA binding site and predicts pockets connected 

to it.  A. TACTICS output for a frame of the MTase simulation.  The RNA binding site is 

at the top left; it is colored by TACTICS.  B. The same as (A), with the RNA Cap-0 analog 

m7GpppA added from PDB structure 6WVN.  This confirms that the site identified by 

TACTICS is the RNA binding site.  C. TACTICS output for another frame of the MTase 

simulation.  D. The same as (C), with m7GpppA added from PDB ID 6WVN.  An 

additional, connected site is visible to the left of m7GpppA.  E. TACTICS output for a 

third frame of the MTase simulation.  F. The same as (E), with m7GpppA added from 

PDB ID 6WVN.  An additional, connected site is visible at the top right of m7GpppA.  

C 

D 
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R19-D26	and	K137-F152.		The	expanded	RNA-binding	sites	described	here	include	

residues	that	do	not	make	contact	with	RNA	in	the	crystal	structure.		It	is	conceivable	

that	a	ligand	binding	these	residues	could	partially	fill	the	RNA	site;	it	is	also	plausible	

that	small	ligand-induced	conformational	changes	to	the	nearby	region	could	impact	

the	bindability	of	the	RNA	site. 	

TACTICS	 identifies	 the	 SAM-binding	 site,	 as	 shown	 in	 Figure	 4	 A,	 B	 and	

Supplemental	Figure	S6.		TACTICS	recognizes	residues	D99	and	D130,	both	of	which	

form	hydrogen	bonds	with	the	competitive	ligand	Sinefungin(92).		TACTICS	also	finds	

a	number	of	nearby	residues	including	G71,	M131,	and	Y132.		While	those	residues	

may	not	form	hydrogen	bonds	(at	least	with	sinefungin),	they	are	still	important	for	

creating	an	environment	that	allows	ligand	binding.		It	should	be	noted	that	TACTICS	

finds	 SAM-binding	 residues	 in	 relatively	 few	 frames.	 	 This	 might	 demonstrate	 a	

limitation	of	 the	 ability	of	TACTICS	 to	 find	 certain	 types	of	pockets.	 	 It	might	 also	

suggest	limitations	on	the	number	of	conformations	in	which	the	SAM	site	is	easily	

bindable.	 	 Further	 work	 is	 needed	 to	 determine	 which	 of	 these	 hypotheses	 are	

correct.	

TACTICS	 predicts	 a	 binding	 site	 at	 nsp10	 and	 the	 nsp10/nsp16	 dimer	

interface.		The	site	is	shown	in	Figure	4	C,	D	and	Supplemental	Figure	S7.		Potentially	

important	 residues	 on	 nsp10	 include	 S72,	 C74,	 Y76,	 T111,	 L92,	 while	 potentially	

important	residues	on	nsp16	include	V78,	S105,	and	D106.		In	some	conformations	

(such	 as	 the	 one	 shown),	 the	 site	 involves	 a	 tunnel	 through	 nsp10	 to	 the	 dimer	

interface.	
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In	addition	to	the	site	at	the	dimer	interface,	TACTICS	identified	another	site	

that	 may	 potentially	 disrupt	 activity	 through	 allosteric	 inhibition.	 	 The	 novel	

predicted	binding	site	is	shown	in	Figure	4	E,	F	and	Supplemental	Figure	S8.	It	is	on	

the	opposite	 side	of	 the	protein	 from	 the	RNA	binding	 site.	 	Potentially	 important	

residues	include	K123,	L163,	Q266,	R283,	and	E284.		A	sulfate	has	been	observed	here	

Figure 4. TACTICS finds additional known and predicted binding sites in MTase.  A. 

TACTICS output for a frame in which the SAM binding site is found.  The SAM binding 

site is at the top middle.  Note that the RNA site is also colored (at the top left).  B. The 

same as (A), with SAM added from PDB ID 6W4H.  C. TACTICS output showing a 

predicted binding site at the dimer interface.  D. Slice representation of the frame 

shown in (C).  This image shows the tunnel through NSP10 to the dimer interface.  The 

asterisk is next to the predicted binding site location.  E. TACTICS output showing 

another predicted binding site.  The box shows the location of the predicted binding 

site that has not been reported experimentally.  The RNA site is colored on the left of 

the image.  F. Rotated slice representation showing the predicted binding site.  The 

asterisk indicates the site location. 
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in	 the	crystal	structure	6WVN(93),	but	 to	our	knowledge	no	druglike	 ligands	have	

been	crystallized	here. 	

	

Aryl	Carrier	Protein	

Aryl	carrier	protein	(ArCP)	is	the	first	carrier	protein	domain	found	in	the	

multidomain	protein	HMWP2,	which	is	part	of	yersiniabactin	synthetase,	the	

enzymatic	system	producing	yersiniabactin	in	Yersinia	pestis.(62),	(61).	

Yersiniabactin	synthetase	is	an	example	of	a	nonribosomal	peptide	synthetase	

(NRPS),	which	are	enzymatic	systems	in	bacteria	and	fungi	that	produce	a	vast	

number	of	secondary	metabolites.	NRPSs	are	composed	of	multiple	modules	

organized	in	assembly-line	fashion,	such	that	each	module	is	responsible	for	adding	

a	single	amino	or	aryl	acid	onto	a	forming	peptide.	A	basic	module	typically	contains	

a	carrier	protein	(CP),	an	adenylation	domain,	and	a	condensation	domain(62).	CPs	

covalently	tether	a	substrate	(either	the	growing	peptide,	or	the	molecule	being	

incorporated	onto	the	peptide)	via	a	phosphopantetheine	(PP)	moiety(62).	

The	ArCP	tethers	a	salicylate	moiety,	and,	being	the	first	CP	domain,	can	only	

exist	in	one	of	3	states:	apo,	holo,	or	salicylate	loaded.	Apo-ArCP	is	inactive	and	must	

be	activated	via	the	attachment	of	PP	to	S52	by	a	phosphopantetheinyl	

transferase(62).	Holo-ArCP	refers	to	ArCP	with	the	PP	arm	attached.	The	PP	

provides	a	thiol	group	by	which	salicylate	can	be	tethered	to	the	ArCP	via	a	thioester	

bond(62).	Loaded-ArCP	refers	to	ArCP	with	salicylate	attached	to	the	PP	arm.	

Salicylate	is	tethered	onto	holo-ArCP	(catalyzed	by	the	stand-alone	adenylation	

domain	YbtE),	generating	loaded-ArCP(62).	The	cyclization	domain	Cy1	then	
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catalyzes	peptide	bond	formation	between	salicylate	on	ArCP	and	cysteine	on	the	

next	CP	domain	PCP1(62)	as	well	as	subsequent	cyclodehydration.	In	the	process,	

salicylate	is	release	from	ArCP,	regenerating	holo-ArCP,	and	PCP1	harbors	

hydroxyphenylthiazoline	at	the	end	of	the	reaction.	These	steps	do	not	occur	

through	a	rigid	domain	architecture;	instead,	during	synthesis	ArCP	visits	its	

partner	catalytic	domains	through	a	series	of	transient	interactions.	Thus,	finding	

small	molecule	binding	sites	on	ArCP	could	disrupt	synthesis	by	disrupting	domain	

communication.	

All	three	forms	of	ArCP	demonstrate	a	four-helix	bundle,	with	³1,	³2,	and	³4	

lying	parallel	to	one	another(61).	³3	is	shorter	than	the	other	helices	and	lies	at	the	

significant	angle(61).	Loop	1	connects	³1	and	³2.	The	PP	binding	site	(Ser52)	is	

located	at	the	N-terminal	end	of	³2(62).	In	both	holo	and	loaded-ArCP,	the	PP	arm	

interacts	transiently	with	the	protein	core;	thus,	the	bound	state	(with	the	PP	arm	

docked	against	the	protein	core)	exists	in	equilibrium	with	the	unbound	form	(the	

PP	arm	not	docked)(62).	Thus,	ArCP	is	a	model	system	to	assess	TACTICS	ability	to	

account	for	such	prosthetic	groups.		The	ArCP	does	not	have	an	active	site,	nor	does	

it	have	known	small-molecule	binding	sites	(besides	the	PP	arm).		While	it	does	have	

known	protein	binders,	protein-protein	binding	sites	have	substantial	differences	

from	ligand	binding	sites(94).		

In	the	apo-ArCP,	TACTICS	predicts	two	binding	sites.		One	predicted	site	

involves	helices	a1	and	a2;	it	is	shown	in	Figure	5	A,	B	and	Supplemental	Figure	S9.		

Potentially	bindable	residues	on	a1	include	Q23,	R27,	and	E31	while	key	residues	

on	a2	include	R54,	R57,	and	W61.		As	seen	in	the	slice	image,	the	site	is	divided	into		
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Figure 5. TACTICS output showing predicted binding sites in apo-ArCP.  A, B. TACTICS 

predicts a site at the top of ArCP.  C, D. TACTICS predicts a site at the bottom of ArCP.  

E, F. Another conformation of the site shown in (C) and (D).  G, H. A third 

conformation of this site. 
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two	distinct	regions.		R27	and	R57	cause	this	division.		The	other	predicted	site	is	

located	near	the	N	and	C	termini.		The	site	is	very	flexible;	a	variety	of	conformations	

were	observed.		In	one	conformation	(Figure	5	C,	D	and	Supplemental	Figure	S10),	

the	site	includes	a1	residues	H17,	D20,	and	Y21	along	with	a4	residues	M87,	L88,	

and	E93.		In	another	conformation	(Figure	5	E,	F	and	Supplemental	Figure	S11),	the	

site	includes	a1	residues	R16,	H17,	and	D20	along	with	a4	residues	S91,	P92	and	

loop2	(between	a2	and	a3)	residue	Y67.		In	a	third	conformation	(Figure	5	G,	H	and	

Supplemental	Figure	S12),	the	site	includes	a1	residues	D14,	H17,	A18,	and	Y21	

along	with	a4	residues	N84,	Q85,	and	L88.	

In	holo-ArCP,	TACTICS	predicts	a	binding	site	at	the	N	and	C	termini.		This	

site	is	shown	in	Figure	6	A,	B	and	Supplemental	Figure	S13.		The	site	has	the	same	

location	as	the	<Apo	2=	site	discussed	above;	dock	scores	and	conformational	

flexibility	are	very	similar	between	the	apo	and	holo	results.		TACTICS	also	predicts	

a	binding	site	located	primarily	on	loop1	(between	a1	and	a2).		It	includes	residues	

L39,	H40,	S43,	and	A48.	

In	the	loaded-ArCP,	TACTICS	predicts	a	binding	site	that	includes	helix	a4	

and	loop2	(between	a2	and	a3).		This	site	is	shown	in	Figure	6	C,	D	and	

Supplemental	Figure	S14.		Potentially	important	residues	on	helix	a4	include	L86,	

M87,	and	R90.		Potentially	important	residues	on	loop2	include	Y67	and	R68.		This	

site	provides	an	interesting	contrast	to	the	<Apo	2=	site	(seen	in	the	apo	and	holo	

results).		Helix	a1	is	a	key	part	of	the	<Apo	2=	site,	but	it	plays	a	very	minor	role	in	

the	pocket	shown	in	the	loaded	figure.		The	differences	between	the	two	pockets	are	
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caused	by	movement	of	the	protein9s	C	terminus,	as	shown	in	Supplemental	Figure	

S14	A.	

Figure 6. TACTICS predicts binding sites in the holo and loaded-ArCP.  The PP arm is 

shown using blue sticks.  A, B. TACTICS output for a predicted site in the holo-ArCP.  

C, D. TACTICS output showing a predicted site in the loaded-ArCP.  E, F. TACTICS 

output showing another predicted site in the loaded-ArCP. 
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TACTICS	predicts	another	binding	site	for	the	loaded-ArCP.		This	site	is	

shown	in	Figure	6	E,	F	and	Supplemental	Figure	S15.		The	predicted	site	includes	

residues	in	loop1	(between	a1	and	a2),	a2,	and	a3.		Potentially	important	residues	

on	loop1	and	a2	include	I46,	L50,	the	S52-PP-salicylate	arm,	and	L55.		Y75	is	a	

potentially	important	residue	on	a3.	

	

Conclusions	

We	created	the	TACTICS	algorithm	that	analyzes	MD	simulations	to	find	druggable	

sites	in	proteins.		TACTICS	first	clusters	the	trajectory	to	select	several	frames	for	

analysis.		It	then	applies	a	random	forest	ML	model	to	each	selected	frame.		The	

model	takes	a	protein	conformation	and	scores	each	residue9s	druggability	in	that	

conformation.		The	model	was	trained	on	a	database	of	crystal	structures;	to	capture	

conformational	diversity,	multiple	structures	were	included	for	each	protein.		Sites	

identified	by	the	ML	algorithm	undergo	fragment	docking	to	further	characterize	

their	bindability.		To	our	knowledge,	TACTICS	is	the	only	freely	available	program	

that	both	uses	an	ML	model	specifically	designed	for	MD	trajectories	and	accepts	

already-generated	MD	data.		The	TACTICS	software	is	available	at	

https://github.com/Albert-Lau-Lab/tactics_protein_analysis	.	

We	applied	the	TACTICS	algorithm	to	the	SARS-CoV-2	main	protease	(nsp5)	

and	29-O	RNA	methyltransferase	(nsp10/16).		In	the	main	protease,	TACTICS	found	

the	active	site	and	multiple	known	allosteric	sites;	all	of	these	sites	have	been	

observed	experimentally.		In	the	methyltransferase,	TACTICS	found	the	RNA	and	
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SAM	binding	sites	and	predicted	the	locations	of	sites	not	observed	in	experimental	

results.	

We	also	applied	TACTICS	to	the	Yersinia	pestis	ArCP.		The	absence	or	

presence	of	a	large	phosphopantetheine	(PP)	arm	in	apo	or	loaded	and	holo	forms	

makes	it	a	unique	test	case.		TACTICS	identifies	several	potential	drug-binding	sites	

that	merit	further	study.		Site	predictions	differ	between	the	protein9s	apo,	loaded,	

and	holo	forms,	suggesting	possible	differences	between	the	forms9	bindability.		The	

TACTICS	results	for	this	protein	emphasize	the	software9s	usefulness	for	proteins	

with	unusual	characteristics.	
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