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ABSTRACT
Despite being one of the most consumed vegetabkb®iUnited States, the elemental profile of
sweet corn{ea mays L.) is limited in its dietary contributions. To éess this through genetic
improvement, a genome-wide association study wadwted for the concentrations of 15
elements in fresh kernels of a sweet corn assonigtnel. In concordance with mapping results
from mature maize kernels, we detected a probdeletppic association of zinc and iron
concentrations witlni cotianamine synthase5 (nas5), which purportedly encodes an enzyme
involved in synthesis of the metal chelator niauianine. Additionally, a pervasive association
signal was identified for cadmium concentrationhwita recombination suppressed region on
chromosome 2. The likely causal gene underlying slgnal waseavy metal ATPase3 (hma3),
whose counterpart in ric@sHMA3, mediates vacuolar sequestration of cadmium ardiai
roots, whereby regulating zinc homeostasis and zadraccumulation in grains. In our
association panehma3 associated with cadmium but not zinc accumulatidnesh kernels.
This finding implies that selection for low cadmiwmil not affect zinc levels in fresh kernels.
Although less resolved association signals wereatied for boron, nickel, and calcium, all 15
elements were shown to have moderate predictiv#iedoiia whole-genome prediction.
Collectively, these results help enhance our geosiassisted breeding efforts centered on
improving the elemental profile of fresh sweet ckennels.
Keywords. genome-wide association study, whole-genome piediatlements, kernels, sweet
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INTRODUCTION
As with all multicellular organisms, the concenwatand distribution of elements in tissues and
organs influence growth and development over thetpife cycle. At least 16 elements
(boron, calcium, carbon, chlorine, copper, hydrogem, magnesium, manganese,
molybdenum, nitrogen, oxygen, phosphorus, potasssuifur, and zinc) are considered essential
for higher plant species, with an additional foleneents (cobalt, silicon, nickel, and sodium)
essential for a subset of higher plants (Mengelkarby 2001). In plants, the need for and
concentration of macroelements (carbon, hydrogeygen, nitrogen, phosphorus, sulfur,
potassium, calcium, magnesium) (Hawkesfetrdl. 2012) are relatively greater than for
microelements (iron, manganese, copper, zinc, hiokaybdenum, boron, chlorine, and cobalt)
(Broadleyet al. 2012). Additionally, nonessential heavy metalshsas cadmium, chromium,
and lead that lack involvement in normal physiatadjifunctions can accumulate to toxic
concentrations in plants, penetrating the foodrchad posing a threat to human health (Sitgh
al. 2016).

Not unlike plants, humans can suffer a range oéesvhealth effects from the excess or
deficiency of essential and nonessential elem@ftall the micronutrients, deficiency is most
prevalent for iron, with more than two billion pdéemffected worldwide (Viteri 1998). Of
similar scale, nearly two billion people are estieasto suffer from dietary zinc deficiency
throughout developing nations (Prasad 2014). Gikeahmetal chelating substances such as
phytate in cereal grains bind zinc and iron andbimltheir absorption, zinc and iron deficiencies
resulting from low bioavailability could coincid&éndstead and Smith 1996; Lénnerdal 2000).
Although severe dietary micronutrient deficiencyasless prevalent in developed nations,

approximately 10 million people are iron deficiamthe U.S. (Miller 2013). In the U.S., the
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average daily intake of iron by most premenopa(isamg d') and pregnant (15 mg'ilwomen
is 6 and 12 mgdless than its recommended daily allowance (RDégpectively (Institute of
Medicine 2001, Linus Pauling Institute 2016). Addlially, the zinc RDA for adult women and
men is 11 mgdand 8 mg @, with elderly in the U.S. at higher risk for mitihc deficiency
(Mocchegiankt al. 2013; Linus Pauling Institute 2019).

Crop biofortification via genomics-assisted bregdamd genetic engineering has
emerged as an attractive approach for nutritionehacement of crops and the generation of
new varieties with a high density of iron and zimedible plant tissues (Murget al. 2012;
Bhullar and Gruissem 2013; Hirschi 2020). It isreasingly recognized that plant membrane
transporters and metal chelators are among théakggts for increasing mineral nutrient density
in plant tissues (Waters and Sankaran 2011; Schreed. 2013). However, in many cases,
transporters that facilitate the accumulation ofiand zinc are multispecific and can mediate
the uptake and internal transport of nonessentidipmtentially highly toxic heavy metals
including cadmium (Waters and Sankaran 2011; Sder@tal. 2013; Kharet al. 2014).
Therefore, efforts to increase the concentratioinoof and zinc in grains of cereals could also
increase the concentration of cadmium. This posesiaus threat to food security, especially if
crops are grown on soils either contaminated watingum or low in microelements,
particularly iron (Waters and Sankaran 2011; Sateoet al. 2013; Kharet al. 2014).

Vegetative and seed tissues of fruits and vegetavkeimportant dietary sources of
essential and nonessential elements for humangeo tmeir daily nutrient needs. Given that
sweet corn is the third most consumed vegetaltlee).S. (USDA-NASS 2018), the elemental
profile of fresh sweet corn kernels is an importonsideration for human health and nutrition.

Although not a major contribution to the RDA ofrrand zinc, the consumption of 100 g of
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uncooked, yellow sweet corn (medium-sized ear) ides/0.52 mg of iron and 0.46 mg of zinc
(USDA-ARS 2019), but the bioavailable amount iseptpd to be no more than a quarter of the
total of each element (Bouis and Welch 2010). Tioeee there exists a tremendous opportunity
to improve the elemental profile of fresh sweendaernels through genomics-assisted breeding,
but this first requires an understanding of thengltgpic variability and genetic control of zinc,
iron, and other elements. Considerable heritabi@wan exists for elemental concentrations in
physiologically mature grain of diverse maize par{&iegleret al. 2017; Wuet al. 2021), but a
comparable level of genetic understanding is sévéeking for immature kernels (fresh-eating
stage) of diverse sweet corn germplasm.

Complex physiological and genetic networks coortdirdemental uptake, transport, and
accumulation in plants, and these processes gremnsise to the environment in which plants
are grown (Reviewed in Baxter 2009). In the genoafesrabidopsis, maize, rice, and other
plant species, gene families have been identifednetal transporters and chelators including
but not limited to HEAVY-METAL ATPASE (HMA), OLIGOEPTIDE TRANSPORTERS
(OPTs) and their subfamily of YELLOW STRIPE-LIKE §Y.), ZINC-REGULATED
TRANSPORTER (ZRT)/IRON-REGULATED TRANSPORTER (IRT)KE PROTEIN (ZIP)
and NICOTIANAMINE SYNTHASE (NAS) (Whittet al. 2020). As it relates to maizgellow
stripel (ysl) andys3 encode proteins that have been functionally shimaransport iron when
associated with a strong metal-ligand, nicotian@wisynthesized frorS-adenosyl-methionine
by NAS enzymes—or its derivativéytosiderophores such as mugineic acid and deoxgmag
acid(Von Wirenet al. 1994; Chan-Rodriguez and Walker 2018), whereagpiibieins encoded
by ysl2 andzip5 have been functionally implicated in the accumaftabf zinc and iron in grain

(Li etal. 2019; Zanget al. 2020). Despite these advancements, the vast tyapdninetal
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transporters and chelators in the maize genomernateeen deeply characterized at the
functional level, thus a wide gap in the knowletdgse remains for the key gene family
members controlling the content and compositioel@ents in maize tissues and organs.

Explaining and predicting the quantitative variataf phenotypes is a major challenge in
crop plants, but there has been notable recentge®dor maize grain elemental phenotypes
(Ziegleret al. 2017; Hinduet al. 2018; Wuet al. 2021). In the U.S. maize nested association
mapping (NAM) panel, joint-linkage analysis and gere-wide association studies (GWAS)
were used to identify six strong candidate geneghi® concentrations of manganese,
molybdenum, phosphorus, or rubidium in physiololjycamature grain (Ziegleet al. 2017).
Through the implementation of GWAS in the maize Amanel, Wet al. (2021) resolved
several loci previously identified to control vara for copper, iron, manganese, molybdenum,
and/or zinc in mature grain from the U.S. NAM pandtich resulted in the identification of two
metal chelator and five metal transporter candidatees. Additionally, the authors detected
novel candidate gene loci for boron and nickelmgrincentrations. Whole-genome prediction
(WGP) models have been found to be moderately giirediof elemental concentrations in
mature grain of tropical maize populations (zirGuget al. 2020; Magetat al. 2020) and the
Ames panel (boron, calcium, copper, iron, potassimagnesium, manganese, molybdenum,
nickel, phosphorus, and zinc) (Véual. 2021). Notwithstanding this progress with matuiarg
the genotype-phenotype map of elemental conceorisatn fresh sweet corn kernels is
completely nonexistent, thus there exists tremesdportunities for studying the quantitative
genetics of these nutritionally relevant phenotypes

In this study, we used a sweet corn associatiorlganthe genetic dissection and

prediction of quantitative variation of 15 elememtdresh sweet corn kernels. The three major
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objectives of our study were to (i) evaluate valigband heritability of elemental fresh kernel
phenotypes within and across field locations,gfif)ploy GWAS to identify candidate genes
associated with the levels of elements in freshddsr and (iii) assess the predictive abilities of
WGP models as an evaluation of the potential teabgic selection has for the genetic
improvement of elemental fresh kernel phenotypgmmant to human nutrition and health.
MATERIALSAND METHODS
Plant Materials and Experimental Design
In two consecutive field seasons (2014-15), a sa@et association panel of 430 inbred lines
representing the genetic diversity of temperate bi&ding programs (Baseggioal. 2019)
was evaluated at Cornell University’s Musgrave Rede Farm in Aurora, NY, on a Lima silt
loam (fine-loamy, mixed, semiactive, mesic Oxyaddapludalfs) and University of
Wisconsin’s West Madison Research Station in Verdvilaon a Plano silt loam (fine-silty,
mixed, superactive, mesic Typic Argiudolls). Thegleconsists ofugaryl (sul),
sugaryl:sugary enhancerl (sulsel), shrunken2 (sh2), sugaryl:shrunken2 (sulsh2), brittle2
(bt2), andamyl ose-extender :dull:waxy (aeduwx) lines that are homozygous for endosperm
mutations that cause deficiences in starch bioggnhAdditionally, there were 20 non-sweet
corn inbred lines and four repeated check sweet iodared lines included in the experiment. In
each of the four environments (location x year cioiaiton), the experiment was arranged as an
augmented incomplete block design grown as a sheglcate as previously described by
Baseggicet al. (2019). Briefly, the lines were separated int@éhsets according to their plant
height, with each set having incomplete blocks.n6acomplete block of 20 experimental lines
was augmented with the random placement of twohtagecific check lines (We05407 and

W5579, W5579 and 1a5125, or 1a5125 and IL125bhdth field locations, experimental units
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were one-row plots of different lengths. Plots we@i@ m long in NY and 3.50 m long in WI.
Both locations had an inter-row spacing of 0.76with a 0.91 m alley at the end of each plot. In
NY, 25 kernels were planted per plot and thinnetizglants per plot. In WI, 12 kernels were
planted in each plot, but plots were not thinned.

In all environments, multiple plants per plot weedfed pollinated, with two selfed ears
collected by hand from each harvestable plot atgfd@ing degree days after pollination (i.e.,
immature kernel stage at approximately 21 days pfiination) as earlier described (Baseggio
et al. 2019). Immediately upon fresh harvest, the eptioteach dehusked ear was directly
frozen in liquid nitrogen, followed by hand shejiof frozen kernels. To generate a
representative composite kernel sample for eackebtad plot, frozen kernels were equally
sampled at random from both ears, bulked, anddiar&5 mL Falcon tubes at -80°C until
lyophilization. A combined set of 1,524 plot sangpfeom across all environments, with each
sample consisting of three lyophilized kernels, slaipped to the Donald Danforth Plant Science
Center (St. Louis, MO) for elemental analysis.

Phenotypic Data Analysis

For each plot sample, the determination of elemeatacentration by an inductively coupled
plasma mass spectrometer (ICP-MS) was conductedatefy for each of the three lyophilized
kernels as previously described in Bavdieal. (2014). In short, each individual unground kernel
was robotically weighed, digested in concentrai&itracid, and measured for concentrations of
aluminum, arsenic, boron, cadmium, calcium, colealpper, iron, magnesium, manganese,
molybdenum, nickel, phosphorus, potassium, rubidsgtenium, sodium, strontium, sulfur, and
zinc with a PerkinElmer NexION 350D ICP-MS. Of théX) elements, aluminum, arsenic,

cobalt, selenium, and sodium were not further a®rseid because their measured concentrations
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were at trace levels, vulnerable to contaminatmtine course of sample processing, and/or
sensitive to interference from other sample matoimstituents (Zieglest al. 2013). To limit the
influence of extreme analytical outliers that conéatively affect the accurate estimation of
variance components when initially fitting a miXetear model to the raw data, the method of
Davies and Gather (1993) was implemented simitariys use in Baxtegt al. (2014) to remove
raw concentration values with greater than a ceasee threshold of 15 median absolute
deviations from the median concentration for a gigeement within each environment. If less
than 1% of the values for a given element were inegahese negative values were set to
missing.

The preliminarily processed raw ICP-MS dataset mage robustly screened for
significant outliers by fitting a mixed linear mddkat allowed for genetic effects to be
separately estimated from field design effectdpwahg the procedure described in Wolfinger
al. (1997). The fitted mixed linear model was simtlathat used by Baseggabal. (2019) for
the same experimental field design, with the net&xkception that the model used in this study
included a term to estimate within-plot kernel sé&mariance. This allowed for the removal of
individual outlier measurements. For each elemegaitahotypethe full model was fitted in
ASReml-R version 3.0 (Gilmoueat al. 2009) across locations (all four environmentsfporeach
location separately (two environments, NY; or twwieonments, WI) as follows:

Yijkimnopq = M + check; + env; + set(env) j, + block(set X env);,, + genotype,, +
(genotype X env);,, + ICP.run, + sample, + row(env),, + col(env) ; + & jkimnopq [1]
in which Yjjumopg IS @n individual phenotypic observatignis the grand meawcheck; is the fixed
effect for theith checkenv; is the effect of thgh environmentset(env);i is the effect of théth

set within thgth environment, blodlset x env);q is the effect of théth incomplete block within
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thekth set within thgth environmentgenotypen, is the effect of theth experimental genotype
(non-check line),denotype x env)jnm is the effect of the interaction between thtt genotype and
jth environment|CP.run, is the laboratory effect of theh ICP run,sample, is theoth kernel
samplerow(env), is the effect of theth plot grid row within thgth environmentgcol (env);q is
the effect of thejth plot grid column within thgth environment, anéjumopq is the
heterogeneous residual error effect within eaclirenment with a first order autoregressive
correlation structure among plot residuals in the and column directions. With the exception
of the grand mean and check term, all terms wemreted as random effects. The Kenward-
Roger approximation (Kenward and Roger 1997) was ts calculate degrees of freedom.
Studentized deleted residuals (Nedeal. 1996) obtained from these mixed linear models were
used to detect significant outliers for each phgmeafter a Bonferroni correction € 0.05).

To generate best linear unbiased predictor (BLWR)es for each elemental phenotype,
an iterative mixed linear model fitting procedurasrconducted on the outlier-screened
phenotypic dataset in ASReml-R version 3.0 (Gilmaiwa. 2009) with the full model across
locations or for each location separately. Modehefitted as random effects including the
autoregressive correlations were tested with liogld ratio tests (Littektt al. 2006), followed
by the removal of terms from the model that weresignificant ate = 0.05. The significance of
main random effects and variance component estinaaeereported in Table S1. Additionally,
the first order autoregressive correlation struetwias statistically significant for all phenotypes.
For each elemental phenotype, the final, bestfitt@del was used to generate a BLUP for each
inbred line. The generated BLUP values were fitteeremove non-sweet corn lines, as well as
sweet corn lines with the infrequeasduwx or bt2 endosperm mutations and those without

available SNP marker data. This resulted in 40Jeswern lines with more prevalent endosperm
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mutations $ul, sulsel (classified asul for this study due to lack of informative marker
genotypes)sh2, andsulsh2] that had BLUP values for elemental phenotypessscand within
locations.

With variance component estimates from each bistifmodel, heritability on a line-
mean basis was calculated for each elemental pjmatross locations and separately for each
location as previously described (Lynch and WalB881 Hollandet al. 2003; Hunget al. 2012).
Pearson’s correlation coefficiem (vas used to assess the degree of associatiordretive
BLUP values of paired phenotypes. Pairwise colaatwere calculated, and their significance
tested att = 0.05 with the method ‘pearson’ from the functioor.test’ in R version 3.6.1 (R
Core Team 2019).

SN\P Marker Genotyping

The sweet corn inbred association panel was seqdena the genotyping-by-sequencing (GBS)
procedure of Elshiret al. (2011) withApeKI at the Cornell Biotechnology Resource Center
(Cornell University, Ithaca, NY, USAgs previously described (Baseggi@l. 2019). The
procedure of Baseggsi al. (2020) for SNP calling, filtering, and imputing $8ing genotypes
was used to construct a SNP marker dataset fayahetic dissection and prediction of fresh
kernel elemental phenotypes. In brief, the raw GB§uencing data from Basegegial. (2019)
was processed through the production pipeline ISSBL 5 GBSv1 with the ZeaGBSv2.7
Production TagsOnPhysicalMap file to call SNPs&,690 loci in B73 RefGen_v2 coordinates
(Glaubitzet al. 2014). These raw SNP genotype calls were mergéudthose of 19 sweet corn
inbred lines from Romay et al. (2013) that wereinoluded in the Baseggsi al. (2019) GBS
dataset, allowing for the assemblage of raw SNB @@l all 401 sweet corn inbred lines with

BLUP values.
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The combined raw dataset was initially filteredkdegping only biallelic SNPs with a call
rate > 10% and eliminating singleton (heterozygsitey and doubleton (homozygous site) SNPs
that score a minor allele in only a single indiatiuGiven the potential to have resulted from
paralogous alignments, we set heterozygous genaosjfsewith an allele balance score (lowest
allele read depth/total read depth) < 0.3 to mgsdinrmultiple GBS samples existed for an
inbred line, SNP genotype calls from samples withdame accession number/identifier were
merged and discordant genotype calls set to miskidgntical-by-state (IBS) values for all
within-line sample comparisons were > 0.99, follegvthe conservative IBS threshold set by
Romayet al. (2013). A single GBS sample with the highest SHIPrate was chosen to

represent an inbred line if all pairwise IBS valuese less than 0.99.

The FILLIN haplotype-based imputation strategy wlatset al. (2014) was used to
impute missing SNP genotypes to near completeraesedlon a set of maize haplotype donors
with a window size of 4 kb. To improve the quatlitythe imputed dataset, we filtered SNPs in
TASSEL 5 version 20190321 to remove those withllerage < 70% (residual missing genotype
data are expected for the haplotype-based impuatatethod of FILLIN; Swartst al., 2014), a
minor allele frequency < 5%, heterozygosity > 1@¥efficient of panmixia< 80%, or a mean
read depth > 15. To uplift the genome coordinatestained SNPs to B73 v4, the Vmatch
software (Kurtz 2003) was used to align the 10tdtext sequence of each SNP to the B73
RefGen_v4 reference genome, resulting in 147,76B-guality SNP markers scored on the 401
sweet corn inbred lines.

Genome-Wide Association Sudy
A GWAS was conducted across and within locatiorideéatify SNP markers significantly

associated with each elemental phenotype followhegnethods of Baseggsbal. (2020) with
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minor modifications. In short, the Box-Cox powartsformation (Box and Cox 1964) was used
with an intercept-only model to choose the optiwale of convenient lambda (-2 to +2, 0.5
increments) (Table S2) for transforming the BLURuea of each elemental phenotype to lessen
heteroscedasticity and non-normality of the redslugth the MASS package in R version 3.6.1
(R Core Team 2019). For each elemental phenotypexed linear model (Yt al. 2006;
Zhanget al. 2010) that accounted for population structure @metjual relatedness with principal
components (PCs) and a genomic relationship m@afidM; kinship) was used to test for an
association between each of the 147,762 SNPs ansformed BLUP values in GEMMA
software version 0.97 (Zhou and Stephens 2014hdiR package GAPIT version 2017.08.18
(Lipka et al. 2012), 10,773 unimputed genome-wide SNPs (cal*80%, MAF >5%,
heterozygosity <10%, coefficient of panmixia >80#d mean read depth <15) subsampled
from the complete marker dataset were used to leadcECs with the prcomp function and the
kinship matrix with VanRaden’s method 1 (VanRadéA8). The conservative imputation of
residual missing SNP genotypes as heterozygoustinrbarker datasets was conducted in
GAPIT.

The Bayesian information criterion (BIC) (Schwa@78) was used to ascertain the
optimal number of PCs to incorporate in the mixaddr model. Given that the predominant
accumulation of some elements in the endosperm ljLenal. 2009, 2011; Pongraat al. 2013;
Baxteret al. 2014; Chealat al. 2019) could potentially lead to spurious assooietiwithsul
andsh2 as shown for tocotrienols and certain caroten(B@seggicet al. 2019, 2020),
endosperm mutation typsul, sh2, or sulsh2) was also tested with the BIC for inclusion as a
covariate in the model. Of the 401 inbred lineg} B8s had endosperm mutation type scores

available from Baseggiet al. (2019), whereas endosperm mutation type for ehtieo
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remaining 17 lines without visual scores was prediavith the identical optimal marker-based
classification models and 1000 kb marker dataset&sul andsh2 loci from Baseggi@t al.
(2019).

To approximate the amount of phenotypic variatiopl@&ned by a significantly
associated SNP, we calculated the difference betiweelikelihood-ratio-based?Rtatistic
(R?.r) of Sunet al. (2010) from a mixed linear model with or withohietgiven SNP, following
Baseggicet al. (2020). The false-discovery rate (FDR) was coldadoat 5% by adjusting the-
values (Wald test) of SNPs tested in GEMMA usirg Benjamini-Hochberg multiple test
correction (Benjamini and Hochberg 1995) with theadjust’ function in R version 3.6.1 (R
Core Team 2019). Given the large variance in thenaged distance to which median genome-
wide linkage disequilibrium (LD) decays to backgnduevels (> < 0.1 by ~12 kb) in this
association panel (Baseggioal. 2019) and to account for the possibility of distais-
regulatory elements (Ricet al. 2019), candidate gene searches were limited &0k
(medianr? < 0.05) of the physical position of SNP markers sigantly associated with an
elemental phenotype. For each most plausible catelgene, we used BLASTP to identify the
top three unique best hits (E-values < 1) in Arapgis (Columbia-0 ecotype) and ric@ryza
sativa L. ssp. Japonica cv. ‘Nipponbare’) using defaaltaaeters at the TAIR
(https://www.arabidopsis.org) and RAP-DB (httpsgtib.dna.affrc.go.jp) databases,
respectively. The across-location (All Locs: Newrk,dFlorida, North Carolina, and Puerto
Rico) results from JL analysis and GWAS of graeneéntal phenotypes in the U.S. NAM panel
(Ziegleret al. 2017) were integrated with the physical (bp) posg& of GWAS signals from our

study in B73 RefGen_AGPv4 coordinates following #pproach of Wit al. (2021).
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The multi-locus mixed-model (MLMM) approach of Segeat al. (2012) that
sequentially adds significant markers as covariatése model was used to better clarify
significant association signals with underlyinggleseffect loci at the level of an individual
chromosome as previously described (Ligkal. 2013). The optimal model was selected with
the extended BIC (Chen and Chen 2008). To furtheess the extent of statistical control for
large-effect loci, GWAS was reconducted by inclgdMLMM-selected SNPs as fixed effects
(covariates) in mixed linear models fitted in GEMMA
Linkage disequilibrium
The local patterns of LD surrounding significardlgsociated loci were investigated by
estimating pairwise LD between SNPs with the sqiafiele-frequency correlation method
of Hill and Weir (1988) in TASSEL 5 version 201906@radburyet al. 2007). The marker
dataset used for estimation of LD consisted ofl#ig 762 SNPs without imputation of the post-
FILLIN residual missing SNP genotypes to heterozggo
Whole-genome prediction
A univariate genomic best linear unbiased predic{®BLUP) model (Bradburgt al. 2007;
VanRaden 2008) was used to evaluate whole-genoadakction (WGP) on the transformed
across-location BLUP values of the 15 elementahphyes as previously described by
Baseggicet al. (2020). In short, the 401 line x 147,762 SNP ggm®imatrix with post-FILLIN
missing data imputed as a heterozygous genotypesesto construct a GRM with method 1
from VanRaden (2008) in GAPIT version 2017.08.1®Kh et al. 2012). Next, the constructed
GRM was modeled as a random effect to predict gatiidual elemental phenotype with the
function ‘emmreml’ in version 3.1 of the R packd&/dMREML (Akdemir and Okeke 2015).

Through the implementation of a five-fold crossigation scheme conducted 50 times for each
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elemental phenotype, the predictive ability of @mpdtype was calculated as the mean Pearson’s
correlation between transformed BLUP (observed)gerbmic estimated breeding values
(predicted). Each fold was representative of ggmofyequencies for endosperm mutastd (

sh2, andsulsh2) observed in the whole association population.dspdrm mutation types1,

sh2, orsulsh2) was also evaluated as a covariate in predictiodats, with the same cross-
validation folds used across models with or withitxet covariate for endosperm mutation type.
Data availability

All raw GBS sequencing data are available fromNa&onal Center of Biotechnology
Information Sequence Read Archive under accessiotber SRP154923 and in BioProject
under accession PRINA482446. The ZeaGBSv2.7 PioduagsOnPhysicalMap file
(AllZeaGBSv2.7_ProdTOPM_20130605.topm.h5) for cgllISNPs, the raw SNP genotype data
in B73 AGPV2 coordinates (ZeaGBSv27_publicSamplasGenos_AGPv2-150114.h5) for the
19 sweet corn lines of Romayal. (2013), and the maize haplotype donor file
(AllZeaGBSv2.7impV5_AnonDonors4k.tar.gz) for impuimissing genotypes are on CyVerse
(https://datacommons.cyverse.org/browse/iplant/ishaged/panzea/genotypes/GBS/v27). The
BLUP values of the 15 elemental phenotypes andthielN imputed SNP genotype calls in

B73 AGPv4 coordinates for the 401 inbred linesaualable at CyVerse:
(https://datacommons.cyverse.org/browse/iplant/lishaged/GoreLab/dataFromPubs/Baseggio
_SweetcornElement_2021). The Supplemental FigurésS ables are available at CyVerse:
(https://datacommons.cyverse.org/browse/iplant/Hshaged/GoreLab/dataFromPubs/Baseggio
_SweetcornElement_2021/BioRxivSupplementalinfororgti Except for the University of
Wisconsin germplasm, all inbred lines includedha $weet corn association panel are in the

public domain. A material transfer agreement isinegl to obtain some of the Wisconsin lines.
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RESULTS
Phenotypic variation
The extent of phenotypic variation for 15 elementBesh kernels as quantified by ICP-MS was
evaluated in an association panel of 401 sweetiobred lines that was grown in two field
locations (Verona, WI; and Aurora, NY) in 2014 &adl5. Of the five macroelements studied,
potassium, phosphorus, sulfur, and magnesium hac@® concentrations greater than 1 0§0
g™, whereas calcium had an average concentratiopasfyn60ug g* (Table 1). Average
concentrations ranged from 0.012 (cadmium) to 24z6%) ug g* for the 10 microelements.
Even though cadmium had the lowest mean concemtratihad a 12.11-fold range in variation
(maximum BLUP value divided by the minimum BLUP wa), whereas the other 14 elements
covered a 1.34- to 3.66-fold range in variation.eWseparating inbred lines according to their
endosperm mutation type (Table 2), copper, iromgaaese, and potassium were found to be at
significantly P < 0.001) greater concentrations in th& (n = 78) group relative to theil (n =
301) group.

Implying common genetic control (Baxter 2015), sltachemical and physiological
properties (Marschner 2011), or storage with phgticl (Maathuis 2009), element pairs with
strong positive correlations ¢ 0.50;P < 0.01) across locations (Figure S1) were asv@lo
strontium/calcium, magnesium/phosphorus, zinc/iesrd phosphorus/zinc. Suggestive of a
distinct genetic architecture, molybdenum was tament most weakly correlated with other
elements across locations (Figure S1), havingrafgignt but very weak positive correlation (
= 0.12;P = 0.02) with zinc alone. With the exception of tmia?= 0.15) that can have elevated
background levels from the use of glass (sodiurndilicate) tubes for chemical digestion

(Baxteret al. 2014), the across-location heritability estimg@esble 1) for the elemental
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phenotypes were 0.40 (sulfur) and larger. The Gré&raction term was only significant for
boron, copper, iron, magnesium, and rubidium, wéethe genotype term was significant for all
15 elements (Figure S2 and Table S1).

When investigating phenotypic variation betweeratams, we found that only the
average concentration of sulfur was not signifiadifferent between locations (Figure S3).
Indicative of phenotypes with a range of respons#gs to the environment, the correlationof
elemental trait BLUPs between locations ranged f@dd8 (boron) to 0.68 (copper), with an
average correlation of 0.42 (Figure S4). Despiéerttostly moderate correlations between
locations, within-location heritability estimateBaple S3) were comparable to those estimated
across locations (Table 1) and strongly correléted0.81) between the NY and WI locations.
Altogether, our findings suggest that there is gatuexploring the genetic dissection of

elemental fresh kernel phenotypes across- andnsiitications.
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Genome-Wide Association Sudy
We investigated the genetic basis of natural Vandbr the concentration of 15 elements in
fresh kernels from the sweet corn association pain&D1 inbred lines that had been evaluated in

four environments (two years two locations) and scored with 147,762 genome-\@Ne

markers. Through an across-location GWAS conduetdda unified mixed linear model that
accounted for population structure, relatednasd,endosperm mutation type, 220 unique SNPs
were found to associate with one of three elem@aidmium, zinc, or boron) at a genome-wide
FDR of 5% (Table S4). Significant association slgneere only found on chromosomes 1
(boron), 2 (cadmium), and 7 (zinc), with the excapof a single SNP associated with cadmium
on chromosome 8 (Figure S5).

The strongest association signal was identifiediferconcentration of cadmium,
consisting of 191 significant SNPs that covere® ®#3-Mb interval within a long-range LD
region of chromosome 2 (Figure 1A). The peak SNP {57751802P-value 1.53x16>,
162,398,589 bp) for this complex association sighable S4), which explained 18% of the
phenotypic variance for cadmium, was positionedhwithe open reading frame (ORF) of a
gene (Zm00001d005174) that codes for a proteindlaings to the superfamily of uridine
diphosphate-glycosyltransferases (www.maizegdb.btgyvever, this and other candidate genes
within 250 kb of the peak SNP (www.maizegdb.orgyeveonsidered to unlikely be involved in
cadmium accumulation. Given the extensive LD witthiis recombination suppressed region
(Goreet al. 2009; Rodgers-Melnickt al. 2016), we searched for more plausible candidategye
within 250 kb of other significant SNPs in LD withie peak SNP. This led to our primary focus
on five SNPs significantly associated with cadmitnat were ~630 kb from the peak SNP, in

moderately strong LD (mean of 0.48) with the peak SNP and located withinhbavy metal
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ATPase3 (hma3; Zm00001d005190) arttbavy metal ATPase4 (hma4; Zm00001d005189) genes
(Table S5). Notably, thema3 andhma4 genes encode proteins with 71% and 66% amino acid
sequence identity to OsHMA3 (Table S5),:a-8pe ATPase involved in sequestration of
cadmium in root vacuoles of rice (Ueatal. 2010).

To better resolve the expansive association sigsalting from a large-effect locus
located in a long range, high LD genomic regiooheomosome-wide multi-locus mixed-model
procedure (MLMM) was conducted for cadmium. Theaulasg optimal model only included the
peak SNP (S2_157751802) on chromosome 2 (Table®n GWAS was reconducted with
this MLMM-selected SNP included as a covariatéhmrmixed linear model to control for this
large-effect locus on chromosome 2, all other neslly significant associations on

chromosomes 2 and 8 were no longer significantgereme-wide FDR of 5% (Figure 1B).
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Figure 1. Genome-wide association study for cadmium conagatr in fresh kernels of sweet
corn. (A) Scatter plot of association results framixed model analysis and linkage
disequilibrium (LD) estimates). The vertical lines are —lggP-values of single nucleotide
polymorphisms (SNPs), with the blue color represgn8NPs that are statistically significant at
a 5% false discovery rate (FDR). Triangles arertivalues of each SNP relative to the peak
SNP (indicated in red) at 162,398,589 bp (B73 Ref@d) on chromosome 2. The red
horizontal dashed line indicates the —<ld@value of the least statistically significant SNRaa
5% FDR. The black vertical dashed lines indicagegbnomic positions of theavy metal
ATPase4 (hmad; Zm00001d005189; 163,016,710-163,020,248 bp)heady metal ATPase3
(hma3; Zm00001d005190; 163,038,225-163,041,426 bp) gdriese two genes are separated
by a physical distance of ~18 kb, thus their posgiare not distinguishable at the plotted scale.
(B) Scatter plot of association results from a ¢oomolal mixed linear model analysis and LD
estimatesrf). The SNP from the optimal multi-locus mixed-mo(®2_157751802) was
included as a covariate in the mixed linear modeldantrol for the large-effect locus. None of
the tested SNPs were significant at a 5% FDR.

We identified 21 SNPs that spanned a 1.21-Mb regronohromosome 7 that were
significantly associated with the concentratiorziot in fresh kernels (Figure 2A). The peak

SNP (S7_174515604-value 3.19x18% 180,076,727 bp) for this association signal eirgla
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7% of the phenotypic variance for zinc and wastledavithin the ORF of a gene
(Zm00001d022563) that encodes a tetratricopepéigeat-like superfamily protein
(www.maizegdb.org). Notably, this peak SNP wasteda-111 kb from thaicotianamine
synthase5 (nas5) gene (Zm00001d022557; Table S5), which encoddssa 11 NAS that
presumably contributes to the production of theaingtelator nicotianamine (Zhatial. 2013).
Of the 21 detected SNP-zinc associations, SNP SR278869, which was located ~160 kb from
nas5 and in moderately strong LIB*(= 0.49) with the peak SNP for zinc, also had a nea
significant association (FDR-adjustBevalue 0.06) with the concentration of iron in fies
kernels. When using the chromosome-wide MLMM pracedo better clarify the association
signal complex within the 1.21-Mb region on chrowmmoe 7 for zinc, only the peak SNP

S7 174515604 was included in the optimal model i@ &B). With the MLMM-selected peak
SNP as a covariate, a conditional mixed model amatjid not detect any SNPs significantly

associated with zinc (Figure 2B).
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Figure 2. Genome-wide association study for zinc concewtnati fresh kernels of sweet corn.
(A) Scatter plot of association results from a rdixeodel analysis and linkage disequilibrium
(LD) estimatesrf). The vertical lines are —lggP-values of single nucleotide polymorphisms
(SNPs), with the blue color representing SNPsdhatstatistically significant at a 5% false
discovery rate (FDR). Triangles are ti@alues of each SNP relative to the peak SNP (inetica
in red) at 180,076,727 bp (B73 RefGen_v4) on chisonee 7. The red horizontal dashed line
indicates the —log P-value of the least statistically significant SNRa&% FDR. The black
vertical dashed line indicates the genomic posibibtine nicotianamine synthaseb (nass;
Zm00001d022557;179,964,493-179,965,584 bp) genes¢Btter plot of association results
from a conditional mixed linear model analysis aBdestimatesr€). The SNP from the optimal
multi-locus mixed-model (S7_174515604) was includsa covariate in the mixed linear model
to control for the large-effect locus. None of tested SNPs were significant at a 5% FDR.

Compared to cadmium and zinc, a relatively weaksoaation signal consisting of
seven significant SNPs was identified for boroncamtration on chromosome 1. Collectively,
these seven SNPs comprised a 98.99-kb intervalp&ak SNP (S1_18914603-value

5.01x10"; 191,327,920 bp), which was located within the GRRE gene (Zm00001d031473)
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encoding a protein with 87% sequence identity tarmmoacylase in rice (Table S5), explained
5% of the phenotypic variance for boron concerdratDf the other candidate genes within 250
kb of the peak SNP position, a gene (Zm00001d03/1#i@d to be ~45 kb away from the peak
SNP encodes a protein with 40-45% amino acid sexuelentity to two heavy metal-associated
isoprenylated plant proteins (HIPPs) in Arabidog$eble S5) that are putative
metallochaperones (de Abreu-Netal. 2013). Indicative of a weaker effect locus, theNM
procedure at the chromosome-wide level did notseley SNP for the optimal model.

To identify marker-trait associations that may deation-specific, we conducted GWAS
for the 15 fresh kernel elemental phenotypes wigiaich location (NY, Figure S6; WI, Figure
S7), resulting in significant association signasedted for cadmium (NY and WI), zinc (NY
and WI), nickel (NY), and calcium (WI) at 5% FDRafle S4). In the NY location, the
association signal for cadmium consisted of 198 SthBt defined a 36.89-Mb region on
chromosome 2, with the peak SNP (S2_157751B0&lue 2.64x10% 162,398,589 bp) for the
signal the same as detected for cadmium acrossdosdTable S4). Potentially the result of
environmental variation combined with lower mappprgcision from fewer evaluated inbred
lines relative to the NY location (Table S3), deliént peak association signal (S2_159765450;
P-value 1.98x108> 164,415,588 bp) that contained 81 SNPs coverth§2Mb on chromosome
2 was identified for cadmium in the WI location bl@ S4). The peak SNP for the WI location
was ~1.38-Mb fronhma3 andhma4, whereas the peak SNP in the NY location was 30
from the same two candidate genes. Within eachitotahe chromosome-level MLMM
procedure was performed for cadmium (Table S6gcsielg only the peak SNP that when
included as a covariate in a conditional GWAS reedell other associations on chromosomes 1

(NY), 2 (NY and WI), and 3 (NY and WI) no longegasificant.
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In both locations, the same SNP served as thegssaiciation signal (NYP-value
4.89x10% WI: P-value 7.75x10) for zinc, which was ~111 kb fromas5 on chromosome 7
(Table S4). The same SNP was also detected ag#keassociation signal for zinc across
locations. The chromosome-wide MLMM approach selécnly the peak SNP in the best
model within each location (Table S6). With thelp&&IP as a covariate in a conditional
GWAS, the other previously detected SNPs for zmcliromosome 7 in NY (6 SNPs) and WI
(3 SNPs) did not remain significant. Similar to tiesults from conducting the across-location
GWAS, SNP S7_174279369, which was ~160 kb fraisb, had a weak association (FDR-
adjustedP-value 0.07) with iron in the NY location. In coast to the across-location GWAS,
however, this SNP was not significantly associate zinc in either the NY or WI locations
(Table S4).

A significant association signal was detected #&dciam in the WI location but not the
NY location (Table S4). This signal for calcium s@ted of four SNPs on chromosome 10. The
peak SNP (S10_12406908%yalue 6.09x18% 125,112,781 bp) was ~36 kb from a gene
(Zm00001d025654) that codes for a protein with 8%4equence identity to two HIPPs in
Arabidopsis (Table S5). Additionally, this peak SiN&s selected by the MLMM in the optimal
model at the chromosome-wide level (Table S6)olmcordance with other conditional GWAS
results, no other SNPs remained significant wheR SN0_124069084 was used as a covariate
in the mixed linear model.

Of the two field locations, we only detected a gigant association for nickel in the NY
location. The association signal for nickel on chosome 9 consisted of four SNPs, with the
peak SNP (S9 221392R:value 2.80x10% 1,934,330 bp) for the signal selected by the

MLMM in the optimal model (Tables S4 and S6). Thealp SNP was within the ORF of a gene
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(Zm00001d044768) that encodes a protein 39-47%ickdrat the amino acid sequence level to
three members of the NITRATE TRANSPORTER 1/PEPTIDFANSPORTER (NRT1/PTR)
family (NPF) in Arabidopsis (Table S5) that trangputrate, amino acids, and hormones (Léran
et al. 2014). Additionally, this peak SNP was ~44 kb frargene (Zm00001d044771) coding a
protein with 49-52% sequence identity to three maetalloproteinases (MMPS) in
Arabidopsis (Table S5) that have a zinc-bindingusege (Marino and Funk 2012). All other
significant SNPs on chromosome 9 and a single fesgnt SNP on chromosome 5 were no
longer significantly associated with nickel in aaddional mixed linear model with the peak
SNP as a covariate.

Whole-genome prediction

We evaluated the predictive ability of WGP with 1262 SNP markers for the across-location
concentrations of 15 elements that had been scoréesh kernels of the 401 inbred lines. The
15 elements had an average predictive ability ®f (xranging in abilities from 0.19 for rubidium
to 0.52 for copper (Table 3). The predictive aigfitwere above average for iron (0.45) and zinc
(0.49), suggesting that genomic selection coulddsel to increase the concentration of both
nutritionally limiting microelements in fresh swesgrn kernels. A strong positive Pearson’s
correlation coefficientr(= 0.62P-value < 0.05) was found between heritability esties and
predictive abilities for the 15 elemental phenos/g@iven the detection of significant
differences among endosperm mutation types forf 1#0e0l5 elemental phenotypes (Table 2),
endosperm mutation type was tested as an inclunetiate in WGP models, but changes to

prediction abilities from its inclusion were zewrtegligible (Table 3).
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DISCUSSION

Maintaining elemental homeostasis is critical flans to realize optimal growth and complete
their life cycle (Marschner 2011). Additionally glelemental content and composition of edible
plant parts are influenced by genetic and envirartaidactors (Watanabet al. 2007; Baxter

and Dilkes 2012; Baxtest al. 2014). Several genes responsible for natural trami@f elemental
levels in root and shoot tissues have been idedtdnd characterized in plants (Huang and Salt
2016; Yangget al. 2018), but considerable effort remains to pinptietgenes regulating
elemental levels in seed of crops. To further tegearch, we examined the extent of phenotypic
variation for elemental concentrations in fresimle¢és and performed a GWAS to identify
candidate genes controlling this phenotypic valitgtin a sweet corn association panel. We also
evaluated the ability of genome-wide markers talgteeslemental concentrations, providing
insights into the potential of genomic selectiondptimizing the elemental profile of fresh
kernels for human health and nutrition, especiadig and zinc. To the best of our knowledge,
this work is the most extensive quantitative genatialysis of elemental concentrations in fresh
kernels of sweet corn.

The rank order of average concentrations for thasmed elements in fresh kernels from
the sweet corn association panel was highly cormecandith that observed for the same elements
in physiologically mature grain from the maize Anpagel of non-sweet corn tropical and
temperate inbred lines (Waial. 2021) and the B73 (derfil) x IL14H (sweet cornsul)
recombinant inbred line (RIL) family of the U.S. NApanel (Baxteet al. 2014). Our sweet
corn association panel showed a range of 13.66:26d 18.58-32.1fig g* on a dry weight
basis for iron and zinc, respectively. Howeverstheanges were both lower and narrower than

that found for iron (14.62 - 36.38) g*; 3.29 S.D.) and zinc (12.59 - 52.38 g*; 4.36 S.D.) in
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physiologically mature grain from the maize AmesggWuet al. 2021). With consideration of
losses from processing and bioavailability, themmended target level iron and zinc grain
concentrations established by HarvestPlus, whishaharimary focus on developing nations
where nutritional deficiencies are prevalent, &e6d 38.g g* dry weight, respectively, for
developing biofortified maize based on achievin@-48% of estimated average requirements
for adult women (nonpregnant, nonlactating) whemscaning 400 g d of whole maize grain
(Bouis and Welch 2010). Although the maximum irencentration observed in our sweet corn
association panel (28.1iy g* dry weight) is ~2-fold lower than the HarvestPwseding target,
there are six inbred lines that have zinc concéatra ranging from 30.00 to 32.1@ ¢* dry
weight. As it relates to the consumption of fregleat corn when not a primary source of daily
calories, the estimated maximum fresh kernel canagons observed in our association panel
would provide approximately 4-9% and 7-10% of tH@ARof iron and zinc, respectively, for
adult non-elderly women (nonpregnant, nonlactatarg) men when consuming 100 g (~75%
water) of uncooked fresh sweet corn. Irrespectidaaking experimental data from
bioavailability assays, our comparison of phenatypstributions to dietary guidelines implies
that the top 5% highest ranking lines for irer2@ ug g* dry weight) and zinc{28ug g* dry
weight) concentrations have promise for establlaitiofortification program for sweet corn.
We assessed whether the concentrations of elemiiei®d significantly among
endosperm mutation group types. Of the 15 elemeapger, iron, manganese, potassium, and
sulfur were highly significantly differenP(< 0.001) between two or more endosperm mutation
type groupsdul, sh2, andsulsh?) (Table 2). Relatedly, Baxtet al. (2014) showed that the
content for four (iron, manganese, potassium, aifdrg of these five elements significantly

differed P < 0.0005) between visibly ‘wrinkled&(1/sul) and ‘non-wrinkled’ Sul/sul or

28


https://doi.org/10.1101/2021.02.19.432009
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.432009; this version posted May 20, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Sul/ul) kernels harvested at physiological maturity. tA®lates to the spatial distribution of
elements in sweet corn kernels, Cheidl. (2019) analyzed immature (21 DAP) kernels from a
single sweet corrsi2) variety via synchrotron-based X-ray fluorescemgeroscopy to reveal
that potassium and calcium were generally preseatighout the kernel, sulfur concentrated
mainly in the axis of the embryo and the peripharihe endosperm, and the scutellum of the
embryo had at least 20-fold higher concentratidrghosphorus, iron, zinc, and manganese than
in the endosperm. Notably, Cheetlal. (2019) also showed that these spatial distributaps

for elements were highly similar to those of imntatmaize (non-sweet corn) kernels. Despite
these valuable insights from earlier studies, iréxperimental work will be needed to
determine whether the observed significant diffeesim concentrations of the five elements
among endosperm mutation type groups in our sweatassociation panel were attributed to
variation in physiological, genetic, and/or physatiributes of fresh kernels.

Conducting GWAS across locations for the concewotnatof elements in fresh kernels of
the sweet corn association panel resulted in thatiiication of candidate genes associated with
cadmium and zinc at the genome-wide level. Of tleémments, the strongest association signal
was for cadmium, having an association signal aorabsome 2 that spread more than 35-Mb
across a recombinationally inert genomic regiordifidnally, the peak SNP of this association
signal co-localized with the single across-locafipriL detected for grain cadmium
concentration in the maize NAM panel (Tables S4 @Ay but the GWAS resolution for this
region in the NAM panel (Table S8) was too limitirmgconvincingly identify an underlying
causal gene (Zieglet al. 2017). In our sweet corn association panel, howéwe likely

candidate causal genes were identifreda3 andhmad, both having SNPs in moderately strong
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LD with the peak SNP of the association signal.sEhgenes are two of a 12-member gene
family encoding HMAs in the genome of maize inblieé B73 (Cacet al. 2019).

Of the 12 HMA genes, the proteins encodedhilmg3 andhma4 have high sequence
identity (Table S5) to the;Rtype ATPase, OsHMA3—a tonoplast-localized zincfoan
transporter that has been shown to be expressemkiroots, mediates cadmium and zinc
vacuolar sequestration and, as such, participateisc homeostasis and root-to-shoot cadmium
translocation (Uenet al. 2010; Miyadatest al. 2011; Sasaket al. 2014; Cakt al. 2019). The
loss-of-function ofOsHMAS3 has been associated with cadmium accumulatioergrains,
whereas low-cadmium rice cultivars express a fonetfiOsHMA3 (Uenoet al. 2010).
Furthermore, Uenet al. (2010) have shown that the overexpressio®sbMA3 selectively
decreased the accumulation of cadmium, but not elleenents in the grain. In a follow-up
study, Sasaket al. (2014) showed that overexpressiorOsHMA3 resulted in sequestration of
both cadmium and zinc in rice root vacuoles, batdbncentration of zinc in shoots was
unaffected through the constitutive upregulatiotransporter genes having putative
involvement in the uptake and translocation of zinagreement with Sasadtial. (2014), we
found no evidence of the large-effect locus spaphima3 andhma4 having a significant
association with zinc concentration in fresh sveeeh kernels. Importantly, Cabal. (2019)
identified several polymorphisms withiima3 to be significantly associated with leaf cadmium
concentration at the seedling and adult plant staga maize diversity panel. Moreover, they
further showed the expression levehaofa3 to be highly upregulated in the roots of B73 in
response to cadmium stress, whereas the expreddiom4 was undetectable in roots under the
same conditions (Caat al. 2019). Considering this, we propose thiaa3 is the more likely of

the two genes to have played a key genetic ralearaccumulation of cadmium in fresh kernels.
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Thenas5 gene was found to be within 250 kb of the peak &Mfhe across-location
zinc and iron association signals on chromosonié&se findings co-locate with the GWAS
results of Ziegleet al. (2017) and Wt al. (2021) from the U.S. maize NAM (Tables S4, S7,
and S8) and Ames mapping panels, respectivelyjriyicatednass as a possible pleiotropic
controller for the concentrations of both zinc @mah in physiologically mature grain samples.
As one of nine gene family members in the B73 ezfee genomejass phylogenetically groups
together withnas3 andnas4, which together comprise classfis genes (Zhowet al. 2013) The
NAS enzyme encoded Imas5 is hypothesized to be involved in the productibthe non-
proteinogenic amino acid, nicotianamine, an effitighelator of transition metals including zinc
and iron (Takahaslat al. 2003; Curiest al. 2009; Swamyt al. 2016). In addition to a suggested
role in intracellular metal homeostasis, nicotiaimariacilitates phloem-based metal delivery
from source (e.g., leaves) to sink (e.g., seedshi¢is (Takahashi al. 2003; Curieet al. 2009;
Swamyet al. 2016). Nicotianamine also serves as a precursahéosynthesis of root-exuded
mugineic acid-type phytosiderophores that chelatgeht metals for eventual root uptake
(Curieet al. 2009; Swamyt al. 2016).

Consistent with a proposed roler@fs5 in long-distance metal transport rather than
uptake into roots, Zhoet al. (2013) showed that transcripts of classas genes includingiass
accumulated mainly in maize leaves and sheath,aslaslass mas genes were predominantly
expressed in maize roots. Interestingly, of thedhalass Ihas genesnass was more highly
expressed in maize stems, further suggesting itsibation to long-distance metal transport and
perhaps its contribution to metal loading to sd@twuet al. 2013). In addition, the
transcriptional expression level mdsS was downregulated by iron deficiency in both skautd

roots but upregulated under excess iron and zinadts. Activation tagging dDsNAS3, the
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closest rice homolog ofas5 (Zhouet al. 2013), produced an increased level of nicotianamin
that resulted in elevated levels of zinc and iroshoots, roots, and seeds of activation-tagged
rice plants (Leet al. 2009). Despite the lack of functional validatioesults from the maize
association mapping and transgenic rice studieagly support the nomination n&sb as a
causal gene for controlling zinc and iron concediurs in fresh sweet corn kernels.

Similar to our findings withnasb in the sweet corn association panel, &al. (2021)
also identified a stronger association signalasb with zinc relative to iron in the maize Ames
panel. This finding is not entirely surprising catesing that the affinity constants (Kd) of
complexes of nicotianamine with zinc is higher tifi@nnicotianamine with iron (Curiet al.
2009; Gayombat al. 2015). Therefore, it is plausible to propose #watimolar concentrations
of iron and zinc would result in the selection wfczfor nicotianamine over iron (Curet al.
2009; Gayombat al. 2015). It is also noteworthy that the concentratbzinc in the phloem
sap is thought to be higher than the concentratioron (Reviewed in Gayombei al. 2015),
thus reinforcing the suggested role of nicotianaa@ndnass in zinc accumulation in fresh
kernels.

In contrast to the highly probable causality of h@&3 andnas5 loci detected via GWAS
across and within both locations, there is only erately compelling evidence for the genetic
involvement of identified candidate genes for thaaentrations of boron (across locations),
calcium (WI), and nickel (NY). Of the genestlan 250 kb of the peak SNP for the boron
association signal on chromosome 1, two genes @mgadputative protein with sequence
identity to either an aminoacylase (Zm00001d0314r3JIPP (Zm00001d031476) were the
most plausible candidates. Under boron deficieanynoacylases (metalloenzymes involved in

amino acid metabolism) have been shown to havesdsed protein and increased transcript
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levels inBrassica napus L. roots andCitrus sinensis leaves, respectively (Wamtjal. 2010; Lu
et al. 2015). Transcriptome profiling revealedH&PP to be upregulated in leaves and roots of
black poplar Populus nigra L.) grown under boron toxicity (Yildirrm and Ugl2016), which
perhaps is not surprising given that HIPPs are lloeteaperones involved in the transport of
metallic ions and response to abiotic stresseé&deu-Netoet al. 2013). Despite these findings
in other plant systems, the exact mechanism bylwthie identified aminoacylase and HIPP
would have contributed to the accumulation of baroftesh kernels is unknown but
nevertheless merits further experimental investogat

Although the peak SNP associated with calcium cainagon in the WI location resided
within a genomic region that lacked a definitived@ate gene, it was located ~36 kb from a
gene (Zm00001d025654) encoding a putative HIPP.d¥ew to our knowledge, HIPPs have
never been experimentally shown to bind'@de Abreu-Netat al. 2013), thus aim vitro study
would be needed to determine whethef'@abound by the putative HIPP that
Zm00001d025654 encodes. It is interesting thaectiltely, two different HIPP candidate genes
were identified for the concentrations of boron aattium, but these proteins would not be
expected to have similar roles given that calciueh laoron have different chemical and
physiological properties (Marschner 2011). Regag]léhese findings open new avenues of
inquiry that could deepen our understanding ofgieetic basis of boron and calcium
accumulation in fresh sweet corn kernels.

In contrast to calcium, the nickel association aldar the NY location coincided with
association signals detected for nickel grain cotraéons in the maize NAM (Tables S4, S7,
and S8) and Ames panels (Ziegteal. 2017; Wuet al. 2021). This still genetically unresolved

signal consisted of two possible candidate gemeb)MP (Zm00001d044771) and NPF member

33


https://doi.org/10.1101/2021.02.19.432009
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.432009; this version posted May 20, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(Zm00001d044768). Even though MMPs could concewhbid nickel in place of zinc (Cerda-
Costa and Gomis-Rith 2014), their proteolytic aiéis to remodel the extracellular matrix
(Marino and Funk 2012) lack a clear connectionitiel transport or accumulation.

Additionally, the putative NPF member encoded by0R601d044768 is hypothesized to
transport nitrate given its high sequence idemtittnembers of the NPF5 subfamily in
Arabidopsis (Table S5) (Niflo-Gonzalezal. 2019), thus reducing but not completely
eliminating the possibility that this yet-to-be caeterized protein transports nickel or a substrate
that binds nickel.

We showed that, on average, moderate predictiveiedivere achieved through the
application of WGP for the across-location concarins of the 15 elements in fresh sweet corn
kernels. Additionally, these predictive abilitieens found to be strongly correlated with
heritability estimates, which coheres with expeotat (Combs and Bernardo 2013). In
accordance with these results, Wal. (2021) analyzed 11 of these 15 elements in maiaia
samples from the maize Ames association panehtthbeen evaluated in a single location
across two years, finding that the moderate priedictbilities of the 11 elements from WGP had
a strong correlation with their heritabilities. AJ]ghe prediction abilities presented in Table 3
suggest that endosperm mutation type did not reebd tonsidered as a covariate in WGP

models to capture the genetic differences betweethtree groups at the genome-wide marker
density employed in this study. Given that we obsersignificant G< E interaction for boron,
copper, iron, magnesium, and rubidium, accountmmdx E in WGP models could result in
slightly improved predictive abilities for thesedielements. In support of this supposition, a
multi-environment model incorporating>CE resulted in higher average prediction abilitias f

the concentration of zinc in kernels from a troproaize inbred panel and a double haploid
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population compared to those from single-environmeodels (Magetet al. 2020). Therefore,
this should be an area of further exploration wb@mducting multi-environment genomic
selection for elemental phenotypes whether atrtimeature or mature stages of kernel
development.

The results from GWAS can be used to better infoow best to successfully implement
genomic selection for the concentrations of elesmentresh sweet corn kernels. Apart from
cadmium (18%) and zinc (7%), which each had a silaglus explaining more than 5% of the
phenotypic variance in the across-location GWASpleerved relatively weaker association
signals for boron, iron, and the other 11 elements=sh kernels. Furthermore, we did not
identify all of the strong association signalstfoe grain concentrations of boron, copper,
manganese, molybdenum, nickel, and zinc that had tetected in the maize Ames panel (Wu
et al. 2021). Compared to the Ames panel study ofé\al. 2021 that had more than 2,000
maize inbred lines, it is likely that the size loétsweet corn association panel in our study was
too underpowered to identify these loci, whetherdose of their lower allele frequencies and/or
weaker effects. Regardless, we posit that theseegial phenotypes are generally more
polygenic than carotenoid and tocochromanol lewefsesh kernels of sweet corn that have a
more oligogenic inheritance (Basegetal. 2019, 2020), thus making elemental phenotypes less
tractable for genetic dissection in the sweet @asociation panel. Therefore, genomic selection
is more advisable than marker-assisted selecti@abaseding approach for selecting for the
concentration of elements in fresh kernels (Loretrat. 2011; Desta and Ortiz 2014). However,
it is still worthwhile to assess the inclusion afde-effect loci as fixed effects such as those for
cadmium and zinc in WGP models, as it could raautigher prediction abilities in specific

sweet corn breeding populations (Bernardo 2014).
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Conclusions

We used a sweet corn association panel to studyuhsetitative genetics of natural variation for
the concentrations of 15 elements in fresh kerfiéisough an across-location GWAS, we
strongly implicated the candidate causal gevasS with iron/zinc anchma3 with cadmium.

Given that iron and zinc accumulation in fresh ledsrhave a partially shared genetic basis, the
genetic correlation between these two phenotypededeveraged with multi-trait genomic
selection approaches to possibly exceed the pradiatcuracy of single-trait genomic selection
(Jia and Jannink 2012) for simultaneous genetieggiai zinc and iron concentrations. Such
efforts would help to address iron and zinc deficies of women, children, and older adults in
the U.S. (Clark 2008) where sweet corn is highlystoned as a fresh vegetable. Importantly, the
across- and within-location association signath@hass andhma3 loci were specific to
zinc/iron and cadmium, respectively. This suggtdsis genomic selection for lower cadmium
accumulation to reduce possible toxicity shouldinfiience zinc accumulation in the kernel.
Even though 100 g of fresh sweet corn (medium-seaegl with the maximum concentration of
cadmium found in this panel is estimated to proveds than 2% of the provisional tolerable
intake for this element in a day (018g/kg bw/day) (JECFA 2011) when consumed by a 70 kg
person, efforts should be dedicated towards deweddpaplotype tagging SNP markers at the
nass andhma3 loci for breeding sweet corn that has lower casgminut higher bioavailable zinc
and iron, considering that sweet corn can be griowagions with naturally elevated cadmium
levels, or with low zinc and iron levels.
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Table Captions

Table 1. Means and ranges for untransformed best lineaaset predictors (BLUPS) of 15
fresh kernel elemental phenotypes evaluated iswle®t corn association panel and estimated
heritability (:7) on a line-mean basis across two years and tveditts.

Table 2. Estimated effects of endosperm mutation type fomtnansformed best linear unbiased
predictors of 15 fresh kernel elemental phenotygmesss two years and two locations.

Table 3. Predictive abilities of whole-genome predictiondals for 15 fresh kernel elemental
phenotypes in the sweet corn association panel.

Table S1. Sources of variation for 15 elemental phenotypdsash sweet corn kernels from
across locations, only NY, and only WI. The boldadiance component estimates are for
significant random effect terms according to alifk@od ratio testd = 0.05).

Table S2. Lambda values used in Box-Cox transformation ofr&sh kernel elemental
phenotypes in sweet corn.

Table S3. Means and ranges for best linear unbiased predi(Bd.UPs) of 15 fresh kernel
elemental phenotypes evaluated in the sweet caot@ion panel and estimated heritability on
a line-mean basis across two years in each ofdeatibns.

Table $4. Significant results from a genome-wide associasioialy of 15 fresh kernel elemental
phenotypes in sweet corn and their intersectioh jeint-linkage QTL support intervals (NAM
QTL number; Table S7) of elemental phenotypes aedlyn the maize NAM panel (Ziegler

al. 2017).

Table S5. List of top BLASTP hits in rice and Arabidopsig the eight maize candidate genes
identified via a genome-wide association study®frésh kernel elemental phenotypes in sweet

corn.
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Table S6. Multi-locus mixed-model results from an analysidresh kernel elemental
phenotypes for chromosomes 2, 7, 9, and 10.

Table S7. Joint-linkage QTL support intervals (Sl) of elertemphenotypes analyzed in the
maize NAM panel (Ziegleet al. 2017) uplifted from B73 RefGen_v2 to v4.

Table S8. Genome-wide association study results of elemg@h@hotypes analyzed in the maize
NAM panel (Ziegleret al. 2017) uplifted from RefGen_v2 to v4. Only NAM markvariants

with resample model inclusion probability (RMIPH are shown and those that reside within
joint-linkage QTL support intervals (Table S7) demarcated in the “NAM QTL number”
column. The relationship of NAM marker variantsite four candidate genes identified in
genome-wide association study in sweet corn tletaincident with joint-linkage QTL support

intervals are presented.
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Figure Legends

Figure 1. Genome-wide association study for cadmium conagatr in fresh kernels of sweet
corn. (A) Scatter plot of association results frammixed model analysis and linkage
disequilibrium (LD) estimates?). The vertical lines are —lggP-values of single nucleotide
polymorphisms (SNPs), with the blue color represgnBNPs that are statistically significant at
a 5% false discovery rate (FDR). Triangles arerfhvalues of each SNP relative to the peak
SNP (indicated in red) at 162,398,589 bp (B73 Raf@d) on chromosome 2. The red
horizontal dashed line indicates the —<ld@value of the least statistically significant SNRaa
5% FDR. The black vertical dashed lines indicagagbnomic positions of theavy metal
ATPase4 (hmad; Zm00001d005189; 163,016,710-163,020,248 bp)heady metal ATPase3
(hma3; Zm00001d005190; 163,038,225-163,041,426 bp) gdresse two genes are separated
by a physical distance of ~18 kb, thus their posgiare not distinguishable at the plotted scale.
(B) Scatter plot of association results from a ¢oomolal mixed linear model analysis and LD
estimatesrf). The SNP from the optimal multi-locus mixed-mo(®2_157751802) was
included as a covariate in the mixed linear modeldantrol for the large-effect locus. None of
the tested SNPs were significant at a 5% FDR.

Figure 2. Genome-wide association study for zinc concemtnati fresh kernels of sweet corn.
(A) Scatter plot of association results from a rdixeodel analysis and linkage disequilibrium
(LD) estimatesrf). The vertical lines are —lagP-values of single nucleotide polymorphisms
(SNP), with the blue color representing SNPs thatstatistically significant at a 5% false
discovery rate (FDR). Triangles are ti@alues of each SNP relative to the peak SNP (inetica
in red) at 180,076,727 bp (B73 RefGen_v4) on chsomnee 7. The red horizontal dashed line

indicates the —log P-value of the least statistically significant SNRa&% FDR. The black
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vertical dashed line indicates the genomic posibibtine nicotianamine synthaseb (nass;
Zm00001d022557;179,964,493-179,965,584 bp) genes¢Btter plot of association results
from a conditional mixed linear model analysis afdestimatesrf). The SNP from the optimal
multi-locus mixed-model (S7_174515604) was include@ covariate in the mixed linear model
to control for the large-effect locus. None of tasted SNPs were significant at a 5% FDR.
Figure S1. Correlation matrix for untransformed, across-lawat8LUPs of 15 elemental
phenotypes from fresh kernels in the sweet coracesson panel. Pearson’s correlation
coefficients () are presented in the upper triangle, while threespondind-values for the
significance of associationa € 0.05) are displayed below the diagonal.

Figure S2. Sources of variation for 15 elemental phenotypdsash sweet corn kernels from
across locations (A), only NY (B), and only WI (Ohe phenotypic variance of each trait was
statistically separated into the following compaseenvironment (Env), set within environment
[Set(Env)], block within set within environment [Rik(SetxEnv)], genotype (Geno), genotype-
by-environment interaction (GenoxEnv), inductivebupled plasma mass spectrometry run
(ICP), kernel sample (Sample), row within enviromin@ow(Env)], column within
environment [Col(Env)], and residual error variaf@esidual). Variance component estimates
were calculated for all random effects from thé fabdel (Equation 1).

Figure S3. Distribution of within-location BLUP values for fesh kernel elemental
phenotypes in the sweet corn association panelate in NY and WI. Mean values of fresh
kernel elemental concentration with significanfeliéncesP < 0.05) between the two locations
were designated with an asterisk (*') accordin@gtpaired-test.

Figure $4. Correlation matrix for untransformed, within-loat BLUPs of 15 elemental

phenotypes from fresh kernels in the sweet coracson panel. Pearson’s correlation
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coefficients ) between phenotypes within NY and WI are preseimtede upper and lower
triangles, respectively. The diagonal represergstirelation of each trait between locations.
Bolded values correspond to significant correlaitvalue< 0.05).

Figure S5. Genome-wide association study conducted acrosslbdoations for 15 fresh kernel
elemental phenotypes in sweet corn. Each poinesgpits a SNP with its -lggP-value (y-axis)
from a mixed linear model analysis plotted as afiiom of physical position (B73 RefGen_v4)
across the 10 chromosomes of maize (x-axis). Tthdoeizontal dashed line indicates the 1log
P-value of the least statistically significant SNP5%b false discovery rate.

Figure S6. Genome-wide association study conducted withirN\iee York location for 15 fresh
kernel elemental phenotypes in sweet corn. Eadtfit pepresents a SNP with its -jgdP-value
(y-axis) from a mixed linear model analysis plottexda function of physical position (B73
RefGen_v4) across the 10 chromosomes of maizei¢y-ahe red horizontal dashed line
indicates the -log P-value of the least statistically significant SNP5%b false discovery rate.
Figure S7. Genome-wide association study conducted withinMeconsin location for 15 fresh
kernel elemental phenotypes in sweet corn. Eadtit pepresents a SNP with its -lgdP-value
(y-axis) from a mixed linear model analysis plotéeda function of physical position (B73
RefGen_v4) across the 10 chromosomes of maizeigy-ahe red horizontal dashed line

indicates the -log P-value of the least statistically significant SNiF5&6 false discovery rate.
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