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Abstract 
 
SARS-CoV-2 envelope protein (S2-E) is a 
conserved membrane protein that is 
essential to coronavirus assembly and 
budding. Here, we describe the 
recombinant expression and purification 
of S2-E into amphipol-class amphipathic 
polymer solutions. The physical 
properties of amphipols underpin their 
ability to solubilize and stabilize 
membrane proteins without disrupting 
membranes.  Amphipol delivery of S2-E 
to pre-formed planar bilayers results in 
spontaneous membrane integration and 
formation of viroporin ion channels.  
Amphipol delivery of the S2-E protein to 
human cells results in membrane 
integration followed by retrograde 
trafficking to a location adjacent to the 
endoplasmic reticulum-to-Golgi 
intermediate compartment (ERGIC) and 
the Golgi, which are the sites of 
coronavirus replication. Delivery of S2-E 
to cells enables both chemical biological 
approaches for future studies of SARS-
CoV-2 pathogenesis and development of 
�Trojan Horse� anti-viral therapies.  This 
work also establishes a paradigm for 
amphipol-mediated delivery of membrane 
proteins to cells. 
 
Introduction 
 

The severe acute respiratory 
syndrome 2 virus (SARS-CoV-2) became a 
focal point of science and society in 2020. It 
is to be hoped that the ongoing vaccine 
development and delivery program will soon 
allow the world to return to an approximation 
of normalcy (1,2). However, previous 
coronavirus (CoV) epidemics, including 
Middle East respiratory syndrome (MERS) 
(3) and SARS (4) from 2002-2003 foretell 
that future CoV zoonotic events (5) are likely 
to afflict humankind. Fundamental studies of 
the molecular underpinnings of CoVs may 

help to mitigate the current and future 
pandemics.  

Within CoVs, there are four critically 
conserved structural proteins (6,7), each of 
which is of possible therapeutic importance 
due to their essential functions (8), Among 
these is the SARS-CoV-2 envelope (E) 
protein. The E protein is a single-pass 
transmembrane protein whose roles in 
pathogenesis are incompletely understood 
(9). However, its importance is highlighted by 
cellular studies showing that the CoV E and 
M proteins alone are sufficient to produce a 
budding virus-like particle (VLP) (10-12).  
Moreover, deletion of E drastically lowers 
viral fitness (13-15) and growing evidence 
suggests that E is directly responsible for 
acute respiratory distress syndrome (ARDS) 
occurring in conjunction with CoV infections 
(16).  E is highly expressed in infected cells, 
but only a small fraction is incorporated into 
mature viral particles, implying functions 
beyond its role as a mature capsid structural 
protein (17). Supporting this idea, the E 
protein is known to populate both monomer 
and oligomer forms in vivo (18). Most 
biophysical measurements have focused on 
the homopentamer form that functions as a 
cation-selective ion channel (19-22), which is 
analogous to a well-studied and validated 
drug target, the influenza M2 protein (23,24). 

A distinct feature of coronavirus 
assembly is that their nascent particles bud 
into the lumen of the endoplasmic reticulum-
to-Golgi intermediate compartments 
(ERGIC) in cells (25). The E protein is critical 
to viral maturation (10,17,26). Localization of 
SARS E to these membranes is remarkably 
stringent, likely a consequence of Golgi-
targeting motifs present in the E protein (26). 
Since E functions in multiple roles that are 
critical to viral fitness (27-29), it is desirable 
to develop methods to further characterize 
key pathogenic mechanisms. Current 
methods to study the E protein in mammalian 
cells are reliant on transfection of genetic 
material encoding the protein into cells and 
its subsequent transcription and/or 
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translation. Here, we sought to develop a 
robust method for exogenous delivery of 
purified SARS-CoV-2 envelope protein (S2-
E) into cells to enable chemical biological 
methods for studies of S2-E function and to 
facilitate novel COVID therapies.  
 
Results and Discussion 
 

We developed a straightforward 
bacterial expression and purification protocol 
that yields ~100 µg/L of 90-95% pure full-
length S2-E under conditions in which it is 
bereft of detergent and lipid, with its aqueous 
solubility being maintained by complexation 
with the zwitterionic amphipol PMAL-C8 
(30,31) (Fig. S1 and Supporting Material and 
Methods). This purification protocol has been 
streamlined to a single gravity column and 
does not require a FPLC or ultracentrifuge. 
Once purified into lipid/detergent-free 
amphipol solution, the S2-E/amphipol 
complexes remain stable and soluble in 
aqueous solution even following removal of 
excess uncomplexed amphipols. Amphipols 
are a class of amphipathic polymers that 
exhibit weak detergent properties, in that 
they can solubilize and stabilize the native 
membrane protein folds, but cannot 
solubilize or even permeabilize membranes 
(32,33).  Additionally, some amphipols are 
well tolerated by animals (34) and have been 
used in Chlamydia vaccine development 
(35,36) because they do not elicit the 
production of anti-amphipol antibodies (37).  

Planar lipid bilayer electrophysiology 
was used to test if amphipols could deliver 
the S2-E protein to a membrane environment 
to form ion channels without otherwise 
disrupting the lipid bilayer (Fig. 1A). As 
expected, amphipol-based S2-E delivery 
resulted in ion channel activity that is 
consistent with previous SARS-CoV-1 E (38) 

and preliminary S2-E (39) channel 
measurements in terms of current 
amplitudes, sodium cation selectivity, and 
open probabilities. (Figs. 1B,C, and S2, and 
Supporting Materials and Methods). The S2-
E-dependent currents and similarity to other 
planar bilayer measurements support that 
the idea that S2-E is released spontaneously 

from the amphipol into membranes. The 
bilayer integrity during amphipol delivery and 
exposure was monitored through membrane 
capacitance measurements. The bilayers 
remained stable throughout the recordings 
with an average value of 58 ± 3 pF. These 
results demonstrate that recombinant S2-E 
can be delivered into pre-formed lipid 
bilayers using amphipols, where the protein 
not only inserts into the bilayers, but also 
retains ion channel function, without 
significantly compromising the bilayer 
integrity.  

We next tested whether S2-E can be 
delivered from amphipol complexes to the 
membranes of human cells.  To this end, S2-
E was irreversibly tagged with the 
fluorophore nitrobenzoxadiazole (NBD) to 
form S2-E-NBD. This allowed us to track the 
time course of delivery of S2-E into HeLa 
cells using confocal microscopy.  As shown 
in Figs. 2 and S5, the S2-E-NBD protein was 
delivered from amphipol complexes to HeLa 
cell membranes, with all cells exhibiting NBD 
signal within 30 min (Fig. 2B). Fig. 2C-F 
shows the 8 hour progression of the S2-E-
NBD protein from the plasma membranes to 
a predominately perinuclear intracellular 
location. After 16-18 h nearly all the S2-E 
was observed in the vicinity of the nucleus, 
with a clear focal area on one side of the 
nuclear compartment rather than being 
evenly distributed, ring-like, around the entire 
nucleus (Fig. 2G,H). Delivered S2-E was 
typically more diffuse at early time points but 
becomes punctate as it traffics to the 
perinuclear space.  

The amount of S2-E signal in cells 
was dependent on the applied amphipol/S2-
E �dose� and no obvious cell toxicity was 
observed until a concentration of 10 µM S2-
E in the culture was reached (Figs. S3 and 
S4). To ensure that we were microscopically 
tracking intact S2-E instead of dye freed from 
full length S2-E by degradation, we 
confirmed the S2-E localization following cell 
fixation and permeabilization with a 
polyclonal anti-S2-E antibody (Fig. S3). The 
same Fig. S3 Western blot data also rules 
out the possibility that the tracked NBD 
fluorescence could arise from a minor 
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impurity in our S2-E-NBD samples. While 
amphipols have previously been reported to 
deliver select membrane proteins to artificial 
lipid bilayers (30,40), this study represents 
the first use of amphipols to deliver a protein 
to live mammalian cells.  Elucidation of the 
pathway(s) taken by the S2-E protein to 
dissociate from its soluble amphipol complex 
to then insert into the membrane to adopt a 
transbilayer configuration will require further 
study. 

We also examined possible delivery 
of S2-E from amphipol solutions into 
SW1573 human alveolar cells, a COVID-19-
relevant cell line (41). We observed (Fig. S4) 
that S2-E is indeed taken up by these cells 
and subject to the same cell surface-to-
perinuclear �retrograde� trafficking as seen in 
HeLa cells.  

During viral replication, most E 
protein is retained at the Golgi/ERGIC 
regions. S2-E retention is important to virion 
assembly because CoVs assemble and bud 
from the Golgi/ERGIC space before being 
secreted. The fact that S2-E retrograde 
traffics proximal to one side the nucleus (Fig. 
2G,H) is consistent with its localization at or 
near the Golgi/ERGIC compartments. To 
gain further insight into the final cellular 
location of S2-E we used organelle-specific 
monoclonal antibodies to pinpoint the 
locations of the Golgi and ERGIC relative to 
delivered S2-E.  At later timepoints after 
initial delivery, S2-E was typically seen to 
concentrate in the area surrounding the 
Golgi, but not within the Golgi, (Figs. 3A-C 
and S6).  In like manner, S2-E was seen to 
locate proximal to the cytosol-facing side of 
the ERGIC (see Fig. 3D-F).  

It is likely that the Golgi-localization 
motifs (26) in S2-E drive its retrograde 
trafficking in a way closely related to the 
mechanism that facilitates E protein 
Golgi/ERGIC retention during viral infection. 
However, we cannot rule out the possibility 
that the retrograde trafficking documented in 
Fig. 3 reflects the outcome of a cellular 
stress response to amphipol-delivered S2-E. 
Isolated coronavirus E overexpression in 
transiently transfected model mammalian 
cell lines is known to induce apoptosis 

(42,43). However, comparative studies of cell 
infection with SARS versus SARS lacking 
the E gene have shown that lower levels of E 
protein can modulate the unfolded protein 
response (UPR) and thereby mitigate 
apoptosis (44). It is plausible that the 
amphipol-mediated extracellular delivery of 
S2-E triggers cell stress and UPR-related 
retrograde trafficking, leading to deposition 
of S2-E in perinuclear aggresomes. 
Aggresomes are ordered protein aggregates 
that form following transport of certain 
proteins along microtubes by dynein to 
perinuclear microtubule-organizing centers 
(45). Interestingly, previous reports have 
linked aggresome formation and their 
subsequent clearance via autophagy to 
coronavirus replication (46-48). Further 
study is clearly required. For now, we can 
confidently state that delivered S2-E 
ultimately traffics back to a perinuclear area 
that is immediate to the Golgi and ERGIC 
compartments which mirrors the localization 
of SARS-CoV-2 infected cells. 
 
Conclusions 
 

We have shown that the S2-E protein 
can be stripped of lipid and detergent and 
purified into aqueous solutions in which its 
solubility is maintained solely by 
complexation with amphipols. The protein 
can then be delivered to lipid bilayers, in 
which the protein spontaneously inserts into 
the membrane to form ion channels. 
Likewise, addition of the S2-E protein to 
living human cells results in plasma 
membrane integration and subsequent 
retrograde trafficking deep within the cell to a 
location immediately adjacent to both Golgi 
and ERGIC compartments, which are 
believed to be the key locales of coronavirus 
replication and assembly. The S2-E protein-
to-cells approach established by this work 
should be exploitable as a route to delivering 
chemically modified full length S2-E to cells 
in culture or possibly even to cells under 
physiological conditions. This capability 
enables a wide range of chemical biological 
tools to explore the biological function of this 
protein or to test whether chemical warhead-
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armed S2-E can play the role of a Trojan 
horse to interfere with SARS-CoV-2 
replication, potentially as an anti-COVID 
therapeutic or prophylactic. The results of 
this work also establish a general paradigm 
for using amphipols to deliver membrane 
proteins to living cells, although whether 
numerous other membrane proteins can be 
successfully delivered using this approach 
remains to be explored. 
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Figure 1 

 
 

 
 
 
 
Figure 1. Functional delivery of SARS-CoV-2 envelope protein from amphipol complexes 
to planar lipid bilayers. (A) Schematic of SARS-CoV-2 envelope protein (S2-E) delivered 
using amphipols for membrane protein insertion into planar lipid bilayers. (B) Representative 
single-channel current recordings of PMAL-C8 amphipol-delivered S2-E as a function of 
transmembrane electrical potential show ion channel activity in POPC:POPE (3:1)  planar 
bilayers, where S2-E fluctuates between closed (C) and open (O) states. (C) The S2-E current-
voltage relationship identifies a conductance of 9.0 ± 0.3 pS and a reversal potential of 53 ± 3 
mV in an asymmetric NaCl buffer, indicative of cation selectivity. Data represent three 
replicates. Error bars are SEM from the three distinct amphipol delivery experiments on different 
days. 
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Figure 2. Uptake of amphipol delivered SARS CoV-2 E protein by cells and subsequent 
intracellular trafficking of the protein. Representative confocal microscopy images of HeLa 
cells at various time points following treatment with amphipol-complexed 2.5µM S2-E labeled 
with NBD (S2-E-NBD). Color markers are: green, S2-E-NBD; red, cell membrane (WGA-
AF555); blue, cell nucleus (DRAQ5).  (A) is the untreated (0 µM) sample and 0 h time point, (B) 
is cells 0.5 h after treatment, (C) is following 1 h, (D) 2 h, (E) 4 h, (F) 8 h, (G) 16 h, and (H) 24 h. 
The S2-E-NBD signal migrates from the cell plasma membrane (see panel B), towards the 
perinuclear space (see panels G and H). Time course experiments, using the same cell markers 
were independently repeated 3 times using 3 different S2-E-NBD preparations. All scale bars 
are 25 µm. See further details in the Supporting Information Materials and Methods and Fig. S5. 
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Figure 3 
 
 
 
 

 
 
 
Figure 3. SARS-CoV-2 envelope protein traffics to a perinuclear location and 
accumulates near the Golgi and ERGIC compartments. Representative confocal microscopy 
images showing HeLa cells treated with 2.5 µM S2-E-NBD. Color markers are: green, S2-E 
labeled with NBD; red�in panels A-C�is from an antibody to Golgin-97, a Golgi marker; in 
panels D-F, red is from an antibody to ERGIC-53, a defining marker for the ERGIC region; blue 
is the fluorescent dye DRAQ5, marking the cell nucleus.  Panels (A) and (D) are the control 
samples where cells were not treated with S2-E-NBD. Other panels are labeled with time 
following S2-E-NBD addition to the cell culture. Experiments were repeated 3 times using 3 
different S2-E-NBD preparations. All scale bars are 25 µm. Further details in materials and 
methods and Supporting Information Fig. S6 
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