

Feature-based attention induces non-linearities in neuronal tuning and behavior during visual motion perception

Sang-Ah Yoo^{1, 2, 3, *}, **Julio C. Martinez-Trujillo**^{4, 5, 6, 7, *}, **Stefan Treue**^{8, 9, 10, 11}, **John K. Tsotsos**^{2, 3, 13, 14},
Mazyar Fallah^{1, 3, 12, 13}

1. Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
2. Department of Electrical Engineering and Computer Science, York University, Toronto, ON, M3J 1P3, Canada
3. Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
4. Department of Physiology and Pharmacology, and Psychiatry, Western University, London, ON, N6A 5B7, Canada
5. Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
6. Robarts Research Institute, Western University, London, ON, N6A 5B7, Canada
7. The Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
8. Cognitive Neuroscience Laboratory, German Primate Centre - Leibniz Institute for Primate Research, Goettingen, 37077, Germany
9. Faculty for Biology and Psychology, University of Goettingen, 37073, Germany
10. Leibniz ScienceCampus Primate Cognition, Goettingen, 37077, Germany
11. Bernstein Center for Computational Neuroscience, Goettingen, 37077, Germany
12. School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
13. Vision: Science to Application, York University, Toronto, ON M3J 1P3, Canada
14. Center for Innovation and Computing at Lassonde, York University, Toronto, ON M3J 1P3, Canada

***Corresponding authors:** Sang-Ah Yoo (sayoo@eecs.yorku.ca), Julio Martinez-Trujillo (julio.martinez@robarts.ca)

Abstract

Background: Feature-based attention prioritizes the processing of the attended feature while strongly suppressing the processing of nearby ones. This creates a non-linearity or “attentional suppressive surround” predicted by the Selective Tuning model of visual attention. However, previously reported effects of feature-based attention on neuronal responses are linear, e.g., feature-similarity gain. Here, we investigated this apparent contradiction by neurophysiological and psychophysical approaches.

Results: Responses of motion direction-selective neurons in area MT/MST of monkeys were recorded during a motion task. When attention was allocated to a stimulus moving in the neurons’ preferred direction response tuning curves showed its minimum for directions 60-90 degrees away from the preferred direction, an attentional suppressive surround. This effect was modeled via the interaction of two Gaussian fields representing excitatory narrowly-tuned and inhibitory widely-tuned inputs into a neuron, with feature-based attention predominantly increasing the gain of inhibitory inputs. We further showed using a motion repulsion paradigm in humans that feature-based attention produces a similar non-linearity on motion discrimination performance.

Conclusions: Our results link the gain modulation of neuronal inputs and tuning curves examined through the feature-similarity gain lens to the attentional impact on neural population responses predicted by the Selective Tuning model, providing a unified framework for the documented effects of feature-based attention on neuronal responses and behavior.

Keywords: Feature-based attention, attentional surround suppression, motion processing, Selective Tuning model

Background

Attention, defined as the selection and modulation of information processing in the brain, allows sensory systems to deal with information processing overload (1). Attention can be allocated to a region of space (spatial attention) or to object features (feature-based attention, FBA). FBA facilitates the processing of the attended feature relative to unattended ones (2–11). Electrophysiological studies in behaving monkeys have shown that FBA can modulate the responses of sensory neurons to visual stimuli (4,12). This effect is described as a monotonic change in the gain of neuronal responses following the feature-similarity gain principle (4). Interestingly, a computational model (Selective Tuning, ST) (1,13,14) has predicted a non-linear effect of FBA, feature-based surround suppression, which has been corroborated by human studies (15–22). The link between the gain effects observed in single neurons and the non-linearities predicted by computational modeling and observed during behavior remain unclear.

Electrophysiological studies in macaques reported that FBA enhances the response gain of neurons selective for the attended feature, and that such modulation grows smaller to become a suppression as the neuron's preferred feature differs from the attended feature (feature-similarity gain (FSG) modulation) (4,8). On the other hand, ST proposes that when a stimulus is attended responses to nearby unattended stimuli are suppressed. Since in real scenes most attended stimuli have other stimuli nearby (the *context problem* (14)), ST ameliorates contextual interference via top-down attention, e.g., suppressing responses to stimuli in the neighborhood of the attended stimulus. The context problem and ST's solution can apply to space, features, or objects (1,13,14).

Behavioral studies using a visual motion attentional cueing paradigm found that participants' performance decreased as the direction offset between a cue and a target stimulus became greater; however, performance gradually recovered when the offset was larger than 90 deg (20,21), indicating feature-based surround suppression in motion processing. On the other hand, a previous neurophysiological study of FBA has shown that tuning curves of direction-selective neurons in the middle temporal area (MT) show mainly gain changes (4). This study, however, used moving random dot patterns (RDPs) positioned in different hemifields and recorded from area MT neurons with receptive fields (RFs) localized to the contralateral visual hemifield. It is possible that the lack of interference (context within the ST framework) due to the stimuli being far away and the relatively small attentional modulation of responses documented in these conditions is insufficient to produce the feature-based surround suppression predicted by ST and observed in behavioral studies. The present study aims at clarifying these issues.

First, we measured the activity of direction-selective neurons in MT and medial superior temporal (MST) visual cortical areas of macaque monkeys. We obtained tuning curves of direction-selective neurons by placing two moving random dot patterns (RDPs) within a neuron's RF – one RDP always moved in the neuron's preferred direction (preferred pattern) and the other moved in one of twelve different directions (tuning pattern). In different trials, we instructed the animals to direct attention either to the fixation point (fixation condition) or to one of the RDPs (attend-preferred and attend-tuning conditions). We found that during fixation neuronal and population tuning curves were well fitted by a single Gaussian curve with positive gain. However, when the animals attended to the preferred pattern neuronal tuning curves exhibited a suppressive surround. Here, response profiles were better described by adding a second wider Gaussian function with negative gain. We modeled the feature-based surround suppression by the additive interaction of the two Gaussian fields representing excitatory and inhibitory input fields into a neuron. FBA disproportionately increases the gain of the inhibitory wider relative to the excitatory narrower input field producing a suppressive surround.

In the behavioral experiment, we measured behavioral correlates of this FBA suppressive effect on motion repulsion (23–25), subject to FBA modulation (26,27). We measured motion repulsion under different attentional conditions (focused vs. divided attention) while the directional difference between two superimposed motion surfaces varied. Consistent with surround suppression, motion repulsion was minimized when one motion direction was attended while the unattended direction was close to the attended one compared with greater direction differences. These results support ST's prediction that

surround suppression in FBA reduces interference from the unattended feature in nearby feature space, consequently decreasing motion repulsion.

Results

Neurophysiology

Two macaque monkeys were trained to selectively attend to a cued stimulus, while keeping gaze on a fixation point (Figure 1A). We positioned two RDPs within a neuron's RF, one RDP always moved in the neuron's preferred direction (preferred pattern) and the other could move in one of 12 different directions from trial to trial (tuning pattern, in steps of 30 deg). The animals attended to and reported a direction change either in the preferred pattern (attend-preferred condition) or tuning pattern (attend-tuning condition) (Figure 1B). In the fixation condition they detected a color change of the fixation point while ignoring both RDPs. Animal F and M achieved 86% and 87% of change detection accuracy, respectively, indicating that they correctly perform the task.

Seventy-eight neurons were included in the analysis. Two examples of neuronal responses in different attentional conditions are shown in Figure 1C. Responses in the attend-preferred condition (labelled as zero in the abscissa of Figure 1C) were in general stronger than in the other conditions. The attend-preferred curve (red) is predominantly above the fixation (black) and attend-tuning (blue curves). Importantly the attend-preferred curve shows a non-Gaussian profile with a peak at the preferred direction and a dip at directions away from the preferred by 60-90 degrees. This was particularly notorious for the cell on the right. Thus, the tuning curve corresponding to the attend preferred condition underwent a non-linear transformation when the animal directed attention to the preferred direction and ignored the tuning pattern. This transformation resembles a ring-of-inhibition around the attended preferred feature.

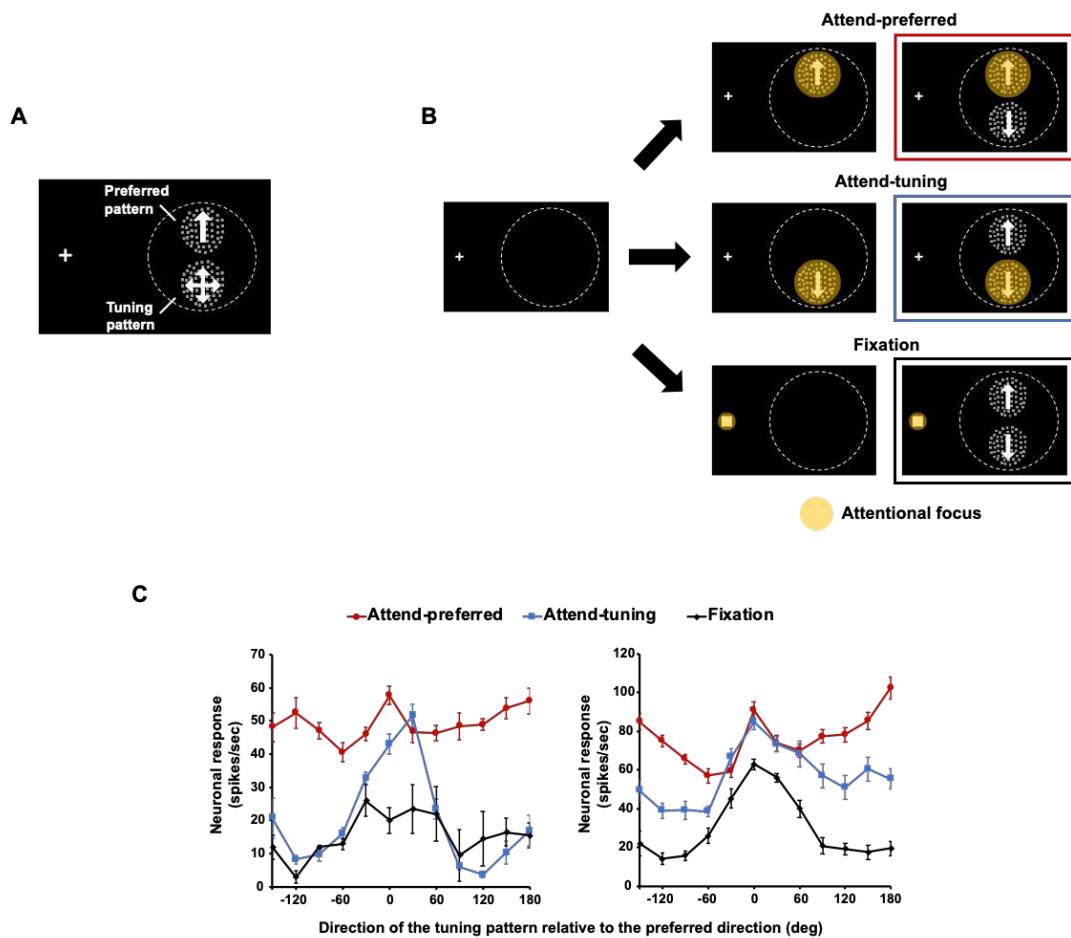


Figure 1. (A) Stimulus configuration of Experiment 1. The preferred pattern (always moving in the neuron's preferred direction) and the tuning pattern (moving in one of 12 directions) were presented within a neuron's RF. The fixation point was presented on the left side of the display. (B) Three attentional conditions. While an animal fixated the fixation point, it was cued to attend to either the preferred (attend-preferred) or tuning (attend-tuning) pattern and reported a directional change of the attended pattern. In the fixation condition the animal was cued to the fixation point and had to report a change in the color of a small square superimposed on the fixation point while ignoring the RDPs. The yellow spot indicates the allocation of attention in each condition. (C) Responses of two single neurons in different attentional conditions. The abscissa represents the direction of the tuning pattern as a function of the distance to the preferred direction and the ordinate represents the response in spikes/second. Error bars indicate the standard error of the mean (SEM).

In order to determine the difference in responses between conditions we normalized responses in each neuron to the maximal response, we then align all the responses to the direction producing the maximal response and pooled across neurons for each condition. We arranged the responses along the x-axis as a function of the difference between the preferred direction and the direction of the tuning pattern in a symmetrical manner to produce a response profile (Figure 2A).

A repeated-measures ANOVA showed that the neuronal response was significantly modulated by attentional conditions ($F(2, 122) = 47.058, p < .001$). There was an increased overall response in the attend-preferred condition relative to the other conditions (all $p < .001$, Bonferroni correction was used for all multiple comparisons). No significant difference was observed between the attend-tuning and the

fixation conditions ($p = 1$). The direction of the tuning pattern relative to the preferred direction also significantly modulated neuronal responses ($F(11, 671) = 45.768, p < .001$), with the greatest response when the tuning pattern moved in the preferred direction (0 deg difference, all $ps < .001$) and a gradual decrease as the tuning pattern's direction deviated from the preferred direction. The interaction between attentional conditions and directional difference was significant ($F(22, 1342) = 13.561, p < .001$). To elucidate the nature of this interaction, we examined the profile of attentional modulation under different attentional conditions. Because the response functions show a symmetric profile, we collapsed neuronal responses when the absolute directional difference between the preferred and the tuning patterns was the same (e.g., ± 30 deg) (Figure 2B).

Neuronal responses in the fixation condition peaked when the tuning pattern moved in the neuron's preferred direction likely because both RDPs moved in the preferred direction and neither pattern extended into the RF's inhibitory surround. This was assessed during initial mapping of the RF (4). The response reached its minimum when the tuning pattern moved in the neuron's anti-preferred direction. There was a monotonic decrease in response as a function of the difference between the neuron's preferred direction and the direction of the tuning pattern (Figure 2B).

Neuronal response in the attend-tuning condition also monotonically decreased as the directions between the preferred and the tuning patterns became dissimilar. In this condition, neuronal responses were greater than those in the fixation condition when the direction of the tuning pattern was closer to the neuron's preferred direction (at 0 and 30 deg differences, all $ps < .001$). On the other hand, responses in the attend-tuning condition were lower than those in the fixation condition when the tuning pattern moved in the neuron's anti-preferred direction ($M_{diff} = -.07, SE = .04, t(76) = -2.101, p = .039$). This effect is similar to feature-similarity gain modulation described in other studies (4).

In the attend-preferred condition, the maximal neuronal response was also observed when the directions of the preferred and tuning patterns were the same. However, we did not observe a monotonic response decrease with the direction of the tuning pattern relative to the preferred direction. Responses were lowest when the tuning pattern moved in directions ~ 90 deg away from the preferred direction, not when the tuning pattern moved in the anti-preferred direction. The minimum neuronal response was significantly lower than the maximum response (90 vs. 0 deg, $M_{diff} = -.22, SE = .02, t(76) = -8.78, p < .001$) and it was lower than the response for the anti-preferred direction (90 vs. 180 deg, $M_{diff} = -.04, SE = .02, t(76) = -2.272, p = .051$). This indicates that the attend-preferred condition causes a suppressive surround for motion quasi-orthogonal to a neuron's preferred direction.

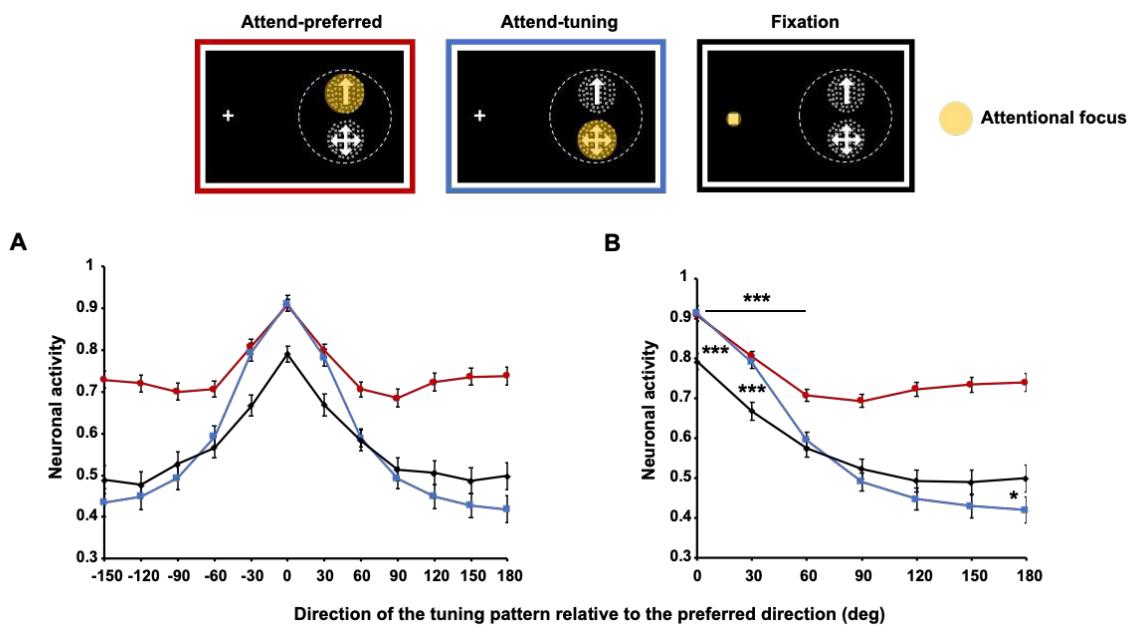


Figure 2. (A) Average normalized neuronal response in each attentional condition. (B) Normalized neuronal responses averaged across the same (absolute) directional difference. Responses in the attend-tuning and the fixation conditions monotonically decrease as the offset between the preferred and tuning patterns increases. Responses in the attend-tuning condition are larger than that in the fixation condition when the direction of the tuning pattern is close to the neuron's preferred direction (0~30 deg). This relationship reverses when the direction of the tuning pattern approaches the neuron's anti-preferred direction. In the attend-preferred condition, however, responses are lowest when the direction of the tuning pattern is approximately 90 deg away from the preferred direction. Then, the responses tend to increase as the directional difference increases (~180 deg difference, $p = .051$). Error bars indicate SEM across the normalized responses of each neuron. * $p < .05$, ** $p < .01$, *** $p < .001$

Tuning curves

Neuron's tuning curves have been modeled using Gaussian functions (8). However, because responses do not clearly follow a monotonic profile in the attend-preferred condition, we fitted two different models to the average normalized neuronal response (population response) in each experimental condition, a single Gaussian and a sum of two Gaussians. In the attend-preferred condition (Figure 3A), the sum of two Gaussians (adjusted $R^2 = .990$) model explained the population response better than the single Gaussian model (adjusted $R^2 = .886$). This was mainly due to the ability of the sum of two Gaussians (one Gaussian having a positive gain and narrower width than the second Gaussian with negative gain and larger width) to account for the decrease in response in the vicinity of the preferred direction relative to directions farther away from the preferred one. This effect resembles the feature-based surround suppression reported in previous behavioral and modeling studies (15–22). In the other attentional conditions (Figure 3B and 3C), both models could explain the response profiles equally well (all adjusted R^2 , attend-tuning condition: single Gaussian (.994), sum of two Gaussians (.999); fixation condition: single Gaussian (.957), sum of two Gaussians (.987)).

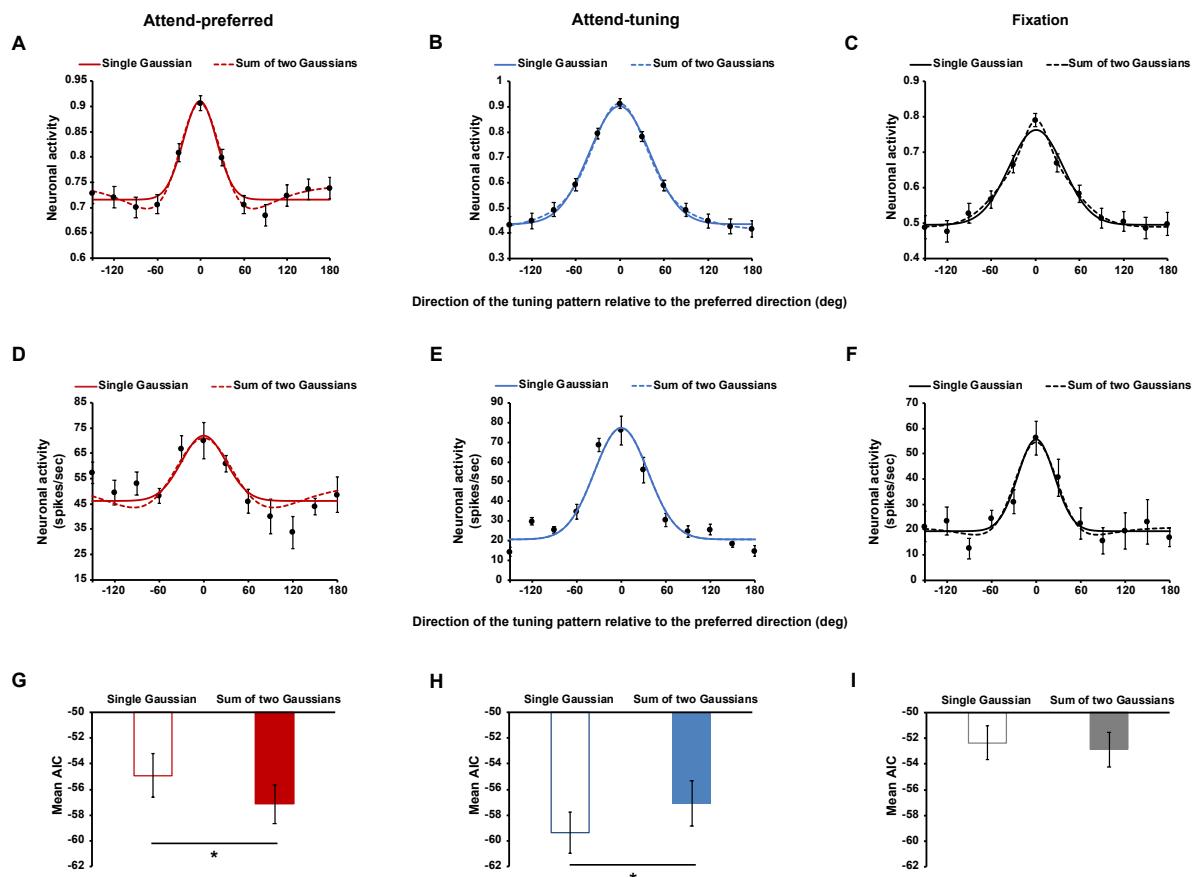


Figure 3. (A-C) Different model fits to the average normalized neuronal response (population level) in the attend-preferred, attend-tuning, and fixation conditions. Solid curve indicates the single Gaussian model fit and dashed curve indicates the sum of two Gaussians model fit (see D-F for an example neuron). (G-I) Akaike Information Criterion (AIC) for each model fit was measured at individual neuron level. Smaller AIC value means better model fit. Outlined and filled bars indicate the mean AIC of the single Gaussian and the sum of two Gaussians models, respectively. Error bars indicate SEM. * $p < .05$

In order to quantify these observations, we compared model fits at the individual neuron level. We included individual neurons in the analysis only if both models reasonably fit their responses. We then compared different model fits to the same neuronal response (i.e., pairwise comparison): 69 neurons in the attend-preferred condition, 53 neurons in the attend-tuning condition, and 59 neurons in the fixation condition were included in the analysis. Example model fits to normalized responses are shown in Figure 3D-F. As a goodness-of-fit measure, we computed the Akaike Information Criteria (AIC) for each model fit. The AIC takes into account the number of parameters in each model, which is lower in the single Gaussian compared to the sum of two Gaussians. In the attend-preferred condition (Figure 3G), the AIC was greater for the single Gaussian than for the sum of two Gaussians ($M_{\text{diff}} = 2.22$, $SE = 1.03$, $t(68) = 2.148$, $p = .035$), meaning that the latter model explained the data better. Conversely, the single Gaussian fitted the data better in the attend-tuning condition (Figure 3H), demonstrating a smaller AIC value than the sum of two Gaussians ($M_{\text{diff}} = -2.25$, $SE = .92$, $t(52) = -2.448$, $p = .018$). In the fixation condition (Figure 3I), there was no significant difference in AIC between the two models ($M_{\text{diff}} = .53$, $SE = .88$, $t(58) = .605$, $p = .548$).

Overall, for the population as well as for single neurons the sum of two Gaussians model fits the data better only in the attend-preferred condition. In the other conditions, either both models fit the data equally well (fixation) or the single Gaussian model performs better than the sum of two Gaussians model

(attend tuning). These results indicate that feature-based surround suppression became evident only in the attend-preferred condition.

Modeling feature-based surround suppression

The attend-preferred condition may have allowed us to isolate the feature-based surround suppression effect because attention was always on the same feature (preferred direction) while the distractor tuning pattern changed direction from trial to trial. Thus, keeping attention on the preferred direction reveals the surround suppressive effect on distracting features. One possible explanation for this effect is the interaction between excitatory- and inhibitory-tuned inputs into a neuron during the allocation of FBA. In order to model this interaction, we modeled the excitatory and inhibitory fields of direction-selective neurons as two Gaussian functions with positive and negative gain, respectively. We first fit the average normalized neuronal responses in the fixation condition with the single Gaussian model:

$$f(x) = b + g * e^{-(\frac{x-\mu}{\sigma})^2}$$

where b is the baseline, g is the response gain, μ is the center, and σ is the width of the Gaussian. μ is always 0 because neuronal response was maximized when the preferred and tuning pattern moved in the same direction (no directional difference). An important point here is that we assumed that in the fixation condition, the predominant contribution to the response is provided by excitatory-tuned inputs into the cell with σ representing the width or selectivity of the inputs. The contribution of inhibitory inputs into the cell is considered small here and will be captured by the single Gaussian (28). The fitting result is illustrated in Figure 4A (yellow line). The coefficients and goodness-of-fit measures are shown in Table 1.

Second, we fit the average normalized neuronal response in the attend-preferred condition with a sum of two Gaussians model. We 'set' the parameters of one Gaussian to the same parameters obtained from the fixation condition under the assumption it approximates the excitatory field provided by the tuned inputs into the cell. For the second Gaussian, the coefficients were not constrained. We assumed that this second Gaussian would have negative gain representing inhibitory-tuned inputs into the neuron recruited (or magnified) by FBA. The equation is:

$$f(x) = b + (0.2713 * e^{-(\frac{x-\mu}{\sigma_i})^2}) + (g_i * e^{-(\frac{x-\mu_i}{\sigma_i})^2})$$

The parameters b (baseline), g_i (gain), and σ_i (width) were free to vary. The baseline was not fixed since it may capture overall changes in response due to spatial attention or arousal, i.e., in the fixation condition attention was directed to the fixation point while in the attend-preferred condition attention was directed to the RF likely producing a response increase for all directions (8). The other parameters, g_i and σ_i represent the gain and width of the inhibitory inputs into a neuron. Negative values of g_i would reflect increase in the gain of inhibitory inputs/field by attention.

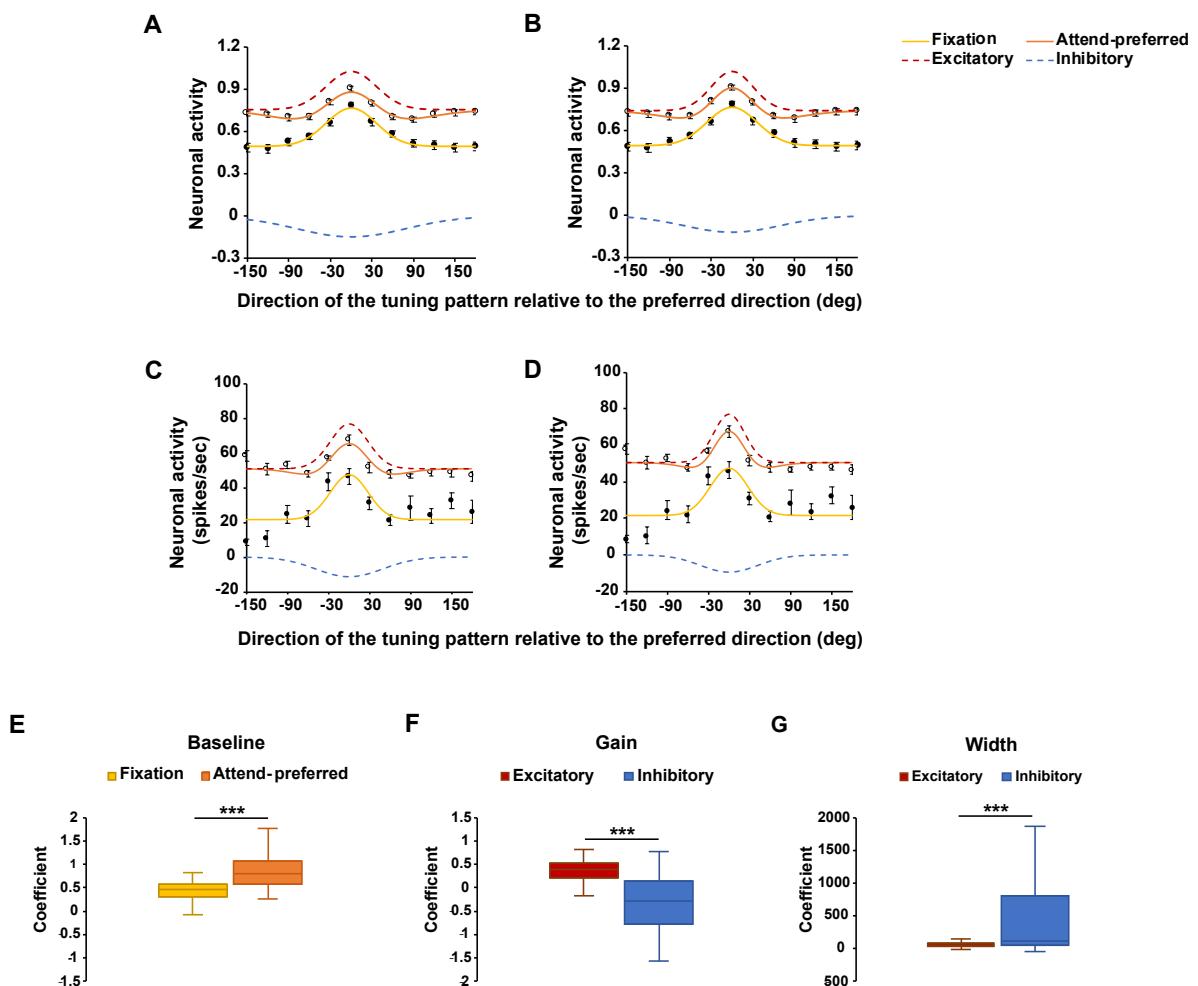


Figure 4. (A) Model fits to the averaged normalized neuronal responses (outlined circles: attend-preferred, filled circles: fixation). For the sum of two Gaussians model in the attend-preferred condition, coefficients of the excitatory Gaussian (gain and width) were the same as those of the single Gaussian model in the fixation condition. (B) All coefficients of the sum of two Gaussians model were free to vary. (C-D) Examples of the model fits to individual neuronal responses. In (C), the coefficients of the excitatory Gaussian were constrained while they were unconstrained in (D). (E-G) Median coefficients of the model fits to the normalized individual neuronal data. (E) Baseline coefficients when the single Gaussian model fit the data in the fixation condition and when the sum of two Gaussians model fit the data in the attend-preferred condition. (F) Gain and (G) width coefficients of the excitatory and inhibitory Gaussians when the sum of two Gaussians model fit the data in the attend-preferred condition. Note that the gain coefficients of the excitatory Gaussian were the same as those of the single Gaussian fits in the fixation condition. Error bars indicate SEM. *** $p < .001$

		Fixation	Attend-preferred (constrained)	Attend-preferred (unconstrained)
Baseline		0.4962	0.7566	0.7438
1 st Gaussian (excitatory)	Gain	0.2713	0.2713	0.2774
	Width	51.29	51.29	42.65
2 nd Gaussian (inhibitory)	Gain	N/A	-0.1468	-0.1168
	Width		110.8	96.94
Goodness-of-fit	SSE	0.002731	0.001433	0.0003139
	R ²	0.9738	0.9667	0.9927
	Adjusted R ²	0.9679	0.9594	0.9886
	RMSE	0.01742	0.01262	0.006696

Table 1. Coefficients of the model fits to the fixation and attend-preferred conditions and goodness-of-fit measures.

In the attend-preferred condition, the baseline of neuronal response increased (red dashed line) relative to the baseline in the fixation condition (yellow line) (Figure 4A and Table 1). This may reflect the increase in responses due to directing attention into the RF. As anticipated, the second Gaussian which represents the inhibitory field (blue dashed line) showed a negative gain ($g_i < 0$) and a broader ($\sigma_i > \sigma$) width than the first Gaussian representing the excitatory field (51.29 vs. 110.8, Table 1). Notice the excitatory field was estimated from the Gaussian fit in the fixation condition, where we assume the contribution of the inhibitory field was small relative to that of the excitatory field. We repeated the fitting procedure but letting the coefficients of both Gaussian functions freely vary (Figure 4B). The improvement in the goodness-of-fit of the model and changes in the coefficients were negligible (Table 1), indicating that changes induced by FBA on the inhibitory field can account for the changes in tuning profile.

We repeated a similar procedure at the level of single neurons. We first fit the single Gaussian model to the normalized individual neuronal responses in the fixation condition and used the coefficients to model the neuron's excitatory field in the attend-preferred condition. The coefficients for the second Gaussian were not constrained. Neurons were excluded from the analyses if the fitting procedure was not successful due to missing data points or severe variability in the data (i.e., fit does not converge). Consequently, 69 neurons were included in the analysis. The median baseline, gain, and width coefficients of the single Gaussian model fit in the fixation condition were 0.4656, 0.3996, and 54.83, respectively. In the attend-preferred condition, after constraining the first Gaussian coefficients, the median baseline was 0.808 and the median gain and width of the second (inhibitory) Gaussian were -0.2889 and 113.97, respectively. Wilcoxon signed-rank tests showed that the baseline was significantly elevated in the attend-preferred condition ($Z = 4.1105, p < .001$, Figure 4E). The inhibitory fields had significantly lower gains ($Z = -3.9371, p < .001$, Figure 4F) and the broader widths ($Z = 5.0612, p < .001$, Figure 4G) than the excitatory fields. This shows that model fits to the individual neuron data show the same results as in the population level analysis.

Behavioral effects of feature-based surround suppression

We investigated the effect of feature-based surround suppression on behavior using motion repulsion, a perceptual illusion arising from an overestimation of the directional difference between the two superimposed motion surfaces (23–25). Motion repulsion was measured when participants divided their attention to two superimposed motion surfaces (divided attention condition) or focused on one of them (focused attention condition, Figure 5A). The superimposed motion surfaces were separated by different colors and their directional offsets systematically varied (10 to 50 deg). The speed of motion for the surfaces could be 3 deg/sec or 6 deg/sec.

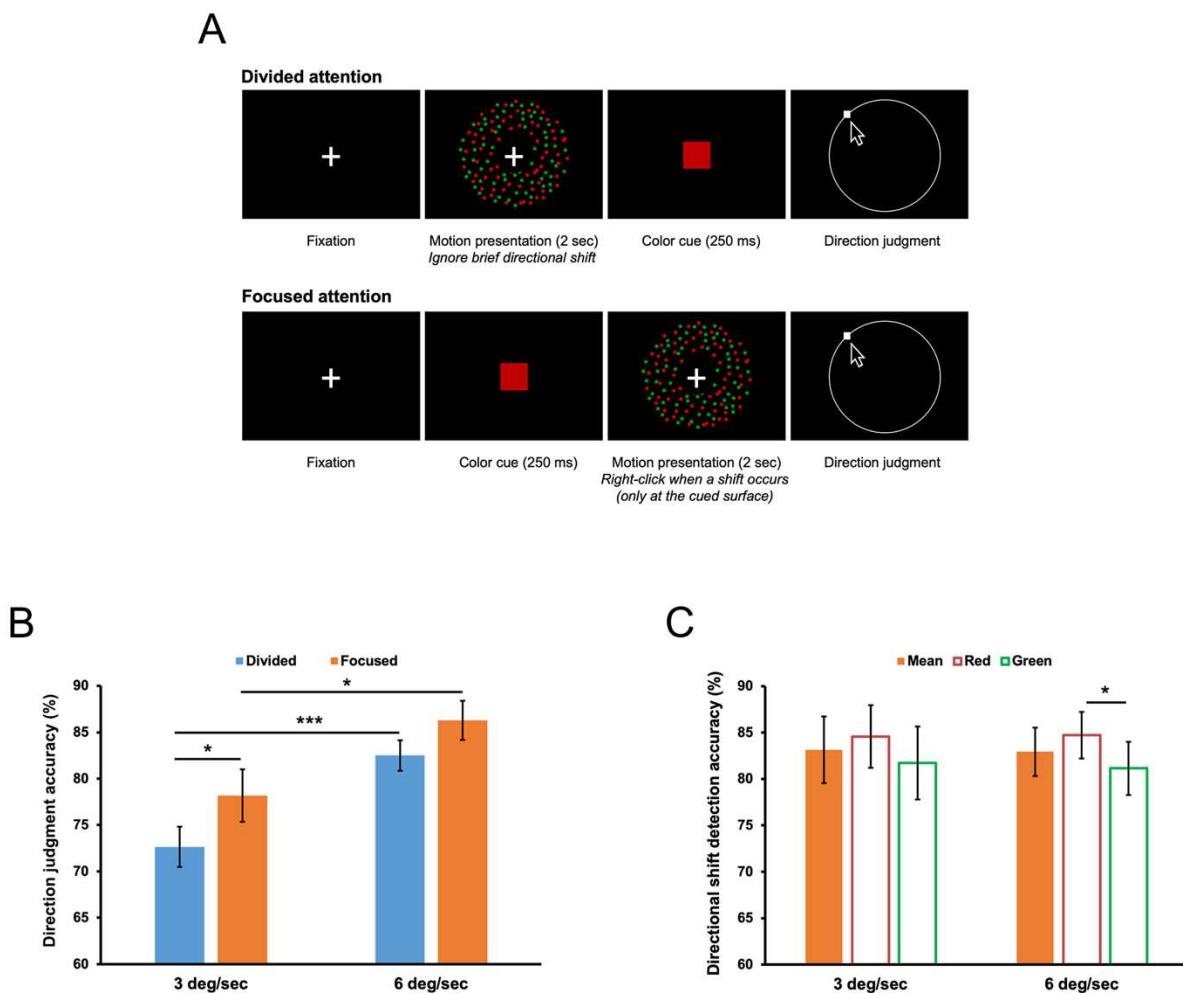


Figure 5. (A) Experimental conditions and procedure of human behavioral experiment. In the divided attention condition, participants attended to both motion surfaces equally, ignoring any directional shift. A color cue was presented after RDPs disappeared and then, participants reported a direction of the cued motion surface by clicking along a white circular outline. In the focused attention condition, a color cue indicated which motion surface participants had to attend. Participants were asked to detect a directional shift on the cued surface if it occurred, and then reported motion directions of this surface as in the divided attention condition. (B) Direction judgment was more accurate in the focused attention condition, and when motion speed was faster. (C) Detection of directional shifts (only in the focused attention condition) was not affected by motion speed. However, direction discrimination was more accurate when the attended motion surface was red. Error bars indicate SEM. * $p < .05$, *** $p < .001$

First, we analyzed how FBA and motion speed influenced participants' direction judgment accuracy – i.e., whether reported directions fell within a valid response range (Figure 5B, see Data analysis in Methods). Direction judgment accuracy in the focused attention condition was measured only if the attentional task (detecting a brief directional shift) was successfully performed. Bonferroni correction was used for multiple comparisons. A repeated-measures ANOVA demonstrated significant main effects of the attentional conditions ($F(1, 13) = 6.683, p = .023$) and motion speed ($F(1, 13) = 22.443, p < .001$) on direction judgment accuracy. Post-hoc pairwise comparisons showed that direction judgment was more accurate in the focused attention condition than in the divided attention condition ($M_{diff} = 4.59\%, SE$

= 1.78%) for both motion speeds (3 deg/sec: $p = .041$, 6 deg/sec: $p = .065$ (trend)) because participants tracked only one motion direction in the focused attention condition. Direction judgment accuracy was also higher when motion speed was faster ($M_{\text{diff}} = 9.03\%$, $SE = 1.91\%$) in both attentional conditions (divided: $p < .001$, focused: $p = .011$). Color of the target motion surface did not influence direction judgment ($F(1, 13) = .051$, $p = .825$). All interactions between the variables were not significant.

Figure 5C shows the mean accuracy of directional shift detection in the focused attention condition. The mean accuracy was 83.14% (SD 13.45%) and 82.93% (SD 9.79%) when motion speed was 3 deg/sec and 6 deg/sec, respectively. They did not statistically differ ($p = .915$), indicating that difficulty of the attentional task was well controlled across different speed conditions. When it was broken down by the color of the attended motion surface (target), the main effect of the target surface color on directional shift detection was significant ($F(1, 13) = 13.995$, $p = .002$). Detecting directional shifts was better when the target motion surface was red than when it was green ($M_{\text{diff}} = 3.21\%$, $SE = .86\%$) for both motion speeds (3 deg/sec: $p = .062$ (trend), 6 deg/sec: $p = .015$). The performance advantage in the red motion surfaces likely represents strong attentional guidance of red (29,30). Interaction between motion speed and the color of the target motion surface was not significant ($F(1, 13) = .12$, $p = .734$).

We analyzed motion repulsion of the trials in which participants correctly discriminated motion direction. When motion speed was 3 deg/sec (Figure 6A), the main effect of the attentional condition on motion repulsion was not significant ($F(1, 13) = 2.224$, $p = .16$), whereas motion repulsion significantly varied depending on the directional difference between the two motion surfaces ($F(4, 52) = 2.715$, $p = .04$). Importantly, motion repulsion was influenced by the interaction between the attentional condition and directional difference ($F(4, 52) = 3.958$, $p = .007$). Motion repulsion was significantly reduced in the focused attention condition when the directional difference was 30 deg ($M_{\text{diff}} = 4.40$ deg, $SE = 1.41$ deg, $p = .008$) and this effect was marginal when directional difference was 40 deg ($M_{\text{diff}} = 2.81$ deg, $SE = 1.34$ deg, $p = .056$). Reduction of motion repulsion at around 30~40 deg difference suggests that feature-based surround suppression played a role by inhibiting an unattended motion direction that was near the attended motion direction.

We further broke down the data by the color of the target motion surface to see how this factor is associated with motion repulsion. The amount of motion repulsion was different depending on the color of the target motion surface ($F(1, 13) = 28.589$, $p < .001$; Figure 6B). Motion repulsion was smaller when the target motion surface was green than when it was red ($M_{\text{diff}} = 7.07$ deg, $SE = 1.32$ deg). Although the attentional condition did not affect motion repulsion ($F(1, 13) = 2.07$, $p = .174$), there was a significant interaction between the target motion surface color and the attentional condition ($F(1, 13) = 9.199$, $p = .01$). We conducted an ANOVA separately for each target surface color to investigate this interaction more specifically. When the target motion surface was red, motion repulsion was not affected by the attentional conditions ($F(1, 13) = 1.188$, $p = .296$) but by the directional difference between the two motion surfaces ($F(4, 52) = 7.522$, $p < .001$). The interaction between these two variables was not significant ($F(4, 52) = .8$, $p = .531$). Hence, there was no evidence for reduction of motion repulsion by FBA and feature-based surround suppression. On the other hand, when the target motion surface was green, the main effect of the attentional conditions was significant ($F(1, 13) = 22.631$, $p < .001$), indicating that FBA reduced motion repulsion ($M_{\text{diff}} = 3.96$ deg, $SE = .83$ deg) as previously reported (26). Motion repulsion was not modulated by directional difference ($F(4, 52) = .802$, $p = .529$) but the interaction between the attentional conditions and directional difference was significant ($F(4, 52) = 6.699$, $p < .001$). Motion repulsion significantly decreased in the focused attention condition when directional difference was around at 20~40 deg (20 deg: $p = .051$ (marginal), 30 deg: $p < .001$, and 40 deg: $p = .005$). This indicates that feature-based surround suppression in the 3 deg/sec condition was mainly derived from the trials where the target motion surface was green.

Change in motion speed from 3 deg/sec to 6 deg/sec affected motion repulsion ($F(1, 13) = 54.343$, $p < .001$) – faster motion speed (6 deg/sec) reduced motion repulsion ($M_{\text{diff}} = 3.47$ deg, $SE = .47$ deg) as previously reported (31–33). When motion speed was 6 deg/sec (Figure 6C), the attentional condition significantly modulated motion repulsion ($F(1, 13) = 19.557$, $p = .001$), demonstrating that motion repulsion was generally smaller in the focused attention condition ($M_{\text{diff}} = 3.18$ deg, $SE = .72$ deg). Directional difference ($F(4, 52) = 1.652$, $p = .175$) and the interaction between the attentional condition

and directional difference ($F(4, 52) = 1.049, p = .391$) did not significantly affect motion repulsion. Motion repulsion was significantly smaller in the focused attention condition at all directional differences, except at 10 deg difference, and the difference in motion repulsion (divided - focused) did not statistically vary across directional differences. This result made it difficult to specify the effect of feature-based surround suppression.

Motion repulsion was modulated by the color of the target surface ($F(1, 13) = 14.491, p = .002$), showing smaller motion repulsion in green surfaces ($M_{\text{diff}} = 3.07 \text{ deg}, SE = .76 \text{ deg}$; Figure 6D). In addition, the attentional condition significantly affected motion repulsion ($F(1, 13) = 16.507, p = .001$). Motion repulsion was smaller in the focused attention condition than in the divided attention condition ($M_{\text{diff}} = 3.07 \text{ deg}, SE = .76 \text{ deg}$). The interaction between the target surface color and the attentional condition was not significant ($F(1, 13) = .865, p = .369$). Unlike when motion speed was 3 deg/sec, the attentional condition modulated motion repulsion even when the color of the target motion surface was red ($F(1, 13) = 5.177, p = .04$). Post-hoc pairwise comparisons showed that motion repulsion was reduced in the focused attention condition ($M_{\text{diff}} = 2.22 \text{ deg}, SE = .97 \text{ deg}$) and it was significant when the directions of RDKs differed by 40~50 deg (40 deg: $p = .036$, 50 deg: $p = .02$). When green was the color of the target motion surface, FBA also significantly reduced motion repulsion ($F(1, 13) = 8.148, p = .014$; divided vs. focused: $M_{\text{diff}} = 3.93 \text{ deg}, SE = 1.38 \text{ deg}$). The reduction was at the trend level at 10~20 deg difference (10 deg: $p = .053$, 20 deg: $p = .085$) and became significant at 30~40 deg difference (30 deg: $p = .008$, 40 deg: $p = .021$). Motion repulsion patterns for green motion surfaces were consistent across different motion speeds, whereas FBA played a role only if motion speed was faster when the target surface was red. Therefore, the almost universal decrement in motion repulsion in the 6 deg/sec condition might have resulted from the interaction between the color of the target motion surface and motion speed.

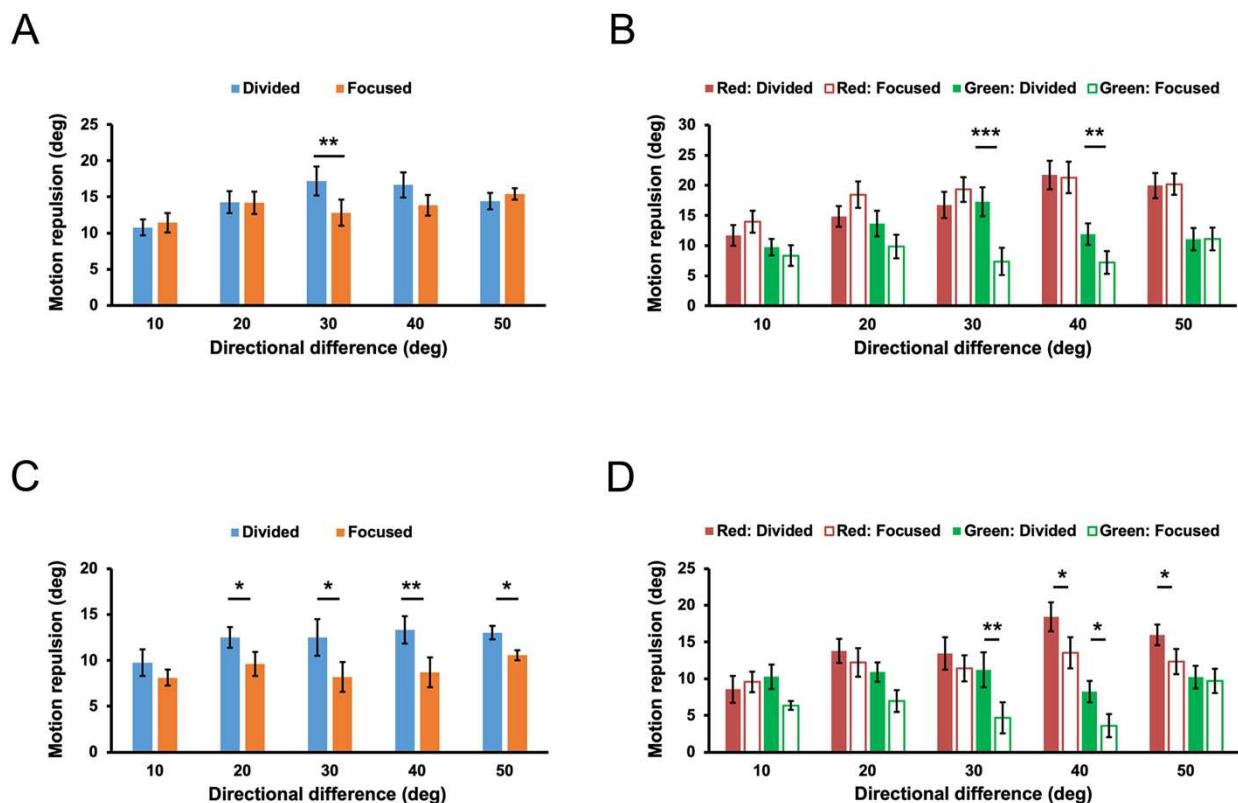


Figure 6. When motion speed was 3 deg/sec, (A) the amount of motion repulsion between the two attentional conditions significantly differed when directional difference was 30 deg. The same effect was marginal when directional difference was 40 deg ($p = .056$). (B) Attentional modulation on motion repulsion was evident only when the color of the target motion surface was green. When motion speed

was 6 deg/sec, (C) Motion repulsion was reduced in the focused attention condition and it was true across all directional differences, except at 10 deg difference. (D) Unlike when motion speed was slower, attentional modulation on motion repulsion was observed regardless of the color of the target motion surface. Error bars indicate SEM. * $p < .05$, ** $p < .01$, *** $p < .001$

Discussion

Our neurophysiological findings in monkey show that attention to a neuron's preferred motion direction modulates its direction tuning curve, imposing a suppressive surround around the attended direction. In addition, our behavioral study demonstrates feature-based surround suppression on motion repulsion in humans. We modeled this non-linear effect of FBA as differential gain modulations of widely-tuned inhibitory inputs and narrowly-tuned excitatory inputs into neurons.

Effects of FBA on motion direction tuning curves

FBA allows enhancing the processing of attended features while suppressing the processing of unattended ones (5). These effects of FBA have been captured by the feature-similarity gain model, which proposes that modulation of a neuron's response is a monotonic function of the differences between the neuron's preferred feature and the attended feature (4,8). FBA produces a maximal response enhancement for the attended feature and a progressive decrease of responses that becomes suppression relative to a neutral condition as the attended feature deviates from the preferred feature of the neurons. Our results in this study do not match those reported by previous electrophysiological studies of FBA in macaques (4,8). Here, we found that the decay in the intensity of the FBA response enhancement was not monotonic but reached its minimum in the vicinity of the attended feature producing a non-linearity in the tuning curve that cannot be directly explained by a gain modulation.

One possible explanation for the difference between our results and those of a previous study is that in (4) there was a large separation between target and distractor, therefore the FBA response modulation may not have been sufficiently large to reveal the precise shape of the feature-similarity modulation. Location-based surround suppression predicted by models such as ST was formulated for stimulus conditions in which distractors are nearby the attended stimulus and attention filters out their contribution to the neuron's response. In our study the attended stimulus and distractor were nearby, within the same RF, resembling the ST formulation. FBA modulation was stronger because the proximity of the RDPs may have triggered stronger inhibitory circuit dynamics. Indeed, attentional modulation is stronger when targets and distractors are positioned inside the RF relative to when they are positioned one inside and the other outside the RF (8,34). Moreover, distractor interference is stronger when both stimuli are within the same hemifield relative to when they are in different hemifields (35). Additionally, in our study we maintained the preferred pattern in the RF, which may have strongly driven neuronal responses (36) in a way that the modulation was detectable with a reasonable sample of recorded neurons and trials. Supporting the later view, we observed a variability in the intensity of the non-linear effect across neurons (Figure 1C).

Modeling the response modulation

Models of MT neurons have proposed that feature tuning is a function of excitatory-tuned inputs from upstream neurons and inhibitory inputs from neurons within the same area. This idea is captured by normalization models (37), which propose that inhibitory inputs into a neuron are not tuned for stimulus features. Normalization models can account for observed modulations of neuronal responses by attention (38). Attention could modulate inputs into neurons, and because the same inputs activate the normalization pool in different manners depending on the size of the attentional focus, a variety of effects could be achieved at the level of single cell responses (37). Others have further proposed tuned normalization as a mechanism to explain attentional modulation across neurons (39,40).

One possibility that explains our results is a tuned normalization pool modulated by feedback signals from high-order areas into MT/MST. However, for a gain feedback modulation to explain the

feature-based surround suppression, the tuning of the feedback modulation, or of the inhibitory neuronal pools they activate (directly or indirectly) needs to be wider than the tuning of feedforward excitatory inputs. It is possible the feedback does not directly drive inhibitory neurons but excitatory cells that in turn activate the inhibitory pool. It is difficult with the available data to provide a detailed circuit layout. But we can elaborate on a hypothesis as follows: 1) the tuning/width of the inhibitory inputs into a neuron are wider than those of excitatory inputs, and b) attention modulates the gain of inhibitory inputs more strongly than excitatory inputs. The appeal of this proposal relies on how gain changes differentially applied to MT/MST excitatory and inhibitory fields could produce a non-monotonic non-linear modulation when the modulated excitatory and inhibitory fields are integrated. We should note that feedforward inputs into a neuron could increase their strength with attention as long as the effect is smaller than the one of feedback inputs. Indeed, this may be the case according to studies isolating the modulation of responses in area V1 (34). If feedback gain signals were to originate downstream from the recorded area, and given that the attentional modulation of responses grows along the hierarchy of visual processing (41,42), it is reasonable to assume that within a given area changes in the strength of feedback signals would be greater than changes in the strength of feedforward inputs. This assumption, however, needs to be further tested.

Previous studies have reported that the tuning of inhibitory neurons for stimulus features is wider than the tuning of excitatory cells (43). In monkey MSTd narrow-spiking putative interneurons are more broadly direction tuned than broad-spiking putative pyramidal cells (44). Given that parvalbumin positive (PV) cells are the most abundant interneuron type in MT/MST (45), and they are involved in gain control of pyramidal cells (46), it could be that PV cells recruited by top-down inputs (47) provide the wide strong inhibitory drive that produces the non-linear change in the tuning curves.

Remarkably, a computational model, ST, predicts the effects described here as resulting from top down feedback signals modulating the landscape of neuronal population activity in visual areas such as MT. Indeed, studies using moving RDPs have shown that the latency of the attentional effects on the responses of direction-selective neurons is shorter in LPFC than in MT (42), suggesting that top-down FBA signals originate in areas of the prefrontal cortex and feedback into visual cortex to modulate processing (47,48). Our results add detail to the way in which this specific modulation is implemented at the levels of single neurons and circuitry in MT that can be incorporated into models like ST to generate detailed predictions at microcircuit level.

Behavioral effects of feature-based surround suppression

We observed that attention to one of the two superimposed RDPs reduced motion repulsion and this reduction was greatest when the RDPs moved in similar directions. This feature-based surround suppression effect varied depending on bottom-up factors such as motion speed and the color of the target RDP which indicates an interplay between top-down FBA and bottom-up factors. The present results appear to be inconsistent with the previous report that the color of motion surfaces does not influence motion repulsion (49). However, in their study, motion repulsion was not measured separately for the motion surface colors, hence, the effect of the surface color might have not been addressed. Greater motion repulsion in red surfaces suggests that these surfaces are more strongly affected by inhibition. Such a result is consistent with a recent study that showed red facilitated response inhibition compared to green (50). It is also possible that different color wavelengths may influence motion repulsion. When the speed of the motion was faster, producing more signal strength, it is likely that the balance in mutual inhibition between the two-colored surfaces was more even, which then allowed for feature-based attentional modulation and surround suppression to be seen on the red surface.

One puzzling finding was that feature-based surround suppression in our behavioral experiment in humans was produced when the directional difference between two motions was smaller (30~40 deg) than in the neurophysiological experiment in monkeys (60~90 deg). The previous behavioral studies reported broader feature-based suppressive surrounds in the motion direction dimension than those in the other feature dimensions (maximum suppression around at around 90 deg difference, (20,21)), a range similar to what we found in the neurophysiological experiment (51–53). There are several possible explanations for the discrepancy between our two experiments. It may be that responses of MT single neurons tuned for motion direction translate into a different population response profile in areas

downstream from MT/MST (e.g., LIP or the prefrontal cortex). In favor of this hypothesis, it has been reported that during a task that requires categorization of motion directions, LIP and prefrontal neurons change their tuning while MT neurons do not (54). It may also be that a narrower surround suppression profile in our behavioral experiment could be due to the nature of motion repulsion. Motion repulsion is typically attenuated as the two superimposed motions move in more dissimilar directions. In addition, human participants were asked to report motion directions with high precision, whereas monkeys had to detect directional changes while maintaining attention on an eccentric motion pattern. Finally, we used colored, superimposed RDPs in the behavioral experiment, while white, spatially separated RDPs in the neurophysiological experiment. Finally, biases idiosyncratic to each species (humans vs. monkeys) may have also influenced the profile of feature-based surround suppression.

The current behavioral paradigm allowed insight into feature-based surround suppression mechanisms. As motion repulsion is thought to occur due to mutual inhibition between competing pools of direction-selective neurons(55), it is possible increasing the gain of inhibitory relative to excitatory inputs into neurons within the focus of attention produces the observed effect, i.e., shifting the population tuning back towards the veridical direction from the repulsed one. Our experimental paradigm more directly demonstrates feature-based surround suppression of ST relative to the previous ones.

Conclusions

Our results demonstrated a consistent attentional surround suppressive effect at both neurophysiological and behavioural levels and resolved seemingly contradictory findings of feature-based attention: the feature-similarity gain modulation of neuronal inputs and tuning curves and the attentional impact on neural population responses predicted by the Selective Tuning model. We also modeled this suppressive effect, suggesting how non-linear changes in neural tuning and behavior can emerge from gain modulation induced by feature-based attention. Ultimately, our work provides a unified framework for the effects of feature-based attention on neuronal responses and behavior.

Materials and Methods

Neurophysiology in macaque monkeys

Research with non-human primates represents a small but indispensable component of neuroscience research. The researchers in this study are aware and are committed to the responsibility they have in ensuring the best possible science with the least possible harm to the animals (56).

Apparatus and stimuli

We recorded the responses of direction-selective neurons in areas MT and MST ($n = 107$) of two male adult macaque monkeys in different task conditions. After initial training, a head post, a scleral search coil (57) to monitor eye position (58), and a recording chamber were implanted in each animal. A custom computer program running on an Apple Macintosh PowerPC controlled the stimulus presentations, monitored eye position and behavioral responses during the experiments, and recorded the behavioral and neuronal data. The experiments reported in this study were conducted according to local and national rules and regulations and were approved by the Regierungspräsidium Tübingen (Germany).

RDPs consisted of small bright dots with a density of 5 dots/dva² within a stationary circular virtual aperture on a dark computer monitor. The luminance of the dots was 55 cd/m² and the viewing distance was 57 cm. The diameter of the aperture varied from about 1 deg to 12 deg depending on the size of each neuron's RF so that the stimulus did not exceed the boundaries of the classical RF. Movement of the dots was created by displacement of each dot by the appropriate amount at the monitor refresh rate of 75 Hz. We measured the speed and direction tuning of the neuron by online display of the tuning curves and chose the speed at which the neuron produced the strongest response (8). In every

trial we presented two RDPs of equal size inside the neurons RF. One RDP always moved in the neuron's preferred direction, which was estimated in a separate block of trials by online display of the responses to a single RDP inside the RF moving in different directions while the animal was fixating a dot at the screen center (see (8)). The other pattern could move in one of twelve different directions spaced every 30 deg.

Recordings

Extracellular recordings from the left hemisphere were conducted using tungsten microelectrodes (impedance 0.5–2 mΩ, Microprobe and FHC). Electrodes were lowered through a recording chamber implanted on top of the parietal bone until reaching the approximate location of MT/MST. Single units were isolated with a window discriminator, and eccentricity, direction-selectivity, and position of the electrode within the recorded area were determined. We recorded only from those neurons showing clear direction-selectivity during initial mapping (see (8) for more detail). Throughout this process, we recorded from 107 MT/MST neurons (75 MT and 32 MST neurons).

Task

The animals were trained to selectively attend to a cued stimulus, while directing gaze to a fixation point (Figure 1A). One of the RDPs always moved in the neuron's preferred direction (preferred pattern) and the other could move in one of 12 different directions from trial to trial (tuning pattern, in steps of 30 deg). There were three different experimental conditions depending on which feature on the display was attended (Figure 1B). The animals were cued to attend to 1) the preferred pattern (attend-preferred condition), or 2) tuning pattern (attend-tuning condition). As an attentional cue, the target appeared for a short time period and then disappeared to re-appear together with the distractor. The task for the animals was to covertly attend to the target pattern and release a lever within a 450 ms response window after the dots changed direction. The animals had to ignore changes in the direction of the unattended pattern, which happened in 50% of the trials. 3) In a third condition (fixation condition), the animals attended to the fixation point and released a lever within a 450 ms after the fixation point changed color while ignoring both RDPs in the periphery.

Data analysis

Neurons were included in the analysis if the number of data points in which they were recorded from was more than 6. As a result, 78 MT/MST neurons were analyzed (53 MT and 25 MST neurons). We computed average firing rates during the interval from 200 to 1200 milliseconds after the onset of the two patterns, as a function of the tuning pattern's direction relative to the direction of the preferred pattern. Responses after a direction change in the receptive field were excluded from the analysis. They were analyzed separately in the context of another study (59). The responses of each neuron were normalized to the response when both RDPs moved in the neuron's preferred direction in the attend-preferred condition and then averaged across neurons. The responses of both MT and MST neurons were pooled since the direction selectivity and tuning curve profiles were very similar between the two areas. Repeated-measures ANOVA and paired samples t-tests on the average normalized neuronal response were conducted to examine how neuronal responses varied depending on experimental conditions.

We fitted the single Gaussian and sum of two Gaussians models to neuronal responses, using the MATLAB curve fitting toolbox (Mathwork Inc., USA). The sum of two Gaussians model we used is equivalent to the difference-of-Gaussians (DoG) model as the first Gaussian has a positive gain and the second Gaussian has a negative gain. We used the Akaike Information Criterion (AIC (60)) which penalizes model complexity (lower AIC value indicates better fit) to assess the relative quality of each model fit.

Human behavioral experiments

Participants

Fourteen naïve participants (5 men, 9 women), between the ages of 20 and 30 years completed the experiment. They had normal or corrected-to-normal visual acuity, and normal color vision. Written informed consent was obtained from all participants and they were paid for their participation (\$30 CAD per subject). The research was approved by York University's Human Participants Ethics Review Committee.

Apparatus and stimuli

Experiments were conducted in a dark room. Participants sat 57 cm from a CRT monitor (21" View Sonic G225f, 1280x1024, 85 Hz) and their heads were stabilized on a head and chin rest (Headspot, UHCOtech, Houston, TX). Participants wore an infrared eye tracker (Eyelink II, SR Research, 500 Hz, Mississauga, ON, Canada) monitoring the left eye position. Random dot patterns (RDPs) were created through MATLAB (MathWorks, Natick, MA) and the Psychophysics Toolbox (61,62). Experimental control was maintained by Presentation (Neurobehavioral Systems, Berkeley, CA).

An annular RDP consisted of two superimposed motion surfaces (RDP size = 15 dva (degree in visual angle) in diameter, inner aperture size = 6 dva in diameter, dot size = 0.15 dva, 75 dots per surface). The directions of the motion surfaces changed every trial and the dots in each motion surface moved in the same direction (100% coherent). Directional difference between the two surfaces systematically varied by 10~50 deg (10 deg step). Motion speed was either 3 deg/sec or 6 deg/sec and both motion surfaces moved in the same speed. Dots in one motion surface were red (luminance: 24.67 cd/m²) and those on the other surface were green (24.64 cd/m²) to make participants easily segregate them, without affecting direction repulsion (49).

Task

We tested participants under two experimental conditions: divided and focused attention. In the divided attention condition, typical motion repulsion was measured. The RDPs were presented for 2 sec once participants fixated a white cross centered on a screen for 200 ms. Participants had to maintain the fixation until the RDPs disappeared, otherwise an error message was presented, and the trial was randomly interleaved in the remaining trials. Participants were asked to view both motion surfaces equally to estimate their directions. During motion presentation, a brief directional shift (100 ms) on either motion surface could randomly occur in 80% of trials, and then it went back to the original direction. The amount of shift was randomly selected from the range between 30 and 40 deg when motion speed was 3 deg/sec, and between 20 and 30 deg when motion speed was 6 deg/sec to equalize the perceptual strength of directional shifts across different motion speed conditions. A shift could occur from 650 to 1100 ms after RDPs onset. Participants were asked to ignore this directional shift while they viewed the RDPs. After motion presentation, a color cue (either red or green) appeared for 250 ms to indicate which motion surface was the target in that trial. Each color cue was presented equally throughout the experiment. Participants reported the motion direction of the target surface by clicking along a white circular outline.

In the focused attention condition, after maintaining central fixation for 200 ms, a color cue appeared before the RDPs were presented to indicate which motion surface should be attended. Participants were required to attend only to the cued motion surface (target) while ignoring the other surface. To make sure whether they selectively attended to the target surface, they clicked the right mouse button within a 1 sec after the onset of a brief directional shift. The directional shift could occur only on the target surface. If there was no shift, participants did not respond and waited until they viewed the white circular outline. If participants missed the shift, responded too late, or made a false alarm, an error message was presented, and the trial was discarded. They reported the motion direction of the target surface only when the attention task was successfully performed.

The attentional conditions were blocked, and participants performed both conditions twice in a random order. At the beginning of each attentional condition, participants were given 10 practice trials whose data were not used and then, they performed 100 trials as the main experiment (200 trials for each attentional condition, in total). There was a mandatory "break time" after every 25 trials. Participants could have extra "break time" if they wanted.

Data analysis

We first sorted participants' direction judgment responses to reduce variability in data (49). A correct direction judgment should fall within a range that extended from halfway between the two motion directions to 45 deg away from the motion direction of the target surface. Then, motion repulsion, defined by the difference between the reported (perceived) and the actual motion direction, was calculated. Since participants performed an additional attention task in the focused attention condition, only trials in which both directional shift detection and motion direction judgment were successful were included in the analysis. Motion repulsions in the two attentional conditions were compared to quantify the attentional modulation.

Declarations

Ethics approval and consent to participate:

The neurophysiological experiments reported in this study were conducted according to local and national rules and regulations and were approved by the Regierungspraesidium Tuebingen (Germany). The human psychophysical research was approved by York University's Human Participants Ethics Review Committee. Written informed consent was obtained from all participants.

Consent for publication: Not applicable

Availability of data and materials: The datasets generated and/or analysed during the current study are available at <https://osf.io/5qn74/>

Competing interests: The authors declare that they have no competing interests.

Funding: S.-A.Y. and J.K.T. are funded by Air Force Office of Scientific Research (FA9550-18-1-0054), the Canada Research Chairs Program (950-231659), and the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-05352). J.M.T. is funded by the Canadian Institutes for Health Research Operating Grant. S.T. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing" (Project C04) and the Research Unit 1847 "Physiology of Distributed Computing Underlying Higher Brain Functions in Non-Human Primates" (Project A1). M.F. is funded by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-05296).

Authors' contributions: J.M.T. and S.T. designed and planned the neurophysiological experiment. J.M.T. performed the neurophysiological experiment. S.-A.Y., J.K.T. and M.F. designed and planned the psychophysical experiment. S.-A.Y. performed the psychophysical experiment. S.-A.Y and J.M.T. analyzed the data. All the authors contributed to the interpretation and discussion of the results, and wrote the manuscript.

Acknowledgements: The authors thank Daniel Voloshin and Amir Yazdanparast for helping human data collection.

References

1. Tsotsos JK. A computational perspective on visual attention. Cambridge, MA: MIT Press; 2011.
2. Anillo-Vento L, Hillyard SA. Selective attention to the color and direction of moving stimuli: Electrophysiological correlates of hierarchical feature selection. *Percept Psychophys*. 1996;58(2):191–206.
3. Hillyard SA, Anillo-Vento L. Event-related brain potentials in the study of visual selective attention.

Proc Natl Acad Sci. 1998;95(3):781–7.

4. Martinez-Trujillo JC, Treue S. Feature-based attention increases the selectivity of population responses in primate visual cortex. *Curr Biol*. 2004;14(9):744–51.
5. Maunsell JHR, Treue S. Feature-based attention in visual cortex. *Trends Neurosci*. 2006;29(6):317–22.
6. Saenz M, Buracas GT, Boynton GM. Global effects of feature-based attention in human visual cortex. *Nat Neurosci*. 2002;5(7):631–2.
7. Sàenz M, Buraças GT, Boynton GM. Global feature-based attention for motion and color. *Vision Res*. 2003;43(6):629–37.
8. Treue S, Martinez-Trujillo JC. Feature-based attention influences motion processing gain in macaque visual cortex. *Nature*. 1999;399(6736):575–9.
9. Kozyrev V, Daliri MR, Schwedhelm P, Treue S. Strategic deployment of feature-based attentional gain in primate visual cortex. *PLoS Biol*. 2019;17(8):e3000387.
10. Treue S, Martinez-Trujillo JC. Attending to features inside and outside the spotlight of attention. *Neuron*. 2007;55(2):174–6.
11. Patzwahl DR, Treue S. Combining spatial and feature-based attention within the receptive field of MT neurons. *Vision Res*. 2009;49(10):1188–93.
12. Malek N, Treue S, Khayat P, Martinez-Trujillo J. Distracter suppression dominates attentional modulation of responses to multiple stimuli inside the receptive fields of middle temporal neurons. *Eur J Neurosci*. 2017;46(12):2844–58.
13. Tsotsos JK. Analyzing vision at the complexity level. *Behav Brain Sci*. 1990;13(3):423–45.
14. Tsotsos JK, Culhane SM, Kei Wai WY, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective tuning. *Artif Intell*. 1995;78(1–2):507–45.
15. Tombu M, Tsotsos JK. Attending to orientation results in an inhibitory surround in orientation space. *Percept Psychophys*. 2008;70(1):30–5.
16. Bartsch M V., Loewe K, Merkel C, Heinze H-J, Schoenfeld MA, Tsotsos JK, et al. Attention to color sharpens neural population tuning via feedback processing in the human visual cortex hierarchy. *J Neurosci*. 2017;37(43):0666–17.
17. Fang MWH, Becker MW, Liu T. Attention to colors induces surround suppression at category boundaries. *Sci Rep*. 2019;9(1):1–13.
18. Störmer VS, Alvarez GA. Feature-based attention elicits surround suppression in feature space. *Curr Biol*. 2014;24(17):1985–8.
19. Loach D, Frischen A, Bruce N, Tsotsos JK. An attentional mechanism for selecting appropriate actions afforded by graspable objects. *Psychol Sci*. 2008;19(12):1253–7.
20. Ho TC, Brown S, Abuyo NA, Ku E-HJ, Serences JT. Perceptual consequences of feature-based attentional enhancement and suppression. *J Vis*. 2012;12(8):15.
21. Wang Y, Miller J, Liu T. Suppression effects in feature-based attention. *J Vis*. 2015;15(5):15.
22. Kiyonaga A, Egner T. Center-surround inhibition in working memory. *Curr Biol*. 2016;26(1):64–8.

23. Marshak W, Sekuler R. Mutual repulsion between moving visual targets. *Science*. 1979;205(4413):1399–401.
24. Rauber H-J, Treue S. Reference repulsion when judging the direction of visual motion. *Perception*. 1998;27(4):393–402.
25. Rauber H-J, Treue S. Revisiting motion repulsion: Evidence for a general phenomenon? *Vision Res*. 1999;39(19):3187–96.
26. Chen Y, Meng X, Matthews N, Qian N. Effects of attention on motion repulsion. *Vision Res*. 2005;45(10):1329–39.
27. Tzvetanov T, Womelsdorf T, Niebergall R, Treue S. Feature-based attention influences contextual interactions during motion repulsion. *Vision Res*. 2006;46(21):3651–8.
28. Simoncelli EP, Heeger DJ. A model of neuronal responses in visual area MT. *Vision Res*. 1998;38(5):743–61.
29. Tchernikov I, Fallah M. A color hierarchy for automatic target selection. *PLoS One*. 2010;5(2):e9338.
30. Pomerleau VJ, Fortier-Gauthier U, Corriveau I, Dell'Acqua R, Jolicœur P. Colour-specific differences in attentional deployment for equiluminant pop-out colours: Evidence from lateralised potentials. *Int J Psychophysiol*. 2014;91(3):194–205.
31. Braddick OJ, Wishart KA, Curran W. Directional performance in motion transparency. *Vision Res*. 2002;42(10):1237–48.
32. Curran W, Benton CP. Speed tuning of direction repulsion describes an inverted U-function. *Vision Res*. 2003;43(17):1847–53.
33. Perry CJ, Tahiri A, Fallah M. Feature integration within and across visual streams occurs at different visual processing stages. *J Vis*. 2014 Feb 13;14(2):10–10.
34. Reynolds JH, Chelazzi L, Desimone R. Competitive mechanisms subserve attention in macaque areas V2 and V4. *J Neurosci*. 1999;19(5):1736–53.
35. Störmer VS, Alvarez GA, Cavanagh P. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention. *J Neurosci*. 2014;34(35):11526–33.
36. McAdams CJ, Maunsell JHR. Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex. *Neuron*. 1999;23(4):765–73.
37. Heeger DJ. Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. *J Neurophysiol*. 1993;70(5):1885–98.
38. Reynolds JH, Heeger DJ. The normalization model of attention. *Neuron*. 2009;61(2):168–85.
39. Ni AM, Ray S, Maunsell JHR. Tuned normalization explains the size of attention modulations. *Neuron*. 2012;73(4):803–13.
40. Ni AM, Maunsell JHR. Spatially tuned normalization explains attention modulation variance within neurons. *J Neurophysiol*. 2017;118(3):1903–13.
41. Treue S, Maunsell JHR. Attentional modulation of visual motion processing in cortical areas MT and MST. *Nature*. 1996;382(6591):539–41.
42. Lennert T, Martinez-Trujillo JC. Prefrontal neurons of opposite spatial preference display distinct

target selection dynamics. *J Neurosci*. 2013;33(22):9520–9.

43. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. *Neuron*. 2010;67(5):858–71.
44. Zhang Y, Li S, Jiang D, Chen A. Response properties of interneurons and pyramidal neurons in macaque MSTd and VPS areas during self-motion. *Front Neural Circuits*. 2018;12.
45. Torres-Gomez S, Blonde JD, Mendoza-Halliday D, Kuebler E, Everest M, Wang XJ, et al. Changes in the proportion of inhibitory interneuron types from sensory to executive areas of the primate neocortex: Implications for the origins of working memory representations. *Cereb Cortex*. 2020;30(8):4544–62.
46. Nienborg H, Hasenstaub A, Nauhaus I, Taniguchi H, Huang ZJ, Callaway EM. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. *J Neurosci*. 2013;33(27):11145–54.
47. Bichot NP, Heard MT, DeGennaro EM, Desimone R. A source for feature-based attention in the prefrontal cortex. *Neuron*. 2015;88(4):832–44.
48. Martinez-Trujillo J. Searching for the neural mechanisms of feature-based attention in the primate brain. *Neuron*. 2011;70(6):1025–8.
49. Perry CJ, Fallah M. Color improves speed of processing but not perception in a motion illusion. *Front Psychol*. 2012;3:92.
50. Blizzard S, Fierro-Rojas A, Fallah M. Response inhibition is facilitated by a change to red over green in the stop signal paradigm. *Front Hum Neurosci*. 2017;10:655.
51. Snowden RJ, Treue S, Andersen RA. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. *Exp Brain Res*. 1992;88(2):389–400.
52. Britten KH, Newsome WT. Tuning bandwidths for near-threshold stimuli in area MT. *J Neurophysiol*. 1998;80(2):762–70.
53. Albright TD. Direction and orientation selectivity of neurons in visual area MT of the macaque. *J Neurophysiol*. 1984;52(6):1106–30.
54. Freedman DJ, Assad JA. Experience-dependent representation of visual categories in parietal cortex. *Nature*. 2006;443(7107):85–8.
55. Perry CJ, Fallah M. Feature integration and object representations along the dorsal stream visual hierarchy. *Front Comput Neurosci*. 2014;8:84.
56. Roelfsema PR, Treue S. Basic neuroscience research with nonhuman primates: A small but indispensable component of biomedical research. *Neuron*. 2014;82(6):1200–4.
57. Judge SJ, Richmond BJ, Chu FC. Implantation of magnetic search coils for measurement of eye position: An improved method. *Vision Res*. 1980;20(6):535–8.
58. Robinson DA. A method of measuring eye movement using a scleral search coil in a magnetic field. *IEEE Trans Bio-medical Electron*. 1963;10(4):137–45.
59. Mehrpour V, Martinez-Trujillo JC, Treue S. Attention amplifies neural representations of changes in sensory input at the expense of perceptual accuracy. *Nat Commun*. 2020;11(1):2128.
60. Akaike H. A new look at the statistical model identification. *IEEE Trans Automat Contr*. 1974;19(6):716–23.

61. Brainard DH. The Psychophysics Toolbox. *Spat Vis.* 1997;10(4):433–6.
62. Pelli DG. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. *Spat Vis.* 1997;10(4):437–42.