

1 Drought is a stronger driver of plant morphology and nutritional composition than

2 warming in two common pasture species

3 Effects of drought and warming on pasture quality

4 Karen L. M. Catunda^{1*}, Amber C. Churchill^{1,2}, Haiyang Zhang¹, Sally A. Power¹, Ben D.
5 Moore¹

6

⁷ ¹ Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797,
⁸ Penrith, NSW, 2751, Australia

² Department of Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave., St. Paul, MN, 55108, USA

11

12 *Corresponding author.

13 Email address: k.marinhocatunda@westernsydney.edu.au

14 **Abstract**

15 Under warmer and drier future conditions, global livestock and dairy production are threatened
16 by impacts on the productivity and nutritional quality of pastures. However, morphological and
17 nutritional adjustments within plants in response to warming and drought vary among species
18 and less is known how these relate to production and forage quality. To investigate this, we
19 grew two common pasture species, tall fescue (*Festuca arundinacea*: grass) and lucerne
20 (*Medicago sativa*: legume), in a climate-controlled facility, under different temperatures
21 (ambient and elevated) and watering regimes (well-watered and droughted). We found that
22 drought had a strong negative impact on biomass production, morphology and nutritional
23 quality while warming only significantly affected both species when response metrics were
24 considered in concert, although to a lesser degree than the drought. Furthermore, interactions
25 between warming and drought were only seen for lucerne, with the greatest reduction in
26 biomass and most dead material and dry matter content. In tall fescue, drought had bigger
27 impacts on nutritional composition than morphological traits, while in lucerne, drought
28 affected all morphological traits and most nutritional parameters. These findings suggest that
29 in future climate scenarios, drought may be a stronger driver of changes in the morphology and
30 nutritional composition of pasture grasses and legumes, compared to modest levels of warming.

31

32 **Keywords:** climate change, *Festuca arundinacea*, forage nutrition, *Medicago sativa*, water
33 stress, elevated temperature

34 **1. INTRODUCTION**

35 As the climate changes, more extreme and frequent periods of heat stress and water deficiency
36 have become the most common and critical limiting factors for productivity and nutritional
37 quality of pastures and grasslands across the globe (Chang-Fung-Martel et al., 2017; Deléglise
38 et al., 2015; IPCC, 2014). Grazing livestock require a reliable and consistent supply of high-
39 quality forage (Herrero et al., 2013; Lee et al., 2017) to achieve high animal performance and
40 maintain profitable production (Dairy Australia, 2018; Laca et al 2001). However, research
41 suggests that pasture systems will be challenged to meet demands for forage in some regions
42 of the world as predicted climate change will impact annual pasture production by driving shifts
43 in plant phenology and increases the inter-annual variability of production. Both of these
44 outcomes pose an increased climate risk to the dairy and meat industries (Perera et al., 2020;
45 Rojas-Downing et al., 2017). Along with changes in pasture productivity, there are also
46 potential shifts in the morphological traits and nutritional composition of pasture species that
47 are likely to alter forage quality and digestibility (AbdElgawad et al., 2014; Herrero et al., 2015;
48 Howden et al., 2008). In contrast to shifts in productivity, these changes and their consequences
49 under future climate scenarios, such as warming and drought, are relatively understudied.

50 Warming can affect plant growth directly, with the nature of the response dependent
51 upon the optimal temperature of a plant species. For example, positive warming effects on
52 growth can be expected for species where production is limited by cold temperatures (Bloor et
53 al., 2010), whereas neutral or negative responses may be more likely in warmer environments
54 (Dukes et al., 2005). Warming above a plant's optimal temperature may cause temperature
55 stress via direct effects on plant physiology and metabolism and indirectly via increased
56 evapotranspiration and lowered plant water availability (Rustad et al., 2001). These stresses
57 can negatively influence pasture forage quality via affect morphological traits, such as reduced
58 leaf size, tiller emergence and leaf:stem ratios (Mitchell, 1956; Wilson et al., 1991). In addition,

59 some studies have reported a reduction in the nutritional quality of forage under warming (Lee
60 et al., 2017) through increases in concentrations of fibre, and decreases in concentrations of
61 crude protein (Waghorn & Clark, 2004) and non-structural carbohydrates (Habermann et al.,
62 2019; Wilson et al., 1991).

63 Drought and its associated reduction in soil moisture content result in a wide range of
64 impacts on plant morphology and nutritional composition, with the magnitude of impacts
65 dependent on the developmental stage of plants and the severity and duration of the drought
66 (Gray & Brady, 2016; IPCC, 2014). Severe drought inhibits growth and accelerates maturation
67 of existing plant tissue, death of tillers and leaf senescence that result in decreasing the
68 leaf:stem ratio and increasing in fibre concentrations (Bruinenberg et al., 2002; Ren et al.,
69 2016). Additionally, severe water deficit increases nutrient translocation (mainly nitrogen and
70 non-structural carbohydrates) from leaves to roots, thus reducing the concentrations of
71 nutrients aboveground (Buxton, 1996; Durand et al., 2009). In contrast, moderate drought stress
72 typically induces different morphological responses including delays in plant maturation and
73 growth especially for perennial species, which then results in only mild to moderate leaf loss
74 (Buxton, 1996). Studies focused on nutritional responses have reported seemingly idiosyncratic
75 changes among different nutritional parameters such as no effect or reductions in fibre
76 concentrations, and no effect or slight improvements in crude protein concentrations and
77 digestibility of forage under moderate water deficit conditions (Bittman, 1988; Buxton, 1996;
78 Deleglise et al., 2015; Dumont et al., 2015; Kuchenmeister et al., 2013; Staniak & Harasim,
79 2018). In these cases, unchanged or reduced fibre concentrations could be explained by reduced
80 growth and increases in leaf:stem ratio reported under moderate conditions (Bruinenberg et al.,
81 2002; Deleglise et al., 2015). Increased crude protein concentrations could be attributed to
82 delayed maturation and lower biomass production under moderate water limitation, allowing

83 nutrients such as nitrogen to become concentrated in plant tissues (Dumont et al., 2015; Grant
84 et al., 2014).

85 While studies have been conducted on responses of species to a single climate change
86 variable, there is a lack of information as to what may happen with concurrent changes in
87 temperature and water availability (Chang-Fung-Martel et al., 2017; Viciedo et al., 2021). In
88 addition, how morphological and nutritional adjustments can affect each other in different plant
89 species under climate change scenarios, especially how warming and drought interact within
90 pasture species, are not well understood and need to be investigated. To address these research
91 gaps, we conducted a study in a climate-controlled facility to investigate the effects of warming
92 and short-term drought, alone and in combination, on plant morphological traits and nutritional
93 composition of two important temperate pasture species: tall fescue (*Festuca arundinaceae* –
94 a C₃ grass) and lucerne (*Medicago sativa* – a C₃ legume). These species were chosen as they
95 are perennial forage species, widely used in many countries throughout the world. We grew
96 plants under different average daily temperatures [ambient: 26 °C; elevated: 30 °C] and
97 watering regimes [well-watered: 100% soil water holding capacity (WHC); droughted: 40%
98 WHC]. We hypothesized that warming and drought, as isolated factors, will negatively affect
99 biomass production, morphological traits and nutritional quality, with the magnitude dependent
100 on species-specific responses. We further predict that drought in combination with warming
101 will have a more pronounced negative impact on plant morphological and nutritional traits than
102 as isolated climate factors, as warming can exacerbate the negative effects of water stress in
103 the plants.

104

105 2. MATERIALS AND METHODS

106 2.1. Site and experimental design

107 The experiment was conducted between mid-April and early-August 2018 in four climate-
108 controlled glasshouse chambers located at the Hawkesbury Campus of Western Sydney
109 University, in Richmond, NSW, Australia (33°36'40" S, 150°44'43" E). Two agriculturally
110 important temperate pasture species were used in this experiment: the C₃ grass, tall fescue
111 (*Festuca arundinacea*) and the C₃ legume, lucerne (*Medicago sativa*). The two-factor
112 experimental design included two temperatures (ambient, aT; elevated, eT) and two watering
113 regimes (well-watered, W; droughted, D), giving four treatment combinations (aT.W, aT.D,
114 eT.W, eT.D), each with eight replicate pots and thus 32 pots per species. Treatment replicates
115 were divided evenly among four chambers, with two chamber replicates maintained at aT and
116 the other two at eT. Watering regimes were nested within the temperature treatments (Zhang
117 et al., 2021). Pot positions within chambers were re-randomized every two weeks to minimize
118 potential within-chamber effects.

119

120 2.2. *Plant growth conditions and treatments*

121 We collected field soil (sandy-loam texture with a soil pH ~5.6) from the Pastures and Climate
122 Extremes (PACE) field experimental facility, also located on the Western Sydney University
123 Hawkesbury Campus (33°36'S, 150°44'E) (Churchill et al., 2020). The soil was sieved (5 mm),
124 air-dried and mixed with quartz sand (7:3, v/v) then 3.9 kg of soil was placed into each plastic
125 pot (3.7 L, 150 mm diameter, 240 mm height). Seeds of each species were surface-sterilized
126 with a 1.25% NaOCl for 10 min, rinsed with deionized water 10 times and germinated in Petri
127 dishes with sterilized water for 1 week. Five germinated seedlings were transplanted into each
128 pot and then thinned to four healthy individuals per pot after 2 weeks (Zhang et al., 2021). The
129 legume pots were supplied with appropriate rhizobia (Easy Rhiz soluble legume inoculant,
130 Group AL, New Edge Microbials, NSW, Australia) necessary for nodulation (Zhang et al.,
131 2021).

132 The temperature treatments included an ambient regime (aT; target of 26/18 °C
133 day/night) and an elevated temperature regime (warming) with + 4 °C warming (eT; target of
134 30/22 °C day/night) using a 15:9 light: dark cycle. The ambient regime reflected the average
135 daily maximum temperature for the site over the previous 20 years (Australian Government
136 Bureau of Meteorology, Richmond RAAF site), and the elevated regime represented the
137 predicted increase of 4 °C for this region within this century (Pearce et al., 2007). Temperature
138 treatments were initiated at the same time as transplantation. Humidity was controlled at 60%
139 and the effectiveness for achieving the temperature conditions within the glasshouse chambers
140 are reported in Zhang et al. (2021).

141 To maintain consistent water availability, an automated irrigation system was used to
142 ensure pots were well-watered every second day to 100% water holding capacity (WHC, i.e.
143 until drainage just occurred after watering events). All pots were maintained at well-watered
144 conditions until the two watering regimes (well-watered and droughted) were initiated three
145 weeks before the final harvest. Pots in well-watered treatments were maintained in well-
146 watered condition as before. In contrast, pots in drought treatments had watering withheld for
147 4 days (until the majority of the plants started to wilt). Thereafter, we weighed pots every other
148 day to maintain the drought treatments pots at 40% WHC for one week (adding an appropriate
149 amount of water when necessary). After one week, we re-watered the drought treatments pots
150 to bring the soil water condition back to 100% WHC. This oscillating drought regime (shifting
151 between 100% and 40% WHC) was repeated for the remaining three weeks of the experiment,
152 ending just prior to the final harvest. Within each watering regime, pots under aT and eT were
153 maintained at similar WHC, to be able to test the direct effects of warming and minimize the
154 interactive influence of warming on soil water content. Following typical pasture management
155 practices, we also implemented an aboveground biomass clipping event followed by nutrient
156 fertilization in our experiment. Plant shoots were clipped 8 weeks after planting (before

157 imposing the drought treatment) at 5 cm above the soil surface, and allowed to regrow until the
158 final harvest. Two weeks after the clipping, we applied fertilizer (containing KNO_3 and
159 KH_2PO_4 resulting in a fertilizer pulse of 30 kg N ha^{-1} and 5 kg P ha^{-1} ; Zhang et al., 2021).

160

161 *2.3. Harvest and morphological traits measurements*

162 Immediately prior to harvest, plant height and number of tillers/stems per pot were measured
163 for both species. Plant height (cm) was measured in each pot from ground level to the tip of
164 the tallest plant; subsequently, the numbers of tillers (grass) and stems (legume) from each pot
165 were counted. The percentage of standing aboveground biomass that was dead was estimated
166 visually and assigned to five classes (0%, 25%, 50%, 75%, 100%) ranging from the entire plant
167 being healthy to all aboveground plant tissue being senesced. To harvest aboveground biomass,
168 plants were cut at the level of the soil surface, biomass was weighed, immediately frozen (-
169 18°C) and later freeze-dried, then weighed to determine the total dry biomass (g/ pot). Dry
170 biomass of lucerne was sorted into leaves (plus flowers when present) and stems, and fractions
171 were weighed to calculate the leaf:stem ratio. Dry leaves of tall fescue could not be
172 distinguished from tillers.

173

174 *2.4. Sample processing*

175 Dried biomass samples were ground to pass through a 1-mm screen in a laboratory mill (Foss
176 Cyclotec Mill, Denmark) and stored in airtight plastic containers in the dark at room
177 temperature prior to collection of near-infrared reflectance spectra and wet chemistry analysis.
178 Prior to nitrogen analysis, subsamples of biomass from each pot were reground to a fine powder
179 using a ball-mill (Retsch® MM200; Hann, Germany). Nutritional analysis was performed on
180 the total aboveground harvested material (a mixture of leaves, stems/tillers and flowers when
181 present), including a mixture of both live and dead material.

182

183 *2.5. Nutritional analysis*

184 All dried and ground samples were each scanned twice and their spectra were collected and
185 averaged using near-infrared reflectance spectroscopy (NIRS; FOSS XDS Rapid ContentTM
186 Analyzer) with a spectral range from 400 to 2500 nm. Half of the samples for each species (4
187 replicates per treatment and per species) were selected for determining nutrient composition by
188 wet chemistry for all parameters, except for dry matter and crude protein contents (for which
189 all samples were analysed). Samples for wet chemistry were selected using the ‘select’ function
190 in the software WinISI 4.8.0 (FOSS Analytical A/S, Denmark) to represent the range of spectral
191 variation in the population, summarized by a principal component analysis to minimize
192 redundancy in spectra (Catunda et al., unpublished manuscript).

193 For wet chemistry, the selected samples were subjected to analyses of dry matter (DM) and
194 ash (ASH) according to the standard methods and procedures for animal feed outlined by the
195 Association of Official Analytical Chemists (AOAC, 1990). Nitrogen (N) concentration was
196 determined from ~ 100 mg samples using an automated combustion method on a Leco TruMac
197 CN-analyzer (Leco Corporation, USA). Crude protein (CP) concentration was then calculated
198 by applying a 6.25 conversion factor to the N concentration (AOAC, 1990). Ether extract (EE)
199 was determined according to the American Oil Chemists' Society-AOCS high-temperature
200 method using petroleum ether and the Soxhlet method (Buchi 810 Soxhlet Multihead Extract
201 Rack, UK). Fibre fractions were determined with an ANKOM Fibre Analyzer (model 200,
202 ANKOM[®] Technology, NY, USA) with use of neutral and acid detergent solutions and
203 corrected for dry matter content (Goering & Van Soest, 1970). Samples were analysed for
204 neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) by
205 the sequential method of Van Soest & Robertson (1980). Sodium sulphite and α -amylase were
206 added to the solution for NDF determination. The concentration of hemicellulose (HEM) was

207 calculated by the difference between NDF and ADF concentrations after sequential analysis,
208 while cellulose (CEL) concentration was calculated as the difference between ADF and ADL.
209 The values of ASH, EE, CP and NDF were used to calculate non-structural carbohydrates
210 (NSC) according to Sniffen et al. (1992). Estimated digestible dry matter (DDM), expressed as
211 percentage of dry matter, was calculated according to *Equation 1* below (Linn & Martin, 1989):

212
$$\text{Equation 1. } DDM \% = 88.9 - (0.779 \times ADF\%)$$

213 For the development of NIRS calibration models, modified Partial Least Squares regression
214 with cross-validation was used to develop predictive equations for each nutritional parameter
215 to prevent overfitting of models (Shenk & Westerhaus 1991). Standard normal variate and
216 detrend mathematical transformations (Barnes et al., 1989) were applied to raw NIR spectra to
217 reduce the influence of particle size, and a variety of derivative mathematical pre-treatments
218 were employed to decrease spectral noise effects. The best predictive models were selected on
219 the basis of the highest coefficient of determination of calibration (R^2) and the internal cross-
220 validation (one minus the variance ratio, 1-VR), and the lowest standard error of calibration
221 (SEC) and internal cross-validation (SECV), and the smallest difference between SEC and
222 SECV (Catunda et al., unpublished manuscript; Norman et al., 2020). The best models
223 developed for each nutritional parameters were used to predict the other half of the samples.
224 The mathematical treatment of spectra and descriptive statistics for NIRS calibrations can be
225 found in **Table A1**.

226

227 *2.7. Calculations and statistical analysis*

228 Plant biomass, morphological traits and nutritional composition (expressed as a percentage of
229 dry matter) were analysed statistically using linear mixed-effects (LME) models in the 'lme4'
230 package in R (Bates et al., 2015). Temperatures (T), watering regimes (W), and their
231 interactions (T x W), were defined as fixed effects and the glasshouse chambers were specified

232 as a random factor. Residuals were checked for normality and we applied log-transformation
233 to the percentage of dead material as a continuous response. Data for each species were
234 analysed separately and we were not explicitly interested in contrasting the two species. We
235 calculated the mean effect size due to drought (response ratio) based on the ratio of each mean
236 value in the drought treatments (D) to the mean value in the well-watered (W) treatments at
237 each temperature level ($aT = \text{Equation 2}$; $eT = \text{Equation 3}$) along with 95% confidence
238 intervals (CI). In the effect size figures, positive values represent responses that are greater
239 under drought than in well-watered treatments for the respective temperature level, while
240 negative values represent the opposite.

241
$$\text{Equation 2. Effect size} = \frac{aT \cdot D}{aT \cdot W} - 1$$

242

243
$$\text{Equation 3. Effect size} = \frac{eT \cdot D}{eT \cdot W} - 1$$

244 To achieve a more holistic overview of changes brought about by climate treatments on plant
245 response variables for each pasture species that accounts for the non-independence of within-
246 plant chemistry, we performed a multivariate, principal components analysis (PCA). To test
247 for the effects of both temperatures and watering regimes on plant biomass, morphological and
248 nutritional responses, we undertook permutational analysis of variance (PERMANOVA) using
249 the ‘vegan’ package in R. All statistical analyses were carried out using the software R version
250 3.5.2 (R Core Team, 2019).

251

252 **3. RESULTS**

253 *3.1. Impacts of warming and short-term drought on plant biomass and morphological*
254 *responses*

255 Drought, but not warming, significantly affected plant dry biomass or morphological traits for
256 both species (**Table A2**, **Table 1**). For tall fescue, drought significantly decreased biomass by
257 24% ($p < 0.01$, **Figure 1A**) and increased percentage of dead material by 19% ($p < 0.01$, **Figure**
258 **2A**). There was, however, no effect on plant height or number of tillers (**Figure 1A**). For
259 lucerne, drought significantly ($p < 0.01$ for all parameters) decreased biomass (51%, **Figure**
260 **1B**), plant height (18%), number of stems (28%) and leaf:stem ratio (40%), as well as increased
261 the percentage of dead material (21%, **Figure 2B**). Overall, the negative effect of drought on
262 biomass and morphological traits were stronger in lucerne than that in tall fescue.

263 There was not a significant interaction between temperatures and watering regimes (T
264 x W) for biomass or morphological traits in tall fescue, although, for lucerne, the interaction
265 significantly affected biomass ($p < 0.01$, **Figure 1B**) and the percentage of dead material ($p =$
266 0.02, **Figure 2B**). Specifically, for lucerne, warming (eT) partially offset the negative effect of
267 drought on biomass (-40%, **Figure 1B**), but exacerbated its effect on the percentage of dead
268 material (+60%, **Figure 2B**).

269

270 *3.2. Impacts of warming and short-term drought on nutritional responses*

271 Drought, but not warming, significantly affected nutritional parameters for both species (**Table**
272 **A2**, **Table 1**). For tall fescue, drought significantly affected all parameters of nutritional
273 composition, except acid detergent lignin (ADL, $p = 0.88$). Drought resulted in a significant
274 decrease in non-structural carbohydrates (NSC, 12% **Figure 3A**, $p < 0.01$) and digestible dry
275 matter (DDM, 3%, $p < 0.01$), and a significant increase in dry matter (DM, 7%, $p < 0.01$), ash
276 (ASH, 15%, $p < 0.01$), crude protein (CP, 9%, $p = 0.01$), neutral detergent fibre (NDF, 7% $p <$
277 0.01), acid detergent fibre (ADF, 11%, $p < 0.01$), hemicellulose (HEM, 4%, $p = 0.04$) and
278 cellulose (CEL, 11%, $p < 0.01$).

279 For lucerne, drought significantly affected all nutritional parameters, except ASH ($p =$
280 0.61) and HEM ($p = 0.65$). In contrast to its effects in tall fescue, drought significantly
281 decreased CP by 5% in lucerne (**Figure 3B**, $p = 0.02$) and caused a significant 7% increase in
282 ADL ($p = 0.02$). In addition, compared to the aT.W treatment, drought significantly decreased
283 NSC and DDM by 10% ($p = 0.04$) and 5% ($p < 0.01$), respectively, while significantly
284 increasing DM, NDF, ADF, and CEL by 4% ($p < 0.01$), 11% ($p < 0.01$), 15% ($p < 0.01$) and
285 18% ($p < 0.01$), respectively.

286 There was no significant interaction between temperatures and watering regimes for
287 nutritional parameters in either species ($p > 0.05$). However, the combination of warming and
288 drought increased the DM of lucerne by 35% ($p < 0.01$), compared with ambient temperature
289 and well-watered plants.

290

291 *3.3. Assessing plant biomass, morphological and nutritional responses to warming and*
292 *drought in a multivariate context*

293 We used a multivariate approach to assess overall plant responses to the climate treatments.
294 For tall fescue we found that both temperature (PERMANOVA: $p = 0.018$, **Figure 4**) and
295 watering regime (PERMANOVA: $p = 0.001$) significantly influenced plant responses, but
296 there was no interaction (T x W) between treatments (PERMANOVA: $p = 0.600$). However,
297 for lucerne we found that temperature (PERMANOVA: $p = 0.008$, **Figure 5**), watering regime
298 (PERMANOVA: $p = 0.001$) and their interaction (PERMANOVA: $p = 0.020$) significantly
299 influenced plant responses. The ellipses in **Figure 4A** and **Figure 5A** show statistically
300 significant treatment separation in the trait-space for both species. In tall fescue (**Figure 4A**),
301 the most significant separation of these plant responses occurred when under both warming
302 and drought scenarios, while in lucerne (**Figure 5A**), the driver separating plant responses were
303 mainly from drought rather than warming.

304 In tall fescue, the first two principal components explained 66% of the variation across
305 treatments (**Figure 4B**). The first principal component (PCA1, explaining 48.3% of the data
306 variance) had positive loadings of fibre (NDF, ADF) and ASH, and negative loadings with
307 DDM and NSC (**Figure 4B**). The second PCA axis (PCA2, explaining 18.1% of the data
308 variance) was associated with plant morphological traits and nutritional parameters, with
309 positive loadings for biomass and number of tillers, and negative loadings for CP. In addition,
310 we found that biomass and the number of tillers were negatively correlated with CP, while the
311 percentage of dead material was positively correlated with fibre fractions (ADF particularly)
312 and consequently negatively correlated with DDM (**Figure 4B, Figure A1**).

313 In lucerne, PCA1 and PCA2 explained respectively 42.8% and 16.2% of variation in
314 sample biomass, morphological traits and nutritional parameters (**Figure 5B**). PCA1 (**Figure**
315 **5B**), had positive loadings for fibre (NDF, ADF, CEL, ADL) and percentage of dead material,
316 and negative loadings for DDM and leaf:stem ratio. PCA2 was associated with higher CP and
317 ASH, and negatively associated with biomass and NSC. Lucerne biomass is positively
318 correlated with NSC and negatively correlated with fibre (CEL particularly), and that fibre
319 (CEL particularly) is negatively correlated with leaf:stem ratio and positively correlated with
320 the percentage of dead material (**Figure 5B, Figure A2**).

321 In addition, for both pasture species (**Figure 4, Figure 5**) the biomass, DDM and NSC
322 were higher for those plants grown under aT.W treatment, while high fibre concentrations and
323 a greater percentage of dead material were associated with the eT.D treatment. Particularly in
324 lucerne (**Figure 5**), eT.W treatment was associated with high leaf:stem ratio and CP. Overall,
325 PCA1 showed that the nutritional parameters explained the highest percentage of variance in
326 tall fescue (**Figure 4B**) while both the morphological traits and nutritional parameters
327 explained the variance in lucerne (**Figure 5B**).

328

329 **4. DISCUSSION**

330 Here, we have determined the effects of warming, short-term drought and, their interaction on
331 plant biomass, morphological traits and nutritional composition of two common pasture species
332 (tall fescue and lucerne). We found that exposure of these species to short-term drought resulted
333 in a significant negative impact on biomass production, morphology and nutritional quality;
334 warming did not significantly affect individual growth or nutritional parameters but did have a
335 significant overall effect on both species when assessed in a multivariate context. In addition,
336 we found a significant interaction between warming and drought in lucerne, which resulted in
337 greater differences between well-watered and drought treatments at elevated than at ambient
338 temperature. These findings demonstrate that drought had far bigger impacts than warming
339 overall, the effects of warming were greater when combined with drought – conditions that
340 more closely reflect predicted climates under which grazing systems will function in the future.

341

342 *4.1. Impacts of warming on plant biomass, morphological and nutritional responses*

343 For both pasture species we found limited evidence of shifts in plant biomass, morphological,
344 or nutritional responses associated with continuous warming. Previous studies have shown
345 species-specific positive (Bloor et al., 2010; Dieleman et al., 2012), negative (Cantarel et al.,
346 2013; Lee et al., 2017) and neutral (Dukes et al., 2005; Dumont et al., 2015) warming effects
347 on productivity and/or quality in forage species associated with regional climatic differences.
348 A widely anticipated mechanism by which warming can indirectly affect plants is via increased
349 evapotranspiration and consequent reductions in soil water content (Rustad et al., 2001). In our
350 experiment the eT.W and aT.W treatments were maintained at similar WHC, to be able to
351 isolate the direct effects of air temperature, while minimizing the interactive influence of
352 warming on soil water content. This approach and resultant lack of significant warming effects
353 on biomass, morphological traits and nutritional composition suggests that evapotranspiration-

354 mediated indirect effects might be responsible for many of the observed changes in forage
355 productivity and quality attributed to warming under field conditions (Cantarel et al., 2013). In
356 general, in our study warming was also the minor contributor to interaction effects with
357 drought. Our results suggest that if soil water availability can be maintained under field
358 conditions, then it may be possible to minimise the anticipated negative impacts of rising
359 temperatures on forage nutritional quality, at least for the species and temperatures in this
360 study, if not more widely.

361

362 *4.2. Impacts of short-term drought on plant biomass, morphological and nutritional responses*
363 In our experiment, short-term drought significantly decreased biomass while increasing the
364 percentage of dead material for both species, and particularly for lucerne, negatively affecting
365 all morphological traits. In tall fescue, the short-term drought did not alter plant height and the
366 number of tillers, instead, drought influenced plant phenology through accelerated senescence
367 of existing plant tissue. In particular for lucerne, the negative effect of drought on plant height
368 and leaf:stem ratio can be explained by water deficiency having reduced plant growth and
369 accelerated senescence, resulting in relatively more stem material compared to leaves, as also
370 reported in previous studies with pasture species (Bruinenberg et al., 2002; Ren et al., 2016).
371 These findings suggest that morphological changes in lucerne play a major role in plant
372 adaptation responses under drought stress. Overall, the morphological responses found in our
373 study, suggest that these responses must be related to different abilities to tolerate and adapt to
374 the drought that is species-specific (Lee et al., 2013).

375 In our study, although drought produced different morphological changes in these two
376 species, a decrease in nutritional quality and digestibility was common to both. The significant
377 reductions in NSC and increases in fibre (especially cellulose) may be explained by the high
378 percentage of dead material and for lucerne decreases in leaf:stem ratio that were found in this

379 study. In support of our results, previous studies found that stems are associated with more
380 fibre, higher forage toughness and consequently lower digestibility (Bruinenberg et al., 2002;
381 Buxton, 1996; Durand et al., 2009; Ren et al., 2016). Here, some nutritional responses to
382 drought did differ between species, for example, in terms of fibre fractions such as
383 hemicellulose (increased only in tall fescue) and lignin (increased only in lucerne)
384 concentrations. According to previous studies with forage species, the differences in fibre
385 fractions responses to drought between species may reflect differences in plant structure (Amiri
386 et al., 2012; Pontes et al., 2007). For example, a study showed that legume stem tissue is thick
387 with a high bulk density and is comprised of a considerably larger undegradable fraction like
388 lignin compared to grasses species (Amiri et al., 2012). This may have contributed to the bigger
389 drought response on the lignin concentration of lucerne found in our study. Supporting this,
390 lignin concentrations found in our study in lucerne were four times those found in tall fescue.

391 Were also found species differences in crude protein responses to drought. In tall
392 fescue, CP concentration increase under drought can be explained by trade-offs between
393 concentration and growth, such that lower biomass production increased the tissue
394 concentration of plant CP, as also reported by previous studies investigating the water stress
395 effects on forage quality in grasslands (Dumont et al., 2015; Grant et al., 2014). In lucerne, the
396 decrease found in CP under drought can be linked to reduced nitrogen fixation and/ or lower
397 nutrient uptake. Studies on forage legumes have found that drought-stressed plants reduce the
398 biological nitrogen fixation activity for root-associated rhizobia (Kuchenmeister et al., 2013;
399 Liu et al., 2018; Zahran, 1999). Additionally, a meta-analysis of forage species observed that
400 plant nutrient uptake was lower under dry soils (Dumont et al., 2015). Under severe drought,
401 reduced nutrient uptake is typically driven by reduced diffusion of nutrients through the soil as
402 well as reduced root ability to transfer nutrients to aboveground tissue, thereby contributing to
403 lower CP concentrations (Evans & Burke, 2013; Durand et al., 2009; Gonzalez-Dugo et al.,

404 2005). Finally, previous studies have reported that senescence of aboveground materials
405 promotes nutrient translocation (mainly nitrogen and soluble carbohydrates) from leaves to
406 roots (Durand et al., 2009; Buxton, 1996), which may explain in our study the reduction of CP
407 in lucerne, and NSC in both species, under drought conditions.

408

409 *4.3. Assessing plant biomass, morphological and nutritional responses to warming and*
410 *drought in a multivariate context*

411 By adopting a multivariate framework to capture a holistic view of plant responses, we
412 detected significant effects of both warming and drought and, for lucerne, a significant
413 interaction effect. The latter was seen as a strengthening of warming effects under drought.
414 This additive effect of warming on drought treatment in lucerne is in line with results reported
415 by other recent studies who also showed the additive effect on plant growth and nutrients
416 responses (Dellar et al., 2018; Orians et al., 2019). Multivariate analysis is not widely applied
417 in agricultural research, particularly in feed evaluation, however, our findings suggest that this
418 oversight may underestimate the consequences of climate change for forage quality. Statistical
419 ordination techniques like PCA can usefully reduce the complexity of large forage data sets,
420 aiding interpretation (Gallo et al., 2013; Pezzopane et al., 2020) while also avoiding the issue
421 of multiple comparisons posed by numerous univariate analyses and non-independence of the
422 chemical constituents in individual plants. In this study, for tall fescue, the majority of
423 variability under climate change treatments was first associated (PCA1) with nutritional
424 parameters and secondarily (PCA2) associated with morphological parameters. For lucerne,
425 shifts in morphological and nutritional parameters contributed similarly to treatment
426 differences. Our findings suggested that nutritional composition should be an essential
427 component of studies aimed at evaluating the impacts of climate change on pasture species.
428 Although in this study the responses of individual compounds were informative, our

429 multivariate analyses of pasture morphology and nutritional quality provided a more
430 comprehensive perspective of climate change impacts for future field conditions where the
431 effects of multiple factors occur simultaneously across many aspects of plant biology and
432 nutritional chemistry.

433 In conclusion, drought, even in the short term, can be a strong driver of change in many
434 individual morphological traits and the nutritional composition of pasture species. However,
435 when considered in a multivariate framework, warming also has a significant impact on plant
436 morphology and nutritional quality, although to a lesser degree than the drought. We found that
437 exposure of these pasture species to warmer and drier conditions resulted in significantly less
438 forage produced and a decline in nutritional quality. Furthermore, the potential negative
439 impacts on nutritional quality will have implications for pasture species choice, animal
440 production, and methane emissions. Improved understanding of changes in morphology which
441 might, in turn, affect forage quality among several pasture species under climate change can
442 lead to more efficient use of resources, better economic outcomes, consequently, an
443 improvement in the future of sustainable livestock production around the globe.

444 **ACKNOWLEDGEMENTS**

445 We are grateful to all the team members in Pasture and Climate Extreme (PACE) project
446 specially Chioma Igwenagu, Gil Won Kim, Kathryn Fuller, Lena Schmidt, and Vinod Jacob.

447 This work was supported by funding from the Meat & Livestock Australia Donor Company
448 and Dairy Australia. The authors would like to thank the technical team at Western Sydney
449 University for technical support. The authors declare that there are no conflicts of interest
450 regarding the publication of this article.

451 **REFERENCES**

452 Abdelgawad, H., Peshev, D., Zinta, G., Van Den Ende, W., Janssens, I. A., & Asard, H. (2014).
453 Climate Extreme Effects on the Chemical Composition of Temperate Grassland
454 Species under Ambient and Elevated CO₂: A Comparison of Fructan and Non-Fructan
455 Accumulators. *Plos One*, 9, 13. <https://doi.org/10.1371/journal.pone.0092044>

456 Amiri, F., Rashid, A., & Shariff, M. (2012). Comparison of nutritive values of grasses and
457 legume species using forage quality index. *Songklanakarin Journal of Science and*
458 *Technology*. 34. 577-586. <http://rdo.psu.ac.th/sjst/journal/34-5/0475-3395-34-5-577-586>

460 Association of Official Analytical Chemists - AOAC. (1990). *Official methods of analysis*,
461 Arlington, VA, USA, Association of Official Analytical Chemists.

462 Australian Government Bureau of Meteorology - BOM. (2018). Climate statistics for
463 Australian locations (Site name: RICHMOND RAAF) [Table]. Retrieved from
464 http://www.bom.gov.au/climate/averages/tables/cw_067105.shtml

465 Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation
466 and detrending of near infra red reflectance spectra. *Applied Spectroscopy*, 43,772-777.
467 <https://doi.org/10.1366/0003702894202201>

468 Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects
469 models using lme4. *Journal of Statistical Software*, 67.
470 <https://doi.org/10.18637/jss.v067.i01>

471 Bittman, S., Simpson, G. M., & Mir, Z. (1988). Leaf senescence and seasonal decline in
472 nutritional quality of three temperate forage grasses as influenced by drought. *Crop*
473 *science*, 28, 546-552. <https://doi.org/10.2135/cropsci1988.0011183X002800030025x>

474 Bruinenberg, M. H., Valk, H., Korevaar, H., & Struik, P. C. (2002). Factors affecting
475 digestibility of temperate forages from seminatural grasslands: a review. *Grass and*
476 *Forage Science*, 57, 292-301. <https://doi.org/10.1046/j.1365-2494.2002.00327.x>

477 Buxton, D. R. (1996). Quality-related characteristics of forages as influenced by plant
478 environment and agronomic factors. *Animal Feed Science and Technology*, 59, 37-49.
479 [https://doi.org/10.1016/0377-8401\(95\)00885-3](https://doi.org/10.1016/0377-8401(95)00885-3)

480 Bloor, J. M. G., Pichon, P., Falcimagne, R., Leadley, P., & Soussana, J. F. (2010). Effects of
481 Warming, Summer Drought, and CO₂ Enrichment on Aboveground Biomass
482 Production, Flowering Phenology, and Community Structure in an Upland Grassland
483 Ecosystem. *Ecosystems*, 13, 888-900. <https://doi.org/10.1007/s10021-010-9363-0>

484 Cantarel, A. A. M., Bloor, J. M. G., & Soussana, J. F. (2013). Four years of simulated climate
485 change reduces above-ground productivity and alters functional diversity in a grassland
486 ecosystem. *Journal of Vegetation Science*, 24, 113-126. [https://doi.org/10.1071/CP16394](https://doi.org/10.1111/j.1654-1103.2012.01</p><p>488 Catunda, K. L. M., Churchill, A. C., Zhang, H., Power, S. A., & Moore, B. D. (Unpublished
489 manuscript). Rapid prediction of the nutritional composition of pasture species by near-
490 infrared reflectance spectroscopy.</p><p>491 Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P., & Meinke, H. (2017). The
492 impact of extreme climatic events on pasture-based dairy systems: a review. <i>Crop &</i>
493 <i>Pasture Science</i>, 68, 1158-1169. <a href=)

494 Churchill, A. C., Zhang, H., Fuller, K. J., Amiji, B., Anderson, I. C., Barton, C. V. M., Carrillo,
495 Y., K. L. M. Catunda, K. L. M., Chandregowda, M. H., Igwenagu, C., Jacob, V., Kim,
496 G. W., Macdonald, C. A., Medlyn, B. E., Moore, B. D., Pendall, E., Plett, J. M., Post,
497 A. K., Powell, J. R., Tissue, D. T., Tjoelker, M. G., Power, S. A. (2020). Pastures and
498 Climate Extremes: Impacts of warming and drought on the productivity and resilience

499 of key pasture species in a field experiment. *bioRxiv*.
500 <https://doi.org/10.1101/2020.12.21.423155>

501 Dairy Australia. (2018). *Australian Dairy Industry In Focus 2018*. Dairy Australia. Retrieved
502 from <https://www.dairyaustralia.com.au/en/resource-repository/2020/07/09/australian-dairy-industry-in-focus-2018#.YCDjzugzbIU>

503

504 De Boeck, H. J., Lemmens, C. M. H. M., Zavalloni, C., Gielen, B., Malchair, S., Carnol, M.,
505 Merckx, R., Van Den Berge, J., Ceulemans, R., & Nijs, I. (2008). Biomass production
506 in experimental grasslands of different species richness during three years of climate
507 warming. *Biogeosciences*, 5, 585-594. <https://doi.org/10.5194/bg-5-585-2008>

508 Deleglise, C., Meisser, M., Mosimann, E., Spiegelberger, T., Signarbieux, C., Jeangros, B., &
509 Buttler, A. (2015). Drought-induced shifts in plants traits, yields and nutritive value
510 under realistic grazing and mowing managements in a mountain grassland. *Agriculture
511 Ecosystems & Environment*, 213, 94-104. <https://doi.org/10.1016/j.agee.2015.07.020>

512 Dellar, M., Topp, C. F. E., Banos, G., & Wall, E. (2018). A meta-analysis on the effects of
513 climate change on the yield and quality of European pastures. *Agriculture Ecosystems
514 & Environment*, 265, 413-420. <https://doi.org/10.1016/j.agee.2018.06.029>

515 Dieleman, W. I. J., Vicca, S., Dijkstra, F. A., Hagedorn, F., Hovenden, M. J., Larsen, K. S.,
516 Morgan, J. A., Volder, A., Beier, C., Dukes, J. S., King, J., Leuzinger, S., Linder, S.,
517 Luo, Y. Q., Oren, R., De Angelis, P., Tingey, D., Hoosbeek, M. R., & Janssens, I. A.
518 (2012). Simple additive effects are rare: a quantitative review of plant biomass and soil
519 process responses to combined manipulations of CO₂ and temperature. *Global Change
520 Biology*, 18, 2681-2693. <https://doi.org/10.1111/j.1365-2486.2012.02745.x>

521 Dukes, J. S., Chiariello, N. R., Cleland, E. E., Moore, L. A., Shaw, M. R., Thayer, S., Tobeck,
522 T., Mooney, H. A., & Field, C. B. (2005). Responses of grassland production to single

523 and multiple global environmental changes. *PLoS Biology*, 3 (10), e319.
524 doi:<http://dx.doi.org.ezproxy.uws.edu.au/10.1371/journal.pbio.0030319>

525 Dumont, B., Andueza, D., Niderkorn, V., Luscher, A., Porqueddu, C., & Picon-Cochard, C.
526 (2015). A meta-analysis of climate change effects on forage quality in grasslands:
527 specificities of mountain and Mediterranean areas. *Grass and Forage Science*, 70, 239-
528 254. <https://doi.org/10.1111/gfs.12169>

529 Durand, J.L., Gonzalez-Dugo, V., & Gastal, F. (2009). How much do water deficits alter the
530 nitrogen nutrition status of forage crops? *Nutrient Cycling in Agroecosystems*, 88, 231-
531 243. <https://doi.org/10.1007/s10705-009-9330-3>

532 Evans, S. E., & Burke, I. C. (2013). Carbon and Nitrogen Decoupling Under an 11-Year
533 Drought in the Shortgrass Steppe. *Ecosystems*, 16, 20-33.
534 <https://doi.org/10.1007/s10021-012-9593-4>

535 Gallo, A., Moschini, M., Cerioli, C., & Masoero, F. (2013). Use of principal component
536 analysis to classify forages and predict their calculated energy content. *Animal*, 7, 930-
537 939. <https://doi:10.1017/S1751731112002467>

538 Grant, K., Kreyling, J., Dienstbach, L. F. H., Beierkuhnlein, C., & Jentsch, A. (2014). Water
539 stress due to increased intra-annual precipitation variability reduced forage yield but
540 raised forage quality of a temperate grassland. *Agriculture Ecosystems & Environment*,
541 186, 11-22. <https://doi.org/10.1016/j.agee.2014.01.013>

542 Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change.
543 *Developmental Biology*, 419, 64-77. <https://doi.org/10.1016/j.ydbio.2016.07.023>

544 Goering, H. K., & Van Soest, P. J. (1970). *Forage Fiber Analyses (Apparatus, Reagents,
545 Procedures, and Some Applications)*, Washington DC, United States Department of
546 Agriculture.

547 Gonzalez-Dugo, V., Durand, J. L., Gastal, F., & Picon-Cochard, C. (2005). Short-term response
548 of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water
549 deficit. *Australian Journal of Agricultural Research*, 56, 1269-1276.
550 <https://doi.org/10.1071/AR05064>

551 Habermann, E., De Oliveira, E. A. D., Contin, D. R., Delvecchio, G., Vicedo, D. O., De
552 Moraes, M. A., Prado, R. D., Costa, K. A. D., Braga, M. R., & Martinez, C. A. (2019).
553 Warming and water deficit impact leaf photosynthesis and decrease forage quality and
554 digestibility of a C4 tropical grass. *Physiologia Plantarum*, 165, 383-402.
555 <https://doi.org/10.1111/ppl.12891>

556 Heim, R. R. (2015). An overview of weather and climate extremes - Products and trends.
557 *Weather and Climate Extremes*, 10, 1-9. <https://doi.org/10.1016/j.wace.2015.11.001>

558 Herrero, M., Havlik, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blummel,
559 M., Weiss, F., Grace, D., & Obersteiner, M. (2013). Biomass use, production, feed
560 efficiencies, and greenhouse gas emissions from global livestock systems. *Proceedings
561 of the National Academy of Sciences of the United States of America*, 110, 20888-
562 20893. <https://doi.org/10.1073/pnas.1308149110>

563 Herrero, M., Wirsénus, S., Henderson, B., Rigolot, C., Thornton, P., Havlík, P., De Boer, I.,
564 & J. Gerber, P. J. (2015). Livestock and the Environment: What Have We Learned in
565 the Past Decade? *Annual Review of Environment and Resources*, 40, 177-202.
566 <https://doi.org/10.1146/annurev-environ-031113-093503>

567 Howden, S. M., Crimp, S. J., & Stokes, C. J. (2008). Climate change and Australian livestock
568 systems: impacts, research and policy issues. *Australian Journal of Experimental
569 Agriculture*, 48, 780-788. <https://doi.org/10.1071/EA08033>

570 IPCC. (2014). *Climate Change 2014: Synthesis Report*. Contribution of Working Groups I, II
571 and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate

572 Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva,
573 Switzerland: Intergovernmental Panel on Climate Change, 151pp.

574 Kuchenmeister, K., Kuchenmeister, F., Kayser, M., Wrage-Monnig, N., & Isselstein, J. (2013).
575 Influence of drought stress on nutritive value of perennial forage legumes. *International*
576 *Journal of Plant Production*, 7, 693-710. <https://doi.org/10.22069/IJPP.2013.1265>

577 Laca, E. A., Shipley, L. A., & Reid, E. D. (2001). Structural anti-quality characteristics of range
578 and pasture plants. *Journal of Range Management*, 54, 413-419.
579 <https://doi.org/10.2307/4003112>

580 Lee, J. M., Clark, A. J., & Roche, J. R. (2013). Climate-change effects and adaptation options
581 for temperate pasture-based dairy farming systems: a review. *Grass and Forage*
582 *Science*, 68, 485-503. <https://doi.org/10.1111/gfs.12039>

583 Lee, M. A., Davis, A. P., Chagunda, M. G. G., & Manning, P. (2017). Forage quality declines
584 with rising temperatures, with implications for livestock production and methane
585 emissions. *Biogeosciences*, 14, 1403-1417. <https://doi.org/10.5194/bg-14-1403-2017>

586 Linn, J. G., & Martin, N. P. (1989). *Forage quality tests and interpretation* (Revised 1989).
587 University of Minnesota. Agricultural Extension Service. Retrieved from the
588 University of Minnesota Digital Conservancy, <http://hdl.handle.net/11299/207442>.

589 Liu, Y., Wu, Q., Ge, G., Han, G., & Jia, Y. (2018). Influence of drought stress on alfalfa yields
590 and nutritional composition. *BMC Plant Biology*, 18(1), 13.
591 <https://doi.org/10.1186/s12870-017-1226-9>

592 Mitchell, K. J. (1956). Growth of pasture species under controlled environment. 1. Growth at
593 various levels of constant temperature. *New Zealand Journal of Science and*
594 *Technology*, 38, 203-15. <https://doi.org/10.1080/00288233.1962.10419984>

595 Norman H. C., Hulm E., Humphries A. W., Hughes S. J., Vercoe P. E. (2020). Broad near-
596 infrared spectroscopy calibrations can predict the nutritional value of >100 forage

597 species within the Australian feedbase. *Animal Production Science*, 60, 1111-1122.

598 <https://doi.org/10.1071/AN19310>

599 Orians, C. M., Schweiger, R., Dukes, J. S., Scott, E. R., & Müller, C. (2019). Combined impacts

600 of prolonged drought and warming on plant size and foliar chemistry. *Annals of Botany*,

601 124, 41-52. <https://doi.org/10.1093/aob/mcz004>

602 Pearce, K., Holper, P., Hopkins, M., Bouma, W., Whetton, P., Hennessy, K., & Power, S.

603 (2007). *Climate change in Australia: technical report 2007*. CSIRO and the Bureau of

604 Meteorology.

605 Perera, R. S., Cullen, B. R., & Eckard, R. J. (2020). Changing patterns of pasture production

606 in south-eastern Australia from 1960 to 2015. *Crop and Pasture Science*. 71, 70-81.

607 <https://doi.org/10.1071/CP19112>

608 Pezzopane, J. R. M., Bernardi, A. C. C., Azenha, M. V., Oliveira, P. P. A., Bosi, C., Pedroso,

609 A. F., & Esteves, S. N. (2020). Production and nutritive value of pastures in integrated

610 livestock production systems: shading and management effects. *Scientia*

611 *Agricola*, 77(2), e20180150. <https://doi.org/10.1590/1678-992x-2018-0150>

612 Pontes, L., Soussana, J. F., Louault, F., Andueza, D., & Carrere, P. (2007). Leaf traits affect

613 the above-ground productivity and quality of pasture grasses. *Functional Ecology*, 21,

614 844-853. <https://doi.org/10.1111/j.1365-2435.2007.01316.x>

615 R Core Team, 2019. R: A language and environment for statistical computing.

616 Ren, H. Y., Han, G. D., Lan, Z. C., Wan, H. W., Schonbach, P., Gierus, M., & Taube, F. (2016).

617 Grazing effects on herbage nutritive values depend on precipitation and growing season

618 in Inner Mongolian grassland. *Journal of Plant Ecology*, 9, 712-723.

619 <https://doi.org/10.1093/jpe/rtw011>

620 Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate
621 change and livestock: Impacts, adaptation, and mitigation. *Climate Risk Management*,
622 16, 145-163. <https://doi.org/10.1016/j.crm.2017.02.001>

623 Rustad, L. E., Campbell, J. L., Marion, G. M., Norby, R. J., Mitchell, M. J., Hartley, A. E.,
624 Cornelissen, J. H. C., Gurevitch, J., & Gcte-News. (2001). A meta-analysis of the
625 response of soil respiration, net nitrogen mineralization, and aboveground plant growth
626 to experimental ecosystem warming. *Oecologia*, 126, 543-562.
627 <https://doi.org/10.1007/s004420000544>

628 Shenk, J. S., & Westerhaus, M. O. (1991). Population definition, sample selection and
629 calibration procedures for near infrared reflectance spectroscopy. *Crop Science*, 31,
630 469- 474. <https://doi.org/10.2135/cropsci1991.0011183X003100020049x>

631 Sniffen, C. J., OConnor, J. D., Vansoest, P. J., Fox, D. G., & Russell, J. B. (1992). A Net
632 Carbohydrate and Protein System for Evaluating Cattle Diets .2. Carbohydrate and
633 Protein Availability. *Journal of Animal Science*, 70, 3562-3577.
634 <https://doi.org/10.2527/1992.70113562x>

635 Staniak, M., & Harasim, E. Changes in nutritive value of alfalfa (*Medicago × varia* T. Martyn)
636 and *Festulolium* (*Festulolium braunii* (K. Richt) A. Camus) under drought stress.
637 Journal of Agronomy and Crop Science. 2018; 204: 456– 466.
638 <https://doi.org/10.1111/jac.12271>

639 Van Soest, P. J., & Robertson, J. B. (1980). *Systems of analysis for evaluating fibrous feeds*.
640 In: Pigden, W. J., Balch, C. C., & Graham, M. (ed.) Standardization of Analytical
641 Methodology in Feeds. Ottawa, Canada: International Research Development Center.

642 Vicedo, D. O., Prado, R. M., Martinez, C.A, Habermann, E., Branco, R. B. F., Piccolo, M. C.,
643 Hurtado, A. C., Calzada, K. P., & Tenesaca, L. F. L. (2021). Water stress and warming
644 impact nutrient use efficiency of Mombasa grass (*Megathyrsus maximus*) in tropical

645 conditions. *Journal of Agronomy and Crop Science*, 207, 128-138.

646 <https://doi.org/10.1111/jac.12452>

647 Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe

648 conditions and in an arid climate. *Microbiology and Molecular Biology Reviews*. 63,

649 968-989. <https://doi.org/10.1128/MMBR.63.4.968-989.1999>

650 Zhang, H., Powell, J. R., Plett, J. M., Churchill, A. C., Power, S. A., Macdonald, C. A., Jacob, V.,

651 Kim, G. W., Pendall, E., Tissue, D., Catunda, K. M, Igwenagu, C., Carrillo, Y., Moore,

652 B. D., & Anderson, I. C. (2021). Climate warming negates arbuscular mycorrhizal

653 fungal reductions in soil phosphorus leaching with tall fescue but not lucerne. *Soil*

654 *Biology and Biochemistry*, 152, 108075. <https://doi.org/10.1016/j.soilbio.2020.108075>.

655 Wilson, J. R., Deinum, B., & Engels, F. M. (1991). Temperature Effects on Anatomy and

656 Digestibility of Leaf and Stem of Tropical and Temperate Forage Species. *Netherlands*

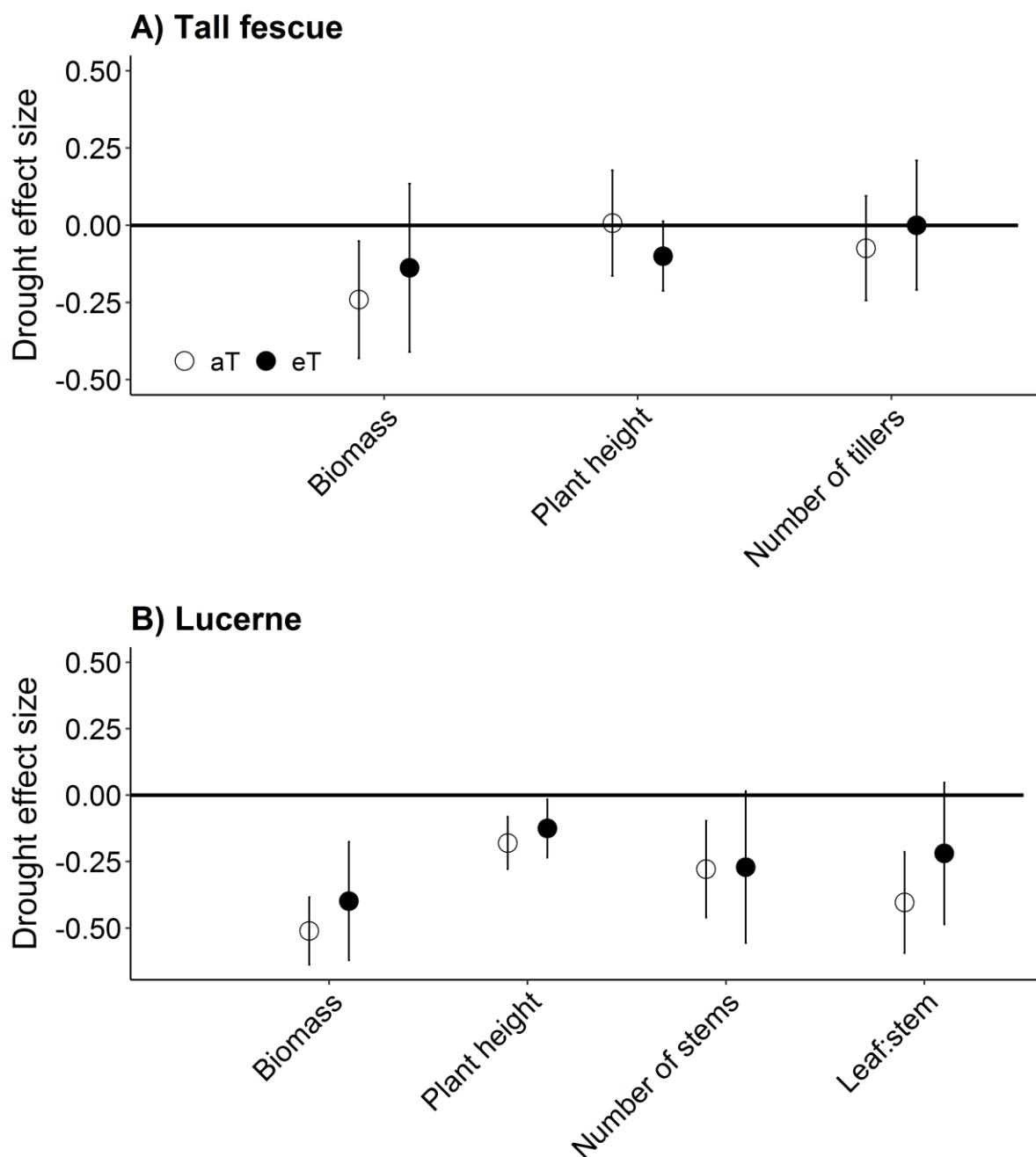
657 *Journal of Agricultural Science*, 39, 31-48. <https://doi.org/10.18174/njas.v39i1.16551>

658 Waghorn, G. C., & Clark, D. A. (2004). Feeding value of pastures for ruminants. *New Zealand*

659 *Veterinary Journal*, 52, 320-331. <https://doi.org/10.1080/00480169.2004.36448>

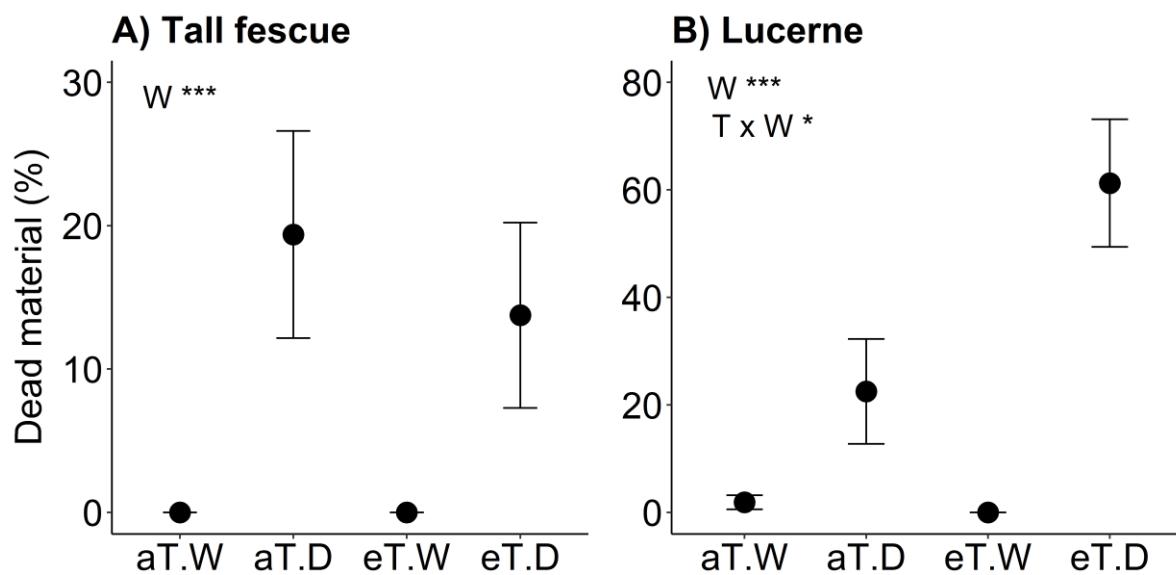
660 **TABLE**

661 **Table 1.** Linear mixed effects models with fixed effects for temperatures (T), watering regimes (W) and their interaction (T x W) for plant dry
 662 biomass, morphological traits and nutritional parameters of tall fescue (*Festuca arundinacea*) and lucerne (*Medicago sativa*). Growth chamber
 663 was included as a random effect.

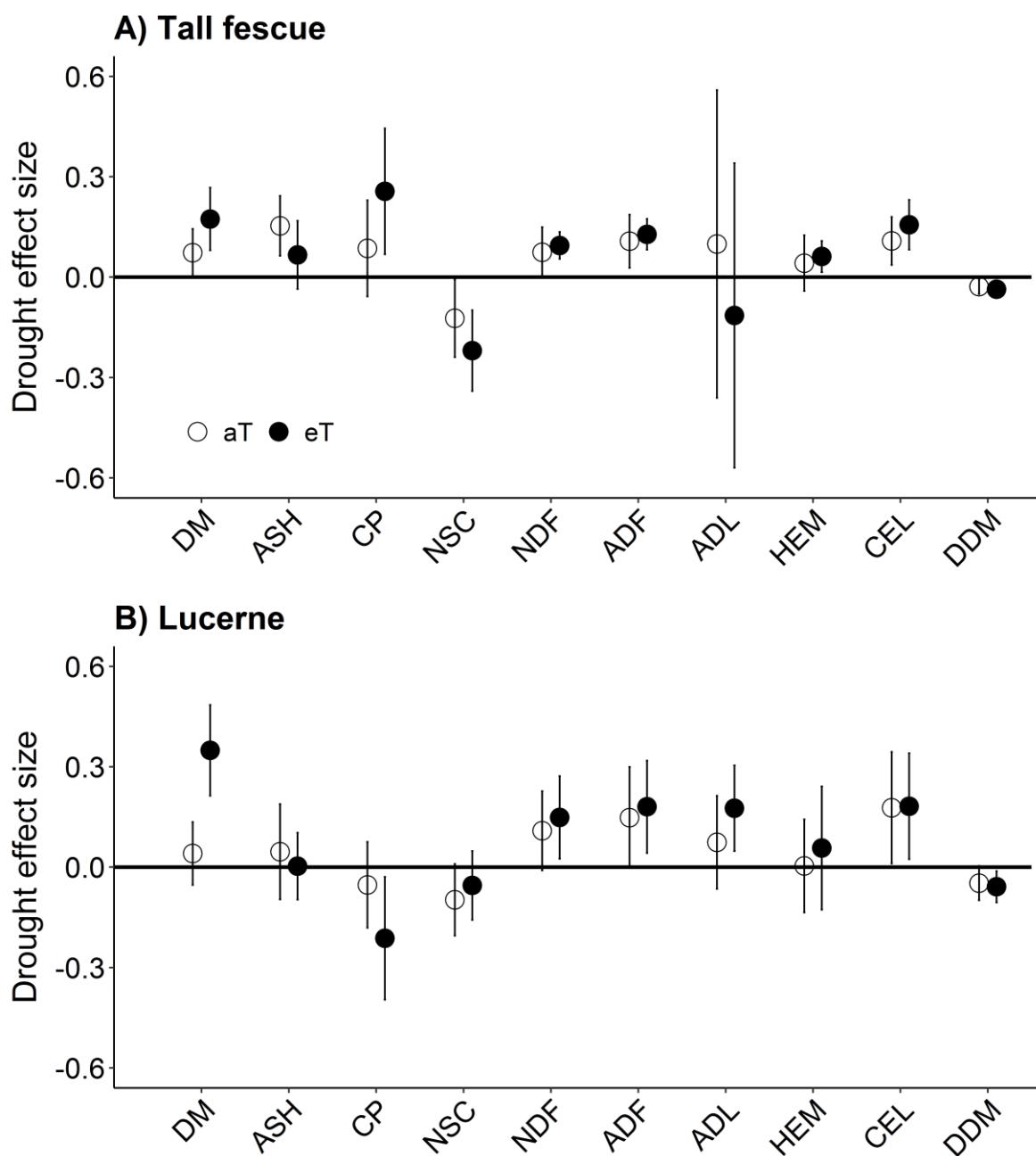

Variables	Tall fescue						Lucerne					
	T		W		T x W		T		W		T x W	
	F	p	F	p	F	p	F	p	F	p	F	p
Dry biomass (g/pot)	9.73	0.089	8.36	0.008	1.55	0.224	18.2	0.055	177.4	< 0.001	19.4	< 0.001
Plant height (cm)	0.02	0.890	1.40	0.247	1.82	0.189	0.81	0.464	23.6	< 0.001	0.71	0.408
Number of tillers/stems (n/pot)	4.99	0.155	0.57	0.459	0.56	0.459	0.10	0.777	24.5	< 0.001	0.01	0.932
Dead material (%) †	0.15	0.736	32.1	< 0.001	0.40	0.534	0.11	0.772	38.3	< 0.001	6.22	0.020
Leaf:stem ratio	NA	NA	NA	NA	NA	NA	0.15	0.733	26.8	< 0.001	2.65	0.116
Dry matter (%)	3.70	0.194	13.4	< 0.001	1.79	0.193	0.49	0.557	22.6	< 0.001	14.8	< 0.001
Ash (% DM)	10.1	0.086	10.3	0.003	0.74	0.397	13.5	0.067	0.27	0.606	0.19	0.668
Crude protein (% DM)	9.77	0.089	7.71	0.010	2.71	0.111	16.4	0.057	6.61	0.016	3.38	0.078
Non-structural carbohydrates (% DM)	8.66	0.099	24.4	< 0.001	1.03	0.320	14.7	0.062	4.70	0.040	0.58	0.453

Neutral detergent fibre (% DM)	2.77	0.238	15.7	< 0.001	0.33	0.572	0.02	0.911	8.47	0.007	0.19	0.669
Acid detergent fibre (% DM)	4.80	0.160	25.0	< 0.001	0.34	0.563	0.18	0.711	9.40	0.005	0.10	0.758
Acid detergent lignin (% DM)	0.74	0.479	0.02	0.881	0.47	0.499	0.00	0.983	6.74	0.015	1.04	0.316
Hemicellulose (% DM)	1.15	0.395	4.82	0.037	0.20	0.657	0.20	0.701	0.21	0.653	0.16	0.689
Cellulose (% DM)	4.50	0.168	21.8	< 0.001	0.87	0.359	0.28	0.650	8.84	0.006	0.01	0.939
Digestible dry matter (% DM)	4.80	0.160	25.0	< 0.001	0.34	0.563	0.18	0.711	9.40	0.005	0.10	0.758

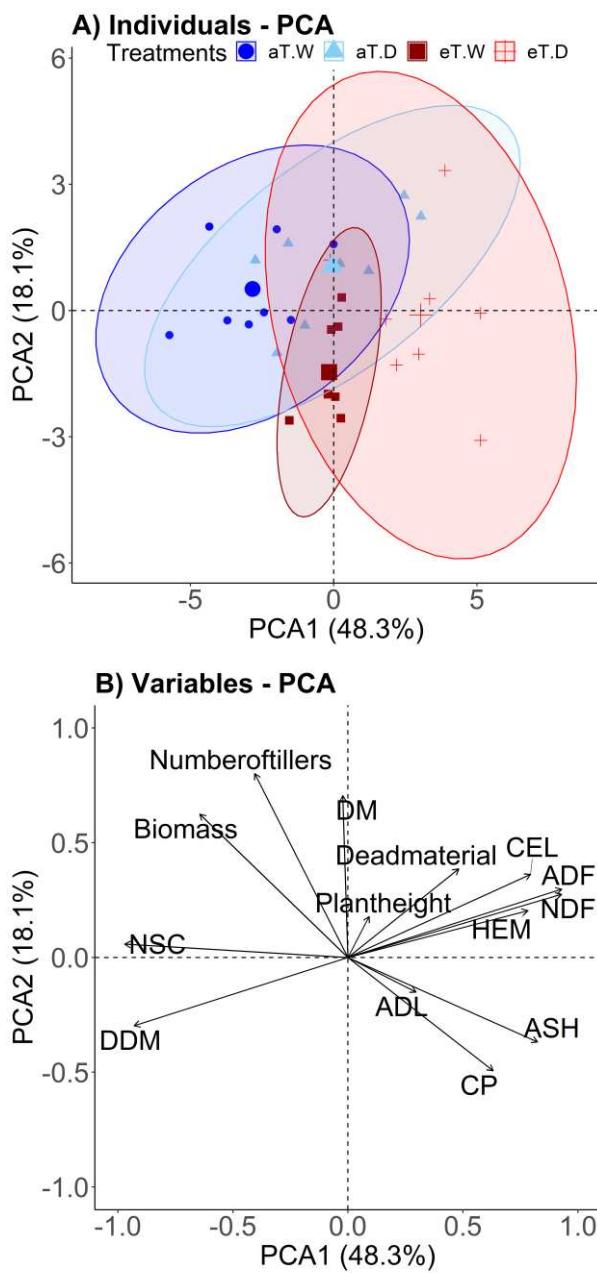
664 † The percentage of dead material data were log-transformed; % DM: percentage of dry matter; NA: not applicable; **Bold** values denote statistical


665 significance at the $p < 0.05$ level.

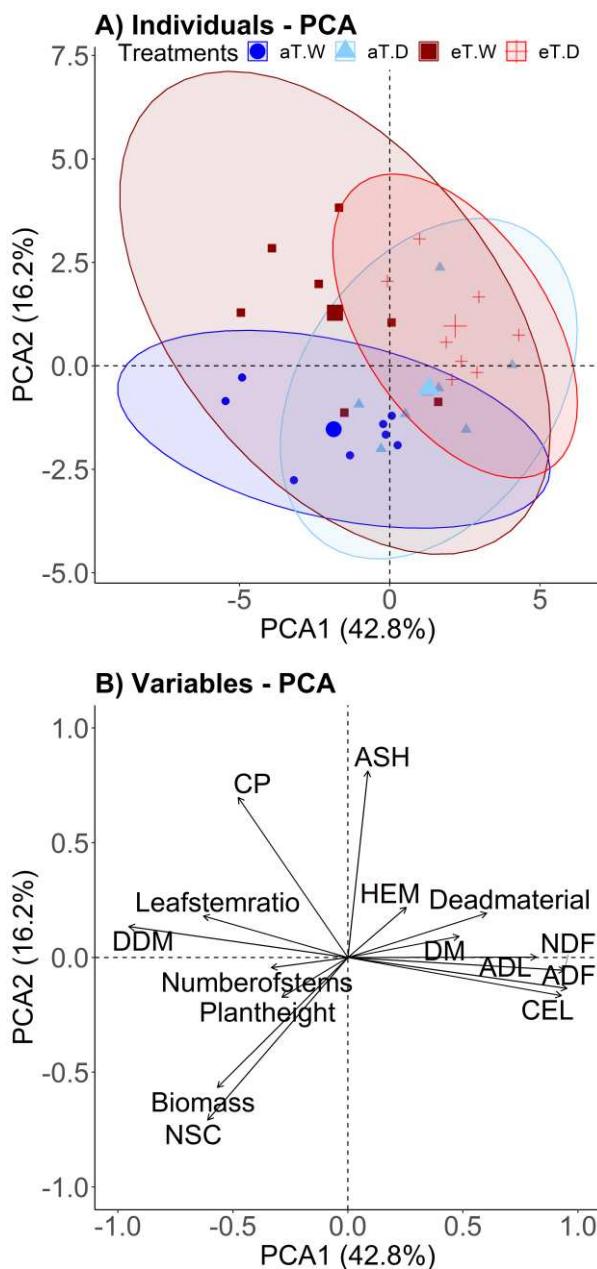
666 **FIGURES**


667

668 **Figure 1.** Drought effect sizes under ambient (aT, open circle) and elevated (eT, closed circle)
669 temperatures on plant dry biomass and morphological traits of A) tall fescue (*Festuca*
670 *arundinacea*) and B) lucerne (*Medicago sativa*). Values shown are means with vertical bars
671 representing 95% confidence intervals (n = 8).


672

673 **Figure 2.** Percentage of dead material (%) for A) tall fescue (*Festuca arundinacea*) and B)
674 lucerne (*Medicago sativa*) grown under different temperatures (ambient, aT; elevated, eT) and
675 watering regimes (well-watered, W; droughted, D). Values shown are mean \pm 1 standard error
676 (n = 8). Treatment codes for indicating significance for fixed effects are as follows: T=
677 temperatures, W=watering regimes, and T x W their interaction. Significance levels as follows:
678 * p < 0.05, *** p < 0.001.


679

680 **Figure 3.** Drought effect sizes under ambient (aT, open circle) and elevated (eT, closed circle)
681 temperatures on nutritional parameters of A) tall fescue (*Festuca arundinacea*) and B) lucerne
682 (*Medicago sativa*). Abbreviations are as follows: dry matter (DM), ash (ASH), crude protein
683 (CP), non-structural carbohydrates (NSC), neutral detergent fibre (NDF), acid detergent fibre
684 (ADF), acid detergent lignin (ADL), hemicellulose (HEM), cellulose (CEL) and digestible dry
685 matter (DDM). Values shown are means with vertical bars representing 95% confidence
686 intervals (n = 8).

687

688 **Figure 4.** Principal component analysis biplot illustrating A) scores for plant individuals,
689 grouped by treatment (ambient, aT; elevated, eT, well-watered, W; droughted, D) with 95%
690 confidence ellipses (PERMANOVA: Temperatures $p = 0.018$, Watering regimes $p = 0.001$,
691 Temperatures x Watering regimes $p = 0.600$) and B) variables loadings for tall fescue (*Festuca*
692 *arundinacea*). Morphological traits include plant height, number of tillers and percentage of
693 dead material. The parameters of nutritional composition follow the abbreviations in Figure 3.
694 The symbol shape and colour of each point correspond to climate treatments.

695

696 **Figure 5.** Principal component analysis biplot illustrating A) scores for plant individuals,
697 grouped by treatment (ambient, aT; elevated, eT, well-watered, W; droughted, D) with 95%
698 confidence ellipses (PERMANOVA: Temperatures $p = 0.008$, Watering regimes $p = 0.001$,
699 Temperatures x Watering regimes $p = 0.020$) and B) variables loadings for lucerne (*Medicago*
700 *sativa*). Morphological traits include plant height, number of stems, percentage of dead material
701 and leaf:stem ratio. The parameters of nutritional composition follow the abbreviations in
702 Figure 3. The symbol shape and colour of each point correspond to climate treatments.