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Abstract

Genome-wide association studies (GWAS) have identified hundreds of thousands of genetic
variants associated with complex diseases and traits. However, most variants are noncoding and
not clearly linked to genes, making it challenging to interpret these GWAS signals. We present a
systematic variant-to-function study, prioritizing the most likely functional elements of the
genome for experimental follow-up, for >148,000 variants identified for hematological traits.
Specifically, we developed VAMPIRE: Variant Annotation Method Pointing to Interesting
Regulatory Effects, an interactive web application implemented in R Shiny

(http://shiny.bios.unc.edu/vampire/). Thistool efficiently integrates and displays information

from multiple complementary sources, including epigenomic signatures from blood cell relevant
tissues or cells, functional and conservation summary scores, variant impact on protein and gene
expression, chromatin conformation information, as well as publicly available GWAS and
phenome-wide association study (PheWAS) results. Leveraging data generated from
independently performed functional validation experiments, we demonstrate that our prioritized
variants, genes, or variant-gene links are significantly more likely to be experimentally validated.
This study not only has important implications for systematic and efficient revelation of
functional mechanisms underlying GWAS variants for hematological traits, but also provides a
prototype that can be adapted to many other complex traits, paving the path for efficient variant

to function (V2F) analyses.

K eywor ds: Genome-wide association studies, variant to function, functional annotations,

experimental validations, blood cell traits
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I ntroduction

Genome-wide association studies (GWAS) have identified thousands of genetic loci and
hundreds of thousands of genetic variants associated with various complex human diseases and
traits, but the underlying genetic mechanism for the vast majority of these GWAS signals
remains elusive. With extensive sequencing and GWAS efforts, there is a pressing need to
convert the large and ever growing number of significant GWAS variant-trait pairsinto human-
interpretable functional or mechanistic knowledge®. Most variants identified through GWAS
reside in the noncoding regions (e.g., >95% for blood cell traits?), and most signalsinclude
multiple highly correlated variants or variants in strong linkage disequilibrium (LD). Pinpointing
the most likely causal variants within GWAS signals, and linking these variants to their target
genes, is challenging, particularly as the number of GWAS loci and variants increases. For
hematological traits, for instance, our recent GWAS meta-analyses® * have revealed over seven
thousand loci, with >148,000 variants associated with at least one blood cell index at stringent
genome-wide significance threshold. Comprehensive and computationally efficient annotation

and prioritization of such GWAS findings are of ever-increasing interest.

Understanding how genetic variants contribute to a phenotype is often referred to as the variant-
to-function (V2F) problem. Responding to this problem requires us to determine causal genetic
variants, relative cell types/states, their target genes and cellular/physiological functions”.
Functional experiments are needed to fully reveal molecular mechanisms, but we cannot yet
afford to perform time-, money- and labor-consuming experimental validations of thousands of
loci involving hundreds of thousands of potentially functional variants or regulatory elements

controlling their nearby genes, since each geneis likely regulated by multiple variants and each
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variant may regulate multiple genes. Thus, computational methods are needed to screen potential

variants and their effector genes for further experiments.

In this study, we focus on hematological traits. Hematological phenotypes (red blood cell, white
blood cell, and platelet counts and indices) are critical physiological intermediariesin oxygen
transport, immunity, infection, thrombosis, and hemostasis and are associated with autoimmune,
alergic, infectious, and cardiovascular diseases. Hematological traits are highly heritable °, and
recent large GWAS for hematological traits (including nearly 750,000 participants) identified
thousands of variant-trait associations “ *. In addition, there are multiple large-scale functional
experiments already available” "8 for hematological traits, aswell as fairly comprehensive
functional annotation resources relevant to blood tissues. This makes hematological traits an

ideal modd for thistype of V2F computational solution.

We have developed VAMPIRE: Variant Annotation Method Pointing to Interesting Regulatory
Effects, atool for the user to explore annotations encompassing epigenomic signatures, variant
impact on protein and gene expression, chromatin conformation information from Hi-C and
similar technologies, as well as publicly available GWAS and PheWAS results, creating a
comprehensive annotation profile for variants from recent trans-ethnic blood cell trait
publications® # with a flexible interface for adding additional future GWAS results. This
interactive web application implemented in R Shiny provides amode display mechanism for
annotating GWAS variants from diverse complex traits, allowing selection of most likely causal
variants and their effector genes for experimental follow-up. Importantly, we show the value of
how variants and genes nominated by VAMPIRE can highlight key regulators of blood cell traits
using independent functional assessment, confirming the value of this annotation tool. While

blood cell traits are the focus for VAMPIRE, this framework (including our R Shiny application)
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97 isadaptable for annotation of other complex trait GWAS results and will facilitate the connection

98  between variant and function.
99

100 Methods
101  Variant Annotations

102  Thecurrent version of VAMPIRE includes GWAS results from two studies (as detailed in

103  Supplemental Methods), including all variantsin 95% credible sets for fine-mapped

104  hematological trait associated loci from Chen et al. (N=148,019 variants) * and lead variants

105 (N=2) from aTOPMed imputed GWAS meta-analysisin African American and Hispanic/Latino
106  populations®. We plan to extend VAMPIRE as new trans-ethnic blood cell trait genetic analyses

107 arerdeased.

108  The sources of the annotation used are stated clearly in the VAMPIRE online application, with
109 linksor referencesto the original data sources. As abrief summary, the annotation categories are
110 trivialy split into six types ("variant level", "1D","2D","3D", "Phe WAS","GWAS"). First,

111  "variant level" contains data on phenotypic association from the original publication or preprint
112  (such asthe p-value for association with a given hematological trait, effect size, and posterior
113  probability of inclusion for fine-mapping credible sets). Second, "1D" refers to epigenomic or
114  sequence constraints features. This displays selected output from WGSA ° including functional
115  prediction scores, conservation scores, and epigenetic information gathered from GeneHancer *°,
116 FANTOMS5 ™ *? Roadmap 3, and ENCODE ™. ATAC-seq peaks from recent studies for blood

117  cell traits ™ *® and key histone ChlP-seq peaks such as H3K 9me3, H3K 36me3, H3K4mel,
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118  H3K4me3, and H3K27Ac generated across blood cdll related tissues from Roadmap

119  Epigenomicsare also included *¥ . We further include information regarding whether each

120 variant residesin any selective sweep region detected from multiple populationsin the 1000
121  Genomes Project *® using the S/HIC method ** ?°. Information is displayed based on the tissue
122  relevance to the blood cell phenotype (see Supplemental Methods). All variants have 1D

123  annotation, but for prioritization purposes as described below in the five categories for

124  noncoding variant annotation, we define 1D annotation as FANTOMS5_enhancer_robust =Y

125 (yes), or Genehancer_feature="Promoter" or "Enhancer” or "Promoter/Enhancer”, or coreMarks
126  (for any relevant roadmap epigenomic category) = "Enhancers’ or "Active TSS." Users can then

127  additionally filter by criteria such as functional prediction and conservation scores.

128  For the"2D" annotations, we included impact on gene expression and splicing ratios (eQTL and
129  SQTL information) and impact on protein abundance (pQTL information %) from public sources
130 relevant to blood cell traits. Thisincludes both bulk and cell type specific sources from the

131  public domain (eQTLGen %, CAGE %, BIOS * for whole blood, and Raj et al for purified CD4+
132 T cellsand monocytes ). Information available in these sources varies, but generally we at a
133  minimum display the effect size estimate, p-value, the allele assessed, and the gene or protein
134 involved. Variants were matched across sources based on chromosome, position, and alleles of
135 each variant. Only significant results (based on FDR or other publication specific thresholds)
136  from the respective sources are displayed in VAMPIRE; we do note that formal co-localization
137  analyses would still need to be performed to determine if blood cell related and gene/protein

138  expression QTL signalstruly coincide.

139  For the"3D" annotations, we include information on 3D genome conformation, linking blood

140 lineage specific regulatory elements to target genes from various sources. More specifically,
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141 using Hi-C data we incorporated statistically significant long-range chromatin interactions

142 (LRCI) ¥ %27 cgculated from Fit-Hi-C %, loops using the HiCCUPs methodology 2°, and super-
143  FIREsfor related tissues *’. Two Promoter-Capture Hi-C (PCHi-C) data sources ** *° were also
144  incorporated and matched with the 2D results to highlight cons stent evidence regarding the

145  affected gene(s) across "2D" and "3D" annotations. VAMPIRE displays information on the

146  number of loops, LRCI, PCHi-C interactions, FIRES, or super-FIRES, as well as significance
147  measures such as p-values, FDR, or CHICAGO scores where applicable. This"3D" annotation

148  information can also be visualized via our HUGIn browser 3.

149  Thelast two data groups present results from two PheWAS sources * * and GWAS results of
150  blood cell traits from GWAS catalog ®, allowing the user to evaluate if hematological trait

151  associated variants may also influence other complex traits.

152  To visualize and leverage these multiple annotation categories for further analysis or

153  prioritization of experimental validations, VAMPIRE efficiently displays and integrates relevant
154  variant information, allowing the user to investigate either all the variants annotated or subsets
155  based on annotation category groupings, searching either by variant or by gene name. The

156  comprehensive annotation for the variants is summarized using a five category grouping created
157  for highlighting the most promising variants as they have various types of annotation.

158  Specifically, the five categories for noncoding variants are (1) the most restrictive category,

159  containing variantsthat have 1D, 2D, and 3D annotation and the genes implicated by 2D and 3D
160  evidence are congstent; (2) containing variants with 1D, 2D, and 3D evidence, but the genes
161 implicated from different resources are not consistent; (3) 2D and 3D with consistent gene

162  evidence between the 2D and 3D annotations; (4) variants with 2D and 3D information and no

163  consistent geneimplied; (5) variants with 1D and 3D evidence. We also have a predicted high
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164  impact coding variant category displayed, including high confidence loss of function (LoF)

165 variantsand likely influential missense, in frame indels, and synonymous variants. Variants

166  without strongly compelling variant annotation are still displayed, but are not listed in these high
167  priority categories. The user can further subset results by hematological trait, hematological trait
168  category, or (for the Chen et al paper *) the ancestry specific grouping in which agiven credible
169  set was derived (trans-ethnic, European, East Asian, South Asian, Hispanic/Latino, or African
170  ancestry). In addition, the user can restrict the amount of information presented by selecting

171  which tablesto be displayed. All tables can be exported in acsv or tab delimited format.
172  Enrichment analysis

173  To assess whether the variants prioritized by VAMPIRE are more likely to be functionally

174  impactful, we performed enrichment analysis at three different levels: variant level, genelevel,
175 and variant-gene pair level, leveraging data generated from previously published functional

176  experiments® "8, For each set of analysis, we conducted Fisher’s exact test and calculated odds

177  ratios (OR) and one-sided p-values.

178  Atthevariant level, we assessed the enrichment of variants that modify transcription factor (TF)
179  binding motif? among our annotation category 1 variants. Recently, Vuckovic et al.

180 characterized variants that affect erythropoiesis or hematopoiesis by modifying related TF

181  motifs, such asfor KLF1, KLF6, MAFB, and GATAL. We chose these four erythroid TFs as

182  positive control TFs and two non-erythroid TFs (IRF1 and IRF8) as negative controls.

183 At the genelevel, we evaluated the genes interrogated by Nandakumar et al. ® with a pooled
184  short hairpin RNA (shRNA) based loss-of-function approach. Specifically, Nandakumar et al.

185  studied 389 candidate genes in the neighborhood of 75 loci associated with red blood cell traits
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186  *, toidentify potential causal genes underlying these GWAS signals. We assessed the

187  enrichment of genes validated by shRNA experiments among those prioritized in VAMPIRE' s
188  category 1. Note that the categories were previously defined at variant level. Here we extent
189  variant category to gene category as the strongest category where a genome-wide significant

190 variant linked to thisgenefallsin.

191 Atthevariant-gene pair level, we employed the enhancer-gene connections validated via

192  CRISPRI-FlowFISH experiments by Fulco et a.  in their activity-by-contact (ABC) paper.

193  Specifically, Fulco et al. tested pairs of candidate cis regulatory el ements (CREs, ~500bp regions)
194  and their potential effector genes via CRISPRI perturbations of the CREs, in multiple cell lines
195 including the K562 cells. Fulco et al. tested 4,124 CRE-gene pairsin total, of which 175 were
196  significant from their experiments. We overlapped their tested CREs with variantsin our

197 VAMPIRE annotation database. We define a VAMPIRE variant-gene pair confirmed if the

198  variant overlaps an ABC validated CRE and the linked genesin VAMPIRE (from QTL and

199  chromatin capture conformation evidence) overlaps the corresponding effector gene for that CRE
200 viaABC's CRISPRI-FlowFISH experiment. We focused on ABC experiments performed on the
201 K562 céls (instead of GM 12878 cells, where a very small number of CREs were tested) asthe
202  number of tested CRE-gene pairs was not too small for robust statistical inference. Matching the
203 K562 cdl line, we focused only on variants associated with red blood cell traits. Similar to the
204  abovetwo sets of enrichment analyses, we focused on annotationsin VAMPIRE' s prioritization
205 category 1. Specifically, we tested whether variant-gene pairs prioritized in VAMPIRE's

206  category 1 are enriched within ABC’ s validated enhancer-gene connections. Given the CREs

207 tested in the ABC paper are rather short (~500bp), we also performed sensitivity analysis by first
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208  extending the CRE regions by +/- 1kb and +/- 5kb and then overlapping variants with these

209 extended CREs, to ensure robust conclusions.
210

211 Results

212 Overview of VAMPIRE annotations

213  Theoveral framework of VAMPIRE isillustrated in Figure 1. We started with all variantsin
214  95% credible sets from our recent trans-ethnic study for hematological traits (total 148,019

215  variants) * and lead variants (2 variants) from Kowalski et al.%. We incorporated six types of
216  annotations (detailed in M ethods): GWAS summary statistics and posterior probability of

217  inclusion from our previous fine-mapping analyses *; epigenomic or sequence constraints

218 features (1D); eQTL, sSQTL and pQTL information (2D); information on 3D genome

219  conformation (3D); results from two PheWAS sources % *? (PheWAS); and GWAS results from

220  blood cell traits from GWAS catalog * (GWAS).

221  Tovisualize and prioritize variants, their corresponding candidate regulatory regions, and their
222  potential effector genes, we leverage the aforementioned six types of annotation to group these
223  ~148,000 variants into various prioritization categories. Specifically, for non-coding variants,
224  we classified them into five categories (detailed in Methods). Among them, category 1 isthe
225  most restrictive category, containing variants that have 1D, 2D, and 3D annotation and the genes
226  implicated by 2D and 3D evidence are consistent. Variants not falling into any of the five

227  categories are classified as uncategorized. In addition, each geneis categorized according to the


https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431409; this version posted March 21, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

available under aCC-BY 4.0 International license.

prioritization categories of its linked variant(s). When its linked variants fall in multiple

categories, the geneis assigned to the most highly prioritized category.

Enrichment analysis

Our enrichment analyses employing multiple previously published functional validation
experiments encompassing variant-level, gene-level, and variant-gene pair levels al showed
promising results. Specifically, at the variant level, we found significant enrichment of variants
affecting TF binding motifs among variants prioritized in category 1 of VAMPIRE (Figure 2),
for al the erythroid TFs (p < 8.1E-4) but GATAL (p = 0.18) (Table 1), likely due a smaller
sample size of variants. In contrast, neither of the two negative control TFs (IRF1 and IRF8)
showed any significant enrichment (p = 0.22 and 0.62). At the gene level, we focused on two
statistics: (1) number of genes selected for ShRNA experiments, since genes were more likely to
be selected for experiments when they demonstrated some prior evidence of potential causality,
and (2) number of genes validated (p < 0.05) by shRNA experiments. We compared the number
of genesin our annotation category 1 and all other categories, and found that both shRNA
candidate genes (p = 3.5E-13) and significant genes (p = 3.1E-8) show strong enrichment among
those in our annotation category 1 (Table 2), and the estimated enrichment score for significant
genes (OR = 4.65) isalmost double of that for candidate genes (OR = 2.37). These results
suggest the genes prioritized by VAMPIRE' s category 1 annotations are more likely to be

functional.

Finally, at the variant-gene pair level, we also observed enrichment among variants selected into
VAMPIRE's category 1 (T able 3). When restricting only to variants in category 1 and associated

with red blood cell traits and without extending the CRE regions, only 7 of VAMPIRE’ s variant-
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250 gene pairs can be found in ABC’'s CRISPRIi-FowFISH experiments, of which 6 are not

251 dgignificant and 1 is significant. While not significant (p = 0.26), the direction of enrichment is
252  nevertheless encouraging (one of seven, or 14.3%, confirmed by CRISPRi-FlowFISH

253  experiments) and 3-fold greater than that among all/background pairs from Fulco et al. 7, where
254 175 out of 4124 variant-gene pairs (4.2%) were confirmed. Note that all the confirmed pairs

255  werelinked with variants associated with red blood cdll traits. Further generalizing to all

256 VAMPIRE annotation categories and to variants associated with any blood cell trait, the

257  enrichment OR increases to 8.30 with p-value 9.0E-5, indicating that variant-gene pairs

258  prioritized by VAMPIRE' s five categories have much higher odds of being functional. To further
259  accommodate causal variants tagged by GWAS variants not falling into the short 500bp CREsS,
260  we extended the CREs by +/- 1kb or +/- 5kb, and performed similar enrichment analysis. Our
261  conclusionsremained qualitatively similar (Table 3), but the enrichments increased in

262  significance, thanksto larger sample size (in this context, the larger number of variant-gene pairs
263  contributing to the analysis) and suggesting that more liberal windows of cis-regulatory regions
264  can capture ahigher rate of functional variant-gene pairs. For example, the enrichment for

265  category 1 variants associated with red blood cell (RBC) traits reached an OR of 15.77 (p=3.8E-
266  6) and 16.68 (p=3.1E-15) for 1kb and 5kb extension, respectively. We thus conclude that such

267  enrichment is significant and robust to the extension of CREs.
268  Application example

269  Figure 3 shows one example at the CALR locus associated with red blood cell traits. Fulco et al.
270  confirmed by CRISPRIi-FlowFISH experiment that CRE chr19:12,996,905-12,998,745 (hgl19)
271  regulates gene CALR (adjusted p-value 1.9E-7)’. Annotations compiled by VAMPIRE suggest,

272  consistently, that CALR is linked to rs8110787 (chr19:12,999,458, hgl9) in category 1.


https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431409; this version posted March 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

273 rs8110787 is associated with several RBC traits %, including hematocrit (HCT), mean corpuscular
274  hemoglobin (MCH), mean corpuscular volume (MCV) and red blood cell counts (RBC). Based
275  on genomic distance alone, CALR s not the nearest gene to rs8110787, with several other closer
276  genes. However, based on H3K27ac HiChlP datain K562 cells %, rs8110787 significantly

277  interactswith CALR promoter region (p < 1E-120), suggesting that CALR is a potential target
278  gene regulated by the CRE around rs8110787. Thisvariant isalso an eQTL of CALR from

279  CAGE ® (p = 9.4E-16) and BIOS ** (p = 1.0E-25), and is an enhancer in K562 Leukemiacells
280  (E123) from Roadmap **, adding additional evidence. Our VAMPIRE successfully highlights

281  thisrs8110787-CALR pair in its category 1.

282  Asafurther example of the utility of the VAMPIRE application, we present the annotation

283  resultsfor one of the lead genome-wide significant variants from recent trans-ethnic GWAS

284  analysesfrom Chen et al. ¢ For our analysis, we were particularly interested in exploring low
285  freguency variants, and those more common in those of non-European ancestry. We were able to
286  quickly rank and prioritize variants for further examination using the annotation categories

287  described above, including the low frequency variant rs112097551 associated with mean

288  corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and red blood cell count.

289  Thislow frequency intergenic variant rs112097551 (GATA2-RPNL1 locus, 0.15% minor alele
290  frequency in Chen et al. trans-ethnic analysis *) has no close linkage disequilibrium proxiesin
291  African or European populations, and thus was not compared to other highly correlated variants.
292  Based on variant frequency, particularly in European ancestry populations, we had no

293  expectation this variant would have eQTL or pQTL evidence (2D annotation), given currently
294  available sample sizesfor eQTL and pQTL analysis. For low frequency variants, 1D and 3D

295  annotation would be the highest annotation category likely for avariant of interest like
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296  rs112097551. The variant is ~5x more common among African versus non-African samplesin
297 gnomAD version 2.1.1. It isthe only variant in the credible set in fine-mapping analyses from
298 Chenetal. 1D annotation suggeststhis variant is highly conserved (CADD Phred score of 20.4,
299  meaning the variant is amongst the top 1% of deleterious variants in the human genome), and it
300 israted asdédeterious by FATHMM-XF (rank score 0.99169, close to the maximum score of 1).
301 Itisasoin open chromatin in megakaryocyte—erythroid progenitor cells, based on hematopoietic
302 ATAC-seq data*. 3D annotation from PCHi-C datain erythroblasts from Javierre et a. % links
303 thisvariant to the gene RUVBL1 ~500Kb away, as well as noncoding transcripts RNU2-37P and
304 RUVBL1-ASL. Based on this data, which can be quickly displayed using the VAMPIRE

305  application, we are currently working on in vitro follow-up of this candidate functional enhancer

306 variant¥.

307 Discussion

308  Asgenotyped sample sizes increase and meta-analysis efforts grow ever larger, more variant-
309 trait pairs areidentified for complex traits than can be easily annotated on a variant by variant
310 bass. New, user-friendly applications are needed for rapid display of functional annotation

311 information and prioritization of variants for further functional follow-up to pave the V2F path.
312  Our VAMPIRE tool provides an example of how the publicly available code can be adapted to
313 accommodate other sources of annotation specific to other complex trait GWAS results or to
314  accommodate future blood cell trait GWAS and annotation resources. In addition to a priori

315 providing one category of coding variants and 5 categories of non-coding variants that warrant
316  prioritization consderation, VAMPIRE allows users to decide their own categories based on
317  arbitrary combinations of the annotations at adjustable thresholds (for example, prioritizing high

318 CADD score variants, or variants in open chromatin in blood cells based on ATAC-seq). Along
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319  with the addition of more blood cell trait genetics papers published in the future, VAMPIRE
320 could also be used as written to annotate GWAS results for other blood related phenotypes, such

321  asrecent GWAS of risk of myeloproliferative neoplasm or clonal hematopoiesis % .

322  Aswe accumulate additional functional validation data, including high-throughput massively
323  parald reporter assays (MPRA), medium-throughput CRISPRi/CRISPRa and low throughput
324  mouse xenotransplant experiments, we will provide statistics summarizing experimental

325 validation results (e.g., number of variants in the category followed-up, proportion that show
326  evidence of functional impact in their experiments) for each of the 6 VAMPIRE categories and
327  for user defined categories. Importantly, we illustrate the value of VAMPIRE using existing
328  independent functional validation and therefore illuminate the value of this type of annotation
329 tool in enabling oneto go from variant to function for blood cell traits and other complex

330 phenotypes.

331 Wealso note that there are some limitations of VAMPIRE. First, comprehensive annotations
332  gpecificto various cell types and cell states would further enhance classification and

333  prioritization accuracy of functional variants or regulatory elements and their target genes.

15; 16 29; 35

334  Although dataisincreasingly being generated by us and others , and has been

335 incorporated into VAMPIRE where available, interrogationsin acell-type- or state- specific
336  manner are still much needed. For instance, our recent work has demonstrated cell-type or tissue
337  specific FIREs " “° and super interactive promoters (SIP)** play key regulatory role and aid the
338 identification and prioritization of functional regulatory elements and their corresponding genes.
339 Asmore experimental data are generated, we will update VAMPIRE accordingly. Second, our

340 list of 148,019 variants derives primarily from fine-mapping studies, which may be inaccuratein

341 loci where more than one independent or partially independent signals exist. However, this
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342  limitation cannot be resolved before more powerful methods are developed for fine-mapping
343  anaysisfor trans-ethnic GWAS. Finally, most of the annotations are based on analyses in

344  European ancestry individuals (e.g. eQTL, pQTL, chromatin conformation etc.). Many ongoing
345  effortsincluding ours are generating resources for non-European ancestry samples. For example,
346 weareinvolved in several recently funded efforts to generate RNA-sequencing data in non-

347  European ancestry individualsin hematopoietic cell types and anticipate relevant eQTL and

348  sSQTL annotations being added to VAMPIRE in upcoming years.

349  Inconclusion, we have built a comprehensive annotation tool, VAMPIRE, which provides

350 characterization and prioritization of blood cell trait related GWAS signals. Our results using

351  existing functional experiments demonstrate that variants and genes prioritized by VAMPIRE
352  aresignificantly more likely to be functionally validated at either the variant, gene, or variant-
353 genepair level. Annotation tools like VAMPIRE, which could be easily modified to apply to

354  additional complex traits and diseases, are necessary to translate knowledge of GWAS

355 significant variantsto target genes and biological insights, and to guide our decisionsto prioritize
356 experimental validations of most likely functional regulatory variants/elements and their effector

357  genes.

358 Appendix

359 Al Supplementary methods.
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385 Figurel. Overall framework of thisstudy. VAMPIRE starts with GWAS variantsin the 95%
386  credible sets, integrates different annotations and assigns them into different prioritization

387  categories. We further demonstrated that our top prioritized category is enriched with variants
388 that were experimentally validated. VAMPIRE provides a prototype that can be adapted to many

389  other complex traits, paving the path for efficient variant to function (V2F) analyses.
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393 Figure2. Variant level TF motif enrichment analysis. Each dot represents an enrichment
394  score with the line depicting 95% confidence interval (Cl). All the upper bounds of these Cls are
395 infinity. The p-values of the enrichment are reflected by the dot size at the OR point estimate

396  with alarger dot indicating more significant the enrichment.

397
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Figure 3. Variant-gene pair example (rs8110787-CALR) visualization from HUGIn2 *.
Fulco et al. confirmed via CRISPRi experiments that chr19:12996905-12998745 (hg19)

regul ates gene CALR (adjusted p-value 1.9E-7) which is highly expressed in Erythroblasts’.
Based on annotationsin VAMPIRE, CALRislinked to rs8110787 (chr19:12999458, hgl9) in
prioritization category 1, including higher than expected physical interactions with the CALR
locus from erythroblasts pcHiC data®®, eQTL of CALRin CAGE? and BIOS?, erythroid ATAC-
seq peak® and H3K 27ac peak in K562 leukemia cell*®, rs8110787 is associated with several
RBC traits (namely hematocrit, mean corpuscular hemoglobin, mean corpuscular volume, and

red blood cell count) asreported in Chen et al. *.
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414
415 Tables
416
Category 1 Uncategorized p-value Oddsratio
All RBCT variants 5,687 21,947
KLF1 34 34 7.10E-08 3.86
KLF6 21 14 4.30E-07 5.79
MAFB 13 13 8.10E-04 3.86
GATAl 8 19 0.18 1.63
IRF1 12 49 0.62 0.95
IRF8 19 58 0.22 1.26
417

418 Tablel. Variant level transcription factor (TF) motif enrichment analysis. Four erythroid
419  TFsand two non-erythroid TFs were selected. Fisher’s exact test was applied to test for

420  enrichment. Three erythroid TFs show enrichment for our VAMPIRE annotation category 1
421  (MAFB, KLF6, KLF1, p<0.05). GATA1 motif variants also have some evidence of enrichment
422  (oddsratio = 1.625) but this enrichment is not significant (p=0.18), likely due to smaller sample
423  sizeof variants. Two non-hematopoi esis transcription factors selected as controls don’t show
424  significant enrichment with VAMPIRE functional annotation category 1. RBCT, red blood cell

425  trait associated.

426


https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/

427

428

429

430

431

432

433

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431409; this version posted March 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Category 1 Other categories p-value Oddsratio
All category genes 9,857 7,408
shRNA Candidate genes 262 83 3.50E-13 2.37
shRNA Validated genes 68 11 3.10E-08 4.65

Table 2. Genelevel enrichment analysis. Fisher’s exact test was applied to test for enrichment.
Both shRNA experiment candidate genes and validated genes show significant enrichment in our

most restrictive VAMPIRE annotation category (category 1).

Not
Significant Significant % p-value Oddsratio
significant
All pairs from Fulco
3,949 175 4.24
etal.
Confirmed pairsin
category 1 for RBC 6 1 14.29 0.26 3.76
traits
Confirmed pairsin
category 1 for all 6 1 14.29 0.26 3.76

traits

Confirmed pairsin 19 7 26.92 9.00E-05 8.3
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al categoriesfor all

traits

Confirmed pairsin

category 1 for RBC 10 7 41.18 3.80E-06 15.77
traits (+/- 1kb)

Confirmed pairsin

category 1 for al 21 9 30 3.50E-06 9.66
traits (+/- 1kb)

Confirmed pairsin

all categoriesfor all 70 21 23.08 4.60E-10 6.76
traits (+/- 1kb)

Confirmed pairsin

category 1 for RBC 27 20 42.55 3.10E-15 16.68
traits (+/- 5kb)

Confirmed pairsin

category 1 for all 64 23 26.44 3.80E-12 8.1
traits (+/- 5kb)

Confirmed pairsin

all categoriesfor all 160 37 18.78 3.10E-13 521

traits (+/- 5kb)

Table 3. Variant-Gene pair level enrichment analysis. We performed analysis for three
variant annotation pools (category 1, red blood cell (RBC) trait associated; category 1, any blood
cell trait associated; any annotation priority category (1-5), any blood cell trait associated) and

three CRE lengths. Fisher’s exact test was applied to test for enrichment. We found enrichment
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438  for al three variant annotation pools. These enrichments are also robust to the extension of

439 CREs.

440
441
442 References

443 1. Liggett, L.A., and Sankaran, V.G. (2020). Unraveling Hematopoiesis through the Lens of
444 Genomics. Cell 182, 1384-1400.
445 2. Vuckovic, D., Bao, E.L., Akbari, P., Lareau, C.A., Mousas, A., Jiang, T., Chen, M.H., Raffield,

446 L.M., Tardaguila, M., Huffman, J.E., et al. (2020). The Polygenic and Monogenic Basis of
447 Blood Traits and Diseases. Cell 182, 1214-1231.e1211.

448 3. Kowalski, M.H., Qian, H., Hou, Z., Rosen, J.D., Tapia, A.L., Shan, Y., Jain, D., Argos, M.,
449 Arnett, D.K., Avery, C., et al. (2019). Use of >100,000 NHLBI Trans-Omics for Precision
450 Medicine (TOPMed) Consortium whole genome sequences improves imputation quality
451 and detection of rare variant associations in admixed African and Hispanic/Latino

452 populations. PLoS genetics 15, e1008500.

453 4. Chen, M.H., Raffield, L.M., Mousas, A., Sakaue, S., Huffman, J.E., Moscati, A., Trivedi, B.,
454 Jiang, T., Akbari, P., Vuckovic, D., et al. (2020). Trans-ethnic and Ancestry-Specific

455 Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell 182, 1198-
456 1213.e1114.

457 5. Nandakumar, S.K., Liao, X., and Sankaran, V.G. (2020). In The Blood: Connecting Variant to
458 Function In Human Hematopoiesis. Trends in genetics : TIG 36, 563-576.

459 6. Garner, C., Tatu, T., Reittie, J.E., Littlewood, T., Darley, J., Cervino, S., Farrall, M., Kelly, P.,
460 Spector, T.D., and Thein, S.L. (2000). Genetic influences on F cells and other

461 hematologic variables: a twin heritability study. Blood 95, 342-346.

462 7. Fulco, C.P., Nasser, J., Jones, T.R., Munson, G., Bergman, D.T., Subramanian, V.,

463 Grossman, S.R., Anyoha, R., Doughty, B.R., Patwardhan, T.A., et al. (2019). Activity-by-
464 contact model of enhancer-promoter regulation from thousands of CRISPR

465 perturbations. Nat Genet 51, 1664-1669.

466 8. Nandakumar, S.K., McFarland, S.K., Mateyka, L.M., Lareau, C.A., Ulirsch, J.C., Ludwig, L.S.,
467 Agarwal, G., Engreitz, J.M., Przychodzen, B., McConkey, M., et al. (2019). Gene-centric
468 functional dissection of human genetic variation uncovers regulators of hematopoiesis.
469 elLife 8.

470 9. Liu, X., White, S., Peng, B., Johnson, A.D., Brody, J.A., Li, A.H., Huang, Z., Carroll, A., Wei,
471 P., Gibbs, R., et al. (2016). WGSA: an annotation pipeline for human genome

472 sequencing studies. Journal of medical genetics 53, 111-112.

473  10. Fishilevich, S., Nudel, R., Rappaport, N., Hadar, R., Plaschkes, I., Iny Stein, T., Rosen, N.,
474 Kohn, A., Twik, M., Safran, M., et al. (2017). GeneHancer: genome-wide integration of
475 enhancers and target genes in GeneCards. Database : the journal of biological

476 databases and curation 2017.

477  11. Lizio, M., Harshbarger, J., Shimoji, H., Severin, J., Kasukawa, T., Sahin, S., Abugessaisa, I.,
478 Fukuda, S., Hori, F., Ishikawa-Kato, S., et al. (2015). Gateways to the FANTOM5

479 promoter level mammalian expression atlas. Genome Biol 16, 22.

480 12. Lizio, M., Abugessaisa, |., Noguchi, S., Kondo, A., Hasegawa, A., Hon, C.C., de Hoon, M.,
481 Severin, J., Oki, S., Hayashizaki, Y., et al. (2019). Update of the FANTOM web resource:


https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431409; this version posted March 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

482 expansion to provide additional transcriptome atlases. Nucleic Acids Res 47, D752-
483 D758.

484  13. Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F., Ren, B., Milosavljevic, A.,

485 Meissner, A., Kellis, M., Marra, M.A., Beaudet, A.L., Ecker, J.R., et al. (2010). The NIH
486 Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 28, 1045-1048.

487  14. Consortium, E.P. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science
488 306, 636-640.
489 15. Ludwig, L.S., Lareau, C.A., Bao, E.L., Nandakumar, S.K., Muus, C., Ulirsch, J.C.,

490 Chowdhary, K., Buenrostro, J.D., Mohandas, N., An, X., et al. (2019). Transcriptional
491 States and Chromatin Accessibility Underlying Human Erythropoiesis. Cell Rep 27,

492 3228-3240.e3227.

493  16. Ulirsch, J.C., Lareau, C.A., Bao, E.L., Ludwig, L.S., Guo, M.H., Benner, C., Satpathy, A.T.,
494 Kartha, V.K., Salem, R.M., Hirschhorn, J.N., et al. (2019). Interrogation of human

495 hematopoiesis at single-cell and single-variant resolution. Nature Genetics 51, 683-693.
496 17. Schmitt, A.D., Hu, M., Jung, I, Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., et
497 al. (2016). A Compendium of Chromatin Contact Maps Reveal Spatially Active Regions
498 in the Human Genome. Cell reports 17, 2042-2059.

499 18. Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M.,
500 Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., et al. (2015). A global

501 reference for human genetic variation. Nature 526, 68-74.

502  19. Schrider, D.R., and Kern, A.D. (2016). S/HIC: Robust Identification of Soft and Hard Sweeps
503 Using Machine Learning. PLoS Genet 12, €1005928.

504  20. Schrider, D.R., and Kern, A.D. (2017). Soft Sweeps Are the Dominant Mode of Adaptation in
505 the Human Genome. Mol Biol Evol 34, 1863-1877.

506 21. Emilsson, V., llkkov, M., Lamb, J.R., Finkel, N., Gudmundsson, E.F., Pitts, R., Hoover, H.,
507 Gudmundsdottir, V., Horman, S.R., Aspelund, T., et al. (2018). Co-regulatory networks
508 of human serum proteins link genetics to disease. Science (New York, NY) 361, 769-
509 773.

510 22.Vdsa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H.,
511 Saha, A., Kreuzhuber, R., Kasela, S., et al. (2018). Unraveling the polygenic architecture
512 of complex traits using blood eQTL metaanalysis. bioRxiv, 447367.

513 23. Lloyd-Jones, L.R., Holloway, A., McRae, A., Yang, J., Small, K., Zhao, J., Zeng, B., Bakshi,
514 A., Metspalu, A., Dermitzakis, M., et al. (2017). The Genetic Architecture of Gene

515 Expression in Peripheral Blood. Am J Hum Genet 100, 228-237.

516  24. Zhernakova, D.V., Deelen, P., Vermaat, M., van Iterson, M., van Galen, M., Arindrarto, W.,
517 van 't Hof, P., Mei, H., van Dijk, F., Westra, H.J., et al. (2017). Identification of context-
518 dependent expression quantitative trait loci in whole blood. Nat Genet 49, 139-145.

519 25. Raj, T., Rothamel, K., Mostafavi, S., Ye, C., Lee, M.N., Replogle, J.M., Feng, T., Lee, M.,
520 Asinovski, N., Frohlich, I., et al. (2014). Polarization of the effects of autoimmune and
521 neurodegenerative risk alleles in leukocytes. Science 344, 519-523.

522 26. Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T.,
523 Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the

524 human genome at kilobase resolution reveals principles of chromatin looping. Cell 159,
525 1665-1680.

526  27. Gorkin, D.U., Qiu, Y., Hu, M., Fletez-Brant, K., Liu, T., Schmitt, A.D., Noor, A., Chiou, J.,
527 Gaulton, K.J., Sebat, J., et al. (2019). Common DNA sequence variation influences 3-
528 dimensional conformation of the human genome. Genome Biol 20, 255.

529 28. Ay, F., Bailey, T.L., and Noble, W.S. (2014). Statistical confidence estimation for Hi-C data
530 reveals regulatory chromatin contacts. Genome Research 24, 999-1011.

531 29. Javierre, B.M., Burren, O.S., Wilder, S.P., Kreuzhuber, R., Hill, S.M., Sewitz, S., Cairns, J.,
532 Wingett, S.W., Varnai, C., Thiecke, M.J., et al. (2016). Lineage-Specific Genome


https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431409; this version posted March 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

533 Architecture Links Enhancers and Non-coding Disease Variants to Target Gene

534 Promoters. Cell 167, 1369-1384 e13109.

535  30.Jung, |, Schmitt, A, Diao, Y., Lee, A.J., Liu, T., Yang, D., Tan, C., Eom, J., Chan, M., Chee,
536 S., et al. (2019). A compendium of promoter-centered long-range chromatin interactions
537 in the human genome. Nat Genet 51, 1442-1449,

538 31. Martin, J.S., Xu, Z., Reiner, A.P., Mohlke, K.L., Sullivan, P., Ren, B., Hu, M., and Li, Y.

539 (2017). HUGIN: Hi-C Unifying Genomic Interrogator. Bioinformatics 33, 3793-3795.

540 32. Denny, J.C., Bastarache, L., Ritchie, M.D., Carroll, R.J., Zink, R., Mosley, J.D., Field, J.R.,
541 Pulley, J.M., Ramirez, A.H., Bowton, E., et al. (2013). Systematic comparison of

542 phenome-wide association study of electronic medical record data and genome-wide
543 association study data. Nature Biotechnology 31, 1102-1111.

544  33. Buniello, A., MacArthur, J.A.L., Cerezo, M., Harris, L.W., Hayhurst, J., Malangone, C.,

545 McMahon, A., Morales, J., Mountjoy, E., Sollis, E., et al. (2019). The NHGRI-EBI GWAS
546 Catalog of published genome-wide association studies, targeted arrays and summary
547 statistics 2019. Nucleic Acids Res 47, D1005-d1012.

548 34. van der Harst, P., Zhang, W., Mateo Leach, I., Rendon, A., Verweij, N., Sehmi, J., Paul,
549 D.S., Elling, U., Allayee, H., Li, X., et al. (2012). Seventy-five genetic loci influencing the
550 human red blood cell. Nature 492, 369-375.

551  35. Mumbach, M.R., Satpathy, A.T., Boyle, E.A., Dai, C., Gowen, B.G., Cho, S.W., Nguyen,
552 M.L., Rubin, A.J., Granja, J.M., Kazane, K.R., et al. (2017). Enhancer connectome in
553 primary human cells identifies target genes of disease-associated DNA elements. Nat
554 Genet 49, 1602-1612.

555  36. Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder,
556 M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W.J., et al. (2016). Lineage-specific and
557 single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution.
558 Nat Genet 48, 1193-1203.

559 37. Hu, Y., Stilp, A.M., McHugh, C.P., Jain, D., Zheng, X., Lane, J., Rao, S., de Bellefon, S.M.,
560 Raffield, L.M., Chen, M.-H., et al. (2020). Whole genome sequencing association

561 analysis of quantitative red blood cell phenotypes: the NHLBI TOPMed program.

562 medRxiv, 2020.2012.2009.20246736.

563  38. Bick, A.G., Weinstock, J.S., Nandakumar, S.K., Fulco, C.P., Bao, E.L., Zekavat, S.M.,

564 Szeto, M.D., Liao, X., Leventhal, M.J., Nasser, J., et al. (2020). Inherited causes of

565 clonal haematopoiesis in 97,691 whole genomes. Nature 586, 763-768.

566 39. Bao, E.L., Nandakumar, S.K., Liao, X., Bick, A.G., Karjalainen, J., Tabaka, M., Gan, O.I.,
567 Havulinna, A.S., Kiiskinen, T.T.J., Lareau, C.A., et al. (2020). Inherited myeloproliferative
568 neoplasm risk affects haematopoietic stem cells. Nature 586, 769-775.

569  40. Crowley, C., Yang, Y., Qiu, Y., Hu, B., Abnousi, A., Lipinski, J., Plewczynski, D., Wu, D.,
570 Won, H., Ren, B., et al. (2020). FIREcaller: Detecting frequently interacting regions from
571 Hi-C data. Comput Struct Biotechnol J 19, 355-362.

572  41. Song, M., Pebworth, M.P., Yang, X., Abnousi, A., Fan, C., Wen, J., Rosen, J.D., Choudhary,
573 M.N.K., Cui, X., Jones, I.R., et al. (2020). Cell-type-specific 3D epigenomes in the

574 developing human cortex. Nature 587, 644-649.

575


https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/

