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Abstract

In a single day we transition from vigilant wakefulness to unconscious sleep and dreaming,
undergoing diverse behavioural, physiological and neural changes. While during the awake
state, exogenous stimuli and endogenous changes lead to sensory reorganisation, this
remapping has not been charted throughout the sleep-wake cycle. We recorded neural
activity in response to a range of tones using electroencephalography during a full night’s
sleep, and examined whether auditory responses become more similar, dissimilar or remain
unchanged between wakefulness, non-rapid (NREM) and rapid eye movement (REM) sleep.
We found that neural similarities between pairs of auditory evoked potentials differed by
conscious state in both early and late auditory processing stages. Furthermore, tone-pairs
neural similarities were modulated by conscious state as a function of tone frequency, where
some tone-pairs changed similarity between states and others continued unaffected. These
findings demonstrate a state-, stimulus- and time-dependent functional reorganization of

auditory processing across the sleep-wake cycle.


https://doi.org/10.1101/2021.02.16.431383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431383; this version posted February 17, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

From the first day of life (Fifer et al., 2010) and throughout adulthood (Clancy et al., 2019;
Danielson et al., 2016; Fritz et al., 2003; Heed et al., 2015) the neural basis of sensory
processing is dynamically shaped by the interaction between our internal state and the
environment. Reorganization of sensory, motor and cognitive functions, also termed
remapping (Ramachandran et al., 1992), is expressed in the nervous system in different forms
and time scales. Somatosensory remapping, in which the cortical area corresponding to a
specific body part becomes responsive to stimuli applied to different body areas, is evident
following permanent neural damage such as amputation. (Buonomano and Merzenich, 1998;
Merzenich et al., 1984; Pons et al., 1991; Ramachandran et al., 1992). In addition, recovery
from stroke induces remapping of language functions between hemispheres and of motor
functions beyond motor areas (Carmichael, 2003), retinal lesions promote remapping of the
retinotopic organization of the neuronal receptive fields in the visual cortex (Dumoulin and
Knapen, 2018), and partial deafness results in cortical reorganisation of frequency
representations (King and Moore, 1991). Remapping also take place in healthy animals and
humans, when applying prismatic spectacles temporarily shifting the visual map (Bultitude et
al.,, 2013; Linkenhoker and Knudsen, 2002), by artificially adjoining fingers leading to
reorganisation in the somatosensory cortex (Buonomano and Merzenich, 1998; Kolasinski et
al., 2016), or following repetitive transcranial magnetic stimulation to the primary motor
cortex inducing widespread changes in the motor system (Lee et al., 2003). Moreover,
remapping naturally occurs without such manipulations. For example, place cells in the
hippocampus that preferentially fire to distinct regions of a spatial environment remap their
spatial preference in response to changes in shape, light, colour and familiarity of the
environment (Alexander et al., 2016; Fyhn et al., 2007; Geva-Sagiv et al., 2016; Hayman et al.,
2003; Jeffery, 2011; Leutgeb et al., 2005; Moser et al., 2014), and grid cells’ maps in the
entorhinal cortex are dynamically restructured by cognitive factors or running speed (Boccara
et al., 2019; Butler et al., 2019; Low et al., 2020; Quiroga, 2019) . Furthermore, not only
changes in the environment but also endogenous signals such as vestibular cues, motivation,
oxytocin or norepinephrine levels elicit functional reorganization, leading to differential
neural responses to identical sensory stimuli (Doboli et al., 2003; Grella et al., 2019; Knierim
et al.,, 1998; Marlin et al.,, 2015). The fact that transitioning between wakefulness and

different sleep stages involves substantial external and internal changes (Fuller et al., 2006;
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Jones, 2005) suggests that sleep may lead to sensory remapping, however, it is unknown
whether sensory maps remain stable across the sleep-wake cycle or whether sleep causes

functional sensory reorganisation.

There is a wide consensus that some degree of sensory processing persists during sleep
(Andrillon and Kouider, 2020; Arzi et al., 2012, 2014; Atienza et al., 2001; Canales-Johnson et
al., 2020; Chennu and Bekinschtein, 2012; Hennevin et al., 2007; Velluti, 1997). Neuroimaging
and electrophysiology studies in humans (Atienza et al., 2001; Bastuji and Garcia-Larrea,
1999; Colrain and Campbell, 2007; Czisch et al., 2002, 2009; Portas et al., 2000; Schabus et
al., 2012; Wilf et al., 2016) and animals (Edeline et al., 2001; Issa and Wang, 2008; Nir et al.,
2015; Sela et al., 2020) demonstrate clear brain activity in response to sensory stimuliin sleep.
However, it remains unclear precisely how sensory-related neural activity changes during
sleep. Diverse results are reported for the degree of modulation of sensory responses
between wakefulness and sleep, with findings of enhanced (Colrain and Campbell, 2007; Hall
and Borbely, 1970; Nicholas et al., 2006; Yang and Wu, 2007), reduced (Brugge and
Merzenich, 1973; Czisch et al., 2002, 2004; Edeline et al., 2001; Murata and Kameda, 1963)
or preserved responses during sleep (Edeline et al., 2001; Issa and Wang, 2008; Nir et al.,
2015; Peiia et al., 1999). Furthermore, several studies suggest that even within the same
experiment, the degree of response modulation between conscious states is not consistent
across stimuli and may depend on stimulus intensity or type (Castro-alamancos, 2004; Issa
and Wang, 2011; Lustenberger et al., 2018; Portas et al., 2000; Sharon and Nir, 2018; Tlumak
et al., 2012). This suggests that the magnitude and direction of changes in sensory responses
may vary depending not only on the sleep state, but also on the properties of the stimuli. Yet,
the investigation of sensory processing during sleep has focused on the modulation of neural
responses to either a specific stimulus or a set of stimuli, while neglecting the investigation of
the modulation of the neural similarity between responses to different stimuli. In other
words, how the degree of similarity between sensory responses is altered between
wakefulness and sleep and between sleep stages: do brain responses to sensory stimuli
become more similar to one another, more different from each other or do they remain

unchanged across the sleep-wake cycle?
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To address this question, we employ the auditory frequency axis as the preferred mode of
input for unconscious states (Chennu and Bekinschtein, 2012). Audition is particularly
attractive to study sensory reorganisation during sleep for several reasons: first, tones can
be easily presented during sleep without waking the participant; second, tones presentation
can be done with high temporal precision and short inter-stimulus intervals, enabling the
collection of thousands of tone repetitions per participant; third, the auditory frequency axis
offers a clear measure of distance between the physical properties of pure tones; fourth and
last, the neural representations of pure tones during the awake state are well-described
(Saenz and Langers, 2014; Schnupp et al., 2011; Su et al., 2014). Thus, the auditory frequency
axis is an ideal experimental model system to study functional sensory reorganisation across
the sleep-wake cycle. Here, we recorded brain activity in response to a series of pure tones
in the middle part of the human audible frequency range (Fig. 1), during wakefulness and
throughout a full night’s sleep using high-density electroencephalography (EEG). Given the
vast internal changes between wakefulness and different sleep stages, we hypothesised that
the organisation of the auditory frequency map is modulated by conscious state in a sleep-
stage dependent manner. Furthermore, we also hypothesised that the shape of the
reorganisation depends on tone frequency. To test these hypotheses, we assessed how
similarities between neural responses to tone-pairs change across the sleep-wake cycle.
Specifically, we measured neural similarities between tone-pairs in wakefulness, light (N2)
and deep (N3) non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep,
and found that they dynamically change in time between and also within conscious states.
Moreover, tone-pairs neural similarities were modulated in an uneven manner across
conscious states as a function of tone frequency. These findings are consistent with our
hypothesis of sleep-induced remapping, indicating that the functional sensory organisation is

state-, stimulus- and time-dependent.
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Results

Auditory evoked responses are state-, time- and stimulus-dependent

To test the hypothesis that transitions between wakefulness and different sleep stages (N2,
N3 and REM sleep) induce functional sensory reorganisation, we recorded brain activity using
high-density EEG during wakefulness and full-night sleep in response to nine pure tones (650,
845, 1098, 1428, 1856, 2413, 3137, 4079 and 5302 Hz; Fig. 1), acquiring thousands of trials

per conscious state (Table 2).

Auditory paragidm during wakefulness and full-night sleep
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Fig. 1: Experimental design.

A diagram of the auditory experimental paradigm based on tone-pairs. a) In each tone-pair,
the first tone was an ‘Adaptor’ tone (500 Hz, grey) which was presented to create a common
context for all tones, and was followed by one of nine pure tones or by the adaptor b) The
tones presented were spaced by 30% from one another: 500 (adaptor tone), 650, 845, 1098,
1428, 1856, 2413, 3137, 4079 and 5302 Hz. c¢) In a mini-block, each tone-pair was repeated
for 10 times and 10 mini-blocks presented in a random order created a block. A wakefulness
session was composed of 24 blocks and lasted approximately an hour. In a sleep session, the
number of blocks depended on sleep duration (Tables 1 and 2).
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First, we examined the auditory evoked related responses (ERP) dynamics. ERPs averaged
across tones were compared between wakefulness (W), N2, N3 and REM sleep using cluster
permutation analysis. ERPs waveform showed greater voltage negativity (N100) in
wakefulness and greater voltage positivity (P200) during sleep (Fig. 2), with differences
observed in three main time windows (W-N2: 20-108 ms, p = 0.0013, effect size Wr = 0. 859;
124-316 ms, p = 0.0001, effect size Wr = 0.819; 348-448 ms, p = 0.152, effect size Wr = 0.395;


https://doi.org/10.1101/2021.02.16.431383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431383; this version posted February 17, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Horizontal blue-yellow line; W-REM: 16-96 ms, p = 0.0003, effect size Wr = 0.872; 136-344
ms, p = 0.0001, effect size Wr = 0.820; Horizontal blue-green line; W-N3: 28-100 ms, p =
0.0039, effect size Wr =0.848; 128-316 ms, p = 0.0002, effect size Wr = 0.807; 364-448 ms, p
= 0.0157, effect size Wr = 0.456; Horizontal blue-red line; Fig. 2 and Table 1). Smaller and
delayed ERPs differences were detected between sleep stages, specifically between NREM
and REM sleep (N2-REM: 68-132 ms, p = 0.043, effect size Wr = 0.547; 316-448, p = 0.0012,
effect size Wr = 0.393; Horizontal yellow-red line; N3-REM: 348-448 ms, p = 0.009, effect size
Wr = 0.427; Horizontal green-red line; Fig. 2). No detectable changes in ERPs were found
between NREM sleep stages (N2-N3: all p’s > 0.13; Fig. 2). To examine whether the observed
differences between conscious states were influenced by tone frequency, we applied a linear
mixed-effects modelling analysis including all tones and pairs of conscious states in each one
of the 11 identified clusters. Interactions between conscious state and tone were found
between wakefulness and NREM sleep, in both N2 sleep (W-N2: 20-108 ms, p = 0.02, Fig. 2f;
364-448 ms, p = 0.024, Fig. 2i) and N3 sleep (W-N3: 28-100 ms, p = 0.01, Fig. 2g; 128-319 ms
p = 0.036; Fig. 2h). These interactions reflect smaller ERP differences between wakefulness
and NREM sleep stages in low and high tone frequencies and larger ones in mid-frequencies.
These findings indicate an uneven reshaping of the auditory response by conscious state and
support the hypothesis of stimulus-dependent modulation of auditory processing across the

sleep-wake cycle.
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Fig. 2: Auditory evoked responses are state and stimulus dependent.
a) Auditory evoked potentials averaged across participants and tones during wakefulness
(blue), N2 sleep (yellow), N3 sleep (green) and REM sleep (red). The dashed vertical line
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denotes tone onset (duration 100 ms, black horizontal line). The horizontal color lines denote
significant differences between pairs of states showing greater voltage negativity (N100) in
wakefulness and greater voltage positivity (P200) during sleep (Bottom lines: Awake vs. N2,
blue-yellow line; Awake vs. N3, blue-yellow line; Awake vs. REM, blue-green line) as well as
differences between NREM and REM sleep (Top lines: N2 vs. REM, yellow-red line; N3 vs REM,
green-red line;) b-e) Auditory evoked potentials for each tone frequency during b)
wakefulness c¢) N2 sleep d) N3 sleep e) REM sleep f-i) Interactions between conscious states
and tone frequency were found between f) wakefulness and N2 at 20-108ms (p = 0.02, left)
and at 28-100ms (p = 0.024, right) and between g) wakefulness and N3 at 28-100ms (p = 0.01,
left) and at 128-316ms (p = 0.036, right). Bars denotes the mean and error bars the S.E.M of
12ms at the centre of each cluster. Each cluster time and duration is indicated by a shaded
area on the ERP plot below the relevant bar plot. * denote a significant difference in
amplitude between pairs of states per tone, FDR-corrected for multiple comparisons. T1
=650Hz, T2 =845Hz, T3 =1098Hz, T4 =1428Hz, T5 =1856Hz, T6 =2413Hz, T7 =3137Hz, T8
=4079Hz and T9 =5302Hz.

The magnitude of the auditory neural similarities are state-, time- and stimulus-dependent
To further the understanding how conscious state modulates auditory processing, we
examined the relationship between neural responses to pairs of pure tones in wakefulness,
NREM and REM sleep. We quantified the neural similarity between ERP-pairs using
Spearman’s correlation, and termed this distance measure Tone Similarity Index (see
methods). Measuring the Tone Similarity Index along the auditory processing time course
(i.e., the 450ms following stimulus presentation) averaged across all tone-pairs combinations,
we discovered that it is dynamically changing over time (Fig. 3a). Using cluster permutation
analysis, we identified two main time windows in which the Tone Similarity Index exhibits a
distinctive pattern: An early (twl = 12-236 ms), and a late (tw2 = 256-448 ms) processing
time windows, likely representing different auditory processing stages. Next, to characterise
how the neural similarity between tone-pairs is changing in time between conscious states,
we applied linear mixed-effects modelling. Specifically, linear mixed-effects modelling was
used to understand how the Tones Similarity Index in each participant was influenced by
conscious state (‘Wakefulness’, ‘N2’, ‘N3’, and ‘REM’), auditory processing time window
(‘Early’ and ‘Late’), and tone-pair (36 pairwise combinations, created from nine tone
frequencies). The model that best fitted the data was one with participants as random effect,
and conscious state, time window and tone-pair as fixed effects (Table 3). Results showed a
main effect of state (F(3,10150) = 53.26, p < 0.0001, nz = 0.02; Fig. 3a), indicating that

conscious state has an effect on auditory processing, a main effect of tone-pair (F(35, 10150)

=42.35, p < 0.0001, nz = 0.13), reflecting tone-pair specific similarity magnitudes (Fig. 2b-e,
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Fig 3b-c), and a main effect of time window (F(1, 10150) = 1186.03, p < 0.0001, nz =0.10; Fig.
3 a-c), in line with the observed dynamic changes in time of the Tone Similarity Index. In
addition, interactions between state and time window (F(3, 10150) = 810.1, p < 0.0001, nz =
0.19), state and tone-pair (F(105, 10150) = 2.79, p < 0.0001, nz = 0.03), and time window and
tone-pair (F(35, 10150) = 2.31, p <0.0001, n2= 0.008) were observed. The reliable interactions
indicate that the relationship between neural responses to pure tones changes differently
between conscious state depending on the time window and tones frequency, with some
tone-pairs showing a significant change in similarity between states while others remaining

unchanged (Fig. 4).

To disentangle and characterize possible differences in auditory processing between time
windows, further analyses were conducted for early and late time windows, separately. In the
early time window, linear mixed-effects modelling analysis (Table 4) revealed a main effect of
state (F(3,5005) = 76.58, p < 0.0001, nz =0.04 ; Fig. 3b), a main effect of tone-pair (F(35, 5005)
=42.35, p <0.0001, nz = 0.23; Fig. 3) and an interaction between state and tone-pair (F(105,
5005) = 2.58, p < 0.0001, nz = 0.05). Planned comparisons uncovered that the Tone Similarity
Index was greater in wakefulness (r = 0.57 £ 0.17) in comparison to all sleep stages (N2: r =
0.47 £ 0.24, F(1,2485) =5.78, p = 0.016, nz =0.002; N3:r=0.22 £+ 0.25, F(1,2485) =119.2,p <
0.0001, 112: 0.05; REM: r =0.41 + 0.26, F(1,2485) = 21.1, p < 0.0001, n2= 0.008; Fig. 3b and
4a-c), indicating greater similarities between neural responses to tone-pairs in wakefulness
versus sleep. In addition, during sleep, Tone Similarity Index was greater in N2 in comparison
to N3 (F(1,2485) = 1253.9, p < 0.0001, n* = 0.34; Fig. 3b and 4) and REM (F(1,2502) = 36.3, p
<0.0001, nz =0.19; Fig. 3b and 4f), and greater in REM in comparison to N3 (F(1,2441) = 64.9,
p < 0.0001, nz = 0.03; Fig. 3b and 4e), indicating that neural similarities between tone-pairs
depended on sleep stage. To further examine how tone frequency interacts with the
conscious state we conducted planned comparisons between pairs of states and tone-pairs.
We found state and tone-pair interactions, between wakefulness and all sleep stages (N2:
F(35, 2485) = 2.16, p < 0.0001, n° = 0.03; N3 F(35, 2485) = 2.03, p = 0.0003, > = 0.03; REM:
F(35, 2485) = 1.92, p = 0.001, nz = 0.03; Fig.3b and 4a-c), reflecting significant differences in
tone-pairs similarities between states in low frequencies and no change in high frequencies

(Fig. 4a-c). In addition, within sleep there were interactions between N3 and N2 (F(35, 2485)
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=1.67, p = 0.008, n° = 0.03) and between N3 and REM (F(35, 2441) = 2.53, p < 0.0001, n° =
0.03), reflecting greater differences in tone-pairs similarities between states in high versus
low frequencies (Fig. 4d-f). These interactions suggest a stimulus-dependent modulation of
neural similarities between wakefulness and sleep as well as between sleep stages for the

early time window.

In the late time window, a different pattern emerged. Linear mixed-effects modelling analysis
(Table 5) revealed a main effect of state (F(3,5005) = 30.91, p < 0.0001, nz = 0.02; Fig. 3¢), a
main effect of tone-pair (F(35, 5005) = 15.72, p < 0.0001, nz =0.10; Fig. 3¢), and an interaction
between state and tone-pair (F(105, 5005) = 2.25, p < 0.0001, nz = 0.05; Fig. 3c and 4), similar
to the early time window. However, in contrast to the early time window, Tone Similarity
Index was greater in N2 (r = 0.50 £ 0.26) than in wakefulness (r =0.25 +0.21, F(1,2455) = 46.6,
p < 0.0001, n’ = 0.02; Fig. 3c), N3 (r = 0.30 + 0.29, F(1,2451) = 175.8, p < 0.0001, n’ = 0.07),
and REM sleep (r=0.28 £ 0.27, F(1,2462) = 66.5, p < 0.0001, n2= 0.03; Fig. 3c and 4), while no
other differences were evident between wakefulness and sleep nor between sleep stages (all
F's < 5.25, p > 0.05 ; Fig. 3c and 4). Moreover, an interaction between states and tone-pair
was observed between N2 and wakefulness (F(35, 2455) = 4.48, p < 0.0001, nz =0.02; Fig. 3c
and 4a), and N2 and N3 (F(35, 2451) = 3.67, p < 0.0001, nz = 0.05; Fig. 3c and 4d), reflecting
greater differences in tone-pairs similarities between states in high versus low frequencies
(Fig. 4a,d). In addition, state and tone-pair interactions between REM and wakefulness (F(35,
2439) = 2.94, p < 0.0001, n* = 0.04; Fig. 3c and 4c), and REM and N3 (F(35, 2435) = 2.76, p <
0.0001, nz = 0.04; Fig. 3c and 4f) were also found, indicating that even when the mean Tone
Similarity Index is largely the same between states (i.e., no main effects of state were found
between wakefulness, REM and N3), the relation between neural responses to tones is state-
dependent. These findings demonstrate a differential modulation of tone-pairs neural
similarities by conscious state and further support the hypothesis of stimulus-dependent

auditory processing across the sleep-wake cycle.
To further understand how auditory processing changes between the early and late time

windows, we compared the Tone Similarity Index between the two windows separately for

each conscious state. This analysis revealed opposite trajectories between wakefulness and
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NREM sleep. During wakefulness Tone Similarity Index was greater in the early compared with
the late time window (F(1,2485) = 130.38, p < 0.0001, nz= 0.05; Fig. 3), while in NREM sleep
Tone Similarity Index was greater in the late compared with the early time window, for both
N2 (F(1,2485) = 21.23, p < 0.0001, n* = 0.008; Fig. 3) and N3 sleep (F(1,2485) = 60.67, p <
0.0001, n2= 0.02; Fig. 3). No difference was found in REM sleep between early and late time
windows (F(1,2485) = 1.59, p = 0.21, nz <0.001; Fig. 3), although Fig. 3a shows some
fluctuations of similarity magnitude during REM sleep as well. In addition, an interaction
between time window and tone-pairs was observed in wakefulness (F(35, 2485) = 3.37, p <
0.0001, n°= 0.05) and REM sleep (F(35, 2485) = 1.96, p = 0.0007, > = 0.03), but not in NREM
sleep, suggesting within state stimuli-dependent modulation of neural similarities across
time. Overall, these findings provide additional evidence for uneven reshaping of tone-pairs
neural similarities between wakefulness and sleep, as well as between sleep stages along

processing time.
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Fig. 3: Similarity magnitude between auditory responses is state-, time- and stimulus-
dependent.

a) Auditory evoked responses similarity along the auditory processing time during
wakefulness (blue), N2 sleep (orange), N3 sleep (green) and REM sleep (red) demonstrating a
dynamic change in tone-pairs similarities across auditory processing time. b-c) Tone-pairs
similarity in the b) early and c) late time windows showing reorganisation of tone-pairs
similarities between states. Each dot represents a tone-pair; flat violin plots show the
distribution; boxplot mid-line denotes the median; and the rectangle denotes the
interquartile range (25th to the 75th percentiles). Horizontal black lines denote a main effect
of conscious state; grey lines denote an interaction between conscious state and tone-pair
(with no main effect of conscious state); black-grey lines denote a main effect of state and an
interaction between conscious state and tone-pair.
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Fig. 4: Auditory similarity magnitude differences between conscious states

a-c) Differences in Representational Similarity Matrices (RSMs) between wakefulness and
different sleep stages. Each matrix corresponds to the subtraction between pairs of similarity
matrices (Fig. 5). a) RSMs difference between wakefulness and N2 sleep in the early (left) and
late (right) time window. b) RSMs difference between wakefulness and N3 sleep in the early
(left) and late (right) time window. c) RSMs difference between wakefulness and REM sleep
in the early (left) and late (right) time window. d-f) Differences in Representational Similarity
Matrices (RSMs) between wakefulness and different sleep stages. d) RSMs difference
between N2 and N3 sleep in the early (left) and late (right) time window. e) RSMs difference
between N2 and REM sleep in the early (left) and late (right) time window. f) RSMs difference
between REM and N3 sleep in the early (left) and late (right) time window. Small black
rectangle within each cell represent significant difference between states for a specific tone-
pair, as obtained from planned comparisons following the computation of the linear mixed-
effect models of tables 4 and 5 (see Methods).

The patterns of auditory neural similarities are state-, time- and stimulus-dependent

Next, we investigated how the patterns of neural similarities between tone-pairs are
modulated across the sleep-wake cycle using Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008). Tone Similarity Index values for all pairwise combinations of the
nine tone frequencies were reorganised into Representational Similarity matrices (RSMs),

generated by arranging the tone frequencies along the rows and columns of the RSM. We
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obtained 9 by 9 matrices, in which each cell of the matrix indicates the neural similarity
between tone-pairs as measured by the Tone Similarity Index (Fig. 5 a-d). Using RSA, the RSMs
were compared between conscious states in each time window separately. First, we
examined the group-averaged RSMs (see methods). In the early time window, the RSM of
each state was correlated with the RSM of all other conscious states (W-N2 r = 0.90, W-N3 r
=0.80, W-REM r = 0.86, N2-N3 r = 0.72, N2-REM r = 0.96, N3-REM r = 0.65, all p’s < 0.05 FDR
corrected for multiple comparisons; Fig. 5a-d). Notably, the RSM of N3 had the lowest
correlation values with the RSMs of the other conscious states. In the late time windows,
similarly to the early time window, RSMs were correlated to each other between all pairs of
conscious states (W-N2 r =0.63, W-N3r =0.66, W-REM r =0.57, N2-N3 r = 0.78, N2-REM r =
0.93, N3-REM r = 0.74, all p’s < 0.05 FDR corrected for multiple comparisons; Fig. 5a-d). Yet,
unlike in the early time window, here wakefulness RSM showed lower correlation values with
all sleep stages. These findings imply a relatively preserved neural similarity patterns between

tone-pairs across the sleep wake-cycle.

To further investigate the contribution of each participant to the observed group similarity
patterns and to be able to generalize such results to other samples of participants, we
conducted an RSA by computing separate RSMs for each participant at each state (see
methods). In the early time window, all conscious states showed some degree of RSMs
similarity to each other, as in the group-averaged RSMs (W-N2: r = 0.35 £ 0.24, Cl = [0.24,
0.47]; W-N3:r =0.13 £ 0.19, Cl = [0.041, 0.22]; W-REM: r = 0.33 £ 0.26, Cl = [0.20, 0.45]; N2-
N3:r=0.14 £0.22, Cl = [0.44, 0. 253]; N2-REM: r = 0.34 £ 0.26, Cl = [0.22, 0.46]; N3-REM: r =
0.15 £ 0.19, Cl = [0.06, 0.24]; Fig. 5e). However, in the late time window, only the RSM of N2
correlated with all other states (W-N2: r = 0.08 + 0.15, Cl = [0.03, 0.144], N2-N3:r = 0.19 *
0.24, Cl = [0.08, 0.30], N2-REM: r = 0.24 + 0.26, Cl = [0.11, 0.36]), while the RSMs of
wakefulness, N3 and REM sleep exibited non-reliable correlations implying a different
organisation. (W-REM: r = 0.01 + 0.19, ClI = [-0.07, 0.11]; W-N3: r = 0.08 + 0.18, Cl = [-0.003,
0.17]; N3-REM: r = 0.12 £ 0.27, Cl = [-0.005, 0.25]; Fig. 5f). These findings show that although
wakefulness, N3 and REM sleep do not differ in Tone Similarity Index values (Fig. 3c), they
present different similarity pattern (Fig. 5), as alluded by the state-tone interactions between
these states in the similarity magnitude analysis (Fig. 3c). In addition, comparison of RSMs

between early and late time windows in each state revealed highest correlations in N2 (r =
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0.40 £ 0.25, Cl = [0.29, 0.50]), then in REM (r = 0.26 + 0.25, Cl = [0.16, 0.36]), wakefulness (r =
0.19 £ 0.22 Cl = [0.10, 0.28]), and lastly during N3 sleep (r = 0.13 + 0.19, Cl = [0.05, 0.21]),
highlighting greater differences in similarity pattern across time for N3 sleep and more
preserved pattern in N2 sleep. To further illustrate the relationships between conscious
states, time windows, and tone-pairs we applied hierarchical clustering analysis.
Dendrograms from this analysis provide an intuitive representation of the Tone Similarity
Index magnitude (Fig. 6a-b) and patterns (Fig. 6¢-1). For example, the dendrograms clearly
demonstrate that N3 sleep in early time window is the most dissimilar from the other states
in terms of neural similarity magnitude (Fig. 6a) and pattern (Fig. 6¢), suggesting that slow
wave sleep is characterised by a markedly different sensory organisation from all other states.
In addition, it is also evident that N2 and REM sleep maintain a high resemblance in similarity
patterns in in both time windows (Fig. 6¢c-d), despite their dissimilarity in magnitude,

particularly for the late time window (Fig. 6b).

15


https://doi.org/10.1101/2021.02.16.431383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431383; this version posted February 17, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Late time window 0s © Early time window
U = Awake
[0} 1.0 —n2 sleep
O'GE == N3 sleep
0 5; s REM sleep .
7o
'0'4.':—3 . 0 y
.0_36 -~ .:; *
2 .
-0.2 S . i .
.01 0.5 ., % ‘
T1T2T3T4T5T6T7 T8 T9 T1T2T3T4T5T6T7T8T9 - N . 2 ;
= . . .
N2 sleep g g i K Edl
b Early time window Late time window a : s .
07 ® ' ) N
[ 5 o ! .
[ 062 O % > - 5
£ < s . .
o.5%~ 0.0 el S TNl s B
045 . .
£ .
-0.3M :
o) .
-0 2§ .
-0.1 * * * * * *

T1T2T3T4T5T6T7 T8 T9 T1T2T3T4A4T5T6T7 T8 T9 W-N2 W-N3 W-R N2-R N2-N3 N3-R

N3 sleep
c Early time window Late time window 07 f Late time window
T1 : P w— Awake
T2 0.6% 1 0 — mg s:eep
T3 | . 0 SE‘ : REI\s/IesT:ep
T4 - l. 3 . "N
5 048 2
T6 E :
o = 5 ,
e 0.2 g ; * .
T — e =01 © 05
T1T2T3T4T5T6T7 T8 T9 T1T2T3T4T5T6T7 T8 T9 -
c
] )
REM sleep = 5
d Early time window Late time window @ )
0.7 () [
5 & -
\ 068 & s
£ !
o.s,g 0.0 S B
= H
045 :
E .
-0.30 °
= o :
[ | F025 .
-0.1 * * *
T1T2T3T4T5T6T7 T8 T9 T1T2T3T4T5T6T7 T8 T9 W-N2 W-N3 W-R N2-R N2-N3 N3-R

Fig. 5: Similarity pattern between auditory responses is state-, time- and stimulus-
dependent

Representational Similarity Matrices (RSM) averaged across participants during a)
wakefulness (blue outline), b) N2 sleep (yellow outline), c) N3 sleep (green outline) and d)
REM sleep (red outline), averaged across the early time window (left), and late time window
(right). E-f) Individual RSMs correlations between conscious states in the e) early time
window, where some degree of similarity was found between all conscious states, and f) late
time window, where some degree of similarities was found only between N2 and the other
conscious states. Each dot represents a participant; flat violin plots show the distribution; the
boxplot mid-line denotes the median; the rectangle denotes the interquartile range (25th to
the 75th percentiles). * denotes a reliable difference from zero.
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Fig. 6: Hierarchical clustering analysis for Similarity magnitude and pattern reveals
reshaping of the auditory map

a-d) Hierarchical clustering analysis between conscious states in the early (left) and late
(right) time windows. a-b) similarity magnitude across tone and c-d) similarity pattern across
tones. e-f) Hierarchical clustering analysis for similarity pattern between tones in wakefulness
(blue palette), g-h) N2 sleep (yellow palette), i-j) N3 sleep (green palette) and k-1) REM sleep
(red palette). T1 =650Hz, T2 =845Hz, T3 =1098Hz, T4 =1428Hz, T5 =1856Hz, T6 =2413Hz, T7
=3137Hz, T8 =4079Hz and T9 =5302Hz.

Probing the neural auditory similarities to auditory physical, physiological and perceptual
models.

Last, we tested how well the neural similarity patterns in wakefulness, NREM and REM sleep
could be explained by competing conceptual models of physical, physiological and perceptual
auditory organizations. The first model is the Frequency Difference Model, which is based on
the physical distance in Hertz between tone frequencies. In this model, the relations between
tone-pairs were calculated by subtracting the lower tone frequency from the higher tone
frequency (Fig. 7a). The second model is the Greenwood Model, which was developed based
on studies mathematically defining the links between the anatomic location of the inner ear
hair cells in the cochlea and the tone frequencies at which they are stimulated (Greenwood,
1990). Here, the relations between tone-pairs was calculated by applying the Greenwood
function, which estimates the distance in millimetres along the basilar membrane between
locations that are maximally excited by each frequency (Fig. 7b, See methods), representing
“physiological distances”. The Third model is the Mel Model, obtained from the Mel scale,
which indicates how pitch perception evolves as a function of sound frequencies in a non-
linear manner (Micheyl et al., 2012; Moore, 2003; Stevens et al., 1937). In the perceptual
model, the relations between tone-pairs were calculated by dividing the Mel value
corresponding to the higher tone frequency by Mel value corresponding to the lower tone
frequency (Fig. 7c, See methods). For each of the three model, the tone-pairs relations were
arranged into 9 by 9 matrices as the RSMs discussed in the previous section. To evaluate each
model’s capacity to predict the observed neural relation between tone-pairs, we transformed
the RSMs into Representational Dissimilarity matrices (RDMs = 1- RSMs) and estimated, for
each participant in each conscious state and time window, the correlation between the RDMs
and the model matrices. We then fitted the correlation values with a linear mixed-effects

model, where model (‘Difference’, 'Greenwood’, ‘Mel’), state (“Wakefulness’, ‘N2’, ‘N3’,
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‘REM’) and time window (‘Early’, ‘Late’) appeared as fixed effects (Table 6). We found a main
effect of model (F(2,811) = 14.7, p < 0.0001, nz =0.03), a main effect of state (F(3,811) = 5.44,
p = 0.003, >=0.02) and a main effect of time window (F(1,811) = 49.84, p < 0.0001, >= 0.06),
the latter reflecting higher model fits for the early time window (Fig. 7). In addition, there
were interactions between model and state (F(6,811) =5.53, p < 0.0001, n2= 0.04), model and
time window (F(2,811) = 7.76, p = 0.0005, nz = 0.02) and state and time window (F(3,811) =
47.03, p < 0.0001, n°= 0.15).

Planned comparisons revealed that in the early time window across all states the Mel model
had a higher predictive value than the Greenwood (t(811) = 4.37, p < 0.0001. Cohen’s d =
0.19; Fig. 7) and Difference (t(811) = 6.52, p < 0.0001. Cohen’s d = 0.39; Fig. 7e-g) models, and
that the Greenwood model had a higher predictive value than the Difference model (t(811) =
5.28, p < 0.0001. Cohen’s d = 0.20; Fig. 7e-g). In the late time window, the Mel model had a
higher predictive value than the Difference model (t(811) = 3.07, p = 0.006. Cohen’s d = 0.185;
Fig. 7h-j) but no reliable difference was found between the Mel and Greenwood models
(t(811) = 2.32, p = 0.054. Cohen’s d = 0.10; Fig. 7h-j), nor between the Difference and
Greenwood models (t(811) = 2.20, p = 0.072, Cohen’s d = 0.08; Fig. 7h-j). These findings
suggest that not only in wakefulness but also during sleep, tone-pairs neural similarities
organisation is better explained by the perceived similarities between tone frequencies than

by the tones difference in Hz or by the ear anatomo-physiological organization.

Nonetheless, these results do not imply that the Models fit the auditory neural
representations to the same extent in all states. Indeed, in the early time window the three
models had lower predictive value for N3 in comparison to all other states (all t's > 3.55, all
p’s < 0.0023), in line with the similarity magnitude (Fig. 3) and pattern (Fig. 5) results,
signalling distinctive neural auditory frequency organisation in N3. Furthermore, in the late
time window, the Mel model had a higher predictive value for N2 in comparison to all other
states (all t's > 2.67, all p < 0.039, Cohen’s d > 0.25), and the Greenwood model had a higher
predictive value for N2 in comparison to wakefulness (t(811) = 3.87, p = 0.007, Cohen’s d =
0.33) and N3 (t(811) = 3.68, p = 0.001, Cohen’s d = 0.26), but not in relation to REM sleep
(t(811)=2.47, p =0.065, Cohen’s d =0.21). No reliable differences were found between states
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for the Difference model in the late time window. Altogether, these findings indicate that the
general rules based on perceptual similarities governing the structure of the tone-pairs neural
similarity organisation during wakefulness, are also applicable to sleep, yet in a conscious-

state sleep stage-dependent manner.
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Fig. 7: Probing the auditory neural similarities to auditory perceptual, physiological and
physical models.

a) The Frequency Difference Model reflecting the physical distance in Hz between stimuli. The
value in each cell was calculated by subtracting the lower tone frequency from the higher
tone frequency. b) The Greenwood Model, linking the anatomic location of the inner ear hair
cells to the tone frequencies at which they are stimulated. The value in each cell was
calculated by means of the Greenwood function and corresponds to the distance in
millimetres along the basilar membrane between locations maximally excited by each tone
frequency. c) The Mel Model, which is based on the Mel Scale relates the perceived similarity
in pitch to frequency similarity while accounting for the nonlinearity of humans’ perceptual
discrimination ability. Values in each cell were calculated by dividing the higher Mel value by
the lower Mel value obtained for each tone-pair. Spearman’s correlations between neural
similarity patterns (representation dissimilarity matrices, RDM) and auditory models show
that the Mel model has higher predictive value in all conscious states, except for N3 sleep, in
both e-g) the early time window and h-j) the late time window.
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Discussion

In this study, we sought to examine how conscious states shape neural sensory mapping of
the auditory system in humans. We systematically examined brain activity in response to a
range of pure tones during wakefulness, NREM and REM sleep and revealed that the tone-
pairs neural similarities are dynamically changing in a state-, time- and stimulus-dependent
manner. Specifically, the neural similarity between pure tones differed between wakefulness
and sleep, as well as between sleep stages in both early and late auditory processing windows,
revealing different hierarchical relationships between states across time. Furthermore, tone-
pairs neural similarities were modulated by conscious state as a function of tone frequency,
with some tones-pairs showing a change in similarity between states while others remain
unchanged. In accordance with our hypothesis, these findings demonstrate convergent

evidence of functional auditory reorganisation across the sleep-wake cycle.

Over the last century, the anatomical and functional organization of sensory systems have
been vastly studied in awake and sedated animal models (Hudspeth and Logothetis, 2000;
Kaas, 2008). For many years, it has been assumed that the sensory maps in the brain are
resistant to changes in conscious states, at least at the level of primary sensory cortices. This
assumption turned out to be inaccurate (Reimann and Niendorf, 2020), and raised the
guestion of the stability and flexibility of sensory maps between different states of
consciousness. In this study, we investigated how the functional organisation of the auditory
frequency map is shaped across the sleep-wake cycle and revealed that it is highly sensitive
to changes in conscious state. These findings are in line with a series of studies clearly showing
that sensory maps are flexible and dynamic in wakefulness. Sensory remapping can occur
following changes in context (Hayman et al., 2003), attention (Berman and Colby, 2009; Burr
and Morrone, 2011; Fritz et al., 2003; Rolfs and Szinte, 2016), or learning (Banerjee et al.,
2020; Bostock et al., 1991; Leutgeb et al., 2005), and it can be expressed in different forms,
such as global, partial or conditional remapping (Fyhn et al., 2007; Jeffery, 2011; Rennoé-Costa
et al., 2010), in a range of modalities (Geva-Sagiv et al., 2016; Heed et al., 2015; Lee et al.,
2003; Rolfs and Szinte, 2016). In the auditory modality, there are numerous examples for
dynamic adjustments of neural responses to changes in context, in wakefulness (Blake and
Merzenich, 2002; Fritz et al., 2003; Garrido et al., 2013; Regev et al., 2020), and under

anaesthesia (Gourévitch et al., 2009). In addition, there is evidence for reorganisation of
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tonotopic maps following learning (Gonzalez-Lima and Agudo, 1990; Scheich, 1991),
attention to a specific tone (Dick et al., 2017), or auditory deprivation and rehabilitation (Thai-

Van et al., 2010).

Here, we contribute to these findings by uncovering commonalities and differences in neural
auditory frequency organisation between wakefulness and different sleep stages. First, the
neural auditory frequency map assessed by means of neural similarities between tone-pairs
changed along auditory processing time and between conscious states. Specifically, Tone
Similarity Index (see methods), decreased in wakefulness, increased during NREM sleep and
remained on average unchanged during REM sleep across the processing time. Moreover,
within each processing time window, a different set of hierarchical relationships emerged
between states. During the early processing window, Tone Similarity Index magnitude was
higher in wakefulness in comparison to all sleep stages, and within sleep, it was highest in N2,
then in REM and lastly N3 sleep. This hierarchy was altered in the late processing window,
where Tone Similarity Index magnitude in N2 was higher than in all other states, and did not
differ between wakefulness, N3 and REM sleep. Together, these findings reveal a dynamic
reorganisation of the auditory neural frequency map across the sleep-wake cycle (Fig. 3).
Second, the neural auditory frequency map structure as assessed by means of RSA, showed
some degree of pattern preservation across all states, together with clear differences
between them. Specifically, interactions between tones-pairs and states were observed
between all states, with the exception of N2 and REM. Indeed, in both time windows, N2 and
REM sleep presented a relatively preserved auditory frequency map organisation, despite the
observed changes in the mean Tone Similarity Index magnitude between the two states. In
other words, tone-pairs that are relatively similar in N2 are also relatively similar in REM sleep
and vice versa, irrespective of Tone Similarity Index magnitudes. The opposite pattern -
reorganisation of map assembly while maintaining magnitudes - was evident between
wakefulness, N3 and REM sleep in the late processing window. Collectively, these findings
uncover different forms of reorganisation across the sleep-wake cycle, including modulation
of Tone Similarity Index magnitudes without a change in pattern and a modulation of Tone

Similarity Index pattern without a change in magnitudes.
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The observed functional reorganisation across the sleep-wake cycle dovetails nicely with
several studies showing that the degree of brain modulation in sleep is sensitive to the
properties of the stimulus (Castro-alamancos, 2004; Issa and Wang, 2011; Lustenberger et al.,
2018; Portas et al., 2000; Sharon and Nir, 2018; Tlumak et al., 2012). For example, stimulus
presentation rate has a bidirectional effect on steady-state evoked responses, where low-
frequency stimulation elicits stronger responses during sleep, while high-frequency
stimulation elicits stronger activation during wakefulness (Castro-alamancos, 2004;
Lustenberger et al., 2018; Sharon and Nir, 2018; Tlumak et al., 2012). In addition, stimulus
intensity could impact neural activity in an unequal manner, such that firing rate to quiet but
not loud sounds is reduced during sleep (Issa and Wang, 2011), and the change in amplitude
of steady state evoked potentials with increased tone intensity is smaller in sleep than in
wakefulness (Lindens et al., 1985). Also, stimulus types are weighted differently by conscious
states, with sleep showing selective enhancement of BOLD responses over wakefulness for
one’s own name in comparison to beeps (Portas et al., 2000), and divergent oscillatory
responses for familiar versus unfamiliar stimuli in wakefulness and different sleep stages
(Blume et al., 2017, 2018). In addition, at the behavioural level, increased arousal probability
from sleep was found for one’s own infant cry (Formby, 1967), as well as for low (400Hz and
520Hz) versus high (3000Hz) tone frequency (Bruck et al., 2009). These stimulus-dependent
responses can potentially explain some of the discrepancies between sleep studies showing
enhanced (Colrain and Campbell, 2007; Hall and Borbely, 1970; Nicholas et al., 2006; Yang
and Wu, 2007), reduced (Czisch et al., 2002, 2004; Murata and Kameda, 1963) or preserved
activity between sleep and wakefulness (Edeline et al., 2001; Issa and Wang, 2008; Nir et al.,
2015; Peia et al., 1999). Furthermore, while responses across a neural population may show
one pattern, a detailed investigation of single neurons has revealed heterogenous responses
and different degrees of attenuation (Edeline et al., 2001; Issa and Wang, 2008; Nir et al.,
2015; Pefia et al., 1999; Sela et al., 2016, 2020). Specific properties at the neuronal level such
as latency, selectivity or receptive field size (Edeline et al., 2001; Sela et al., 2020) may explain
part of the patterns that are seen at the cortical level. The evidence gathered at the neuronal,
population and cortical levels call for a comprehensive examination of a range of stimulus
properties in order to unveil the interplay between conscious state and sensory mapping.

Here, we directly address this need by systematically characterizing neural dynamics between
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a range of tone frequencies, and uncover diverse stimulus-state interactions between

wakefulness and sleep and between sleep stages.

Auditory theory has advanced in many fronts using physical, physiological, neural and
psychophysics evidence to build an explanatory corpus of how animals and humans hear (de
Boer, 1980, 1984, 1991; Moore, 2003; Schnupp et al., 2011; Wever, 1949). Among the many
models that can be applied to characterise the structure of the neural auditory frequency
map in each conscious state (Meddis et al., 2010), we applied a set of models based on the
perceptual (Micheyl et al.,, 2012; Moore, 2003; Stevens et al.,, 1937), physiological
(Greenwood, 1990), and physical relation between tones frequencies. We found that the
neural auditory frequency map structure was better described by the perceptual relation
between tones which reflect pitch discriminability than by differences between tones’
physical properties, not only in wakefulness but also in N2 and REM sleep. It is well accepted
that in wakefulness pitch perception is based more on the neural representation of sound at
the output of the auditory periphery than on the physical properties of sound as it enters the
ear (Moore, 2003; Yost, 2009). During sleep, modulation of auditory responses is evident at
the cortical (Blume et al., 2017, 2018; Czisch et al., 2002; Dang-Vu et al., 2010; Portas et al.,
2000; Schabus et al., 2012; Strauss et al., 2015; Wilf et al., 2016), and sub-cortical levels of the
auditory pathway including the thalamus (Edeline et al., 2000; Hall and Borbely, 1970), the
inferior colliculus (Morales-cobas et al., 1995), the lateral superior olive (Pedemonte et al.,
1994), and the cochlea (Froehlich et al., 1993; Irvine and Webster, 1972; Velluti et al., 1989).
Yet, despite the vast modulation of auditory processing in sleep, we show here that the neural
auditory frequency map preserves an organisation that follows perceptual similarities during
both NREM and REM sleep, with the exception of N3. These findings imply some level of

functional auditory organisation stability between conscious states.

In addition, the comparison to auditory models also uncovered the flexibility of the functional
auditory organisation between conscious states. In details, during the early processing
window, all three models inadequately described the auditory frequency map organisation in
N3 in comparison to the other sleep stages and wakefulness (Fig. 7d). These findings are in
accordance with our results from the similarity magnitude and pattern analyses, which

pointed towards a markedly different sensory organization in deep sleep: N3 displayed both
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lower Tone Similarity Index magnitudes (Fig. 3 and 6) and a more dissimilar pattern of Tone
Similarity Index in comparison to all other states (Fig. 5 and 6). The altered auditory map
structure presented in N3 might be explained by findings from whole-brain fMRI studies
showing a global decrease in effective interactions and breakdown of inter-modular
connectivity during deep sleep (Horovitz et al., 2009; Jobst et al., 2017; Tagliazucchi et al.,
2013; Tarun et al., 2021). Furthermore, the distinct auditory neural organisation during N3,
may help to explain the decline in sensory and cognitive processes that is typically found
during deep sleep (Andrillon and Kouider, 2020; Andrillon et al., 2016, 2017; Hennevin et al.,
2007; Legendre et al., 2019; Peigneux et al., 2001). In the late processing window, a different
pattern was observed: the auditory frequency map organisation was better explained by the
perceptual and physiological models in N2, in comparison to wakefulness and other sleep
stages. A possible interpretation for the increased predictive value as well as for the increased
similarity magnitude in N2 in the late processing window might be related to delayed
processing occurring during the transition from wakefulness to sleep (Atienza et al., 2001;
Bastuji and Garcia-Larrea, 1999; Canales-Johnson et al., 2019; Hennevin et al., 2007; Kouider
et al.,, 2014; Noreika et al., 2020; Strauss and Dehaene, 2019; Strauss et al., 2015; Velluti,
1997). However, it has to be noted that our results seem to point towards a prolonged sensory
processing (Fig. 3) in addition to delayed one in N2 (Fig. 2), and in order to disentangle
between the mechanism of delayed and prolonged sensory processing in sleep further studies

are needed.

Although N2 and N3 seem to be characterized by different auditory map organizations, we
did not observe any differences in ERPs between the two states, unlike other studies showing
increased ERP amplitude with sleep depth (Nielsen-Bohlman et al., 1991; Picton et al., 2003;
Winter et al., 1995; Yang and Wu, 2007). This discrepancy may be driven by features that are
specific to each sleep stage such as K-complexes and spindles during N2 and slow waves
during N3 (lber et al., 2007) and by their non-uninform distribution across the cortical surface
(Geva-Sagiv and Nir, 2019; Siclari and Tononi, 2017). The magnitude of these sleep markers is
much larger than that of the ERP’s and can strongly influence brain responses to external
stimuli (Antony and Paller, 2017; Czisch et al., 2009; Dang-vu et al., 2011; Lustenberger et al.,
2018; Schabus et al., 2012). Furthermore, this influence could even have a larger impact for

underpowered studies. Here, stimuli were presented across a full-night of sleep accumulating
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thousands of repetitions per state (Table 1). The large number of trials enables averaging out
ongoing brain activity and minimizing the influence of sleep stage specific features on the
evoked responses while lending statistical strength to each comparison. Thus, if indeed
previously observed differences between N2 and N3 are due to ongoing brain activity, the
large number of stimuli employed here might explain the lack of differences in ERPs between

N2 and N3 sleep in this study.

How sleep stages differ between them and from the wake state has been addressed in
spontaneous brain activity (Brodbeck et al., 2012; Iber et al., 2007; Jagannathan et al., 2018;
Jobst et al., 2017; Nir et al., 2015; Tagliazucchi et al., 2013), sensory processing (Andrillon and
Kouider, 2020; Hennevin et al., 2007; Velluti, 1997), and cognitive dynamics (Andrillon et al.,
2016, 2017, Arzi et al., 2012, 2014; Koroma et al., 2020; Strauss et al., 2015). The relationship
between the degree of processing in different conscious states and the extent of sensory
remapping require further investigation under the umbrella of cognitive neuroscience of
unconsciousness (Chennu and Bekinschtein, 2012) and a solid theoretically and
methodologically neuroscience framework (Frégnac and Bathellier, 2015; Guest and Martin,
2020; Kriegeskorte and Douglas, 2018; Lopes da Silva, 2013; Schreiner and Winer, 2007). The
development of maps in neuroscience enhances the understanding of normal neural
organization, its modification by pathology, and modulations by experience and context.
These maps, like those charted here, serve the computational principles that govern sensory
processing and the generation of perception (Schreiner and Winer, 2007) even in unconscious
states (Goupil and Bekinschtein, 2012). Sleep plays, as a theoretical tool and experimental
model, a key role in further the understanding of the neural systems and the neural
representation of stimuli in perception and cognition (Andrillon and Kouider, 2020; Hennevin

et al., 2007; Peigneux et al., 2001; Velluti, 1997).

Finally, we acknowledge several limitations of the study. Some of the findings could describe
general aspects of auditory processing in different states of consciousness, but it would be
naive to take the results prima facie as generalizable. First, the modulation of tone-pairs
neural similarities between conscious states were observed in the specific context of the
experimental design used here. The auditory modality exhibits remarkable context-

dependencies such as behavioural settings, attentional level and task-specific information,
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which can greatly modulate neural activity in response to sounds (Bekinschtein et al., 2009;
Kuchibhotla and Bathellier, 2018; Nelken, 2020). Furthermore, context-dependent auditory
processing is observed even in responses to changes in the range of pure tones (Garrido et
al., 2013; Regev et al., 2020; Stilp and Assgari, 2019). Therefore, it is likely that the results
reported here were shaped by parameters such as the range of tone frequencies, the adaptor
tone frequency, and possibly by different adaptation dynamics in wakefulness and sleep.
Thus, the observed auditory neural similarity modulations should not be taken as absolute
values but as influenced by the specifics of the experimental design. Second, to maximize the
number of trials, stimuli were presented at a rate of ~“2Hz, which overlapped with sleep
specific features. Slow waves which are in the range of 0.5-4Hz, and K-complexes which lasts
0.5-2 seconds, fall in the same frequency range as stimuli presentation rate. Therefore, even
if advantageous for trials number, this high presentation rate prevents a clear separation of
the contribution of specific features of each sleep stage to the auditory responses, and makes
it difficult to separate the influence of slow waves, spindles and K-complexes on the neural
similarity between tones. Third, the EEG resolution provided the required temporal sensitivity
to capture the dynamical changes along processing time but limited the ability to infer which
brain areas are involved in this functional reorganization. The precise auditory pathway and
the underlying mechanism of sensory remapping across the sleep-wake remain to be revealed

by future studies.

To conclude, sleep takes centre stage as a model to understand the mechanisms of neural
representations of perception and functional reorganization of the brain between conscious
states (Andrillon and Kouider, 2020; Mensen et al., 2019). Here, by recordings whole-brain
neural activity using high-density EEG during a full night’s sleep, we capture different aspects
of sensory processing across the sleep-wake cycle, and provide converging evidence for state-
dependent functional reorganization. Precisely how our conscious state shapes auditory
processing depends on the relationship between the particular characteristics of the stimulus
and neural processes. These findings stress the importance of a systematic investigation of
different axes in the sensory map as well as a range of contexts to uncover the rules by which

sleep reshapes sensory processing.
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Methods

Full night sleep EEG experiment

Participants

Thirty-eight participants (20 women; age = 25.1 + 4.96 years mean + standard deviation [SD])
were recruited to the study and gave written informed consent to procedures approved by
the University of Cambridge Research Ethics Committee, in accordance with the Declaration
of Helsinki. Participants received monetary compensation for taking part in the experiment.
Inclusion criteria were normal hearing, and no history of neurological, psychiatric or sleep
disorder. Out of the 38 participants, one participant was excluded due to a technical problem
with earphones and another participant due to insufficient sleep time. Data from a total of

36 participants was therefore retained for the analysis.

Stimuli

Ten pure tones synthesized in Matlab (2012b) were presented binaurally using Etymotics
earphones, at a supra-threshold volume comfortable to the participant. Tone frequencies
were 30% apart spanning a range from 500Hz to 5302Hz (500, 650, 845, 1098, 1428, 1856,
2413, 3137, 4079 and 5302 Hz). Two additional tone frequencies (6893Hz and 8961Hz) were
presented only to the first five participants and were therefore excluded from the analysis.
Each tone was played for 100 ms, with a 10 ms fade-in/fade-out of the sound, and Inter-trial
interval (ITl) of ~500 ms, jittered between 480 and 520 ms, and against a pink noise

background (1/f noise) which is known to improve sleep stability (Zhou et al., 2012).

Auditory paradigm

Participants listened to a pattern of auditory stimuli including pairs of pure tones. The first
tone in every pair was an ‘Adaptor’ (A) tone of 500Hz and was presented in order to “tune”
the brain to a common baseline tone, and create a common context for all tones (Sankaran
et al., 2018). The second tone in a pair (T) was one of the 10 pure tones mentioned above.
Each A-T pair was repeated for 10 times and the ten repetitions created a mini-block. 10 mini-
blocks presented in a random order created a block (Fig. 1). In each mini-block one tone in
the sequence was omitted. A wakefulness session was composed of 24 blocks, accumulating

in 2400 “A” trials and 216 “T” trials for each tone frequency. During the wakefulness sessions,
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at the end of every block (~2.5 min), the experimenter asked the participant to verbally rate
a statement from the Amsterdam Resting-State Questionnaire (Diaz et al., 2013). This task
was designed to maximize the likelihood that participants would remain awake throughout
the session. During the sleep session, auditory stimuli were presented while participants had
no task to perform and the number of blocks and trials depended on each individual’s sleep
duration (Table 1 and 2).

Table 1: Number of trials averaged across participants

S

T650 T845 T1098 T1428 T1856 T2413 T3137 T4079 T5302 Total
217.69+ | 21756+ | 21739+ | 217.89+ | 217.64+ | 21758+ | 217.44+ | 21736+ | 217.72+ | 1958.28 +
Awake 9.88 10.32 9.43 10.30 9.96 9.37 9.14 9.71 9.59 86.73

N2 627.72+ | 633.44+ | 626.83+ | 624.64+ | 62181+ 614.0 + 602.81+ | 616.44+ | 627.06+ | 5594.75*

sleep 200.78 200.57 201.80 195.21 194.78 198.48 191.23 203.21 206.97 1776.20
N3 16731+ | 16194+ | 160.64+ | 155.03+ | 158.25+ | 155.75+ | 151.03 + 1575+ 158.72+ | 1426.17

sleep 78.03 73.60 74.08 67.44 69.20 69.22 70.67 73.47 74.20 638.79
REM 2255+ 226.19+ | 22894+ | 221.17+ | 22458+ | 229.33+ | 226.06+ | 220.75+ | 223.08+ | 2025.61+

sleep 115.68 113.69 116.11 106.59 110.17 119.29 113.86 112.61 112.62 1013.86

Averaged * SD number of trials across participants for each tone in wakefulness and sleep.

Experimental procedure

Participants arrived at the EEG lab at a pre-selected time based on their usual sleep schedule
(~21:00). After the experimental procedure was explained and written informed consent was
obtained, participants were seated in a shielded chamber of the EEG room and a 128-channel
EEG net was applied on their head (Electrical Geodesics Inc system). The experimental
procedure included an auditory paradigm presented during a 1-hour pre-sleep wakefulness
session, and full-night sleep session (Table 2). During the wakefulness session, participants
sat on a chair in a dim and soundproof room, and were instructed to keep their eyes closed
while the auditory stimuli were presented. In the following sleep session, the auditory
paradigm was initiated several minutes after the lights were turned off, when participants

were comfortably lying in bed, and continued until they woke up in the morning.

EEG acquisition and pre-processing

The EEG signal was recorded with a 128-channel Sensors using a GES 300 Electrical Geodesic
amplifier, at a sampling rate of 1000 Hz (Electrical Geodesics Inc system/Philip Neuro).
Conductive gel was applied to each electrode to ensure that the impedance between the

scalp and electrodes was kept below 70 kQ. Peripheral electrodes on neck, cheeks, and
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forehead were excluded from the analysis due to potential high movement-related noise,
retaining 92 electrodes over the scalp surface (Chennu et al., 2014). EEG data was band-pass
filtered between 0.5 and 40Hz, segmented in epochs of 550ms (from -100ms pre-stimulus to
450ms post-stimulus), and down-sampled to 250Hz. Next, noisy electrodes were removed if
the average signal was above or below 3.5 SD. Eye movements and noise artefacts were
removed by means of an Independent Component Analysis (Delorme and Makeig, 2004).
Epochs containing voltage fluctuations exceeding £150 pV in wakefulness or £300 pV in sleep
were also excluded. A liberal threshold was set in sleep to avoid epoch exclusion due to slow
waves and K-complexes. Then, the data was re-referenced to the common average of the
signal and bad electrodes were interpolated. EEGLAB MATLAB toolbox (version 9.2) and

Python (version 3.6) were used for data pre-processing.

Sleep scoring

Two independent experienced sleep examiners blind to stimuli onset/offset times, scored
offline 30 s-long windows of EEG data according to established guidelines (lber et al., 2007).
The two scoring lists were subsequently compared and controversial epochs were inspected
again and discussed until an agreement was reached. EEG and EOG signals were first re-
referenced to mastoids and then EEG signals were bandpass filtered between 0.1 and 45Hz,
EOG between 0.2 and 5Hz. EMG signals were obtained from local derivation and were high-

pass filtered above 20 Hz.

Table 2: Sleep architecture

Awake N1lsleep | N2sleep N3 sleep REM sleep | Total sleep time | Time in bed
13746+ | 26.42+ | 16135+ 56.42 + 51.43 + 295.61 + 433.07 +

52.49 19.41 48.76 25.36 25.26 68.87 61.92
Averaged * SD time (in minutes) spent in each sleep stage

Analysis

Auditory evoked potentials analysis

ERPs were computed as the average across five centro-frontal electrodes (E6, E13, E112 E7,
E106 in 128-channel EGI net) selected based on (Duncan et al., 2009), for each participant,

tone frequency and conscious state. The number of trials differ between sleep stages, in
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accordance with each participant’s individual sleep architecture (Table 1). Thus, to avoid
biases in the results, we equalized the number of trials by randomly sampling for each state
and tone as many trials as the ones present in the condition with the smallest number of
trials. The procedure was repeated for each participant 1000 times, and then the EEG signal
was averaged across the 1000 random samples. Differences in ERPs between conscious states
were first investigated by means of a cluster permutation analysis. T-tests conducted
between all possible pairs of states (i.e., wakefulness-N2, wakefulness-N3, wakefulness-REM,
N2-N3, N2-REM, N3-REM) identified 11 significant clusters (FDR corrected for multiple
comparisons). Then, to further characterise the relation between tone properties and
conscious state, a linear mixed-effects model analysis was applied to each cluster, where tone
frequency and a state were modelled as fixed effects, while the variable participant was
treated as a random effect (i.e., random intercept). Given that the assumptions of normality
and homoskedasticity of the residuals were violated, the variances were explicitly modelled,
by mean of the varindent function provided of the nlme package in R. This made residuals
normal (Anderson-Darling’s A < 1.04, p > 0.05 Bonferroni corrected), and homoscedastic
(Levene’s F < 1.175, p > 0.186) for all models. Nonparametric dependent samples effect sizes
were calculated as Wsr = Z/sqrt(n) (Rosenthal et al., 1994), where Z is the Wilcoxon signed-

rank statistic and n is the sample size.

Similarity magnitude analysis

To estimate the similarity between brain activity in response to different tone frequencies in
each of the conscious states, we calculated a similarity measure that we termed ‘Tone
similarity Index’. Specifically, at each state, for each tone and each electrode, we computed
an ERP as the average of all the available trials weighted by their standard deviation (SD). This
normalization was done in order to account for the difference in number of trials for different
tones, subjects, and states. The neural similarity between each of the 36 tone-pairs was
estimated by Spearman's coefficient between normalized ERPs in each electrode. The
obtained correlation coefficients were then averaged across all 92 included electrodes,
generating a Tone Similarity Index per tone-pair, state and participant. To obtain normally-
distributed data and control for multicollinearity, Tone similarity index values were
transformed by means of a Fisher z-transformation (i.e., an inverse hyperbolic tangent

function), and centred to the grand mean. Next, the Tone Similarity Index across all tone-pairs
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and participants was computed for a rolling time window of 60 ms (progressively shifted of
one time point (=4ms) at each step), which allowed us to obtained a temporally dynamic
representation of the Tone Similarity Index values for each state (Fig. 3a). This analysis
showed that the Tone similarity index is fluctuating along the auditory processing time. Using
cluster permutation analysis (p < 0.01, threshold-free cluster enhancement), we identified
two main time windows characterised by differences in Tone Similarity Index between states
were observed: an early (12-236 ms) and a late processing time window (256-448 ms). Thus,
to avoid masking of one processing stage by another, all the subsequent analyses were

conducted for the early and late processing time windows separately.

Next, a linear mixed-effects model analysis was applied to evaluate whether the magnitude
of Tone Similarity Index in each participant (36) was influenced by tone-pair (36), conscious
state (4), and time window (2) using R nlme package (Version 1.2.5033). We considered
several different possible ways of modelling the Tone Similarity Index and compared the
evaluated models by means of a Likelihood Ratio test (Table 3) following a protocol outlined
in (Zuur et al., 2009). Model fits were estimated by using the Restricted Maximum Likelihood
(REML) method when comparing models which differed in their random effects, and the
Maximum Likelihood (ML), when comparing models which differed in their fixed effects. The
best fitting model was the one with the largest Log likelihood, and it presented conscious
state, tone-pairs and time window as fixed effects (all interactions included, with the
exception of the triple one), and the variable participants as random intercept; also a random
slope for state was included in the model (Table 3). The variance in the data was opportunely
modelled by means of the varldent function of the R nlme package. To uncover the nature of
the observed interactions, additional linear mixed-effects model analyses were performed on
subsets of the data, for each time window (Tables 4 and 5), each conscious state, and pairs of
state separately. A Tukey’s correction was applied to account for the multiple comparisons

and two-tail tests were performed.

Table 3: Omnibus linear mixed-effects models

Model . Log-
number Logical steps Parameters of the model likelihood

Ml

P-value

Most complex Fixed: State, Tone pair, Time
model in terms window and interactions -1413.047
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of fixed effects
models

between them, Random
intercept: participants (method
REML)

M2

Most complex
model with
extended
random part

Fixed: State, Tone pair, Time
window and interactions
between them, Random

intercept: participants and
random slope for State (method
REML)

-169.136

M2 vs M1
<0.001

At this first stage, the best model to be selected is M2. This will be compared to the next

variance structure modelled for
State, Tone, and their
interaction (method REML)

models which present a further extension of the random part:
Model with Fixed: State, Tone pair, Time
variance window and interactions
structure of between them, Random
. . e M3 vs M2
M3 Tone pair intercept: participants and -145.170
0.071
random slope for State,
variance structure modelled for
Tone (method REML)
Model with Fixed: State, Tone pair, Time
variance window and interactions
structure of both between them, Random
State and Tone intercept: participants and M4 vs M2
Md pair random slope for State, 45777 <0.001

The model with optimal random part is M4. This will be estimated by means of a ML
method for the final selection of the opportune fixed part of the model:

random slope for State,

Model with Fixed: State, Tone pair, Time
optimal random window and interactions
part (M4) between them, Random
computed by intercept: participants and
M5 means of the random slope for State, 723.893
ML method variance structure modelled for
State, Tone pair, and their
interaction (method ML)
Model without Fixed: State, Tone pair, Time
triple interaction | window and their interactions,
between fixed except the triple interaction.
effects Random intercept: participants M6 vs M5
i and random slope for State, G <0.001
variance structure modelled for
State, Tone, and their
interaction (method ML)
Model without Fixed: State, Tone pair, Time
interaction window and interactions
M7 between State | between Tone and, and between 1357340 M7 vs M6
and Time State and Tone. Random ' <0.001
window intercept: participants and
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variance structure modelled for
State, Tone, and their
interaction (method ML)

random slope for State,
variance structure modelled for
State, Tone, and their
interaction (method ML)

Model without Fixed: State, Tone pair, Time
interaction window and interactions
between Tone between State and Time
and Time window, and between State and
. . MS8 vs M6
M8 window Tone. Random intercept: 613.285
O <0.0001
participants and random slope
for State, variance structure
modelled for State, Tone, and
their interaction (method ML)
Model without Fixed: State, Tone pair, Time
interaction window and interactions
between State between Tone and Time
and Time window, and between State and
window Time window. Random M9 vs M6
M9 intercept: participants and >18.657 <0.0001

and time window. The chosen model is M6, fitted with REML.

The best model is the one not considering the triple interaction between State, Tone pair,

Table 4: Linear mixed-effects models for the early time window

Model

Log-

number Logical steps Parameters of the model likelihood P-value
nl\l/loocfélci(r)lntlgl}rilxs Fixed: State, Tone pair and
M1 interaction, Random intercept: | -240.5463
of fixed effects gy
participants (method REML)
models
Most complex Fixed: State, Tone pair and
model with interaction, Random intercept: M2 vs M1
M2 extended participants and random slope 3387071 <0.001
random part for State (method REML)

At this first stage, the best model to be selected is M2. This will be compared to the next

for State, variance structure

models which present a further extension of the random part:
Model with Fixed: State, Tone pair and
variance interaction, Random intercept:
M3 structure of participants and random slope | 593.8527 | M3 vs M2
Tone pair for State, variance structure <0.001
modelled for Tone (method
REML)
Model with Fixed: State, Tone pair and
M4 variance interaction, Random intercept: | 759.2428 | M4 vs M3
structure of both | participants and random slope <0.001
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State and Tone
pair

modelled for State, Tone, and
their interaction (method
REML)

The model with optimal random part is M4. This will be estimated by means of a ML

method for the final selection of the opportune fixed part of the model:

Model with Fixed: State, Tone pair and
optimal random | interaction, Random intercept:
part (M4) participants and random slope 1119.341
M5 computed by for State, variance structure '
means of the modelled for State, Tone pair,
ML method and their interaction (method
ML)
M6 Model without Fixed: State, Tone pair,
interaction Random intercept: participants
between fixed and random slope for State, 989.619 | M6 vs M5
effects variance structure modelled for <0.001
State, Tone, and their
interaction (method ML)

The best model is the one considering also the interaction between State and Tone pair,
fitted by means of the REML method. The selected model is therefore M4.

Table 5: Linear mixed-effects models for the late time window

random part

for State (method REML)

Model . Log-
number Logical steps Parameters of the model likelihood P-value
nl\l/loocfélci(r)lntlgl}rilxs Fixed: State, Tone pair and
Ml interaction, Random intercept: | -918.9524
of fixed effects gy
participants (method REML)
models
Most complex Fixed: State, Tone pair and
M2 model with interaction, Random intercept: | -84.8070 | M2 vs M1
extended participants and random slope <0.001

extension of the random part:

At this first stage, the best model to be selected is M2. This will be compared to the next
models which present a further

pair

modelled for State, Tone, and
their interaction (method

REML)

Model with Fixed: State, Tone pair and
variance interaction, Random intercept:
structure of participants and random slope M3 vs M2
M3 Tone pair for State, variance structure -60.93222 <0.001
modelled for Tone (method
REML)
Model with Fixed: State, Tone pair and
variance interaction, Random intercept:
structure of both | participants and random slope M4 vs M3
M4 State and Tone for State, variance structure 85.89841 <0.001
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The model with optimal random part is M4. This will be estimated by means of a ML
method for the final selection of the opportune fixed part of the model:
Model with Fixed: State, Tone pair and
optimal random | interaction, Random intercept:
part (M4) participants and random slope 426.7567
M5 computed by for State, variance structure '
means of the modelled for State, Tone pair,
ML method and their interaction (method
ML)
M6 Model without Fixed: State, Tone pair,
interaction Random intercept: participants
between fixed and random slope for State, 314.8385 M6 vs M5
effects variance structure modelled for ' <0.001
State, Tone, and their
interaction (method ML)
The best model is the one considering also the interaction between State and Tone pair,
fitted by means of the REML method. The selected model is therefore M4.

Representational Similarity Analyses

Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008), particularly suitable to
detecting second-order isomorphisms (Shepard and Chipman, 1970), was applied to test
whether different conscious states presented a comparable pattern of Tone Similarity
Indexes. First, individual 9 by 9 Representational Similarity Matrices (RSMs) were generated
generated, where each column and each row corresponded to one of the presented tones,
and each cell of the matrix contained the measured neural similarity between the ERPs
elicited by each pair of tones, i.e., the Tone Similarity Index value. We obtained distinct RSMs
for each participant, at each conscious state and for each temporal window. Two RSA analyses
were conducted. First, we ran an item-analysis, where we estimated the correlations between
RSMs averaged across participants (Fig. 5a-d), and assessed their significance by means of
Mantel’s tests. Subsequently, we ran a random-effects analysis (i.e., group-level analysis),
where each participants’ RSMs were correlated between pairs of states, within the same
temporal window. The hypothesis that the correlations were different from zero was tested
by means of bootstrapping (10000 repetitions). A Sidak correction was applied to account for

the multiple comparisons.

To characterise the Tone Similarity Indexes structure in each conscious state, we estimated
how they related to three conceptual models. The first model is the Frequency Difference

Model, which is based on the physical distance in Hertz between tone frequencies. In this
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model, the relations between tone-pairs were calculated by subtracting the lower tone
frequency from the higher tone frequency (Fig. 7a). The second model is the Greenwood
Model, which is derived from studies on the cochlear structure, and relates the anatomic
location of the inner ear hair cells to the tone frequencies at which they are stimulated
(Greenwood, 1990). Here, the relations between tone-pairs were calculated by means of the
Greenwood function from which we obtained the distance in millimetres along the basilar
membrane between locations that are maximally excited by each tone frequency. The
Greenwood function is:
f =165.4(10%1** — 0.88)

Where f is the frequency stimulating the ear, and x is the proportion of total basilar
membrane length. The Greenwood function was then opportunely inverted and rearranged
so that we could obtain the distance in mm between the two points on the basilar membrane

that were excited by each pairs of tones:

d=1L |i<1og< LS 0.88)) —i<1og< 2, 0.88))|
2.1 165.4 2.1 165.4

Where L is the length of the basilar membrane (=35mm), and f; and f, are the frequencies

of the considered pair of tones.

The Third model is the Mel Mode, which we developed based on the Mel scale, and
represents the non-linear relationship between perceived pitch and tone frequency (Micheyl
et al., 2012; Moore, 2003; Stevens et al., 1937). We computed the relations between tone-
pairs by dividing the Mel value corresponding to the higher frequency by the Mel value
corresponding to the lower frequency. Specifically, we converted each tone frequency (650,
845, 1098, 1428, 1856, 2413, 3137, 4079, 5302Hz) into its Mel value using the following set
of formulas:

f se f < 1kHz

2595 - log(1 + -) se f > 1kHz

mel(f) = {

All models described above expressed the relationship between tone-pairs in terms of

distance (dissimilarity), rather than similarity. Thus, we first converted participants’ RSMs into
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Representational Dissimilarity Matrices (RDMs) by replacing each cell value with the Tone
Similarity Index with the term 1- Tone Similarity Index. Then, we estimated the Spearman’s
correlation between the three model matrices and participants RDMs, for each state and time
window separately. The significance of the correlations was estimated using a bootstrapping
procedure. The significance a level was corrected for multiple comparisons, controlling for

the familywise error rate with a Siddk correction.

Next, linear mixed-effects model analysis was applied to evaluate whether the predictive
value of the models for each participant (36) was influenced by conscious state (4), and time
windows (2) (Table 6).

Table 6: Linear mixed-effects models for auditory model analysis to assess the predictive

value of the considered conceptual models

nl\:::ll)eelr Logical steps Parameters of the model likii(i)l%(-m d P-value
Most complex Fixed: model, state, time
model in terms window and interactions
M1 of fixed effects between them, Random -2.749
models intercept: participants (method
REML)
Fixed: model, state, time
Extend random window and interactions M2 vs M1
M2 part of M1to between them, Random 89.287 <0.001
include the intercept: participants and
variable state random slope for state (method
REML)
Fixed: model, state, time
Extend random window and interactions M3 vs M1
M3 part of M1 to between them, Random 6.166 0.0032
include the intercept: participants and
variable model random slope for model
(method REML)
Fixed: model, state, time
Extend random . ; .
part of M1 to window and interactions M4 vs M1
. between them, Random 6.678 0.0001
M4 include the . ] .
variable time intercept: partlclipants gnd
: random slope for time window
window (method REML)
Extend random Fixed: model, state, time
M5 part of M2 to window and interactions 119.095 | M5 vs M2
include also the between them, Random <0.0001
variable model intercept: participants and
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random slope for model and
state (method REML)

M6

Most complex
model with
extended
random part to
include all
variables

Fixed: model, state, Time
window and interactions
between them, Random

intercept: participants and

random slope for model, state,
and time window (method
REML)

152.112

M6 vs M5
<0.0001

At this first stage, the best model to be selected is M6. This will be compared to the next

models which present a further extension of the random part:
Model with Fixed: model, state, time
variance window and interactions
structure of between them, Random
state intercept: participants and M7 vs M6
M7 random slope for model, state, 154.077 0.269
and time window; variance
structure modelled for state
(method REML)
Model with Fixed: model, state, time
variance window and interactions
structure of both between them, Random
model and state intercept: participants and MS vs M6
M8 random slope for model, state, 166.729
. . . <0.001
and time window; variance
structure modelled for model
and state and their interaction
(method REML)
Model with Fixed: model, state, time
variance window and interactions
structure of between them, Random
model intercept: participants and M9 vs M8
MO random slope for model, state, 166.729 0.484

and time window; variance
structure modelled for model

(method REML)

The model with optimal random part is M9. This will be estimated by means of a ML
method for the final selection of the opportune fixed part of the model:

Model with Fixed: model, state, time
optimal random window and interactions
part (M9) between them, Random
computed by intercept: participants and
MI10 means of the random slope for model, state, 227.893
ML method and time window; variance
structure modelled for model
(method ML)
Model without Fixed: model, state, time
.. . . k ) M11 vs
triple interaction window and interactions
MIl11 . 224.873 MI10
between fixed | between them except the triple 0.419

effects

interaction, Random intercept:
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participants and random slope
for model, state, and time
window; variance structure
modelled for model (method
ML)
Model without Fixed: model, state, time
triple interaction window and interactions
between fixed | between them except the triple
effects and interaction, and the interaction
without between time window and MI12 vs
M12 interaction model; Random intercept: 217.090 Ml11
between time participants and random slope 0.004
window and for model, state, and time
model window; variance structure
modelled for model (method
ML)
Model without Fixed: model, state, time
triple interaction window and interactions
between fixed | between them except the triple
effects and interaction, and the interaction
! M13 vs
without between state and model;
M13 . . . .. 208.529 Ml11
Interaction Random intercept: participants
<0.0001
between state and random slope for model,
and model state, and time window;
variance structure modelled for
model (method ML)
Model without Fixed: model, state, time
triple interaction window and interactions
between fixed | between them except the triple
effects and interaction, and the interaction
3 . . M14 vs
M4 . w1thogt between state and time \.m.ndow; 160.908 M1
Interaction Random intercept: participants '
<0.0001
between state and random slope for model,
and time state, and time window;
window variance structure modelled for
model (method ML)
The best model is the one not considering the triple interaction between model, state, and
time window. The chosen model is M 11, fitted with REML.

Hierarchical clustering analysis (Dendrograms)

Hierarchical clustering analysis was used to represent the difference in similarity magnitude
(Fig. 6a-b) and the difference in similarity pattern (Fig. 6¢c-d) between conscious states and
between tones in each conscious state (Fig. 6e-1). For the magnitude analysis, a 4 by 4
dissimilarity matrix was computed, where each row and column corresponded to one of the

four conscious states, and each cell presented the mean effect size (Cohen’d) of the
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differences in similarity magnitude between pairs of states, normalised by their standard
deviation. In the pattern analysis, each cell of the dissimilarity matrix presented the
dissimilarity value 1-Spearman’s r, where the Spearman’s r was the Tone Similarity Index as
computed from the RSA item-analysis described in the previous section. Hierarchical
clustering consists of an iterative method. At each iteration, within a dissimilarity matrix, it
identifies the two clusters (i.e., the two matrix cells) that are closest to each other. Once the
closest clusters are found, they are merged into a single cluster i and the dissimilarity matrix
is re-computed, replacing the rows and columns of the two original clusters with one
representing the newly formed cluster. The distances between the new cluster i and the
remaining clusters are therefore estimated and the process is repeated until only one cluster
remains. We initially considered each conscious state as an individual cluster and, at each
step, identified the closest clusters by means of a Nearest Point Algorithm. A similar
procedure was used to obtain the dendrograms representing the relationship between tones
in each conscious state (Fig. 6e-l). This time, the input dissimilarity matrices were the average

RDMs per state obtained from the RSMs represented in Figure (4a-d) (with RDM = 1-RSM)

MATLAB open source software FieldTrip (Oostenveld et al. 2011), and Python (version 3.6)

and R (version 1.3.1073) customized scripts were used for ERP and similarity analysis.
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