

Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria

Asha Mary Joseph, Saheli Daw, Ismath Sadhir and Anjana Badrinarayanan*

9 National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bellary Road,
10 Bangalore 560065, Karnataka, India. Phone: 91 80 23666547

11 *Correspondence to: anjana@ncbs.res.in

13 **Keywords**

14 *Caulobacter crescentus*, DnaE2, DNA repair, error-prone polymerases, non-replicating cells,
15 nucleotide excision repair, single-cell imaging, fluorescence microscopy

18 **Abstract**

19 Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which
20 employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models
21 suggest that activity of these polymerases is predominantly associated with ongoing replication,
22 functioning either at or behind the replication fork. Here we provide evidence for DNA damage-
23 dependent function of a specialized polymerase, DnaE2, in replication-independent conditions.
24 We develop an assay to follow lesion repair in non-replicating *Caulobacter* and observe that
25 components of the replication machinery localize on DNA in response to damage. These
26 localizations persist in the absence of DnaE2 or if catalytic activity of the polymerase is mutated.
27 Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are
28 generated by nucleotide excision repair, as replisome components fail to localize in its absence.
29 This mechanism of gap-filling facilitates cell cycle restoration when cells are released into
30 replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized
31 polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in
32 a replication-independent manner.

33 **Introduction**

34 DNA damage is a threat to genome integrity and can lead to perturbations to processes
35 of replication and transcription. In all domains of life, bulky lesions such as those caused by UV
36 light (cyclobutane pyrimidine dimers, CPD and to a lesser extent 6,4 photoproducts, 6-4PP) are
37 predominantly repaired by Nucleotide Excision Repair (NER) (Boyce & Howard-Flanders, 1964;
38 Chatterjee & Walker, 2017; Kisker et al., 2013). This pathway can function in global genomic
39 repair (GGR) via surveilling the DNA double-helix for distortions or more specifically via
40 transcription-coupled repair (TCR) (Kisker et al., 2013). The main steps of NER involve lesion
41 detection followed by incision of few bases upstream and downstream of the lesion, resulting in
42 removal of a short stretch of single-stranded DNA (ssDNA). This ssDNA gap is then filled by
43 synthesis from a DNA polymerase (Kisker et al., 2013; Sancar & Rupp, 1983). While the NER-
44 mediated damage removal pathway is largely error-free, lesions encountered by the replication
45 machinery (for example CPDs, 6-4PPs and crosslinks such as those generated by antibiotics
46 including Mitomycin C (MMC)) can also be dealt with via error-prone translesion synthesis (TLS)
47 (Chatterjee & Walker, 2017; Fuchs & Fujii, 2013; Fujii & Fuchs, 2004).

48 TLS employs low-fidelity polymerases to synthesize across DNA lesions, with increased
49 likelihood of mutagenesis during this process (Fuchs & Fujii, 2013; Galhardo, 2005; Kato &
50 Shinoura, 1977; Nohmi et al., 1988; Warner et al., 2010). In most bacteria, expression of these
51 polymerases is regulated by the SOS response, which is activated by the RecA-nucleoprotein
52 filament under DNA damage (Baharoglu & Mazel, 2014). Currently most of our understanding
53 about TLS comes from studies on specialized Y-family polymerases of *E. coli*, DinB (PolIV) and
54 UmuDC (PolV), both of which function in DNA lesion tolerance and contribute to mutagenesis in
55 several bacterial systems (Kato & Shinoura, 1977; Nohmi et al., 1988; Steinborn, 1978; Sung et
56 al., 2003; J. Wagner et al., 1999). In addition, PolV has also been implicated in RecA-dependent
57 post-replicative gap-filling activity (Isogawa et al., 2018). In contrast to *E. coli*, *Caulobacter*
58 *crescentus* as well as other bacteria including *Mycobacterium* sp. and *Pseudomonas* sp. encode
59 an alternate, SOS-inducible error-prone polymerase, DnaE2 (Galhardo, 2005; Jatsenko et al.,
60 2017; Warner et al., 2010). DnaE2 is highly conserved and thought to be mutually exclusive with
61 UmuDC in occurrence. In the limited organisms where DnaE2 has been studied so far, it is the

62 primary TLS polymerase and the only contributor to damage-induced mutagenesis (Alves et al.,
63 2017; Galhardo, 2005; Warner et al., 2010). In contrast to PolV, DnaE2 is thought to preferentially
64 act on MMC-induced damage, where it contributes to all induced-mutagenesis observed. In case
65 of UV, there are still uncharacterized mechanisms that can contribute to damage tolerance and
66 mutagenesis that are independent of DnaE2 (Galhardo, 2005). DnaE2, co-occurs with ImuB, a
67 protein that carries a β -clamp binding motif, and is thought to act as a bridge between DnaE2
68 and the replisome (Warner et al., 2010). Unlike *E. coli*, where activities of PolIV and PolV are well-
69 studied, *in vivo* investigations of DnaE2 function in damage tolerance and its contribution to
70 cellular survival are limited. This becomes particularly important, given the emerging evidences
71 across domains of life ascribing diverse functions to these low-fidelity polymerases beyond their
72 canonical function of replication-associated lesion bypass (Joseph & Badrinarayanan, 2020).
73 Indeed, such polymerases are also referred to as ‘specialized polymerases’ (Fujii & Fuchs, 2020)
74 so as to consider these broader functions.

75 Since these error-prone polymerases can synthesize DNA and their activity is mediated
76 by interaction with the β -clamp of the replisome (Bunting et al., 2003; Chang et al., 2019; Fujii &
77 Fuchs, 2004; Thrall et al., 2017; Jérôme Wagner et al., 2009; Warner et al., 2010), action of these
78 polymerases has mostly been studied in the context of replicating cells, as a mechanism that
79 facilitates continued DNA synthesis by acting at or behind the replication fork (Chang et al., 2019,
80 2020; Indiani et al., 2005; Jeiranian et al., 2013; Marians, 2018). In addition to replication-
81 associated lesion tolerance, some studies have proposed the possibility of error-prone synthesis
82 in a manner that is replication-independent (Janel-Bintz et al., 2017; Kozmin & Jinks-Robertson,
83 2013). This is supported by observations that cells can undergo stationary phase mutagenesis
84 that is dependent on action of error-prone polymerases (Bull et al., 2001; Corzett et al., 2013;
85 Janel-Bintz et al., 2017; Sung et al., 2003; Yeiser et al., 2002). Microscopy-based approaches have
86 also provided evidence in line with the idea that tolerance or gap-filling could occur outside the
87 context of the replication fork in *E. coli*, as replisome components, such as the β -clamp, as well
88 as specialized polymerases (PolIV and PolV) were found to localize away from the fork in response
89 to DNA damage (Henrikus et al., 2018; Robinson et al., 2015; Soubry et al., 2019; Thrall et al.,
90 2017). Furthermore, while originally considered as distinct mechanisms of repair (damage

91 tolerance vs damage removal), recent studies also suggest cross-talk between specialized
92 polymerases and NER in *E. coli*, yeast and human cells (Giannattasio et al., 2010; Janel-Bintz et
93 al., 2017; Kozmin & Jinks-Robertson, 2013; Sertic et al., 2018). Indeed, long-standing observations
94 suggest that NER can be mutagenic under certain conditions in *E. coli*, in a manner that is
95 dependent on RecA (Bridges & Mottershead, 1971; Cohen-Fix & Livneh, 1994; Nishioka &
96 Doudney, 1969). However, the mechanistic basis of this process in replication-independent
97 conditions and conservation of the same across bacteria that encode diverse specialized
98 polymerases remains to be elucidated. For example, unlike *E. coli*, several bacterial systems
99 undergo non-overlapping cycles of DNA replication and have distinct cell cycle phases with no
100 ongoing DNA synthesis. The relevance of lesion correction or gap-filling for genome integrity
101 maintenance in the absence of an active replication fork (such as in non-replicating swarming
102 cells) remains incompletely explored and more so in bacterial contexts.

103 To probe the *in vivo* mechanism and understand the impact of error-prone polymerase
104 function in non-replicating bacteria, we investigated lesion repair in *Caulobacter crescentus*
105 swarmer cells. *Caulobacter* is well-suited to study activity of these specialized polymerases due
106 to its distinct cell cycle. Every cell division gives rise to two different cell types: a stalked and a
107 swarmer cell. While the stalked cell initiates replication soon after division, a swarmer must
108 differentiate into a stalked before replication re-initiation (Schrader & Shapiro, 2015) and hence
109 swarmers represent a pool of naturally occurring non-replicating cells in the environment. Under
110 laboratory conditions, these swarmer cells can be isolated via density-gradient centrifugation and
111 replication initiation can be inhibited, resulting in a population of non-replicating cells with a
112 single chromosome (Badrinarayanan et al., 2015; Schrader & Shapiro, 2015). Using this non-
113 replicating system, we followed DNA damage repair with lesion-inducing agents via live-cell
114 fluorescence microscopy. We show that low-fidelity polymerase DnaE2 is active and functional
115 in gap-filling damaged DNA in non-replicating cells. This is facilitated by *de novo* loading of
116 replisome components (SSB, HolB (part of the clamp loader complex), β -clamp and replicative
117 polymerase) at ssDNA gaps generated by NER. We find that this form of gap-filling in non-
118 replicating cells promotes cell cycle restoration and cell division, upon release into replication-
119 permissive conditions. Our study provides *in vivo* evidence for a novel function of DnaE2 that is

120 spatially and temporally separate from the active replication fork. Given that DNA damage can
121 occur in any cell type whether actively replicating or not, coordinated activity of NER and low-
122 fidelity polymerases can serve as a potential mechanism through which non-replicating cells such
123 as bacteria in stationary phase or cells in other differentiated phases increase their chances of
124 survival under damage.

125 **Results**

126 **Monitoring mechanisms of DNA lesion repair in non-replicating bacteria**

127 To test whether non-replicating cells can indeed engage in lesion repair, and understand
128 the *in vivo* mechanism of such activity, we used *Caulobacter crescentus* swarmer cells as our
129 model system. We regulated the state of replication so as to ensure that swarmer cells, with a
130 single chromosome, do not initiate replication (and hence prevent possibility of recombination-
131 based repair) by utilizing a previously described system to control the expression of the
132 replication initiation protein, DnaA, from an IPTG inducible promoter (Badrinarayanan et al.,
133 2015). In our experimental setup, we first depleted cells of DnaA for one generation of growth,
134 followed by synchronization to isolate non-replicating swarmer cells (Figure 1A, top panel). Flow
135 cytometry profiles of cells confirmed the presence of a single chromosome during the course of
136 the entire experiment (Figure 1A, bottom panel).

137 Given the requirement of the β -clamp for activity of specialized polymerases and
138 evidence for damage-dependent changes in localization of replisome components such as SSB in
139 actively replicating *E. coli* (Chang et al., 2019; Henrikus et al., 2018; Soubry et al., 2019; Thrall et
140 al., 2017), we generated fluorescent fusions to the *Caulobacter* β -clamp (DnaN), component of
141 the clamp loader complex (HolB), the replicative polymerase PolIII (DnaE), and single-strand
142 binding protein (SSB), (using previously described approaches in *Caulobacter* (Aakre et al., 2013;
143 Collier & Shapiro, 2009); and materials and methods) in order to visualize them in non-replicating
144 swarmers. These fusions did not perturb the function of the proteins as cells displayed wild type
145 growth dynamics in steady-state conditions (Figure S1A and S1B ‘control’). They also did not have
146 increased sensitivity to DNA damage treatment via MMC or UV (Figure S1A & S1B). The fusion
147 proteins localized on DNA in actively replicating cells (Figure 1B, +replication) and as anticipated,

148 their localizations gradually shifted from one pole to the other within one cycle of DNA replication
149 (Figure S1C). These observations are in line with previous reports of replisome dynamics in
150 several bacterial systems including *Caulobacter crescentus*, *Bacillus subtilis* and *E. coli* (Aakre et
151 al., 2013; Collier & Shapiro, 2009; Jensen et al., 2001; Lemon & Grossman, 1998; Mangiameli et
152 al., 2017; Reyes-Lamothe et al., 2008). In contrast to actively replicating cells, replication-
153 inhibited swarmer cells were devoid of replisome foci (Figure 1B), consistent with the idea that
154 the localization of replisome components is indicative of active DNA replication.

155 **Replisome components are recruited to damaged DNA in non-replicating *Caulobacter* swarmer
156 cells**

157 Using the above described system, we treated non-replicating *Caulobacter* swarmer cells
158 with Mitomycin C (MMC) to induce DNA lesions and followed DNA damage recovery via live-cell
159 imaging to track dynamics of the β -clamp and other replisome components (Figure 1A). MMC is
160 a naturally produced antibiotic that acts predominantly on the guanine residue of DNA, making
161 three major forms of damage: mono-adducts, intra-strand crosslinks and inter-strand crosslinks
162 (Bargonetti et al., 2010). In case of *Caulobacter*, it is thought that DnaE2 preferentially acts on
163 MMC-induced damage as all mutagenesis associated with MMC treatment is mediated via action
164 of this specialized polymerase; in absence of the polymerase, cells show high sensitivity to MMC
165 treatment. To determine the range of MMC concentration for this study, we first assessed the
166 viable cell count for a steady state population of wild type and *dnaE2* deleted cells across
167 increasing concentrations of MMC treatment (0.125 μ g/ml - 2 μ g/ml) and focused on a treatment
168 range where DnaE2 essentiality was observed (Figure S2A) and TLS-dependent mutagenesis has
169 previously been reported (Galhardo, 2005).

170 We then went ahead and treated non-replicating swarmer cells with specified doses of
171 MMC. We found that DNA damage treatment resulted in the formation of β -clamp foci in non-
172 replicating cells (Figure 2A-B). This was found to be the case for other replisome components as
173 well (Figure 2A-B). The percentage of cells with damage-induced β -clamp foci increased with
174 increasing doses of MMC; at 0.125 μ g/ml MMC 9% cells had β -clamp foci, while at higher doses
175 of 0.75 μ g/ml, foci were observed in 59% cells (Fig. S4C). To further characterize the dynamics of

176 these localizations during the course of damage recovery, we released MMC-treated non-
177 replicating swarmers into fresh media without damage and followed the localization of replisome
178 components over time, but maintained the block on replication initiation, thus ensuring that cells
179 carried only a single non-replicating chromosome during the course of the entire experiment
180 (Figure 1A). Consistent with the possibility of dissociation during recovery, we found that
181 percentage cells with DnaN localizations gradually decreased with time (Figure 2C) and across all
182 doses of damage tested (Figure S4C). For example, after 30 min of 0.5 µg/ml MMC treatment,
183 52% cells on average had DnaN localization and at 90 min after damage removal, the number
184 reduced to 30%. This pattern of localization after damage treatment, followed by reduction in
185 percentage cells with foci during recovery was also observed in the case of SSB, HolB and DnaE
186 (Figure 2D). Interestingly, we noticed that cells had more SSB localizations on average than DnaN.
187 14% cells had ≥2 DnaN foci after MMC treatment, while 37% cells harboured ≥2 SSB localizations,
188 and this number dropped with increasing time in recovery (Figure 2D). Assessment of the extent
189 of colocalization between DnaN and SSB further showed that 90% of DnaN foci colocalized with
190 SSB (with distance of a DnaN focus from the nearest SSB localization being within 300 nm), while
191 only 51% of SSB foci colocalized with DnaN (Figure S2B and S2C), suggesting that not all SSB may
192 be associated with the β-clamp or that SSB could precede β-clamp localization.

193 In order to further support observations made with MMC treatment, we asked whether
194 these dynamics of replication machinery components were observed for another lesion-inducing
195 agent as well. For this, we treated cells with sub-inhibitory doses of UV radiation that have been
196 shown to have similar growth effects on wild type cells as MMC-treated *Caulobacter* (Galhardo,
197 2005 and Figure S2D). Exposure of cells to two doses of UV damage (75 J/m² and 150 J/m²) also
198 resulted localization and subsequent reduction in percentage cells with replisome foci during
199 recovery (Figure S2E, S2F, S2G). Taken together, these data support the idea that SSB, along with
200 components of the PolIIIHE, including the clamp-loader, β-clamp and the replicative polymerase,
201 associate with DNA during damage even in the absence of ongoing replication, and decrease in
202 their localizations over time could be indicative of potential repair in non-replicating cells.

203 **Nucleotide Excision Repair generates ssDNA gaps for localization of replisome components in**
204 **non-replicating cells**

205 How do replisome components localize in non-replicating cells? SSB foci under these
206 conditions indicates the presence of ssDNA stretches long enough to accommodate SSB
207 tetramers (>30 nt) (Bell et al., 2015; Lohman & Ferrari, 1994). In replicating cells, ssDNA tracts
208 are thought to be generated as a result of helicase activity that continues to unwind double-
209 stranded DNA ahead of the replisome that has encountered a lesion (Belle et al., 2007). It is
210 unclear how such tracts are formed in non-replicating cells. We wondered whether this could be
211 mediated via pathways involved in DNA damage repair and tolerance. Given that several repair
212 pathways are regulated under the SOS response (Baharoglu & Mazel, 2014), we first assessed the
213 induction of the response in non-replicating cells under DNA damage. For this, we measured the
214 induction of YFP from an SOS inducible promoter (P_{sidA}) integrated on the *Caulobacter*
215 chromosome at the *xyl* locus (Badrinarayanan et al., 2015) (Figure 3A). We found that non-
216 replicating cells turned on the DNA damage response after MMC exposure, providing further
217 evidence for the formation of ssDNA gaps in such conditions (Figure 3A). We thus asked whether
218 the SOS response is essential for the formation of such gaps or if the activation of this response
219 is a consequence of gap generation. Deletion of the SOS activator, *recA*, did not perturb
220 localization of DnaN under damage. However, RecA was essential for dissociation during damage
221 recovery as DnaN foci persisted in non-replicating cells lacking RecA (Figure 3B). These
222 observations suggest that a RecA-independent pathway is required for regulating the association
223 of replisome components with DNA in cells that are not undergoing active DNA synthesis.

224 In most organisms, helix distorting lesions are recognized and excised by Nucleotide
225 Excision Repair (NER) (Kisker et al., 2013). Short gaps generated during this process could also be
226 converted into longer stretches of ssDNA tracts under certain conditions as seen in eukaryotic
227 systems (Sertic et al., 2011, 2018), thus requiring extensive DNA synthesis outside the active
228 replication fork (Figure S3A). To test if this could be the mechanism by which replisome
229 components associate with DNA in cells that are not replicating, we assessed the involvement of
230 NER in orchestrating the same in *Caulobacter* swarmer cells. We observed that unlike wild type,
231 non-replicating cells with deletion of *uvrA* (part of the NER pathway) did not form DnaN foci
232 under MMC or UV damage (Figure 3B-C, Figure S3C). In contrast, percentage cells with DnaN foci
233 in a $\Delta mutL$ background, deficient in mismatch repair (Marinus, 2012) was similar to wild type,

234 indicating that mismatch repair did not contribute to loading of the β -clamp in non-replicating
235 cells (Figure S3D).

236 Thus, our data suggest that lesion processing by NER alone results in the formation of
237 ssDNA gaps on which replisome components can localize in non-replicating cells. Consistent with
238 this, we observed lack of SSB localization in $\Delta uvrA$ cells both under MMC and UV damage (Figure
239 3C, Figure S3B and S3C). Furthermore, cells without NER were deficient in SOS induction (Figure
240 3D), suggesting that NER-mediated gap generation serves two functions: a. Providing ssDNA
241 substrate for recruitment of SSB and other replisome components to these regions, b. Induction
242 of the SOS response. Together, this facilitates ssDNA gap filling in non-replicating *Caulobacter*.

243 **SOS-induced low fidelity polymerase, DnaE2, is essential for subsequent dissociation of
244 replisome components**

245 As stated above, we observed that $\Delta recA$ cells were not deficient in DnaN recruitment to
246 ssDNA gaps. However, given that these cells had persistent β -clamp foci, we wondered what
247 would be the requirement for RecA or the SOS response in ssDNA gap filling. We ruled out a role
248 for homologous recombination in this process as our experimental setup of non-replicating
249 swarmer cells (with a single chromosome) does not permit gap-filling by recombination, due to
250 absence of a homologous template for repair (Figure 1A, bottom panel). In addition, we also
251 conducted our damage recovery experiments in cells lacking the recombination protein RecN
252 (Vickridge et al., 2017), an essential component of recombination-based repair in *Caulobacter*
253 (Badrinarayanan et al., 2015). In this case too, we observed association, followed by dissociation
254 of β -clamp foci as seen in case of wild type cells (Figure S4A).

255 Reports in *E. coli* as well as eukaryotic systems (including yeast and human cells) have
256 suggested that ssDNA gaps generated by NER can sometimes be filled by specialized polymerases
257 like Polk (Janel-Bintz et al., 2017; Kozmin & Jinks-Robertson, 2013; Sertic et al., 2018). Given that
258 the SOS response is activated in non-replicating cells (Figure 3A), it is possible that gap filling in
259 *Caulobacter* swarmer cells is mediated via such specialized polymerases expressed under this
260 regulon (Galhardo, 2005). Although we were unable to generate a functional fluorescent fusion
261 to *Caulobacter* low-fidelity polymerase DnaE2, we confirmed that DnaE2 is expressed in our

262 experimental conditions (Figure S4B) and that deletion of *dnaE2* resulted in severe sensitivity of
263 a steady-state population of cells to MMC-treatment (Figure S2A, Figure S4F). To test the
264 involvement of DnaE2 in gap filling, we conducted our damage recovery experiments in cells
265 deleted for the same. Similar to $\Delta recA$ cells, we found that non-replicating cells lacking *dnaE2*
266 had persistent DnaN foci during damage recovery (Figure 4A-B). For example, in case of wild type,
267 52% cells had foci after 30 min of 0.5 μ g/ml MMC treatment and this number reduced to 30% 90
268 min post MMC removal. In contrast, in case of $\Delta dnaE2$ cells, 61% cells had foci after 30 min of
269 damage treatment and this number remained constant even after removal of MMC from the
270 growth media. DnaN foci in $\Delta dnaE2$ cells was significantly higher than wild type after 90 min of
271 damage recovery in case of UV damage as well, at the two doses of damage tested (Figure S4D).

272 Replisome persistence in the absence of *dnaE2* appeared to be a dose-dependent
273 phenomenon (Figure S4C). At low dose of MMC treatment (0.125 μ g/ml), fewer cells had DnaN
274 foci post DNA damage exposure (14.5% cells). The number further reduced to 9.5% during
275 recovery in a DnaE2-independent manner. However, the percentage of cells with persistent β -
276 clamp foci increased with increasing concentrations of damage in the absence of *dnaE2*, with
277 minimal recovery observed at 0.5 - 0.75 μ g/ml of MMC treatment (Figure S4C). The following
278 observations in our study lend additional support to the proposed idea that a specialized
279 polymerase is required for gap filling ssDNA tracts generated by NER at higher doses of DNA
280 damage: a. Persistence of components of PolIIIHE (DnaE and DnaN) in the absence of DnaE2.
281 Apart from β -clamp foci, we found that the replicative polymerase, DnaE, was also unable to
282 dissociate during damage recovery in cells lacking *dnaE2* (Figure 4C), suggesting that the
283 replicative polymerase alone cannot complete synthesis across NER-generated ssDNA tracts.
284 Such lack of dissociation after localization was found to be the case for SSB as well, again
285 suggesting that ssDNA gaps persisted in the absence of DnaE2 (Figure 4C). b. Requirement for
286 DnaE2-mediated synthesis. To test whether synthesis by DnaE2 contributes to gap filling in non-
287 replicating cells, we mutated two residues known to be essential for DnaE-mediated synthesis in
288 wild type (Lamers et al., 2006; Pritchard & McHenry, 1999). These residues have been mutated
289 previously in *M. smegmatis* DnaE2, where it was shown to inhibit DnaE2-dependent mutagenesis
290 (Warner et al., 2010) (Figure S4E). In case of *Caulobacter* as well, *dnaE2** showed similar growth

291 defects as $\Delta dnaE2$ under MMC damage (Figure S4F). In our experimental regime, we found that
292 cells expressing catalytically inactive DnaE2 also had persistent DnaN foci during damage
293 recovery, as seen in the case of cells lacking the specialized polymerase (Figure 4D).

294 To assess contribution of DnaE2 to damage-induced mutagenesis, we conducted
295 mutagenesis assays by measuring the frequency of rifampicin resistance generation in the
296 population of cells subject to damage, with or without recovery in non-replicating conditions. We
297 observed that this polymerase was responsible for all damage-induced mutagenesis in our
298 experimental regimen (Figure S4G). However, the genetic complexity of this experiment and the
299 confounding effects of replication during the out-growth period preclude us from conclusively
300 interpreting if this mutagenesis mediated by DnaE2 occurs in non-replicating, replicating or both
301 phases of the cell cycle.

302 Finally, we also tested the requirement for accessory protein ImuB in DnaE2 function.
303 ImuB is an inactive Y-family polymerase and carries a β -clamp binding motif. It is thought to act
304 as a bridge between DnaE2 and the clamp, likely facilitating DnaE2 binding to the clamp for
305 function (Warner et al., 2010). In *Caulobacter*, it is co-operonic with DnaE2 and is also expressed
306 in response to SOS activation (Galhardo, 2005). When we conducted our recovery experiments
307 in cells lacking *imuB*, we observed that these cells also exhibited persistent DnaN foci, as seen for
308 cells lacking *dnaE2* (Figure 4D). These results are consistent with the idea that DnaE2-mediated
309 synthesis contributes to gap-filling and subsequent dissociation of replisome components in non-
310 replicating cells.

311 **DnaE2 activity on NER-generated ssDNA gaps enhances survival of non-replicating cells under
312 DNA damage**

313 Taken together, our data provide *in vivo* support for cross-talk between two independent
314 genome integrity maintenance systems (NER and specialized, low-fidelity polymerases) in non-
315 replicating bacteria. What could be the relevance of this in the context of damage recovery and
316 survival of bacteria that are not actively replicating? To investigate the impact of NER-mediated
317 DnaE2 activity in *Caulobacter* swarmer cells, we assessed the growth dynamics of these cells once
318 released into replication-permissive conditions with three parameters: a). Time to division and

319 percentage cells with successful division events after release in replication permissive conditions
320 (as a read-out for division restoration post DNA damage clearance) b). Cell length restoration (as
321 a read-out for SOS deactivation following DNA damage clearance). c). Cell survival measured via
322 viable cell count assays.

323 To measure division restoration, we released replication-blocked swarmer cells into
324 media containing IPTG (to allow for replication initiation via induction of *dnaA*) either
325 immediately after damage treatment or after 90 min of damage recovery. We followed single
326 cells via time-lapse imaging to assess the time taken to first division after replication initiation
327 (Figure 5A-B). Control cells without damage treatment and with/ without additional 90 min arrest
328 in swarmer stage were able to robustly resume cell growth and division with >94% cells
329 undergoing their first division within 240 min of release into replication-permissive conditions.
330 Based on this, we followed cell division dynamics for cells treated with damage during this time
331 window, wherein control cells (without damage) were successfully able to restore cell division.
332 In MMC-treated conditions, we found that cells released into replication-permissive conditions
333 immediately after damage treatment did not recover efficiently, with only 5% cells undergoing
334 their first division within 240 min (Figure 5C). In contrast, wild type cells that were provided time
335 for damage recovery before re-initiating replication, showed restoration of cell division in the
336 same time period, with 30% cells undergoing at least one division and 9% cells undergoing ≥ 2
337 divisions within 240 min (Figure 5B-C). These recovery dynamics were dependent on DnaE2 as
338 only 7% cells lacking *dnaE2* underwent divisions even when they were provided the same time
339 duration as wild type for damage recovery before replication re-initiation (Figure 5B-C). Thus
340 DnaE2-mediated gap filling provided a significant survival advantage to non-replicating cells as
341 measured by their ability to robustly restore cell cycle progression and cell division.

342 To further assess the consequence of gap filling, we measured the cell length distributions
343 for cells released into replication-permissive conditions with or without 90 min of DNA damage
344 recovery (Figure S5A). Continued cell length elongation would be reflective of a continued
345 division block, a hallmark of the SOS response. On the other hand, cell length restoration would
346 be expected only for those cells where damage has been repaired. We found that cells that did
347 not face damage (with or without *dnaE2*) had a median cell length of 4.6 μm after 90 min

348 incubation in swarmer conditions. At 240 min after re-initiation of replication, the cell length
349 distribution was restored close to a wild type-like pattern (control) with the median cell length
350 dropping to 2.9 μ m (Figure S5A, ‘no damage’). Length restoration was also observed in wild type
351 cells able to engage in DnaE2 mediated gap filling in the 90 min recovery window (Figure S5A, ‘+
352 damage, recovery, wild type’). This restoration in cell length was dependent on the time provided
353 for damage recovery as well as presence of DnaE2, as in both cases, cells continued to elongate
354 after release into IPTG-containing media (Figure S5A, ‘+damage, no recovery’ and ‘+damage,
355 recovery, Δ dnaE2’).

356 To lend support to these cell biological observations, we modified our recovery setup to
357 measure viable cell counts instead (Figure S5B). For this we assessed the ‘fraction survival’ as
358 defined by the viable cell count obtained for cultures with damage treatment and normalized to
359 the viable cell count for cultures without damage treatment. We observed that wild type cells
360 that were released into replication-permissive conditions without the 90 min window of damage
361 recovery were significantly compromised in growth, with fraction survival reducing to 0.19 at
362 higher doses of damage in the absence of recovery. On the other hand, in case of cells grown
363 with the possibility of undergoing 90 min of damage recovery, the fraction survival increased to
364 0.45 at the highest dose of damage used (Figure 5D). We then asked whether the survival
365 advantage observed during recovery was dependent on DnaE2 action. Consistent with a dose-
366 dependent effect on replisome persistence in the absence of DnaE2, we also observed that DnaE2
367 had a significant impact on the replication-independent survival advantage at higher doses of
368 DNA damage. As expected from a steady state population, we found that cells deleted for dnaE2
369 were severely compromised for survival at all doses of damage used (Figure 5D). However, at
370 higher doses of damage, cells lacking dnaE2 had similar loss in viable cell counts whether or not
371 they were given a 90 min window of recovery; only around 0.01 fraction survival was observed
372 with or without damage recovery in case of cells lacking dnaE2, in contrast to the 0.45 fraction
373 survival observed in case of wild type cells provided a period of damage recovery (Figure 5D).
374 Thus, there was a significant component of enhanced survival in cells that could undergo repair
375 in non-replicating conditions and this survival advantage was dependent on DnaE2.

376 In summary, our cell biological and genetic read-outs suggest that DnaE2-mediated gap-
377 filling enables cell cycle restoration and cell division licensing when non-replicating cells are
378 allowed to re-initiate DNA replication. In the absence of such recovery (either *dnaE2* deletion or
379 cells grown without the window of recovery), cell division is compromised and cells continue to
380 elongate, a hallmark of persistent DNA damage and hence continuously active SOS response. The
381 impact of delayed cell division and subsequent cell length elongation is directly observed when
382 viable cell count of the population is measured, with a dose-dependent effect on survival in cells
383 compromised for recovery due to deletion of *dnaE2*.

384 **Discussion**

385 DNA lesion repair and tolerance has been well-studied in a replication-centric paradigm
386 (Gabbai et al., 2014; Indiani et al., 2005; Marians, 2018). Characterization of error-prone
387 polymerases in *E. coli* has informed us about mechanisms of tolerance that could occur at the
388 replication fork or behind it, in gaps generated due to replisome skipping over the lesion,
389 followed by repriming downstream of it (Chang et al., 2019; Gabbai et al., 2014; Indiani et al.,
390 2005). However, DNA damage is a universal event that can occur across all stages of the cell cycle,
391 including in non-replicating conditions. This can have effects on transcription and could also
392 perturb replication progression upon re-initiation (Jeiranian et al., 2013; Lang & Merrikh, 2018;
393 Rudolph et al., 2007). For example, bacteria such as *Caulobacter* have distinct cell cycle phases
394 including a non-replicating swarmer state, with a single copy of its chromosome. Hence it is
395 imperative that DNA damage gets cleared out efficiently even in these conditions. Here we
396 provide *in vivo* evidence for NER-coupled DnaE2 function that is active in non-replicating bacteria.
397 This study complements a growing body of work that supports the possibility of low-fidelity
398 polymerase-mediated synthesis (including mutagenesis) in replication-independent conditions
399 (such as in stationary phase cells) across domains of life (Bull et al., 2001; Corzett et al., 2013;
400 Janel-Bintz et al., 2017; Sung et al., 2003; Yeiser et al., 2002) and underscores the need to
401 reconsider function of such polymerases outside canonical, isolated roles of lesion bypass during
402 replication.

403 **DNA damage repair in non-replicating cells: requirement for DnaE2**

404 Here, we develop a system to specifically assess mechanisms of damage repair and
405 tolerance employed in cells that are not undergoing active DNA synthesis. Using replication
406 initiation-inhibited *Caulobacter* swarmer cells, we show that lesions are dealt with in two main
407 steps: a. damage processing by NER to reveal ssDNA gaps and b. gap filling by SOS-induced
408 specialized polymerase, DnaE2. Due to absence of a second copy of the chromosome in our assay
409 (all cells are non-replicating and have a single chromosome), role of homologous recombination
410 in this process is unlikely. Hence, our observations are consistent with a scenario where the low-
411 fidelity polymerase alone is sufficient to synthesize across ssDNA gaps generated by NER action.
412 Why is there a need for a specialized polymerase during gap-filling of NER-generated substrates?
413 We explore two possible scenarios here:

414 1). Conventionally NER is thought to generate gaps of approximately 12 nucleotides during lesion
415 repair, which can be gap-filled by DNA PolI (Kisker et al., 2013). However, localization of SSB in
416 our experiments suggests that gaps generated are >30 nucleotides, enabling SSB tetramerization
417 and binding (Bell et al., 2015; Lohman & Ferrari, 1994). How are longer ssDNA tracts generated?
418 Previous reports in *E. coli* as well as yeast and human cells have implicated a role for exonuclease
419 activity in generating longer ssDNA tracts on NER substrates. In these studies, it was proposed
420 that such activity would occur on problematic intermediates generated during NER activity,
421 including closely-spaced opposing lesions that are generated under high doses of DNA damage
422 (Janel-Bintz et al., 2017; Kozmin & Jinks-Robertson, 2013; Sertic et al., 2018). Indeed, our
423 observations on lack of dissociation of replicative polymerase (PolIII) in the absence of DnaE2 as
424 well as dose-dependent impact on cell survival would be consistent with a speculative model
425 where NER-mediated excision results in the production of lesion-containing ssDNA that requires
426 synthesis by a specialized polymerase.

427 2). It is equally plausible that DnaE2 contributes to gap filling independent of the presence or
428 absence of a DNA lesion. Gap filling activity has been suggested previously for *E. coli* PolV and
429 eukaryotic Polk (Isogawa et al., 2018; Janel-Bintz et al., 2017; Ogi & Lehmann, 2006).
430 Furthermore, recent studies on post-replicative gap-filling have proposed a scenario where long
431 patches requiring synthesis are accessed by both replicative and TLS polymerases (PolIV and
432 PolV) in *E. coli* (Isogawa et al., 2018). Thus, error-prone polymerases can function beyond their

433 canonical role in replication-associated lesion bypass (Fujii & Fuchs, 2020). In case of non-
434 replicating *Caulobacter* cells, it is possible that this polymerase can access the β -clamp and hence
435 participate in gap-filling, given the observed increase in DnaE2 levels via SOS induction.

436 While our mutagenesis assays (measuring generation of rifampicin resistant mutations
437 during damage) suggest that DnaE2 contributes to all MMC-induced mutagenesis, we were
438 unable to satisfactorily disentangle the individual contributions from non-replicating vs
439 replicating conditions (Figure S4G). Hence, we cannot reliably distinguish between the ‘gap-filling
440 alone’ or ‘gap filling associated with lesion bypass’ activities of this polymerase in our present
441 study. It must be noted though, that a role for DnaE2 in gap filling alone has not been reported
442 before. In addition, unlike *E. coli*, it is the only polymerase implicated in TLS-associated functions
443 (mutagenesis) in the bacteria that encode it. Thus, while we cannot provide a conclusive answer
444 to this question, irrespective of the specific nature of DnaE2 activity, our work underscores a
445 novel and necessary function for this highly conserved specialized polymerase in conjunction
446 with NER in replication-independent conditions (discussed further below).

447 **ssDNA gaps generated by NER serve two functions**

448 Previous studies in *E. coli* have found that NER activity in GGR is dependent on the
449 activation of the SOS response (Crowley & Hanawalt, 1998). In contrast, our results suggest that
450 NER functions upstream of the SOS response in non-replicating *Caulobacter*. Although *uvr* genes
451 are SOS-induced even in *Caulobacter* (da Rocha et al., 2008), it is possible that basal levels of Uvr
452 proteins are sufficient to carry out damage scanning and subsequent processing. Indeed, in *E.*
453 *coli*, basal UvrA levels are variable, but range from 9 to 43 copies in minimal media to more than
454 120 copies in rich media (Ghodke et al., 2020, Stacy et al., 2016). Thus, ssDNA gaps generated
455 by NER serve two purposes: a. Activation of the SOS response for specialized polymerase
456 expression; it is likely that in case of *Caulobacter*, RecA is essential only for turning on the SOS
457 regulon as DnaE2-mediated synthesis has been previously shown to function independent of
458 RecA (Alves et al., 2017; Galhardo, 2005), unlike *E. coli* UmuDC (Goodman, 2014; Nohmi et al.,
459 1988).

460 b. Providing substrate for SSB and PolIIIHE localization and specialized polymerase-
461 mediated gap filling. SSB localization on ssDNA could further facilitate recruitment and loading
462 of the PolIIIHE. While PolIII activity could directly contribute to gap filling (Isogawa et al., 2018;
463 Sedgwick & Bridges, 1974; Soubry et al., 2019), it is also likely that it is the loading of the β -clamp
464 that is essential for DnaE2 activity (Bunting et al., 2003; Chang et al., 2019; Fujii & Fuchs, 2004;
465 Jérôme Wagner et al., 2009). Additionally, recent studies have highlighted a role for SSB as well
466 in enriching the local pool of PolIV at a lesion, thus enabling polymerase switching (Chang et al.,
467 2020). It would be interesting now to ask how additional components (such as ImuB and other
468 accessory components to DnaE2) contribute to the loading of the ‘specialized replisome’ outside
469 the realms of active replication and whether the properties of the ssDNA gaps generated may
470 vary under different damaging conditions (UV vs MMC).

471 The lack of a significant percentage of cells with multiple replisome foci under damage
472 would suggest that some repair or replisome components could be limiting, resulting in
473 sequential repair or synthesis events. Alternatively, it is also possible that competition between
474 SSB and RecA for binding ssDNA results in lesser SSB foci than the number of potential ssDNA
475 tracts. The components involved in this process would be important in governing the number of
476 patches that can be synthesized across at a given instance as well as the duration of a synthesis
477 event. Indeed, distinct modes of action and nature of lesions induced by diverse damaging agents
478 (Bargonetti et al., 2010; Chatterjee & Walker, 2017; Mitchell & Nairn, 1989) may contribute to
479 some differences in the dynamics of replisome association/ dissociation observed here for MMC
480 vs UV damage (Figure S4C & S4D). Finally, although discussed in the context of non-replicating
481 cells, it is plausible that this mechanism can occur spatially and temporally disconnected from
482 the active replication fork in replicating cells as well, in support of observations in *E. coli* that have
483 reported localization of PolIIIHE as well as specialized polymerases away from the active
484 replication fork (Henrikus et al., 2018; Soubry et al., 2019).

485 **Relevance of NER-mediated specialized polymerase activity in non-replicating cells**

486 Our study provides comprehensive insights into a mechanism of lesion repair and gap
487 filling in non-replicating bacteria, that relies on coordinated action between NER and low-fidelity

488 polymerases. Our data suggests a method through which an error-prone polymerase, DnaE2,
489 functions beyond replication forks, impinging on its implications in growth and survival of non-
490 replicating cells. The experimental system in this study provides a novel tool to investigate these
491 mechanisms as well as additional players further and assess impacts of lesion repair and
492 tolerance in replication independent, but metabolically active conditions, where damage to DNA
493 via molecules including ROS is possible (Gray et al., 2019; Manina & McKinney, 2013), such as
494 *Caulobacter* cells in 'swarmer' state or other cells outside S phase of cell cycle.

495 The relevance of the process described here is highlighted by the survival advantage it
496 confers in non-replicating cells. It is possible that NER-coupled DnaE2-mediated synthesis helps
497 avoid the problems associated with persistent ssDNA gaps (due to NER activity itself) or DNA
498 damage on the chromosome, (Jeiranian et al., 2013; Murli et al., 2000; Rudolph et al., 2007). In
499 line with this, a recent study in human cells showed that coordinated action of NER along with Y-
500 family polymerase, Polk, and exonuclease, Exo1, was crucial for gap filling and hence prevention
501 of UV-induced double-stranded breaks in non-S phase cells (Sertic et al., 2018). Such a role for
502 specialized polymerases in gap-filling has also been observed in case of yeast cells (Kozmin &
503 Jinks-Robertson, 2013; Sertic et al., 2011). More generally, this work highlights the possibility of
504 coordinated activity of repair and tolerance pathways canonically studied as functioning
505 independently. The universality of the NER-mediated error-prone polymerase function described
506 here is underscored by its functionality in a diverse range of model systems, from bacteria to
507 yeast and human cells (Janel-Bintz et al., 2017; Kozmin & Jinks-Robertson, 2013; Sertic et al.,
508 2018), independent of the type or family of error-prone polymerase (DnaE2 in *Caulobacter* vs
509 PolIV/ PolV in *E. coli*) employed during gap-filling.

510 **Materials and methods**

511 **Bacterial strains and growth conditions**

512 Bacterial strains, plasmids and primers used in the study are listed in Supplementary file 1
513 (Modell et al., 2014; Skerker et al., 2005; Thanbichler et al., 2007). Construction of plasmids and
514 strains are detailed in the Supplementary file 1. Transductions were performed using ϕ CR30 (Ely,
515 1991). *Caulobacter crescentus* cultures were grown at 30°C in PYE media (0.2% peptone, 0.1%
516 yeast extract and 0.06% MgSO₄) supplemented with appropriate concentrations of antibiotics, as
517 required. While growing strains carrying *dnaA* under an IPTG-inducible promoter, liquid media
518 was supplemented with 0.5 mM IPTG and solid media with 1 mM IPTG. Microscopy experiments
519 were performed in minimal media containing 1X M2 salts (0.087% Na₂HPO₄, 0.53% KH₂PO₄,
520 0.05% NH₄Cl) supplemented with 1% PYE, 0.2% glucose, 0.01 mM FeSO₄ and 0.01 mM CaCl₂.

521 Non-replicating swarmer cells were isolated using synchrony protocols described previously
522 (Badrinarayanan et al., 2015). Briefly, cells were grown overnight in minimal media
523 supplemented with IPTG. Cultures in log-phase were depleted for DnaA via washing off IPTG and
524 allowing cells to grow in IPTG (-) conditions for one generation (~130 min). Following this, cultures
525 were synchronized and OD₆₀₀ of resulting swarmer cells was adjusted to 0.1, prior to treatment
526 with DNA damage. In case of MMC damage, appropriate volume of 0.5 mg/ml MMC (AG
527 Scientific, #M-2715) stock (prepared by resuspending in sterile water) was added into the culture
528 and incubated at 30°C for 30 min. Damage was washed off by pelleting down cells at 8000 rpm
529 for 4 min and resuspending in fresh media. For UV damage, cultures were transferred to a 90 mm
530 petri plate and exposed to specific energy settings in a UV Stratalinker 1800 (STRATAGENE).
531 During recovery (after UV and MMC damage) cells were incubated for 90 minutes at 30°C and
532 200 rpm. For strains expressing *SSB-YFP*, *SSB-GFP* or *DnaN-YFP* under P_{xyL}, 0.3% xylose was added
533 1.5 h prior to imaging. Replication re-initiation after damage recovery was achieved by inducing
534 cultures with 0.5 mM IPTG. DNA damage treatment used was either 0.5 μ g/ml MMC (30 min) or
535 75 J/m² UV for all experiments, unless otherwise specified.

536 For flow cytometry analysis, 300 μ l of cultures were fixed in 700 μ l of 70% chilled ethanol and
537 stored at 4°C until further processing. These samples were treated with 2 μ g/ml RNaseA in 50

538 mM sodium citrate for 4h at 50°C. DNA was stained with Sytox green nucleic acid stain (5 mM
539 solution in DMSO from Thermo Fisher Scientific) and analyzed on a BD Accuri flow cytometer.

540 **Fluorescence microscopy and image analysis**

541 For time course imaging, 1 ml aliquots of cultures were taken at specified time points, pelleted
542 and resuspended in 100 μ l of growth medium. Images were taken without damage treatment
543 (no damage control), after 30 min of damage treatment (+ damage) and again at 0, 30, 60, and
544 90 min after removal of DNA damage (recovery). Controls were taken through the same
545 treatment regime, but no damaging agent was added to growth media. 2 μ l of cell suspension
546 was spotted on 1% agarose pads (prepared in minimal medium) and imaged. For time lapse
547 imaging 2 μ l cell suspension was spotted on 1.5% GTG agarose (prepared in minimal medium),
548 grown inside an OkoLab incubation chamber maintained at 30°C and imaged at specific intervals
549 for the indicated period of time. For cell division tracking after replication re-initiation, cells were
550 grown on 1.5% GTG agarose in growth medium containing with 1 mM IPTG.

551 Microscopy was performed on a wide-field epifluorescence microscope (Eclipse Ti-2E, Nikon)
552 with a 63X oil immersion objective (plan apochromat objective with NA 1.41) and illumination
553 from pE4000 light source (CoolLED). The microscope was equipped with a motorized XY stage
554 and focus was maintained using Perfect Focusing System (Nikon). Image acquisitions were done
555 with Hamamatsu Orca Flash 4.0 camera using NIS-elements software (version 5.1). Images were
556 analysed using ImageJ as well as Microbetracker or Oufti in MatLab (Paintdakhi et al., 2016;
557 Sliusarenko et al., 2011). Values for random positions within each cell and relative position of
558 replisome foci were generated using custom-written MatLab scripts. Graphs were plotted in
559 GraphPad Prism 7.

560 **Survival assay**

561 For calculating viability of asynchronous steady state population under DNA damage, *Caulobacter*
562 cultures were grown in PYE with 0.5 mM IPTG to O.D₆₀₀ of 0.3. Serial dilutions were made in 10-
563 fold increments and 6 μ l of each dilution (10⁻¹ to 10⁻⁸) were spotted on PYE agar containing 1 mM
564 IPTG and appropriate amounts of MMC. Growth was quantified by multiplying dilution factor of
565 the last visible spot with number of colonies on the last spot. Percentage survival for each strain

566 was calculated by normalizing growth of that specific strain on different concentrations of MMC
567 to that on media without DNA damage.

568 For assessing survival of non-replicating cells under DNA damage, swarmer cells (10 ml, OD₆₀₀ -
569 0.1) were taken through one of the experimental regimes (with or without recovery in non-
570 replicating phase) as mentioned in Figure S5B. At the end of the experiment, they were serially
571 diluted and plated on PYE agar containing 1 mM IPTG and viability colony counts were taken after
572 48 hours. Fraction survival was calculated by normalizing viability of MMC treated cells to those
573 taken through the exact same experimental regime, but without DNA damage treatment.

574 **Rifampicin resistance assay**

575 Swarmer cells (10 ml, OD₆₀₀ – 0.1) were taken through the same experimental conditions (with
576 or without recovery) as mentioned above for survival experiments (Figure S5B). At the end of the
577 experiment, the cultures were spun down, re-suspended in 10 ml PYE containing 0.5 mM IPTG
578 and grown at 30°C overnight (approx. 20 h). These cultures were plated on PYE agar containing
579 0.5 mM IPTG and 100 µg/ml Rifampicin. Rif resistant colonies were counted 48 hours after
580 plating, and mutation frequencies were calculated by normalizing to viable cell count of that
581 specific culture.

582 **Western blotting**

583 At specific time points of the experiment, 1.5 ml aliquots of 0.1 O.D₆₀₀ cultures were pelleted
584 down at 10000 rpm for 5 min, pellets were snap frozen in liquid nitrogen and stored at -80°C until
585 further use. Pellets were resuspended in SDS sample buffer, and boiled at 95°C for 10 min. Equal
586 amounts of lysates were loaded on 6% SDS-PAGE gel, resolved at 100 V and transferred to PVDF
587 membrane (BIO-RAD, #1620177) in a wet electroblotting system. Non-specific binding to the
588 membrane was blocked with 5% Blotting-Grade Blocker (BIO-RAD, #170-6404), followed by
589 probing with 1:2000 dilution of monoclonal anti-flag antibody (Sigma, #F1804) and 1:5000
590 dilution of HRP-linked anti-mouse secondary antibody (Cell Signaling Technology, #7076S). The
591 blots were visualized after incubation with SuperSignal™ West PICO PLUS Chemiluminescent
592 Substrate (Thermo SCIENTIFIC, #34577) using an iBright FL1000 imager (ThermoFisher
593 SCIENTIFIC).

594 **Acknowledgements**

595 The authors acknowledge assistance from Prachi Shinde and Ramya Rajagopalan for preliminary
596 experiments and NCBS Central Imaging and Flow Facility (CIFF) for flow cytometry usage. The
597 authors thank Dr. Rodrigo Reyes-Lamothe, Dr. Stephan Uphoff, Dr. Tung Le and members of the
598 AB lab for helpful discussions and feedback on the manuscript. This work was supported by
599 fellowships from DBT (DBT-RA), DST-SERB (PDF/2018/001164) (AMJ) and CSIR (SD) as well as
600 grants from DBT-IYBA, HFSP CDA (00051/ 2017-C) and intramural funding from NCBS-TIFR (AB).

601 **Author contributions**

602 AMJ: conception of project, experimental design, generation of tools and reagents, execution of
603 experiments, data analysis, writing of manuscript. SD: execution of experiments, and generation
604 of tools and reagents. IS: generation of tools and reagents, and execution of experiments related
605 to western blots. AB: conception of project, experimental design and writing of manuscript.

606 **Declaration of interests**

607 The authors declare no competing interests.

References

Aakre, C. D., Phung, T. N., Huang, D., & Laub, M. T. (2013). A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. *Molecular Cell*, 52(5), 617–628. <https://doi.org/10.1016/j.molcel.2013.10.014>

Alves, I. R., Lima-Noronha, M. A., Silva, L. G., Fernández-Silva, F. S., Freitas, A. L. D., Marques, M. V., & Galhardo, R. S. (2017). Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in *Caulobacter crescentus*. *DNA Repair*, 59, 20–26. <https://doi.org/10.1016/j.dnarep.2017.09.003>

Badrinarayanan, A., Le, T. B. K., & Laub, M. T. (2015). Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. *The Journal of Cell Biology*, 210(3), 385–400. <https://doi.org/10.1083/jcb.201505019>

Baharoglu, Z., & Mazel, D. (2014). SOS, the formidable strategy of bacteria against aggressions. *FEMS Microbiology Reviews*, 38(6), 1126–1145. <https://doi.org/10.1111/1574-6976.12077>

Bargonetti, J., Champeil, E., & Tomasz, M. (2010). Differential Toxicity of DNA Adducts of Mitomycin C. *Journal of Nucleic Acids*, 2010, 1–6. <https://doi.org/10.4061/2010/698960>

Bell, J. C., Liu, B., & Kowalczykowski, S. C. (2015). Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. *eLife*, 4, e08646. <https://doi.org/10.7554/eLife.08646>

Belle, J. J., Casey, A., Courcelle, C. T., & Courcelle, J. (2007). Inactivation of the DnaB Helicase Leads to the Collapse and Degradation of the Replication Fork: A Comparison to UV-Induced Arrest. *Journal of Bacteriology*, 189(15), 5452–5462. <https://doi.org/10.1128/JB.00408-07>

Boyce, R. P., & Howard-Flanders, P. (1964). RELEASE OF ULTRAVIOLET LIGHT-INDUCED THYMINE DIMERS FROM DNA IN E. COLI K-12. *Proceedings of the National Academy of Sciences of the United States of America*, 51, 293–300. <https://doi.org/10.1073/pnas.51.2.293>

Bridges, B. A., & Mottershead, R. (1971). RecA + -dependent mutagenesis occurring before DNA replication in UV- and -irradiated *Escherichia coli*. *Mutation Research*, 13(1), 1–8. [https://doi.org/10.1016/0027-5107\(71\)90120-5](https://doi.org/10.1016/0027-5107(71)90120-5)

Bull, H. J., Lombardo, M. J., & Rosenberg, S. M. (2001). Stationary-phase mutation in the bacterial chromosome: Recombination protein and DNA polymerase IV dependence. *Proceedings of the National Academy of Sciences of the United States of America*, 98(15), 8334–8341. <https://doi.org/10.1073/pnas.151009798>

Bunting, K. A., Roe, S. M., & Pearl, L. H. (2003). Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. *The EMBO Journal*, 22(21), 5883–5892. <https://doi.org/10.1093/emboj/cdg568>

Chang, S., Naiman, K., Thrall, E. S., Kath, J. E., Jergic, S., Dixon, N. E., Fuchs, R. P., & Loparo, J. J. (2019). A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes. *Proceedings of the National Academy of Sciences*, 116(51), 25591–25601. <https://doi.org/10.1073/pnas.1914485116>

Chang, S., Thrall, E. S., Laureti, L., Pagès, V., & Loparo, J. J. (2020). *Compartmentalization of the replication fork by single-stranded DNA binding protein regulates translesion synthesis* [Preprint]. *Biochemistry*. <https://doi.org/10.1101/2020.03.03.975086>

Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. *Environmental and Molecular Mutagenesis*, 58(5), 235–263. <https://doi.org/10.1002/em.22087>

Cohen-Fix, O., & Livneh, Z. (1994). In vitro UV mutagenesis associated with nucleotide excision-repair gaps in *Escherichia coli*. *The Journal of Biological Chemistry*, 269(7), 4953–4958.

Collier, J., & Shapiro, L. (2009). Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in *Caulobacter*. *Journal of Bacteriology*, 191(18), 5706–5716. <https://doi.org/10.1128/JB.00525-09>

Corzett, C. H., Goodman, M. F., & Finkel, S. E. (2013). Competitive fitness during feast and famine: How SOS DNA polymerases influence physiology and evolution in *Escherichia coli*. *Genetics*, 194(2), 409–420. <https://doi.org/10.1534/genetics.113.151837>

Crowley, D. J., & Hanawalt, P. C. (1998). Induction of the SOS response increases the efficiency of global nucleotide excision repair of cyclobutane pyrimidine dimers, but not 6-4 photoproducts, in UV-irradiated *Escherichia coli*. *Journal of Bacteriology*, 180(13), 3345–3352.

da Rocha, R. P., de Miranda Paquola, A. C., do Valle Marques, M., Menck, C. F. M., & Galhardo, R. S. (2008). Characterization of the SOS Regulon of *Caulobacter crescentus*. *Journal of Bacteriology*, 190(4), 1209–1218. <https://doi.org/10.1128/JB.01419-07>

Ely, B. (1991). [17] Genetics of *Caulobacter crescentus*. In *Methods in Enzymology* (Vol. 204, pp. 372–384). Elsevier. [https://doi.org/10.1016/0076-6879\(91\)04019-K](https://doi.org/10.1016/0076-6879(91)04019-K)

Fuchs, R. P., & Fujii, S. (2013). Translesion DNA Synthesis and Mutagenesis in Prokaryotes. *Cold Spring Harbor Perspectives in Biology*, 5(12), a012682. <https://doi.org/10.1101/cshperspect.a012682>

Fujii, S., & Fuchs, R. P. (2004). Defining the position of the switches between replicative and bypass DNA polymerases. *The EMBO Journal*, 23(21), 4342–4352. <https://doi.org/10.1038/sj.emboj.7600438>

Fujii, S., & Fuchs, R. P. (2020). A Comprehensive View of Translesion Synthesis in *Escherichia coli*. *Microbiology and Molecular Biology Reviews: MMBR*, 84(3). <https://doi.org/10.1128/MMBR.00002-20>

Gabbai, C. B., Yeeles, J. T. P., & Marians, K. J. (2014). Replisome-mediated translesion synthesis and leading strand template lesion skipping are competing bypass mechanisms. *The Journal of Biological Chemistry*, 289(47), 32811–32823. <https://doi.org/10.1074/jbc.M114.613257>

Galhardo, R. S. (2005). An SOS-regulated operon involved in damage-inducible mutagenesis in *Caulobacter crescentus*. *Nucleic Acids Research*, 33(8), 2603–2614. <https://doi.org/10.1093/nar/gki551>

Ghodke, H., Ho, H. N., & van Oijen, A. M. (2020). Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair. *Nature Communications*, 11(1), 1477. <https://doi.org/10.1038/s41467-020-15179-y>

Giannattasio, M., Follonier, C., Tourrière, H., Puddu, F., Lazzaro, F., Pasero, P., Lopes, M., Plevani, P., & Muzi-Falconi, M. (2010). Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. *Molecular Cell*, 40(1), 50–62. <https://doi.org/10.1016/j.molcel.2010.09.004>

Goodman, M. F. (2014). The Discovery of Error-prone DNA Polymerase V and Its Unique Regulation by RecA and ATP. *Journal of Biological Chemistry*, 289(39), 26772–26782. <https://doi.org/10.1074/jbc.X114.607374>

Gray, D. A., Dugar, G., Gamba, P., Strahl, H., Jonker, M. J., & Hamoen, L. W. (2019). Extreme slow growth as alternative strategy to survive deep starvation in bacteria. *Nature Communications*, 10(1), 890. <https://doi.org/10.1038/s41467-019-08719-8>

Henrikus, S. S., Wood, E. A., McDonald, J. P., Cox, M. M., Woodgate, R., Goodman, M. F., van Oijen, A. M., & Robinson, A. (2018). DNA polymerase IV primarily operates outside of DNA replication forks in *Escherichia coli*. *PLoS Genetics*, 14(1), e1007161. <https://doi.org/10.1371/journal.pgen.1007161>

Indiani, C., McInerney, P., Georgescu, R., Goodman, M. F., & O'Donnell, M. (2005). A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. *Molecular Cell*, 19(6), 805–815. <https://doi.org/10.1016/j.molcel.2005.08.011>

Isogawa, A., Ong, J. L., Potapov, V., Fuchs, R. P., & Fujii, S. (2018). Pol V-Mediated Translesion Synthesis Elicits Localized Untargeted Mutagenesis during Post-replicative Gap Repair. *Cell Reports*, 24(5), 1290–1300. <https://doi.org/10.1016/j.celrep.2018.06.120>

Janel-Bintz, R., Napolitano, R. L., Isogawa, A., Fujii, S., & Fuchs, R. P. (2017). Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in *E. coli*. *PLoS Genetics*, 13(7), e1006881. <https://doi.org/10.1371/journal.pgen.1006881>

Jatsenko, T., Sidorenko, J., Saumaa, S., & Kivisaar, M. (2017). DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in *Pseudomonas aeruginosa* and *Pseudomonas putida*. *PLOS ONE*, 12(1), e0170719. <https://doi.org/10.1371/journal.pone.0170719>

Jeiranian, H. A., Schalow, B. J., Courcelle, C. T., & Courcelle, J. (2013). Fate of the replisome following arrest by UV-induced DNA damage in *Escherichia coli*. *Proceedings of the National Academy of Sciences*, 110(28), 11421–11426. <https://doi.org/10.1073/pnas.1300624110>

Jensen, R. B., Wang, S. C., & Shapiro, L. (2001). A moving DNA replication factory in *Caulobacter crescentus*. *The EMBO Journal*, 20(17), 4952–4963. <https://doi.org/10.1093/emboj/20.17.4952>

Joseph, A. M., & Badrinarayanan, A. (2020). Visualizing mutagenic repair: Novel insights into bacterial translesion synthesis. *FEMS Microbiology Reviews*, 44(5), 572–582. <https://doi.org/10.1093/femsre/fuaa023>

Karimova, G., Pidoux, J., Ullmann, A., & Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. *Proceedings of the National Academy of Sciences of the United States of America*, 95(10), 5752–5756. <https://doi.org/10.1073/pnas.95.10.5752>

Kato, T., & Shinoura, Y. (1977). Isolation and characterization of mutants of *Escherichia coli* deficient in induction of mutations by ultraviolet light. *Molecular & General Genetics: MGG*, 156(2), 121–131. <https://doi.org/10.1007/bf00283484>

Kisker, C., Kuper, J., & Van Houten, B. (2013). Prokaryotic nucleotide excision repair. *Cold Spring Harbor Perspectives in Biology*, 5(3), a012591. <https://doi.org/10.1101/cshperspect.a012591>

Kozmin, S. G., & Jinks-Robertson, S. (2013). The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells. *Genetics*, 193(3), 803–817. <https://doi.org/10.1534/genetics.112.147421>

Lamers, M. H., Georgescu, R. E., Lee, S.-G., O'Donnell, M., & Kuriyan, J. (2006). Crystal Structure of the Catalytic α Subunit of *E. coli* Replicative DNA Polymerase III. *Cell*, 126(5), 881–892. <https://doi.org/10.1016/j.cell.2006.07.028>

Lang, K. S., & Merrikh, H. (2018). The Clash of Macromolecular Titans: Replication-Transcription Conflicts in Bacteria. *Annual Review of Microbiology*, 72(1), 71–88. <https://doi.org/10.1146/annurev-micro-090817-062514>

Lemon, K. P., & Grossman, A. D. (1998). Localization of bacterial DNA polymerase: Evidence for a factory model of replication. *Science (New York, N.Y.)*, 282(5393), 1516–1519. <https://doi.org/10.1126/science.282.5393.1516>

Lohman, T. M., & Ferrari, M. E. (1994). *Escherichia coli* single-stranded DNA-binding protein: Multiple DNA-binding modes and cooperativities. *Annual Review of Biochemistry*, 63, 527–570. <https://doi.org/10.1146/annurev.bi.63.070194.002523>

Mangiameli, S. M., Veit, B. T., Merrikh, H., & Wiggins, P. A. (2017). The Replisomes Remain Spatially Proximal throughout the Cell Cycle in Bacteria. *PLOS Genetics*, 13(1), e1006582. <https://doi.org/10.1371/journal.pgen.1006582>

Manina, G., & McKinney, J. D. (2013). A Single-Cell Perspective on Non-Growing but Metabolically Active (NGMA) Bacteria. In J. Pieters & J. D. McKinney (Eds.), *Pathogenesis of *Mycobacterium tuberculosis* and its Interaction with the Host Organism* (Vol. 374, pp. 135–161). Springer Berlin Heidelberg. https://doi.org/10.1007/82_2013_333

Marians, K. J. (2018). Lesion Bypass and the Reactivation of Stalled Replication Forks. *Annual Review of Biochemistry*, 87, 217–238. <https://doi.org/10.1146/annurev-biochem-062917-011921>

Marinus, M. G. (2012). DNA Mismatch Repair. *EcoSal Plus*, 5(1). <https://doi.org/10.1128/ecosalplus.7.2.5>

Mitchell, D. L., & Nairn, R. S. (1989). THE BIOLOGY OF THE (6–4) PHOTOPRODUCT. *Photochemistry and Photobiology*, 49(6), 805–819. <https://doi.org/10.1111/j.1751-1097.1989.tb05578.x>

Modell, J. W., Kambara, T. K., Perchuk, B. S., & Laub, M. T. (2014). A DNA damage-induced, SOS-independent checkpoint regulates cell division in *Caulobacter crescentus*. *PLoS Biology*, 12(10), e1001977. <https://doi.org/10.1371/journal.pbio.1001977>

Murli, S., Opperman, T., Smith, B. T., & Walker, G. C. (2000). A Role for the umuDC Gene Products of *Escherichia coli* in Increasing Resistance to DNA Damage in Stationary Phase by Inhibiting the Transition to Exponential Growth. *Journal of Bacteriology*, 182(4), 1127–1135. <https://doi.org/10.1128/JB.182.4.1127-1135.2000>

Nishioka, H., & Doudney, C. O. (1969). Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. *Mutation Research*, 8(2), 215–228. [https://doi.org/10.1016/0027-5107\(69\)90001-3](https://doi.org/10.1016/0027-5107(69)90001-3)

Nohmi, T., Battista, J. R., Dodson, L. A., & Walker, G. C. (1988). RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation. *Proceedings of the National Academy of Sciences of the United States of America*, 85(6), 1816–1820. <https://doi.org/10.1073/pnas.85.6.1816>

Ogi, T., & Lehmann, A. R. (2006). The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. *Nature Cell Biology*, 8(6), 640–642. <https://doi.org/10.1038/ncb1417>

Paintdakhi, A., Parry, B., Campos, M., Irnov, I., Elf, J., Surovtsev, I., & Jacobs-Wagner, C. (2016). Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. *Molecular Microbiology*, 99(4), 767–777. <https://doi.org/10.1111/mmi.13264>

Pritchard, A. E., & McHenry, C. S. (1999). Identification of the Acidic Residues in the Active Site of DNA Polymerase III. *Journal of Molecular Biology*, 285(3), 1067–1080. <https://doi.org/10.1006/jmbi.1998.2352>

Reyes-Lamothe, R., Possoz, C., Danilova, O., & Sherratt, D. J. (2008). Independent positioning and action of *Escherichia coli* replisomes in live cells. *Cell*, 133(1), 90–102. <https://doi.org/10.1016/j.cell.2008.01.044>

Robinson, A., McDonald, J. P., Caldas, V. E. A., Patel, M., Wood, E. A., Punter, C. M., Ghodke, H., Cox, M. M., Woodgate, R., Goodman, M. F., & van Oijen, A. M. (2015). Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. *PLOS Genetics*, 11(8), e1005482. <https://doi.org/10.1371/journal.pgen.1005482>

Rudolph, C. J., Upton, A. L., & Lloyd, R. G. (2007). Replication fork stalling and cell cycle arrest in UV-irradiated *Escherichia coli*. *Genes & Development*, 21(6), 668–681. <https://doi.org/10.1101/gad.417607>

Sancar, A., & Rupp, W. D. (1983). A novel repair enzyme: UVRABC excision nuclease of *Escherichia coli* cuts a DNA strand on both sides of the damaged region. *Cell*, 33(1), 249–260. [https://doi.org/10.1016/0092-8674\(83\)90354-9](https://doi.org/10.1016/0092-8674(83)90354-9)

Schrader, J. M., & Shapiro, L. (2015). Synchronization of *Caulobacter crescentus* for investigation of the bacterial cell cycle. *Journal of Visualized Experiments: JoVE*, 98. <https://doi.org/10.3791/52633>

Sedgwick, S. G., & Bridges, B. A. (1974). Requirement for either DNA polymerase I or DNA polymerase 3 in post-replication repair in excision-proficient *Escherichia coli*. *Nature*, 249(455), 348–349. <https://doi.org/10.1038/249348a0>

Sertic, S., Mollica, A., Campus, I., Roma, S., Tumini, E., Aguilera, A., & Muzi-Falconi, M. (2018). Coordinated Activity of Y Family TLS Polymerases and EXO1 Protects Non-S Phase Cells from UV-Induced Cytotoxic Lesions. *Molecular Cell*, 70(1), 34–47.e4. <https://doi.org/10.1016/j.molcel.2018.02.017>

Sertic, S., Pizzi, S., Cloney, R., Lehmann, A. R., Marini, F., Plevani, P., & Muzi-Falconi, M. (2011). Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. *Proceedings of the National Academy of Sciences of the United States of America*, 108(33), 13647–13652. <https://doi.org/10.1073/pnas.1108547108>

Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G., & Laub, M. T. (2005). Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis. *PLoS Biology*, 3(10), e334. <https://doi.org/10.1371/journal.pbio.0030334>

Sliusarenko, O., Heinritz, J., Emonet, T., & Jacobs-Wagner, C. (2011). High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics.

Molecular Microbiology, 80(3), 612–627. <https://doi.org/10.1111/j.1365-2958.2011.07579.x>

Soubry, N., Wang, A., & Reyes-Lamothe, R. (2019). Replisome activity slowdown after exposure to ultraviolet light in *Escherichia coli*. *Proceedings of the National Academy of Sciences*, 201819297. <https://doi.org/10.1073/pnas.1819297116>

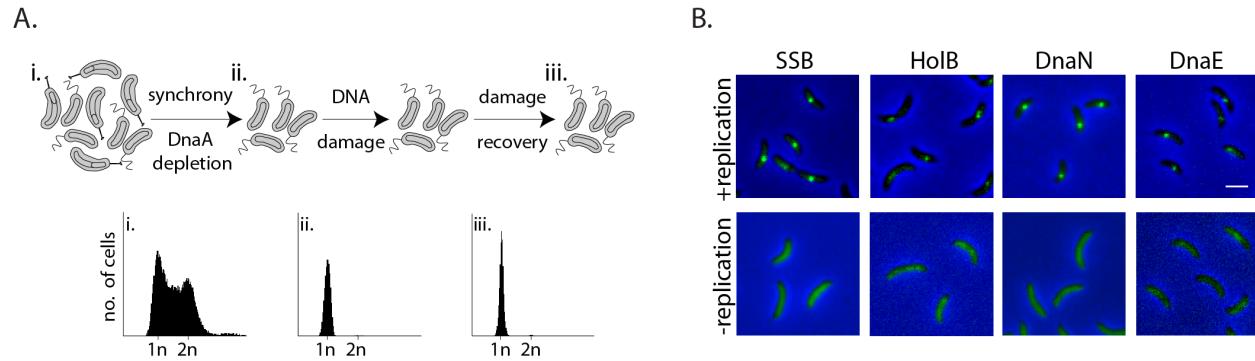
Steinborn, G. (1978). Uvm mutants of *Escherichia coli* K 12 deficient in UV mutagenesis: I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. *Molecular and General Genetics MGG*, 165(1), 87–93. <https://doi.org/10.1007/BF00270380>

Stracy, M., Jaciuk, M., Uphoff, S., Kapanidis, A. N., Nowotny, M., Sherratt, D. J., & Zawadzki, P. (2016). Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living *Escherichia coli*. *Nature Communications*, 7, 12568. <https://doi.org/10.1038/ncomms12568>

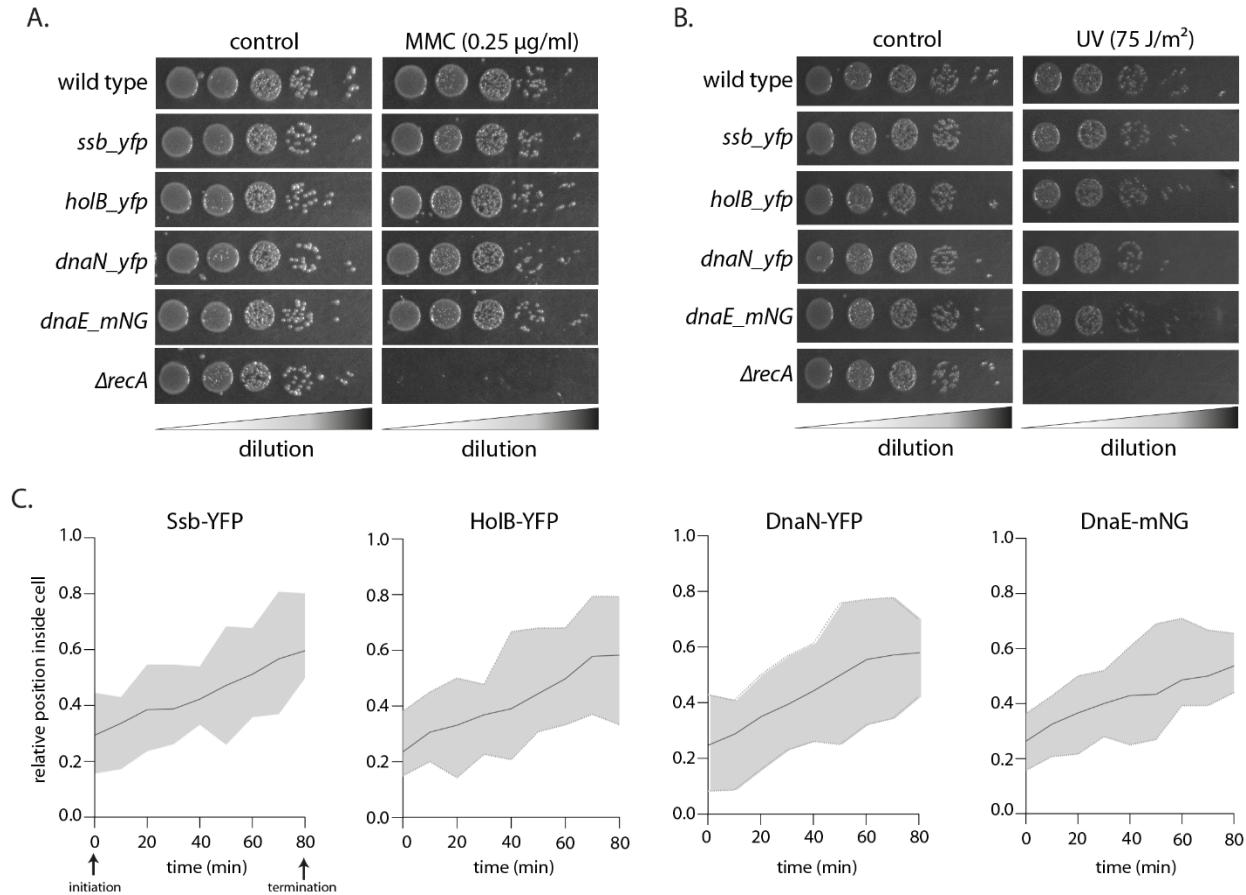
Sung, H.-M., Yeamans, G., Ross, C. A., & Yasbin, R. E. (2003). Roles of YqjH and YqjW, homologs of the *Escherichia coli* UmuC/DinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of *Bacillus subtilis*. *Journal of Bacteriology*, 185(7), 2153–2160. <https://doi.org/10.1128/jb.185.7.2153-2160.2003>

Thanbichler, M., Iniesta, A. A., & Shapiro, L. (2007). A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in *Caulobacter crescentus*. *Nucleic Acids Research*, 35(20), e137. <https://doi.org/10.1093/nar/gkm818>

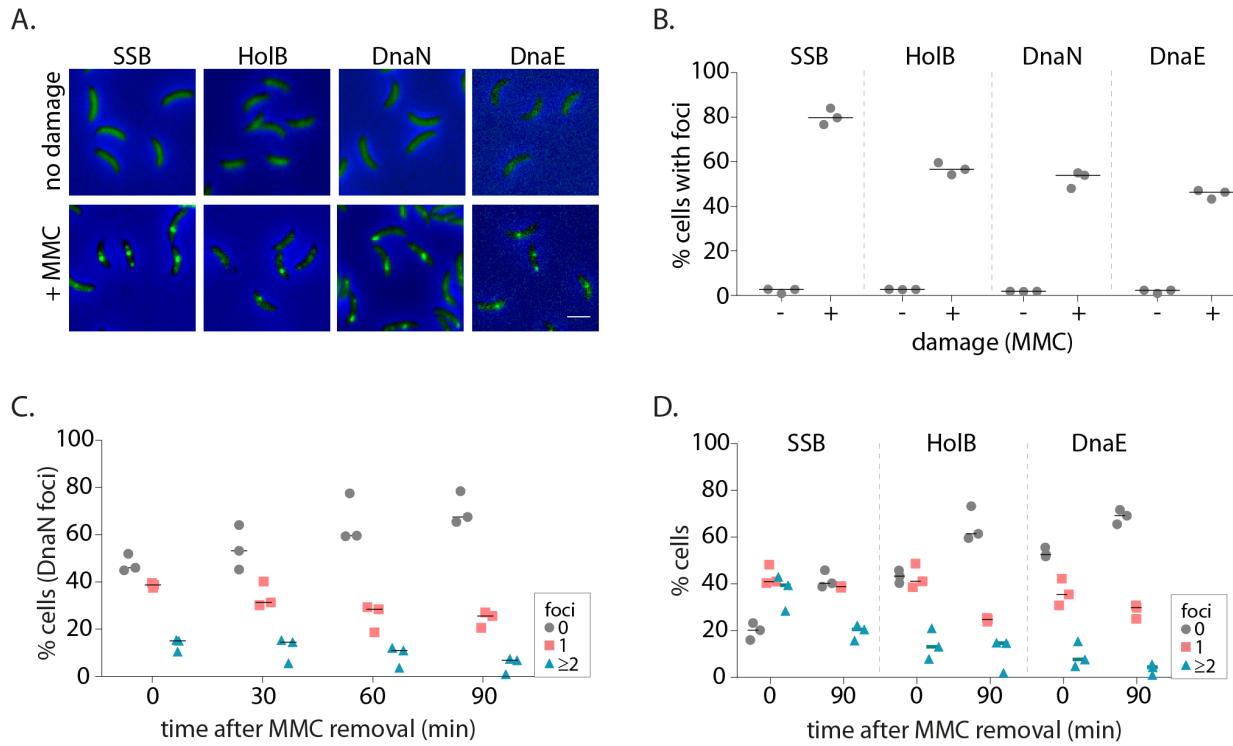
Thrall, E. S., Kath, J. E., Chang, S., & Loparo, J. J. (2017). Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage. *Nature Communications*, 8(1). <https://doi.org/10.1038/s41467-017-02333-2>


Vickridge, E., Planchenault, C., Cockram, C., Junceda, I. G., & Espéli, O. (2017). Management of *E. coli* sister chromatid cohesion in response to genotoxic stress. *Nature Communications*, 8, 14618. <https://doi.org/10.1038/ncomms14618>

Wagner, J., Gruz, P., Kim, S. R., Yamada, M., Matsui, K., Fuchs, R. P., & Nohmi, T. (1999). The dinB gene encodes a novel *E. coli* DNA polymerase, DNA pol IV, involved in mutagenesis. *Molecular Cell*, 4(2), 281–286. [https://doi.org/10.1016/s1097-2765\(00\)80376-7](https://doi.org/10.1016/s1097-2765(00)80376-7)


Wagner, Jérôme, Etienne, H., Fuchs, R. P., Cordonnier, A., & Burnouf, D. (2009). Distinct beta-clamp interactions govern the activities of the Y family PolIV DNA polymerase. *Molecular Microbiology*, 74(5), 1143–1151. <https://doi.org/10.1111/j.1365-2958.2009.06920.x>

Warner, D. F., Ndwandwe, D. E., Abrahams, G. L., Kana, B. D., Machowski, E. E., Venclovas, C., & Mizrahi, V. (2010). Essential roles for imuA'- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in *Mycobacterium tuberculosis*. *Proceedings of the National Academy of Sciences of the United States of America*, 107(29), 13093–13098. <https://doi.org/10.1073/pnas.1002614107>


Yeiser, B., Pepper, E. D., Goodman, M. F., & Finkel, S. E. (2002). *Proceedings of the National Academy of Sciences of the United States of America*, 99(13), 8737–8741. <https://doi.org/10.1073/pnas.092269199>

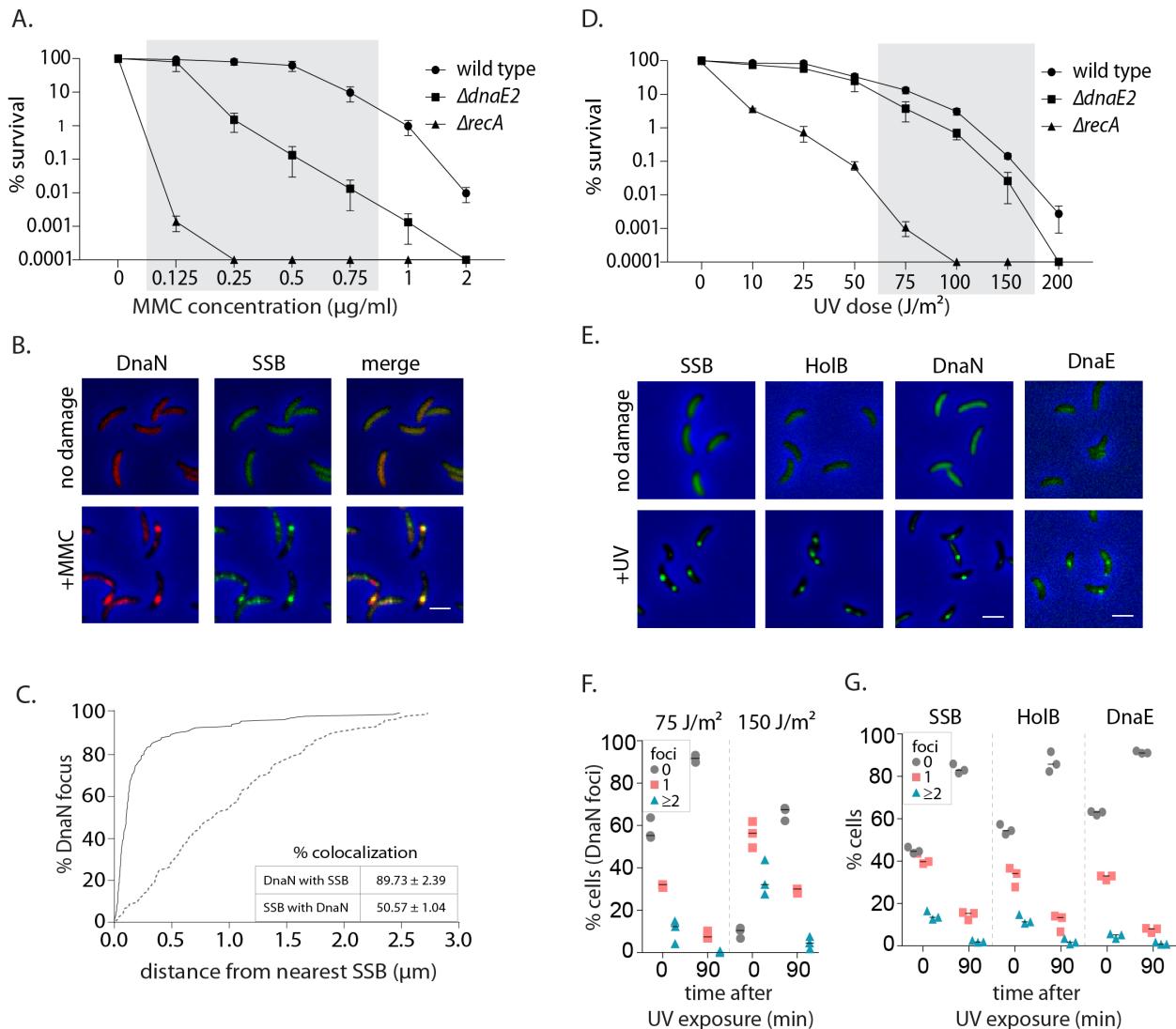

Figure 1: Monitoring mechanisms of DNA lesion repair in non-replicating bacteria. (A) above: Schematic of experimental setup used to isolate non-replicating *Caulobacter* swarmer cells to monitor DNA lesion repair and tolerance independent of ongoing replication. Cells are treated with DNA damage (30 min MMC or UV), after which damage is removed and cells are allowed to grow in fresh media (damage recovery), without ongoing replication. below: Flow cytometry profiles show DNA content in an asynchronous population (i), synchronized non-replicating swarmer cells before (ii) and after DNA damage recovery (iii). (B) Representative images of *Caulobacter* cells with fluorescently-tagged replisome components (SSB-YFP, HolB-YFP, DnaN-YFP or DnaE-mNeonGreen) in replicating or non-replicating conditions, without DNA damage (scale bar is 2 μ m here and in all other images).

Figure S1: (A) Growth of fluorescently-tagged replisome strains with or without (control) MMC damage. For reference, growth of wild type (no tag) and *recA* deletion are also shown (representative image of one experiment from three independent repeats). (B) Growth of fluorescently-tagged replisome strains with or without (control) UV damage. For reference, growth of wild type (no tag) and *recA* deletion are also shown (representative image of one experiment from three independent repeats). (C) Relative position of fluorescently-tagged replisome components in *Caulobacter* cells during one round of replication (no damage induced). Localization of Ssb-YFP, HolB-YFP, DnaN-YFP or DnaE-mNG was tracked every 10 min using time-lapse imaging. A focus tended to localize at one cell pole at initiations and proceeded towards the opposite cell pole as replication progressed (n=25, solid line represents mean and shaded region depicts the upper and lower limit at specific time points).

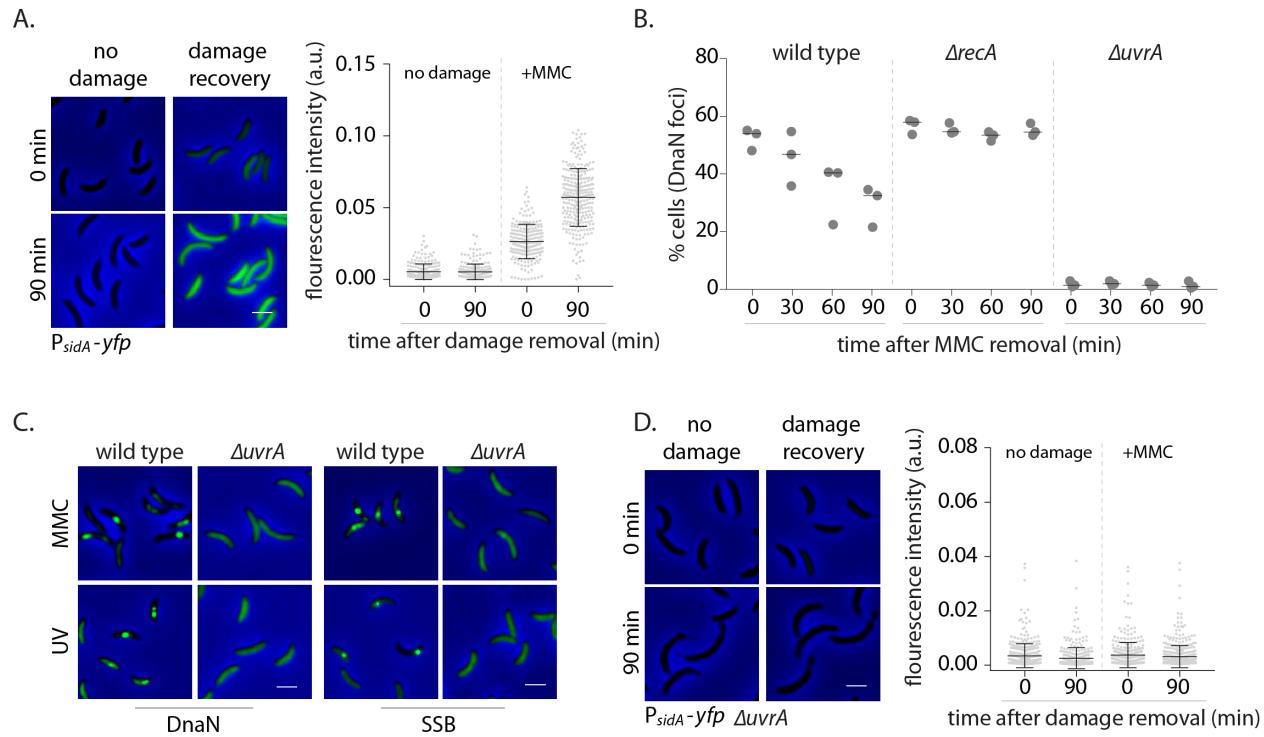


Figure 2: Replisome components are recruited to damaged DNA in non-replicating *Caulobacter* swarmer cells. (A) Representative images of non-replicating swarmer cells with fluorescently-tagged replisome components (SSB-YFP, HolB-YFP, DnaN-YFP or DnaE-mNeonGreen) with (+MMC) or without (no damage) 30 min of treatment with MMC. (B) Percentage cells with SSB, HolB, DnaN or DnaE localization (foci) in non-replicating swarmers with (+) or without (-) MMC treatment ($n \geq 324$ cells, three independent repeats). Dashed line represents median here and in all other graphs. (C) Percentage swarmer cells with 0, 1, or ≥ 2 DnaN foci at 0, 30, 60 and 90 min after damage removal (recovery) ($n \geq 476$ cells, three independent repeats). (D) Percentage swarmer cells with 0, 1, or ≥ 2 foci of SSB, HolB or DnaE at 0 and 90 min after damage removal (recovery) ($n \geq 324$ cells, three independent repeats).

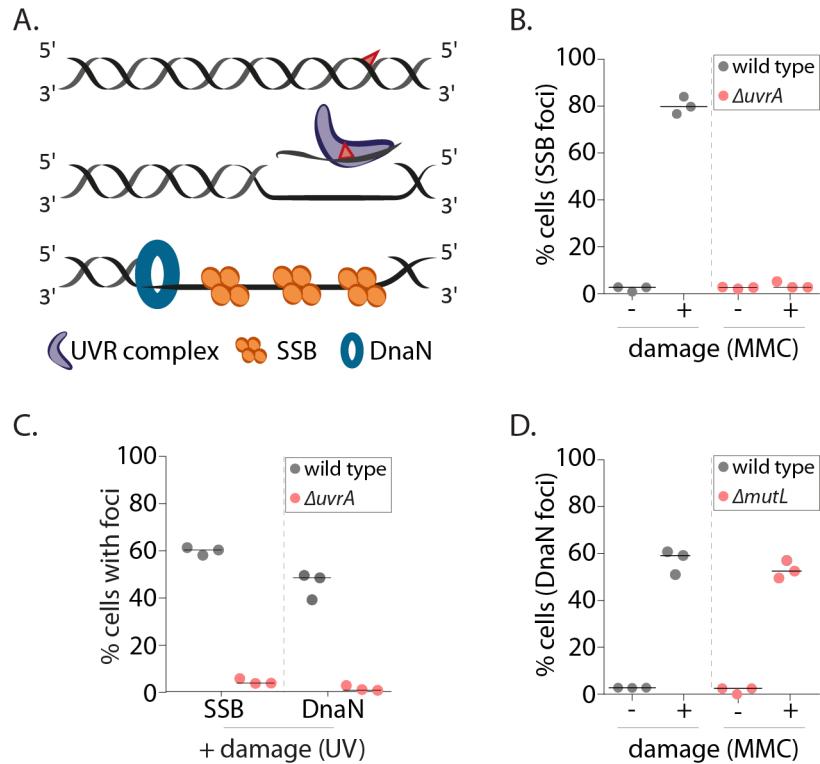
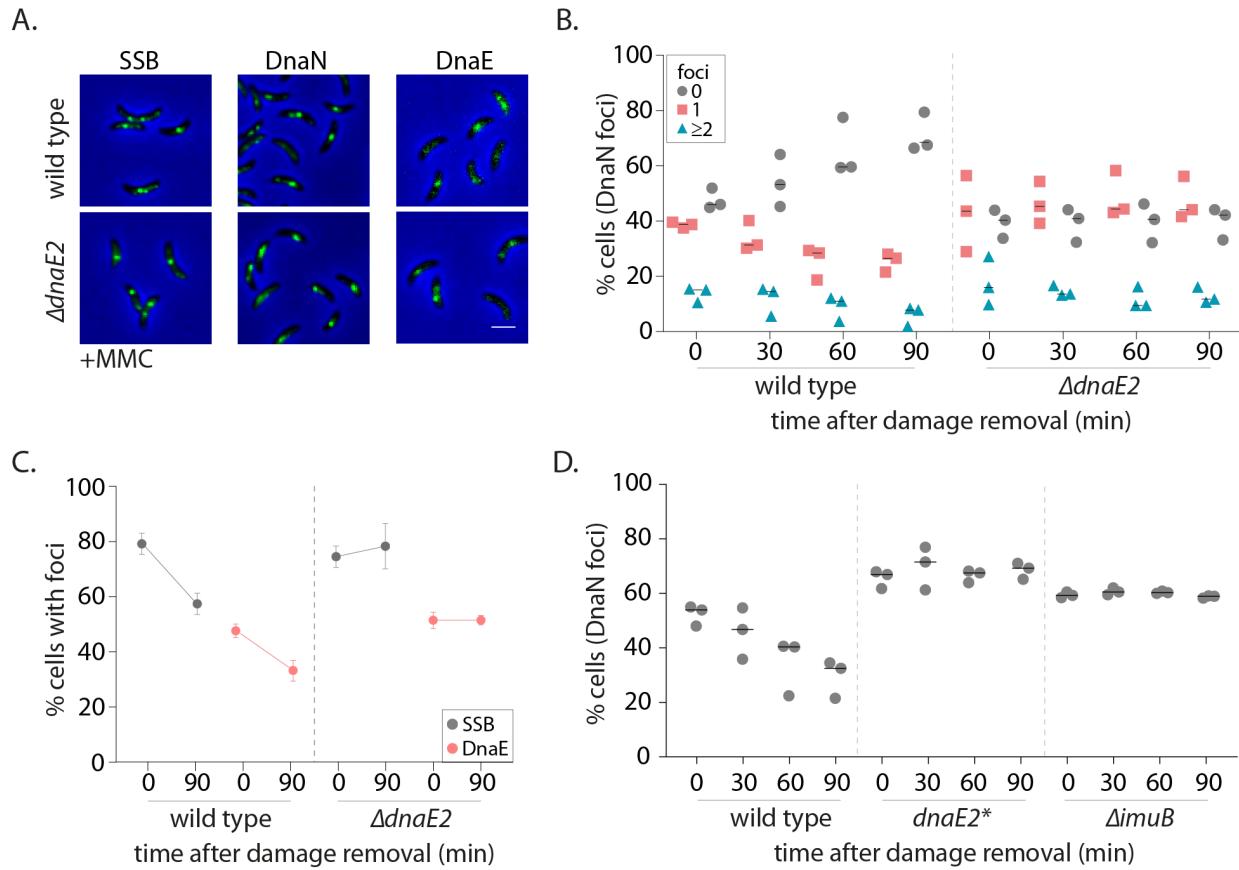


Figure S2: (A) Survival of wild type, Δ dnaE2 and Δ recA under different doses of MMC (mean and SD from three independent experiments). Shaded region depicts the concentrations used for experiments in this study. (B) Representative images of swarmer cells expressing DnaN-mCherry and SSB-GFP with or without MMC treatment (scale bar is 2 μ m here and in all other images). (C) Distance of a DnaN focus from the nearest SSB focus is measured and cumulative frequency distribution is plotted (solid line). Dotted line is the distribution of distance between the DnaN focus and any random position inside the cell. In the inset, % colocalization for DnaN with SSB and vice versa is provided (mean and SD from three independent repeats). (D) Survival of wild type, Δ dnaE2 and Δ recA under different doses of UV (mean and SD from three independent experiments). Shaded region depicts the concentrations used for experiments in this study. (E) (F) (G)


Representative images of swarmer cells expressing SSB-YFP, HolB-YFP, DnaN-YFP or DnaE-mNeonGreen with or without (no damage control) UV treatment. (F) Percentage wild type swarmer cells with 0, 1, or ≥ 2 foci of DnaN at 0 and 90 min after DNA damage recovery from 75 J/m² or 150 J/m² of UV ($n \geq 322$ cells, three independent repeats). (G) Percentage wild type swarmer cells with 0, 1, or ≥ 2 foci of SSB, HolB or DnaE at 0 and 90 min after DNA damage recovery from 75 J/m² of UV ($n \geq 334$ cells, three independent repeats).

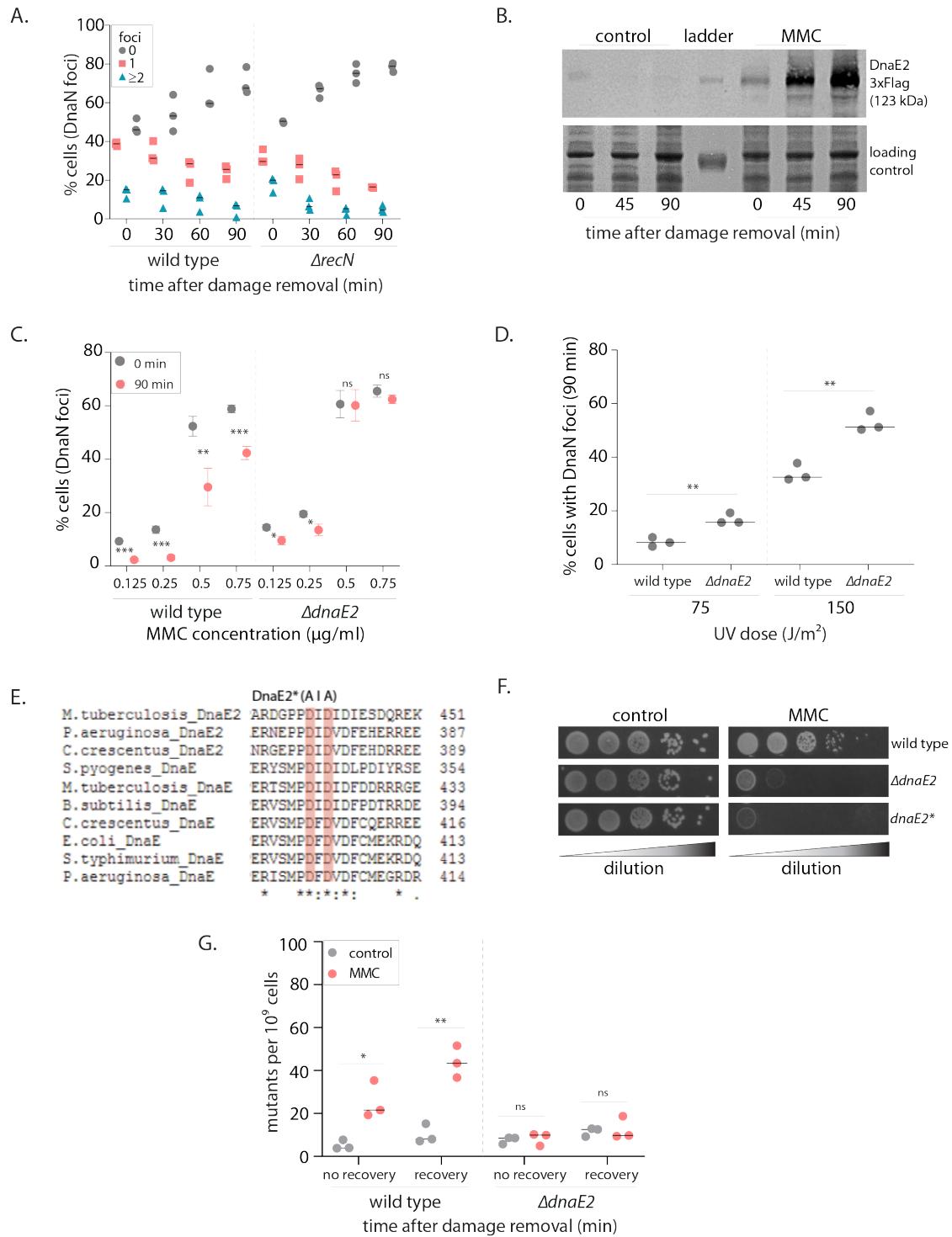
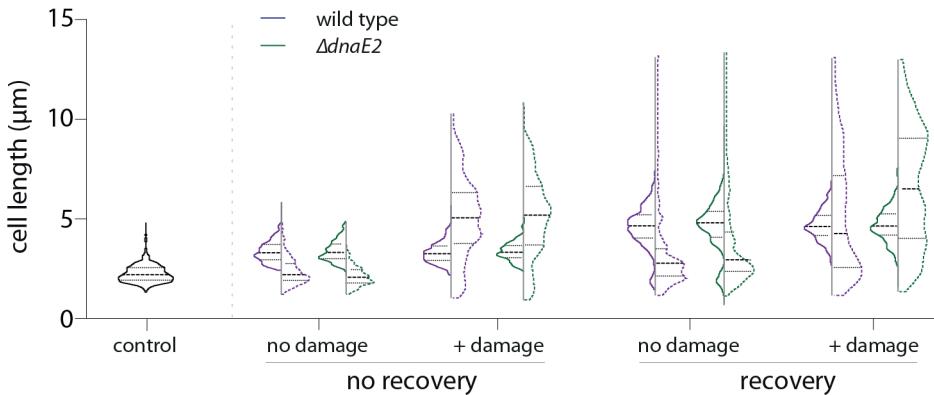

Figure 3: Nucleotide Excision Repair generates ssDNA gaps for localization of replisome components in non-replicating cells. (A) SOS induction is measured by assessing the expression of YFP from an SOS-inducible promoter (P_{sidA} -yfp). On the left are representative images of cells expressing the reporter at 0 or 90 min after MMC removal and control cells (no damage). On the right total fluorescence intensity normalized to cell area is plotted for both time points for cells with or without damage treatment. Each dot represents a single cell. Mean and SD are shown in black ($n \geq 219$). (B) Percentage wild type, $\Delta recA$, or $\Delta uvrA$ swarmer cells with DnaN foci 0, 30, 60 and 90 min after DNA damage recovery ($n \geq 308$ cells, three independent repeats). (C) Representative images of wild type or $\Delta uvrA$ swarmer cells expressing SSB-YFP or DnaN-YFP, treated with MMC or UV. (D) As (a) for cells lacking $uvrA$ ($n \geq 325$).

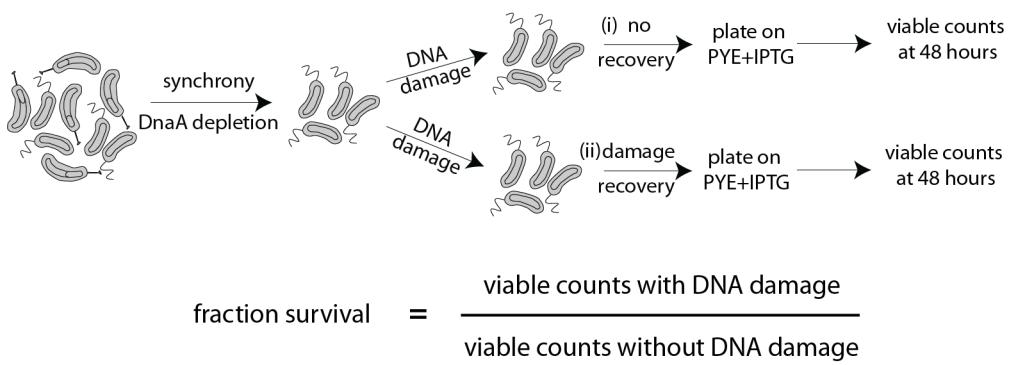
Figure S3: (A) Schematic of mechanism of single-stranded DNA gap generation by NER. (B) Percentage wild type or Δ uvrA swarmer cells with SSB foci with (+MMC) or without (-, control) damage treatment (n \geq 325 cells, three independent repeats). (C) Percentage wild type or Δ uvrA swarmer cells with DnaN or SSB foci after DNA damage (UV) (n \geq 340 cells, three independent repeats). (D) Percentage wild type or Δ mutL swarmer cells with DnaN foci with (+MMC) or without (-, control) damage treatment (n \geq 324 cells, three independent repeats).



Figure 4: SOS-induced low fidelity polymerase, DnaE2, is essential for subsequent dissociation of replisome components. (A) Representative images of wild type or Δ dnaE2 swarmer cells with SSB-YFP, DnaN-YFP or DnaE-YFP after MMC treatment. (B) Percentage wild type or Δ dnaE2 swarmer cells with 0, 1, or ≥ 2 DnaN foci at 0, 30, 60 and 90 min of DNA damage recovery ($n \geq 467$ cells, three independent repeats) (C) Percentage wild type or Δ dnaE2 swarmer cells with SSB or DnaE foci at 0 and 90 min of DNA damage recovery ($n \geq 325$ cells, mean and SD from three independent repeats). (D) Percentage wild type, $dnaE2$ catalytic mutant ($dnaE2^*$) or $\Delta imuB$ swarmer cells with DnaN foci at 0, 30, 60, and 90 min of MMC damage recovery ($n \geq 342$ cells, three independent repeats. wild type data from Figure 2B).

Figure S4: (A) Percentage wild type or $\Delta recN$ swarmer cells with 0, 1, or ≥ 2 DnaN foci at 0, 30, 60 and 90 min of DNA damage recovery ($n \geq 309$ cells, three independent repeats). (B) Representative image of a western blot on of DnaE2-3X-Flag during MMC damage recovery. As a control, cells without damage treatment are also probed for DnaE2 expression (image of one


experiment from three independent repeats). (C) Percentage wild type or $\Delta dnaE2$ swarmer cells with DnaN foci at 0 and 90 min of DNA damage recovery ($n \geq 321$ cells, mean and SD from three independent repeats, under indicated doses of DNA damage). Asterisks denote significant differences and 'ns' denotes not significant differences in unpaired t-tests here and in all other graphs. Specific p-values are summarized in Table 4. (D) Percentage wild type or $\Delta dnaE2$ swarmer cells with DnaN foci after 90 min of damage recovery post treatment with two doses of UV ($n \geq 332$ cells, three independent repeats). (E) Multiple sequence alignment of a section of the catalytic domain of C-family polymerases from different bacteria. Conserved amino acid residues highlighted in pink have been mutated in DnaE2* (catalytic dead mutant) (Warner et al., 2010). (F) Growth of wild type, $\Delta dnaE2$ and $dnaE2^*$ strains with (MMC) or without (control) DNA damage (image of one experiment from three independent repeats). (G) Rifampicin resistant mutants that arise from wild type and $\Delta dnaE2$ cells treated with (MMC) or without (control) DNA damage. Cells were either immediately released into replication permissive media after damage removal (no recovery) or allowed to recover from damage for 90 min in non-replicating phase before release into replication permissive conditions (recovery). Dashed line shows median from three independent experiments.


Figure 5: DnaE2 activity on NER-generated ssDNA gaps enhances survival of non-replicating cells under DNA damage. (A) Schematic of experimental setup used to assess the impact of lesion repair/ tolerance in non-replicating cells. After MMC treatment for 30 min, cells are either released into replication-permissive media ((i) no recovery) or allowed to grow for 90 min without damage and then released into replication-permissive media ((ii) damage recovery). Cells are followed via time-lapse microscopy and time to division is estimated. Control cells are taken through the same growth regimes, however, no damage is added to the culture. (B) Representative time-lapse montage of wild type or Δ dnaE2 cells in replication-permissive media after DNA damage recovery. Cell divisions are marked with white asterisk. In the panel shown here three divisions were scored in wild type, while none were observed in Δ dnaE2 cells (C) Percentage cell division over time after replication re-initiation for wild type and Δ dnaE2 cells

either without (i. no recovery) or with (ii. recovery) damage recovery time in replication-blocked conditions ($n \geq 368$ cells). Percentage cells divided at 240 min in each of these conditions is summarized in the graph inset. (D) Survival of wild type and $\Delta dnaE2$ cells either without (i. no recovery) or with (ii. recovery) damage recovery time in replication-blocked conditions measured via estimation of viable cell count (three independent repeats). Fraction survival was calculated by normalizing viable cell count under DNA damage to that without DNA damage. Error bars represent mean with SD from three independent experiments.

A.

B.

Figure S5: (A) Cell length distribution (with median) for wild type (purple) or $\Delta dnaE2$ (green) cells. Control cells were not treated with DNA damage, while + damage cells were exposed to MMC treatment for 30 min. Solid lines represent length distribution prior to release into replication-permissive conditions while dashed lines represent length distribution after 240 min in replication-permissive conditions. Median and inter-quartile range of the distribution is indicated. 'No recovery' and 'recovery' as outlined in Figure 5A ($n \geq 300$ cells). (B) Schematic of experimental design to estimate survival advantage from recovery in non-replicating phase (Figure 5D). Fraction survival is calculated by normalizing viable cell counts obtained with damage to those obtained without damage. A similar experimental design was used for estimation of mutation frequencies (Figure S4G and materials and methods).