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Abstract: 

We benchmarked two approaches for the detection of cell-type-specific differential DNA methylation: 

Tensor Composition Analysis (TCA) and a regression model with interaction terms (CellDMC). Our 

experiments alongside rigorous mathematical explanations show that TCA is superior over CellDMC, 

thus resolving recent criticisms suggested by Jing et al. Following misconceptions by Jing and colleagues 

with modelling cell-type-specificity and the application of TCA, we further discuss best practices for 

performing association studies at cell-type resolution. The scripts for reproducing all of our results and 

figures are publicly available at github.com/cozygene/CellTypeSpecificMethylationAnalysis. 

 

Calling differential DNA methylation at a cell-type level from tissue-level bulk data has recently become a 

question of interest136, and thus far, two main different approaches have been suggested for the task. The 

first approach employs a standard regression analysis while including and evaluating interaction terms 

(i.e. multiplicative terms) between cell-type proportions and the phenotype of interest. This approach has 

long been suggested and repeatedly established in the context of cell-type-specific differential expression 

analysis7,8, and it was recently proposed in the context of methylation by Zheng et al. (a method called 

CellDMC)2; notably, this approach has been independently applied to methylation by other groups as 

well5,6. We recently presented a second approach, called Tensor Composition Analysis (TCA). The TCA 

framework is based on a novel method we developed and applied for modelling cell-type-specific 

variability; particularly, we presented it in the context of detecting differential methylation at cell-type-

specific resolution3. In response to the original paper introducing TCA, Jing et al.9 made multiple claims 

about the utility of TCA and its performance compared with CellDMC. We argue that these claims stem 

from methodological misconceptions and improper application of TCA. We hereby address these claims 
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and clarify the distinction between TCA and CellDMC, with the hope that this will resolve confusions about 

the TCA framework and will help users to apply it correctly. 

 

First and foremost, we stress out that in principle TCA cannot be inferior to CellDMC when compared 

objectively: TCA is a more expressive model than CellDMC, as it makes more general assumptions about 

the variation of cell-type-specific methylation. Therefore, for large enough data (at least 60 samples as we 

later show), TCA is expected to be the better choice in general. To illustrate the difference between the 

methods, consider a case/control study design. In that case, CellDMC assumes a fixed effect between 

cases and controls as the only variation at the cell-type level; this corresponds to the unrealistic 

assumption that all individuals within a group (i.e. cases or controls) have the exact same methylome. TCA 

improves upon this by modeling the variation of cell-type-specific methylation across individuals (i.e. even 

within the same group). We show this theoretically by revealing the mathematical relation between TCA 

and CellDMC, which yields CellDMC as a degenerate case of the more general TCA model (Supplementary 

Note). In order to demonstrate this result empirically, we conducted a simulation study while following 

the same simulation setup and evaluation metrics outlined by Jing and colleagues9. As we show next, we 

observe that TCA improves upon CellDMC under all scenarios proposed by Jing et al. Yet, due to two key 

misconceptions we detail below, Jing et al. did not provide an objective comparison of TCA and CellDMC, 

which led to a major discrepancy in results. 

 

The first misconception derives from an inconsistent selection of statistical tests for comparison. Jing et 

al. evaluated TCA and CellDMC using two conceptually different types of statistical tests. While CellDMC 

fits a marginal conditional model, wherein the effects of all cell types are estimated jointly and then tested 

in each cell type, in their application of TCA they only considered a marginal model, wherein the effect of 

each cell type is estimated and tested marginally (i.e. separately), irrespective of other cell types. This 

distinction created a bias in their reporting, as these two types of tests inherently lead to different results; 

this property, which is not unique to TCA, essentially reduces to confusions about basic concepts in 

regression (Supplementary Note). Admittedly, we acknowledge that we should have provided a thorough 

discussion about the differences between marginal conditional and marginal tests in the TCA paper; of 

note, the software we provided with the publication clarified the differences. 

 

The second misconception relates to inconsistency with the underlying biological assumptions taken in 

the application of TCA and CellDMC. Particularly, Jing et al. mixed up two distinct biological concepts: 

while they followed in CellDMC and their simulation study the assumption that methylation levels are 

affected by the phenotype of interest (or by a mediating component thereof; denote this assumption by 

X|Y), at the same time, they applied TCA in a way that corresponds to the assumption that methylation 

levels affect the phenotype of interest (or a mediating component thereof; denote this assumption by 

Y|X). Indeed, our original demonstration of TCA focused on the Y|X assumption, however, the TCA 

framework can also properly accommodate the X|Y assumption (see <Applying TCA to epigenetic 

association studies= in the Methods section of our original TCA paper3; Supplementary Note). For a 

comprehensive list of the statistical tests and biological assumptions implemented in TCA and in CellDMC 

see Supplementary Table 1. 
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Evaluating both methods under the same biological model and statistical test used in CellDMC (i.e. 

marginal conditional tests under the assumption X|Y) renders TCA as the (mildly) better performing 

method under all four scenarios and all three evaluation metrics that were considered by Jing et al. (Figure 

1), as expected per our theoretical result (Supplementary Note). Repeating this analysis using different 

sample sizes shows a slight advantage for CellDMC over TCA in data with less than 60 individuals 

(Supplementary Figures 3 and 4). Further simulating phenotypes to be statistically affected by methylation 

(i.e. setting Y|X as the true model, rather than X|Y as in Jing et al.) results in a substantial decrease in 

specificity and precision for CellDMC (with the benefit of a mild increase in sensitivity) compared to TCA 

(Figure 2). This can be explained by the fact that TCA can properly accommodate the assumption Y|X, the 

true biological model in this case, whereas CellDMC is bound to assume X|Y. Notably, applying TCA under 

the wrong biological assumption in this case (i.e. assuming X|Y) performs better than CellDMC, reflecting 

better robustness of TCA to model misspecification (Supplementary Figure 1). 

 

Jing et al. further report poor performance when applying TCA for estimating cell-type proportions in two 

whole-blood datasets. However, we could not reconstruct their results; in fact, we found that the TCA 

estimates are almost in par with reference-based estimates (Supplementary Figure 2). Regardless, TCA, 

which requires cell-type proportions as an input, should not always be set to re-estimate cell-type 

proportions. Specifically, the iterative procedure in TCA for re-estimating proportions was designed for 

scenarios where the input estimates are expected to be limited in quality (e.g., due to lack of appropriate 

methylation reference); our previous experiments verified the performance of TCA under such cases3. 

 

Another criticism made by Jing et al. concerns the computational efficiency of TCA. We note that speeding 

up TCA was out of scope in the original paper, where we chose to focus on the development of the first-

of-its-kind model-based deconvolution method that allows learning 3-dimensional signals from 2-

dimensional data. However, speed is not an inherent limitation of TCA. In order to show this, we improved 

the runtime of TCA by an order of magnitude by implementing a simple and substantially faster 

optimization (Supplementary Note), resulting in runtime that is more comparable to CellDMC9s 

(Supplementary Figures 5,6). 

 

Lastly, Jing et al. claim that TCA was not properly evaluated on real data. Particularly, they dismissed our 

evaluation of TCA using previously published data with rheumatoid arthritis (RA)10, claiming that RA has 

no reliable known associations that can be used as ground truth. This claim is unclear to us, given that 

most of the authors in Jing et al. suggested their analysis of the very same dataset as evidence for the 

utility of CellDMC2. Moreover, we indeed provided replication analysis for the multiple associations we 

found with TCA using independent RA data collected from sorted cells; notably, none of the associations 

that were reported by CellDMC in this experiment could be replicated in the sorted methylation data. 

 

Jing and colleagues further present results with smoking status in two whole-blood datasets10,11, where 

they used previously reported cell-type-specific associations in 7 CpGs12 as ground truth for evaluation. 

However, as in their simulations, they did not provide a comparison of TCA with CellDMC using the same 

statistical test and under the same biological assumption, which would have revealed essentially the same 

results for TCA and CellDMC in this case (Figure 3a-b). Since any evaluation of sensitivity to detect true 
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positives should be complemented with an evaluation of specificity, we further evaluated the 

performance of the two methods on the entire data (i.e. rather than just on the 7 CpGs). Our results show 

that while TCA is well calibrated at the epigenome-wide level, CellDMC tends to suffer from a severe 

inflation in test statistic, which indicates low specificity and precision (Figure 3d). 

 

Of note, 7 out of the 14 tested CpGs across the two datasets with smoking did not achieve genome-wide 

significance, which would not have allowed de-novo detection of these associations in practice, 

presumably due to insufficient power. In order to address this, it is important to first appreciate that 

modeling the cell-type-specific nature of methylation is expected to benefit more types of analyses 

beyond calling for differentially methylated cell types. Particularly, compared to a standard regression 

analysis, TCA improves the detection of tissue-level associated CpGs via joint tests, wherein the effects of 

all cell types are tested jointly for their combined effect3. Such tissue-level tests can enable a powerful 

two-step approach of first detecting tissue-level associations followed by a post-hoc analysis of the 

associated CpGs at the cell-type level. Indeed, combining a tissue-level test for each CpG with a cell-type 

level post-hoc analysis, as allowed by TCA, correctly detects 10 out of the 14 smoking associated CpGs and 

cell types at a genome-wide significance level (Figure 3c). This shows that the detection of tissue-level 

associations is of primary interest, and methods such as TCA and CellDMC should not be evaluated solely 

on their ability to directly capture differentially methylated cell types as argued by Jing et al. 

 

While we resolve their main concerns, we would like to commend Jing and colleagues for pursuing clarity 

and a continuous evaluation of methodologies, which is a key for developing best practices in research. 

Particularly, we acknowledge that precision of methods, which was not discussed in detail either in the 

TCA paper or in the CellDMC paper, should explicitly be considered as an evaluation metric whenever 

possible. Further, we agree that the reporting of results should always strive for clarity. Yet, in simulation 

studies that involve a great amount of detail, reproducibility is often challenging in practice. For that 

reason, here, we take a step forward and release the code for reconstructing our entire analysis, and we 

encourage others in the community to consider this approach in their publications to improve 

reproducibility. 

 

In summary, we provide both empirical and theoretical evidence that for large enough sample sizes (at 

least 60), TCA is superior over CellDMC when it is applied under the assumptions taken in CellDMC, with 

the additional benefit of allowing to accommodate and therefore better handle different assumptions 

that are not allowed by CellDMC. Following these results and our demonstration that computational 

efficiency is not a limitation of TCA, we recommend that TCA should always be preferred over CellDMC, 

as long as the sample size is above 60. 

 

Finally, as a practical note, performing marginal tests, as in Jing et al.9s application of TCA, substantially 

improves power over the alternatives, however, at the cost of a considerable decrease in precision 

(Supplementary Figures 7, 8, and 9). We therefore reiterate our previous recommendation to complement 

large data generation with small samples of sorted methylation data3. Such data can address the low 

precision limitation of the highly powerful marginal tests by providing a way to experimentally replicate 

associations at a cell-type-specific resolution. In the absence of such data for validation, it is advised to 
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use the less powerful yet more precise alternative tests provided in TCA (see Supplementary Note for a 

comprehensive discussion and recommendations).  
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Figure 1: Evaluation of TCA and CellDMC in the case where the phenotype affects methylation 

(X|Y). (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and precision (positive predictive 

value; PPV) to detect differentially methylated cell-types as a function of the association effect 

size, under the scenario where a single cell type out of 6 blood cell types is altered in cases versus 

controls (Uni-1C). (d)-(f) as in Uni-1C, only for the scenario where two cell types are altered in the 

same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario where the cell types are altered 

in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for three cell types (Bi-3C). Results are 

shown across 50 simulated datasets using violin plots; solid lines represent median values. TCA 

was executed under the assumption X|Y (TCA X|Y). 
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Figure 2: Evaluation of TCA and CellDMC in the case where the phenotype is affected by 

methylation (Y|X). (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and precision 

(positive predictive value; PPV) to detect differentially methylated cell-types as a function of the 

association effect size, under the scenario where a single cell type out of 6 blood cell types is 

altered in cases versus controls (Uni-1C). (d)-(f) as in Uni-1C, only for the scenario where two cell 

types are altered in the same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario where 

the cell types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for three cell types 

(Bi-3C). Results are shown across 50 simulated datasets using violin plots; solid lines represent 

median values. TCA was executed under the assumption Y|X (TCA Y|X). 
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Figure 3: Evaluation of TCA and CellDMC in two independent whole-blood datasets with 

smoking. (a-c) Association tests were performed for each of 7 CpGs that were previously reported 

by Su et al. as exhibiting either myeloid-specific (in red) or lymphoid-specific (in green) 

associations with smoking status12. Results are displayed as heatmaps of the (negative-log 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.14.431168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431168
http://creativecommons.org/licenses/by/4.0/


transformed) p-values of the associations with myeloid cells (neutrophils and monocytes) and with 

lymphoid cells (T-cells, B-cells, and NK-cells) using (a) CellDMC, (b) TCA under the assumption 

X|Y (using the 'tca' function), and (c) TCA under the assumption X|Y, while using a joint test for 

tissue-level significance (using the 'tca' function). The latter achieves genome-wide significance 

(i.e. >6.98, assuming all 450K methylation array sites) in all but one CpG; calling the cell types 

that drive these associations using the results in (b) as a post-hoc analysis reveals the high-power 

of combining these two tests. (d) Results of an epigenome-wide analysis presented by quantile-

quantile plots of the (negative-log transformed) p-values for the association tests in (a)-(c). 

Significant global deviation from the y=x line indicates an inflation arising from a badly specified 

model. Axes were truncated for visual purposes. 
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