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Abstract 

 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized by a 

range of motor and non-motor symptoms, often with the motor dysfunction initiated unilaterally. 

Knowledge regarding disease-related alterations in white matter pathways can effectively help 

improve the understanding of the disease and propose targeted treatment strategies. 

Microstructural imaging techniques, including diffusion tensor imaging (DTI), allows inspection 

of white matter integrity to study the pathogenesis of various neurological conditions. Previous 

voxel-based analyses with DTI measures, such as fractional anisotropy and mean diffusivity 

have uncovered changes in brain regions that are associated with PD, but the conclusions were 

inconsistent, partially due to small patient cohorts and the lack of consideration for clinical 

laterality onset, particularly in early PD. Fixel-based analysis (FBA) is a recent framework that 

offers tract-specific insights regarding white matter health, but very few FBA studies on PD exist. 

We present a study that reveals strengthened and weakened white matter integrity that is subject 

to symptom laterality in a large drug-naïve de novo PD cohort using complementary DTI and 

FBA measures. The findings suggest that the disease gives rise to both functional degeneration 

and the creation of compensatory networks in the early stage. 
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1. Introduction 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of 

dopaminergic neurons in the midbrain. Although the disease primarily affects the patient’s motor 

functions, it can also induce a range of non-motor symptoms, such as depression and sleep 

disturbance, as a result of modifications in brain connectivity (Ji et al., 2019). Precise knowledge 

regarding disease-related changes in white matter pathways can effectively help improve the 

understanding of the disease and its treatment strategy. Microstructural imaging techniques, 

including diffusion tensor imaging (DTI), allow inspection of white matter integrity to study the 

progression of neurological conditions. 

In the past, a number of studies have investigated brain tissue changes in Parkinson’s disease 

using DTI techniques (Atkinson-Clement, Pinto, Eusebio, & Coulon, 2017; Zhang & Burock, 

2020). Compared with morphometric analysis (Sarasso, Agosta, Piramide, & Filippi, 2020) that 

intends to characterize macroscopic anatomical changes, quantitative MRI measures have shown 

superior sensitivity in detecting tissue degeneration due to the disease. More specifically, voxel-

based analyses (VBA) with DTI measures, such as fractional anisotropy (FA) and mean 

diffusivity (MD) have revealed PD-related tissue degeneration patterns, but unfortunately these 

findings were often inconsistent across studies, especially within white matter regions, partially 

due to smaller patient cohorts, sensitivity to heterogeneity in patient groups (e.g., variations in 

disease stages, symptoms, and treatment history), and MRI parameters (e.g., number of gradient 

directions in DTI sequences). In their meta-analysis of 39 studies, Atkinson-Clement et al. (2017) 

show that cellular degeneration measured as reduced FA and elevated MD exist within the 

substantia nigra, corpus callosum, and the cingulate and temporal cortices in PD patients.  

Based on diffusion MRI, fixel-based analysis (FBA) (Raffelt et al., 2017) is a relatively recent 

method that offers tract-specific insights regarding white matter health. Instead of the more 

simplistic DTI model, FBA models fiber populations within one voxel (called a fixel) through 

functions of fiber orientation, and derives quantitative metrics in both macroscopic and 

microscopic scales to characterize white matter fibers, including fiber cross-section (FC), fiber 

density (FD), and the combined measure of fiber density and cross-section (FDC). Among these, 

FC reflects the macroscopic changes of the fiber bundles in terms of their cross-sectional areas; 

FD measures the density of fibers within a fiber bundle; and FDC evaluates the combined impact 

of FC and FD in white matter tracts. In contrast to conventional voxel-based analysis with DTI 

measures, which fails to handle fiber-crossing within voxels, FBA allows more interpretable 

results by identifying specific fiber tracts that are relevant to the designated study. Since its debut, 

this technique has demonstrated good specificity, sensitivity, and reliability in various 

applications, including natural aging (Choy et al., 2020), Alzheimer’s disease (Mito et al., 2018), 

stroke (Egorova et al., 2020), traumatic brain injury (Wallace et al., 2020), and mental disorders 

(Lyon et al., 2019). 
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To date, very few have attempted to characterize white matter alterations as a result of 

Parkinson’s disease using FBA. The existing studies (Li et al., 2020; Rau et al., 2019; Zarkali et 

al., 2020) primarily focus on early-stage patients, who have started drug treatment. More 

specifically, Rau et al. (2019) conducted a longitudinal analysis over a follow-up period of two 

years for 50 PD patients. Using 76 healthy controls to serve as the baseline, their results suggest 

an early degeneration in the splenium of the corpus callosum (CC), measured by the reduction of 

both FC and FDC in the region, as a typical alteration of PD. In addition to the CC, a decrease in 

FC or FDC was observed in several white matter tracts, including the cingulum, posterior 

thalamic radiation, corona radiata, cerebral peduncle, and internal capsule. Overall, fixel-based 

metrics were correlated with the worsening of a 39-item Parkinson’s disease questionnaire, 

Unified Parkinson’s Disease Rating Scale (UPDRS), and activity of daily living. Later, Li et al. 

(2020) compared fixel-based measures among 41 PD patients in the early stage (Hoehn & Yahr 

=1~1.5), 57 PD patients in the middle stage (Hoehn & Yahr=2~2.5), and 76 healthy controls. 

The comparison demonstrated significant differences in FD of the cerebrospinal tract (CST) and 

FC of the superior cerebral peduncle (SCP) among the three groups, with the mean FD values of 

the CST higher in the PD groups than healthy controls. In addition, they also found a correlation 

between reduced FD of CC and the deterioration of motor and psychiatric symptoms. Finally, 

Zarkali et al. (2020) investigated Parkinson hallucination and visual dysfunction with FBA, and 

discovered lower FC and FDC within the splenium of the CC, as well as lower FC in the left 

posterior thalamic radiata for patients with Parkinson hallucinations than those without the 

symptom.  

 

It is known that motor symptoms of PD usually initiate unilaterally and then progress to both 

sides of the body, and evidence has linked the laterality of motor symptoms onset with the 

prognosis of the disease (Baumann, Held, Valko, Wienecke, & Waldvogel, 2014; Munhoz et al., 

2013). For example, patients with the initial motor symptoms onset on the right-side are 

associated with faster disease progression (Baumann et al., 2014), and those with left-side onset 

were reported to have longer disease duration (Munhoz et al., 2013). Since the clinical laterality 

onset may impact the brain hemispheres differently (Scherfler et al., 2012; Shang et al., 2020), 

this factor should be fully considered in relevant neuroimage analyses of PD, especially when 

involving patients at the early stages of the disorder. Unfortunately, in a majority of current 

studies, the asymmetric development of PD is frequently overlooked. Besides the pitfall of 

limited patient cohorts in the analysis, the lack of consideration for laterality may also contribute 

to the inconsistency in the findings of disease-related tissue changes, thus preventing a clear 

depiction of pathogenesis of the disease. Therefore, an investigation based on a large PD cohort, 

with an emphasis on the clinical laterality onset should better elucidate the relationship between 

the development of PD and the associated alterations in white matter integrity. Furthermore, a 

comparison between FBA and VBA with DTI-measures based on the same cohort can help 

consolidate the findings with different analytical approaches. These are expected to be 
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instrumental to further decode the disease mechanism and search for effective biomarkers for 

Parkinson’s disease. 

 

In this study, we characterize the status of white matter health in a large cohort of drug-naïve de 

novo PD patients with respect to the laterality onset of motor symptoms using fixel-based 

analysis for the first time. From the public Parkinson’s Progression Markers Initiative (PPMI) 

database, 141 patients were compared against 62 sex- and age-matched healthy controls, as well 

as within the cohort to reveal strengthened and weakened white matter tracts, subject to the 

clinical laterality onset. In addition, we also compared the results from FBA to VBA with DTI 

metrics, which further supports the findings from FBA, while offering complementing insights.  

 

2. Materials and Methods 

2.1 Participants  

For the study, 141 drug-naïve de novo PD patients (age = 61±9y, 51 females) having motor 

symptoms of unilateral dominance and 62 sex- and age-matched healthy subjects (age = 61±10y, 

22 females) were obtained from the Parkinson’s Progression Markers Initiative database 

(www.ppmi-info.org/data), which is an ongoing multicenter study consisting of clinical 

evaluation, genetic information, bio-samples, and imaging data for the goal of identifying disease 

biomarkers. The up-to-date information on the study can be found at www.ppmi-info.org. At 

each participating PPMI site, written informed consent was obtained from all participants in the 

study. For the investigation, we included subjects who have T1w, T2w, and DTI images with the 

minimum age of 30 years from the database, and the patient data were collected from the 

baseline visits (N=152). Any subjects (N=8) with poor image quality by visual inspection were 

removed from the collection. All included PD patients have received clinical assessments, 

including the UPDRS for their symptoms and are at Hoehn and Yahr (H&Y) stage I or II without 

prior pharmaceutical treatment. Among these patients, 62 have motor symptoms more dominant 

on the left side and 79 on the right side. Patients affected by the motor dysfunction equally on 

both sides (N=3) were excluded from the study. For easy annotation, we will refer the PD 

patients with left-dominant symptoms as LPD and those with right-dominant symptoms as RPD. 

From the clinical evaluations, the described study focuses on the UPDRS-I (non-motor 

experience of daily living), UPDRS-III (motor function examination), total UPDRS (the 

composite of motor and non-motor symptom evaluations), the Geriatric Depression Scale (GDS), 

and REM Sleep Behavior Disorder Screening Questionnaire Score (RBDSQ). They cover motor 

and non-motor symptoms of PD that are of particular interest in the early stage of the disease. 

The detailed demographic information of the subjects and the symptom evaluations are detailed 

in Table 1. The same information with respect to the dominant side of motor symptoms is listed 

in Table 2. Statistical tests were performed in each table to assess the differences in the 

demographic and clinical information between groups. 
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Table 1. Demographics of Parkinson’s disease and healthy subjects. Group differences were 

evaluated using statistical tests (a=Kruskal-Wallis test, b=Chi-square test, and c=Wilcoxon rank 

sum test), and p-values lower than 0.05 were considered significant (annotated with *). 

 

 PD (n=141) HC (n=62) p-value 

Age 61.7±8.9 61.4±9.8 0.929
 a
 

Sex 51 F & 90 M 22 F & 40 M 0.925
b
 

UPDRS I 5.1±3.8 2.4±3.3 <1.0 x10
-7 c *

 

UPDRS III 20.8±9.0 0.6±1.3 <1.0 x10
-29 c *

 

Total UPDRS 31.4±13.3 3.3±3.8 <1.0 x10
-28 c *

 

GDS 2.3±2.5 1.5±2.8 0.0014
c*

 

RBDSQ 3.9±2.5 2.9±2.3 0.0049
c*

 

 

Table 2. Demographics of PD patients with left dominant and right dominant symptoms. Group 

differences between left and right dominant PD groups were evaluated using statistical tests 

(a=Kruskal-Wallis test, b=Chi-square test, and c=Wilcoxon rank sum test), and p-values lower than 

0.05 were considered significant (annotated with *).  

 Left dominant   

(n=62) 

Right dominant  

(n=79) 

p-value 

Age 59.8±8.8 63.2±8.8 0.024
a
*  

Sex 28 F & 34 M 23 F & 56 M 0.049
b
*	

UPDRS I 5.2±3.5 5.1±4.0 0.702
c
 

UPDRS III 22.2±9.1 19.7±8.8 0.114
c
 

Total UPDRS 32.4±12.3 30.6±14.0 0.349
c
 

GDS 2.6±2.6 2.1±2.5 0.156
c
 

RBDSQ 3.8±2.1 4.0±2.7 0.945
c
 

 

 

 

2.1 Imaging protocols and pre-processing 

For each subject included in the study, we acquired full brain T1w and T2w structural MRI 

volumes and diffusion MRI scans from the PPMI database. The T1w images were obtained using 

a magnetization-prepared rapid acquisition gradient echo (MPRAGE) protocol (TE=2.98ms, 

TR=2300ms, flip angle=9°, and resolution=1x1x1mm
3
). The T2w MRIs have an in-plane 

resolution of 1x1mm
2
 and slice thickness of 2~3 mm. The diffusion-weight imaging (DWI) data 

were acquired using the following parameters: TE=88ms, TR=900ms, 64 gradient directions, b-

values=1000s/mm
2
, and resolution=2x2x2mm

3
. For the DWI sequence, one B0 volume was 

acquired for each scan. The detailed MRI protocols can be found on the PPMI website 

(http://www.ppmi-info.org/study-design/research-documents-and-sops/). 

 

Both T1w and T2w structural images were pre-processed with non-local mean image denoising 

(Manjon, Coupe, Marti-Bonmati, Collins, & Robles, 2010), non-uniformity correction using the 
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N4 algorithm (Tustison et al., 2010), and intensity standardization. The brain mask was 

computed from T1w MRI using BeAST (Eskildsen et al., 2012), and T2w volumes were rigidly 

registered to the corresponding T1w images and resampled to 1x1x1mm
3
 resolution.  DWI scans 

were processed with denoising (Veraart et al., 2016), unringing, eddy current correction 

(Andersson & Sotiropoulos, 2016), motion and distortion correction, and finally bias field 

correction (Tustison et al., 2010). More specifically, susceptibility-related distortion in DWI 

scans was corrected by first obtaining the deformation fields from nonlinear registration between 

B0 and T2w images in the phase encoding direction of DWI, and then applying the resulting 

deformation to the entire DWI series. The rest of the DWI pre-processing was performed using 

the MRtrix3 package (Tournier et al., 2019). 

 

2.3 Fixel-based analysis 

We use the single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) algorithm 

(Dhollander, Raffelt, & Connelly, 2016) implemented in MRtrix3 to conduct fixel-based analysis 

for our investigation. The algorithm can resolve white matter fiber orientation distributions 

(FODs) from single-shell diffusion MRI data while accounting for grey matter and cerebrospinal 

fluid (CSF) compartments. With the pre-processed DWI volumes, we obtained the FODs for 

each subject. In total, we conducted the following four groups of studies to characterize the white 

matter integrity using FBA, with the consideration of clinical laterality onset.  

 

FBA Study 1: The FOD images from the LPD patients were left-right flipped while those from 

the rest of the patients and heathy controls were kept the same. This way, the clinical laterality 

onset of the patient population is kept on the right side of the body, and fixel-based metrics were 

compared between the PD and healthy groups.   

 

FBA Study 2: With the clinical laterality onset aligned to the right, we took the data from all PD 

patients in FBA Study 1, and correlated the fixel-based metrics with the clinical scores UDPRS-I, 

UPDRS-III, total UPDRS, GDS, and RBDSQ.  

 

FBA Study 3: The left- and right-dominant patients were separated into two groups. The fixel-

based metrics of each group were compared against those of the healthy controls. 

 

FBA Study 4: The left- and right-dominant patients were separated into two groups. Within each 

group, clinical evaluations, including UDPRS-I, UPDRS-III, total UPDRS, GDS, and RBDSQ, 

were correlated with the fixel-based metrics. 

 

For each study, a study-specific template was created from all relevant subjects by using group-

wise diffeomorphic nonlinear registration based on FODs at 1.3x1.3x1.3mm
3
 resolution. Then, 

the FOD image of each subject in the respective study was nonlinearly registered to the template, 

and the deformation fields were saved. A whole-brain tractogram with 2 million streamlines was 
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generated by first obtaining an initial tractogram with 20 million streamlines using the 

probabilistic tractography algorithm, iFOD2 (Dhollander, Calamante, & Connelly, 2010) on the 

population-averaged FOD template and then filtering the result with the spherical deconvolution 

informed filtering of tractograms (SIFT) algorithm (Smith, Tournier, Calamante, & Connelly, 

2013), to reduce false positive streamlines. In the template space, fixel-based measures of FD 

and FC were computed within each voxel for all subjects of interest, and their combined measure, 

FDC, was obtained by multiplying FC and FD. Note that for statistical tests, the logarithm of FC 

is used instead of the raw value. The generalized linear model (GLM) was used to test the 

hypotheses of each study, and the connectivity-based fixel enhancement (CFE) (Raffelt et al., 

2015) was employed to identify fixel metrics that are associated with the factors to be tested. For 

all studies, the effects of sex and age were modelled as covariates and controlled for all the tests. 

Here, family-wise error (FWE) corrected p-values were computed for each fixel based on 10000 

random shuffles to account for multiple comparisons, and the correct p-value < 0.05 is used to 

determine the statistical significance. Results with fewer than 10 fixels that showed statistical 

significance were not considered meaningful and thus not reported. The Johns Hopkins 

University (JHU) white matter tract atlas (Mori et al., 2008) was used to help guide the 

identification of relevant white matter tracts. 

 

2.4 Voxel-based analysis with DTI metrics 

To complement the results of fixel-based analysis with more commonly used measures of white 

matter integrity, we performed voxel-based analyses with fractional anisotropy (FA) and mean 

diffusivity (MD) for the same population. After DWI preprocessing, we calculated FA and MD 

maps for each participant using FMRIB's Diffusion Toolbox (FDT, part of FSL). Each individual 

participant’s FA and MD maps were then transformed to the respective template space, using the 

corresponding warps generated from FBA in Section 2.3. We then performed voxel-based 

analysis in the template space using the GLM. The JHU white matter tract atlas (Mori et al., 

2008) was used to constrain the region of interest (ROI) for the analysis and to help guide the 

identification of relevant white matter tracts. Similar to FBA, non-parametric permutation testing 

and FWE corrected p-values were used to reveal significant results (corrected p-value<0.05). The 

effects of sex and age were modelled as covariates and controlled for all the studies. 

 

For voxel-based analysis, we also conducted four groups of studies, following the same 

strategies for FBA in Section 2.3. However, instead of testing fixel-based metrics, FA and MD 

values were analyzed instead. With the correspondence to the respective FBA studies, we denote 

the sub-studies for DTI metrics as VBA Study 1~4. 
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3. Results 

3.1  Fixel-based analysis 

With FBA Study 1, we compare the fixel-based measures between PD patients and healthy 

controls after aligning the symptom dominant side to the right side of the body. The results are 

demonstrated in Fig.1, with both increase and decrease in fixel-based metrics in PD brains. More 

specifically, we have observed increased FC and FDC in a number of white matter tracts in the 

right hemisphere, including the posterior limb of internal capsule, cingulum, corticospinal tract, 

and superior cerebellar peduncles.  In the left hemisphere, there was an increase in FDC in the 

anterior limb of internal capsule. Finally, the left cingulum exhibited lower FD in PD patients. 

The results of FBA Study 2 are shown in Fig. 2. With the symptom dominant side aligned, we 

observed that the GDS score was inversely correlated with FD in the left stria terminalis and 

FDC in superior cerebellar peduncle.  

 

In FBA Study 3 and FBA Study 4, the PD cohort was divided into the left- and right-dominant 

groups. When investigating the differences between each PD sub-cohort and healthy controls in 

FBA Study 3, higher FC in the right superior cerebellar peduncle and the cerebellum was 

observed in RPD (see Fig. 3) while no statistically significant results were detected for LPD vs. 

healthy subjects. When inspecting the association with clinical scores for the LPD sub-cohort 

(see Fig. 4), we found that there was a negative correlation between FC in the right 

dentatothalamic tract and the RBDSQ evaluation. On the other hand, for RPD (see Fig. 5), higher 

GDS was associated with decreased FD in the left stria terminalis and elevated FC in the 

splenium of the corpus callosum and fornix.  

 
Figure 1. Comparison of fixel-based metrics (FC, FD, and FDC) between PD and healthy groups 

after aligning laterality of symptom onset (FBA Study-1). Significant fiber tracts of fixel-based 

metrics are overlaid on the group-averaged brain template. In each image group, the cross-hair 

points at the same location. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431081
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

 
Figure 2. Correlation between fixel-based metrics and clinical evaluations in PD population after 

aligning laterality of symptom onset (FBA Study-2). Significant fiber tracts of fixel-based metrics 

are overlaid on the group-averaged brain template.  

 

 
Figure 3. Comparison of fixel-based metrics between right-dominant PD and healthy groups 

after (FBA Study-3). Significant fiber tracts of fixel-based metrics are overlaid on the group-

averaged brain template. 

 

 
Figure 4. Correlation between fixel-based metrics and clinical evaluations in left-dominated PD 

cohorts (FBA Study 4). Significant fiber tracts of fixel-based metrics are overlaid on the group-

averaged brain template.  
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Figure 5. Correlation between fixel-based metrics and clinical evaluations in right-dominated 

PD cohorts (FBA Study 4). Significant fiber tracts of fixel-based metrics are overlaid on the 

group-averaged brain template.  

 

 

3.2  Voxel-based analysis 

We evaluated FA and MD in PD patients against those of healthy controls in VBA Study 1, after 

aligning the symptom dominant side to the right-side of the body. The results are shown in Fig. 6. 

Compared with healthy subjects, PD patients had a widespread increase in FA primarily within 

the right hemisphere, which was ipsilateral to the dominant side of motor symptoms. The white 

matter tracts with FA increase included the right superior longitudinal fasciculus (SLF), posterior 

limb of internal capsule, cerebellar peduncle, cingulum, superior corona radiata, external capsule, 

and middle cerebral peduncle. In addition, there was also an increase of FA in the left anterior 

corona radiata, and reduction of MD in the patients occurred in the right internal capsule and 

superior corona radiata. On the other hand, MD increase in PD can be found in small regions 

within the left posterior limb of internal capsule and external capsule. With VBA Study 2 (see 

Fig. 7), white matter fiber deterioration in terms of higher MD in the left external capsule, 

superior corona radiata, and SLF was linked to worsening of UPDRS-III scores. Furthermore, the 

left external capsule had increased MD that were correlated with the total UPDRS assessment. 

 

When comparing left- and right-dominant PD groups with the healthy controls (VBA Study 3), 

as demonstrated in Fig. 8, we found increased FA in the left posterior thalamic radiata and 

superior corona radiata in the LPD cohort while no differences were detected between the RPD 

group and healthy controls. With VBA Study 4, several trends were observed in Fig. 9. In the 

LPD sub-cohort, the UPDRS-III score was associated with higher MD values in the left internal 

capsule, superior corona radiata, and external capsule. For RPD, MD values in the retrolenticular 

part of the internal capsule in the left hemisphere are positively correlated with GDS. 
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Figure 6. Comparison of fractional anisotropy (FA) and mean diffusivity (MD) between PD and 

healthy groups after aligning laterality of symptom onset (VBA Study-1). Significant clusters of 

DTI metrics are overlaid on the group-averaged brain template. In each image group, the cross-

hair points at the same location. 

 

 
Figure 7 Positive correlation between DTI metrics (FA & MD) and clinical evaluations in PD 

population after aligning laterality of symptom onset (VBA Study 2). Significant regions are 

overlaid on the group-averaged brain template. 

 

 
Figure 8. Comparison of FA values between PD and healthy groups in the left-dominant PD 

cohort (VBA Study 3). Significant regions are overlaid on the group-averaged brain template.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431081
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

 
Figure 9. Correlation between DTI metrics (FA & MD) and clinical evaluations in left- and 

right-dominated PD cohorts (VBA Study 4). Significant regions are overlaid on the group-

averaged brain template.  

 

4 Discussion 
In FBA Study 1, where scans of LPD patients were flipped in the left-right direction, higher FC 

and FDC were observed in the right hemisphere for PD patients compared to healthy subjects, 

primarily in white matter tracts that are associated with motor control. This suggests a 

contralateral compensation of the brain to the initial motor function deterioration in early PD. 

The same trend is replicated in the elevated FA and decreased MD in the same hemisphere from 

VBA Study 1. These results confirmed the observation in a few previous studies (Li et al., 2020; 

Mole et al., 2016), where higher FD and FA in CST were detected in PD compared to HC. 

However, while these studies suggested bilateral changes, we observed primarily unilateral 

alterations, potentially due to the consideration of symptom laterality onset. On the other hand, 

degeneration of white matter was also shown with both fixel-based and DTI metrics in the 

hemisphere that is more affected by motor dysfunction. Interestingly, while FBA identified the 

cingulum, which is more involved in the limbic system, VBA revealed regions that are more 

relevant to motor functions. When inspecting the clinical symptoms within the PD group (Study 

2), with the same strategy of aligning the clinical laterality onset, white matter degeneration in 

the more affected hemisphere was associated with depression (i.e., GDS) by FBA, and with 

UPDRS III (motor dysfunction) and total UPDRS by VBA. 

 

To better elucidate the distinct trends in LPD and RPD cohorts, the analyses in Study 3 and 

Study 4 examined these sub-groups separately. In FBA Study 3 for RPD patients, elevated FC 

was observed in the right SCP, which is consistent with FBA Study 1, and the cerebellum. 

Previous studies (Sweet et al., 2014; Wu & Hallett, 2013) have revealed the role of cerebellum 
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and the related neural pathways in motor dysfunctions of Parkinson’s disease. As the RPD group 

have less severe clinical symptoms on average than LPD, whether the observed trend is specific 

to RPD or the disease progression stage will require further investigation. In VBA Study 3 with 

LPD patients, regions with strengthened white matter integrity were found in the left hemisphere 

in PD patients. This further validated the implication of compensatory neuroplasticity in Study1, 

but the higher FA in the posterior thalamic radiata was unique to LPD. When associating white 

matter health with non-motor symptoms of sleep disturbance and depression in VBA and FBA 

Study 4, the relevant tissue degeneration also primarily occurred in the hemisphere with respect 

to the clinical laterality onset. However, in contrast to the trend in VBA Study 2, there was a 

positive correlation between the UPDRS-III scores and the MD values in the left hemisphere for 

LPD. While lacking statistical significance between LPD and RPD, the mean UPDRS III and 

total UPDRS were higher in LPD than RPD. The observed correlation may be a result from the 

deterioration of motor functions on the less dominant side as the disease progresses. In general, 

FBA and VBA both offer insights of disease-related white matter changes, but since FBA 

emphasizes tract-specific measures, and VBM with DTI metrics produce more blobby regions, 

the identified regions with statistical significance don’t necessarily overlap with each other. 

Compared with FBA, VBA with DTI metrics is more sensitive in identifying associated brain 

regions with respect to clinical symptoms, despite the drawbacks in the difficulty in resolving 

crossing fibers.  

 

In common with the existing FBA studies on PD progression (Li et al., 2020; Rau et al., 2019; 

Zarkali et al., 2020), both of which used 3T data, we have identified the splenium of CC, CST, 

SCP, cingulum, and fornix as regions that are affected by the disease. However, within these 

tracts, the specific trends in fixel-based measures don’t always agree among previous studies (Li 

et al., 2020; Rau et al., 2019) and ours. For example, Rau et al. (2019) discovered that the 

UDPRS assessments, including UPDRS III and total UPDRS, are positively correlated with FC 

in the body of CC, but Li et al. (2020) found a negative association between FD values in the 

same structure and UPDRS III. In our cohorts, no significant results were revealed for UPDRS 

evaluations and fixel-based measures. Furthermore, Li et al. (2020) associated reduced FD in the 

CC with depression while our results showed higher FC in the splenium of CC with depression 

in RPD. Previously, Pelizzari et al. (2020) have also compared DTI metrics between PD patients 

with unilateral symptoms and healthy controls. Different from our results, they found widespread 

white matter integrity reduction in terms of higher MD in RPD but not in LPD. These differences 

may originate from several sources, such as variations in imaging protocols (e.g., multi-shell vs. 

single-shell), cohort size, and patient heterogeneity. Notably, these recent studies included 

patients at slightly more advanced disease stages (H&Y stages 1~3) than our PD cohort (H&Y 

stages 1~2). Another potential contributor to the difference is the influence of dopaminergic 

therapy. This factor may alter white matter properties in addition to the disease itself, but is often 

overlooked in most studies (Zhang & Burock, 2020), including those mentioned in this 

paragraph. As the influence of drug therapy is still poorly understood, investigation of tissue 
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changes in drug-naïve PD can provide a baseline to clarify the relationship between brain 

plasticity and PD treatment. 

 

The development and progression of Parkinson’s disease is complex and nonlinear (Li et al., 

2020; Rau et al., 2019; Sarasso et al., 2020), often with the motor symptoms initiating 

unilaterally and progressing to both sides in more advanced stages. This is expected to induce 

differential patterns of tissue changes, and thus brain connectivity alterations between the left 

and right hemispheres. However, most PD-related investigations on micro- and macro-structural 

changes do not consider the laterality of the dominant symptoms, especially when many focus on 

early stages of PD. Such an approach may reduce the sensitivity for detecting disease-related 

brain regions, or reporting bilateral changes instead of potentially unilateral changes, possibly 

contributing to inconsistent conclusions in the literature. Our analyses were conducted with 

strategies that fully account for laterality. In the first strategy, the sides with more severe 

symptoms were mapped to the right for all subjects. This allows the entire PD population to be 

included, thus boosting the statistical power to detect relevant trends with a clinical DTI protocol. 

As a result, we were able to reveal laterality-dependent microstructural alterations in drug-naïve 

de novo PD patients, which were not demonstrated previously. In the second strategy, sub-groups 

of LPD and RPD patients were analyzed separately. This approach helped confirm the insights 

related to laterality of symptoms onset, and provided complementary tissue characterizations that 

are specific to each sub-group. To inspect our first approach of aligning the side of symptoms 

onset, in Fig. 10, we illustrate the t-value maps from testing the hypothesis that the FC values are 

higher in the PD group than the healthy controls in FBA Study 1 and 3. In the figure, the coronal 

slice from Fig.1 demonstrating significant FC alteration in motor-function-related tracts is shown 

with the corresponding t-value maps from the two studies. Despite the fact that the LPD and 

RPD sub-cohorts didn’t show statistically significant trends in the same white matter tracts, we 

can still observe a similar trend of higher t-values in the relevant regions from the hemisphere 

that is less affected by PD, across the three maps. Note that for easy visual comparison, the t-

value map for the LPD group is left-right mirrored, and different t-value windows are used 

between studies. 

 

The described studies still have a number of limitations. First, the analyses employed clinical 

single-shell DTI protocols at 3T (64 gradient directions, b = 1000 s/mm
2
), and thus the data 

quality can be lower than those from multi-shell protocols (Rau et al., 2019; Zarkali et al., 2020), 

in terms of signal-to-noise ratio and angular contrast-to-noise ratio. For FBA, we employed the 

recent single-shell multi-tissue CSD algorithm to accommodate the scanning protocol, and 

showed that meaningful results can still be obtained with single-shell DTI scans. Second, as the 

DTI scans in the PPMI database do not have matching scans with opposing phase encoding 

directions, susceptibility-induced distortion was corrected through nonlinear registration between 

the corresponding B0 and T2w MRIs. Although this type of approach was used previously 

(Ardekani & Sinha, 2005), it may limit the accuracy of the analyses, particularly in regions with 
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more severe distortions (e.g., orbital frontal and temporal lobes). Lastly, part of our study aligned 

the clinical laterality onset to the right side for analysis. In addition to the asymmetry introduced 

by the disease, inherent asymmetry of the brain may have also contributed to the analysis. To 

inspect the potential difference, LPD and RPD sub-groups were analyzed separately, and similar 

trend was found to the studies that align the dominant symptom side. However, further 

quantification of the influence from inherent brain asymmetry on PD is beyond the scope of the 

current investigation, and will be explored in detail in the future study.  

 
Figure 10. Demonstration of t-values from testing the hypothesis that the FC values are higher in 

PD cohorts than healthy controls in FBA Study1 & 3. From left to right: a coronal slice of the 

significant fixels from Fig.1, the corresponding t-value map from Study1, and the corresponding 

t-value maps from Study3 with respect to LPD and RPD sub-cohorts. For easy visual comparison, 

different t-value windows are used between studies, and that of the LPD sub-cohort was left-

right mirrored. 

 

5 Conclusion	

In this study, we present the first investigation that characterizes white matter integrity with the 

consideration of symptom laterality in a large drug-naïve de novo PD cohort, using 

complementary DTI and FBA measures. In addition to revealing tissue alterations between PD 

and healthy subjects, we demonstrated that both motor and non-motor clinical assessments were 

correlated with different DTI and FBA measures within white matter pathways. The findings 

suggest that the disease gives rise to both functional degeneration and the creation of 

compensatory networks in the early stage, and the impacts are subject to the laterality of the 

motor symptoms. As the first FBA investigation with a drug naïve PD population, the insights 

are instrumental in understanding the progression of the disease and potentially inform the future 

exploration regarding the interplay between disease-related brain tissue changes and drug 

therapy. To depict a richer picture of the disease, future longitudinal studies will help fully 

characterize the trajectory of PD-related white matter changes as a potential biomarker for 

improved prognosis and treatments. 
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