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Abstract

Genome-wide association studies rely on the statistical inference of untyped variants,
called imputation, to increase the coverage of genotyping arrays. However, the results
are often suboptimal in populations underrepresented in existing reference panels and
array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to cap-
ture population-specific haplotype structures, hence the full extent of common genetic
variation. Here, we propose to sequence the full genome of a small subset of an underrep-
resented study cohort to inform the selection of population-specific add-on SNPs, such
that the remaining array-genotyped cohort could be more accurately imputed. Using a
Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach
by showing improvements in imputation accuracy after the addition of our designed add-
on SNPs to the base H3Africa array.
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1 1. Introduction

2 By mapping the associations between single-nucleotide polymorphisms (SNPs) and
s various phenotypes, genome-wide association studies (GWAS) have allowed us to gain
+ unprecedented knowledge on the genetic basis of various human diseases and traits. An
s important prerequisite to conducting GWAS is the availability of a cost-effective yet
¢ accurate high-throughput genotyping method. Genotyping arrays have been used widely
7 over the past 15 years, including in many studies facilitated by biobank resources such
s as the UK Biobank[1]. However, genotyping arrays rely on the imputation of a sparse
o set of tag SNPs (e.g. millions of SNPs) to achieve acceptable density genome-wide (e.g.
1 tens of millions of SNPs). The quality of imputation is dependent on the suitability of
u the tag SNPs and the similarity of haplotype structure between the reference panel and
1 the study population[2, 3, 4, 5].

13 For study populations where a genetically similar reference panel or population-specific
1 array content may not be available, whole-genome sequencing (WGS) offers an alternative
15 to genotyping arrays. Previous studies have suggested that WGS may offer substantial
16 gains in such a scenario, potentially pinpointing loci absent in GWAS conducted using
v genotyping arrays [6, 7]. However, due to the large sample sizes often required to gain
18 sufficient statistical power in GWAS, the cost of WGS can still be prohibitive despite its
v recent decrease [8].

2 An alternative to WGS is the development of population-specific reference panels and
a1 genotyping arrays. For example, African-specific reference panels and genotyping arrays
2 have been developed in recent years in an attempt to rectify the underrepresentation of
2 African populations in genetic studies[9, 10, 11]. Notably, the Human Heredity and Health
2 in Africa (H3Africa) consortium has developed the H3Africa genotyping array, which
»s  contains approximately 2.2 million tags, to capture genetic variability observed in various
2 African populations [12]. Furthermore, the African Genome Resource (AFGR) reference
7 panel has been designed to capture the haplotype structure of various African populations

s to improve imputation accuracy. However, driven by the long evolutionary history and


https://doi.org/10.1101/2021.02.03.429542
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429542; this version posted February 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2 lack of bottlenecks, the level of genetic diversity is much higher among African populations
s compared to non-African populations [13, 14]. Therefore, these resources have not yet
a1 been able to provide complete coverage of genetic variation across all African populations.
2 For the remaining underrepresented populations, we propose the use of add-on SNPs as
13 a cost-effective approach to improve genotype imputation.

34 In this paper, we present an approach to select population-specific add-on SNPs that
s supplement commercially available genotyping arrays. For a GWAS cohort, we propose
s to perform WGS in a small subset (e.g. 10% of the entire cohort), in order to supplement
s existing reference panels but also to inform the selection of the add-on content, such that
s the rest of the array-genotyped cohort could be more accurately imputed. Specifically,
» the WGS data could reveal population-specific allele frequency differences (Figure 1A and
w0 Figure 1B) and haplotype structure differences (Figure 1C). Such information enables the
o selection of add-on tag SNPs designed for the study population, such that the imputation
2 of target SNPs that are poorly tagged by existing tag SNPs could be improved.

43 As a proof-of-concept example, we utilize 116 high coverage WGS samples from par-
w  ticipants of the TB-DAR cohort (Tuberculosis patients recruited in a hospital in Dar es
s Salaam, Tanzania). Since the Tanzanian population is not incorporated in existing ref-
s erence panels and array designs, including the AFGR reference panel and the H3Africa
s  genotyping array, this cohort provides an ideal basis to evaluate our approach. We first
s illustrate the necessity for add-on SNPs by calculating the genetic differentiation between
2 our Tanzanian cohort and other African populations. We proceed to select add-on SNPs
so that target common variants that are poorly imputed under the base H3Africa array. We
51 then confirm the validity of our approach by evaluating the improvement in imputation
s accuracy enabled by the addition of add-on SNPs. Finally, we present an alternative
53 selection scheme for mitochondrial and Y chromosome variants to improve haplogroup

s« calling.
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ss 2. Material and Methods

ss  2.1. Study description

57 This study was conducted based on a cohort of adult pulmonary tuberculosis (TB)
ss  patients from Dar es Salaam, Tanzania (TB-DAR). Participants were recruited at the
s Temeke Regional Hospital in Dar es Salaam. 128 patients were randomly selected from the
e cohort for WGS, and 116 samples which passed sequencing quality control were retained.

s1  Ethnic information of patients are based on self-reported information.

&2 2.2. Whole genome sequencing and quality control

63 WGS was performed at the Health2030 Genome Center in Geneva on the Illumina
s« NovaSeq 6000 instrument (Illumina Inc, San Diego CA, USA), starting from 1 ng of whole
s blood genomic DNA and using Illumina TruSeq DNA PCR-Free reagents for library
e preparation and the 150nt paired-end sequencing configuration. Average coverage was
o7 above 30x for 75 samples, between 10x and 30x for 40 samples, and approximately 8x
e for a single sample.

69 Sequencing reads were aligned to the GRCh38 (GCA_000001405.15) reference genome
w0 using bwa[l5] (Version 0.7.17), and duplicates marked using Picard (Version 2.8.14, http:
n //broadinstitute.github.io/picard/). Following the GATK best practices (Germline
72 short variant discovery)[16], Base Quality Score Re-calibration (BQSR) was applied using
7z the GATK package[17] (Version 4.0.9.0). Variants were called individually per sample
7+ and then jointly. A Variant Quality Score Re-calibration (VQSR) based filter was then
7 applied, with a truth sensitivity threshold of 99.7 and an excess heterozygosity threshold
7 of 54.69. Samples with a high genotype missingness rate (> 0.5) were excluded.

7 To ensure that coordinates of the TB-DAR WGS data matched the GRCh37 based
s AFGR reference panel, a liftover was applied using Picard LiftoverVef with the UCSC
79 chain file (hg38ToHg19). Only SNPs that were successfully lifted over to the same chromo-
s some were retained. Within the X and Y chromosomes, SNPs within the pseudoautosomal

s regions[18, 19] were excluded.
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&2 2.3. Fization index and genetic principal components

8 Relatedness between individuals within the TB-DAR WGS cohort and each African
s« population of the 1000 Genomes project was calculated using KING[20]. Pairs up to first
s degree relatives were excluded.

86 To conduct principal component analysis (PCA), only autosomal SNPs that were
s genotyped in both 1000 Genomes and TB-DAR WGS cohorts were included. SNPs within
s long-range LD regions|[21] were excluded. Using PLINK (Version 1.9)[22], LD pruning [23]
9 (plink --indep-pairwise 1000 50 0.05) was applied and principal components were
o derived based on the merged cohorts (TB-DAR and all 1000 Genomes super-populations
o or TB-DAR and all 1000 Genomes African populations). To measure differentiation
e between the TB-DAR WGS cohort and various 1000 Genomes African populations, the
o fixation index (Fsr) for each SNP was calculated using vcftools (v0.1.13)[24] according to
o Weir and Cockerham’s formulation [25]. Only autosomal SNPs that were genotyped and
s common (MAF> 0.05) in the merged cohort (TB-DAR and all 1000 Genomes African
o populations) were included. The reported genome-wide Fsp measures were defined as
oz the mean across the SNP-based Fsr for all considered SNPs.

% To estimate differentiation within a population, each population was divided into
o halves based on the median of the top genetic principal components. Fgr was calculated
w0 between the two halves. Since the top genetic principal component explains the most
1w proportion of genetic variability, this approach is expected to yield the two equally sized

102 sub-populations that are the most differentiated within a population.

w3 2.4. Selection of add-on SNPs

104 Our approach to select add-on SNPs can be divided into three main steps. In step
ws 1, genotype imputation was performed. Poorly imputed SNPs were identified, and act
ws as candidate target SNPs which our add-on tags would be designed to tag. In step 2,
w  the optimal add-on tag SNPs were selected based on the population-specific LD structure

s and allele frequencies of the study cohort. In step 3, we evaluated the improvement in
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w0 imputation performance when the selected add-on SNPs were incorporated onto the base

uwo  H3Africa array. A summary of the approach can be found in Figure 2.

w 2.4.1. Step 1: Genotype imputation and identification of candidate target SNPs

1w The TB-DAR WGS cohort was divided into a training set (3/4 of the data) and a
us  testing set (1/4 of the data).

114 To achieve optimal imputation accuracy, two reference panels were used to capture
us  haplotype structures present in both the Tanzanian population and in other African
us populations. A custom Tanzanian reference panel based on the TB-DAR WGS train-
w7 ing set samples was constructed using Minimac3[26]. The African Genome Resources
us  (AFGR) reference panel (Web Resources) hosted on the Sanger imputation service (Web
o Resources)[27] was also utilized, where EAGLE2[28] was used for phasing and the posi-
o tional Burrows-Wheeler transform (PBWT)[29] was used for imputation.

121 To identify poorly imputed SNPs expected under the H3Africa array content (Version
122 2, Web Resources), the TB-DAR WGS testing set was masked such that only SNPs
123 present on the H3Africa array were retained. The masked data was imputed using both
124 reference panels, and for each SNP the imputation was based on the reference panel
125 that yielded a better imputation score. Candidate target SNPs were designated as SNPs
s that are poorly imputed (INFO < 0.8) but common in the TB-DAR WGS cohort (MAF
v > 0.05).

ws  2.4.2. Step 2: Add-on tag SNP selection

120 For each region, the set of candidate target SNPs (S7) was defined as SNPs that are
1w poorly imputed but common (See Section 2.4.1). The set of candidate add-on tag SNPs
w1 (S2) was defined as sequenced SNPs that are common (MAF > 0.05), part of the AFGR
12 Reference Panel or the TB-DAR reference panel, and available as Illumina Infinium probes
13 ( probe-ability score > 0.3). The set of existing tags (S3) was initialized as SNPs that
1« are part of the H3Africa array.

135 LD information between SNPs were calculated based on TB-DAR WGS training set.


https://doi.org/10.1101/2021.02.03.429542
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429542; this version posted February 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s We utilized mutual information (MI) as a LD metric (See Supplemental Methods), con-
w sistent with the choice of a previous array design study for the Japanese population [30].
138 To select the optimal set of add-on SNPs, we followed the framework of a forward-
1w selection based algorithm [30]. In summary, the algorithm select tags that are in the
1o strongest LD with the highest number of candidate target SNPs not captured by existing
w1 tags.

142 For a single iteration of the add-on tag SNP selection algorithm:

1. For a candidate target SNP (j), the existing tag SNP that is in strongest LD with

it was identified. The MI score of the target SNP (s;) was defined as:

s; = max[;;
J i€S3 *

143 where I;; denotes the MI between SNP i and SNP j.
2. For each pair of candidate add-on tag SNP (k) and candidate target SNP (j), the
add-on tag’s efficiency was defined as the expected change in MI (6;5) resulting

from the incorporation of the add-on tag:

(Sjk = Ijk — .Sj

3. The efficiency of a candidate add-on tag SNP (e;,) against all candidate target SNPs

was defined based on the sum of the changes in MI:

> jes, max(0,d;k)
[

N,
144 where N, denotes the number of probes required for the k" candidate add-on tag
s (2 for A/T or C/G SNPs, and 1 for all others).

4. The optimal add-on tag SNP (k*) was identified based on the overall rank of its
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efficiency and probe-ability scores:

. _ .
k™ = argminr,, + 7y,

keS>
146 where r., and r,, denotes the ranking of the efficiency score and probe-ability score
17 respectively for the candidate add-on tag k.

148 5. k* was added to the set of existing tags (S3), and the above steps were repeated. The
149 selection procedure was stopped when there are no candidate add-on tags remaining

150 (S2 becomes empty), or when the stopping criteria were met.

11 Figure S1 illustrates an example of a single iteration of the add-on tag SNP selection

152 algorithm.

13 2.4.3. Step 2: Region definitions and stopping criteria

154 To ensure the efficiency of add-on tag SNP selection but simultaneously guarantee
155 sufficient coverage in prioritized regions, a two-step procedure for tag SNP selection with
16 unique region definitions and stopping criteria was established.

157 Under Setting 1, regions spanning 5000 base pairs upstream and downstream of genes
158 or SNPs associated with TB outcomes (reported by GWAS catalog [31], Open Targets[32],
159 and other GWAS studies[33, 34, 35]) were considered. The killer cell immunoglobulin-like
wo receptor (KIR) and human leukocyte antigen (HLA) gene regions were also considered.
w1 A region was subject to add-on tag SNP selection if it contained a substantial number
12 of poorly imputed common SNPs, defined as more than 20% of SNPs with INFO < 0.8.
13 Regions were also subjected to add-on tag SNP selection if it contained an uneven spatial
e distribution of well imputed common SNPs, defined as the spread of poorly imputed
s SNPs (INFO < 0.8) being more than 1.25 times the spread of well-imputed SNPs (INFO
e > 0.8). To guarantee sufficient coverage, iterations of the forward-selection algorithm
17 was run for each region independently until less than 0.5% of candidate target SNPs
s within the region showed §; improvements. The process was then repeated for each of

10 the prioritized regions.
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170 Under Setting 2, the selection of add-on tag SNPs was expanded to any region across
1 the genome that contained poorly imputed common SNPs. The regions were defined as
w2 either a haplotype block (plink --blocks)[36, 22] or a region spanning 5000 base pairs
173 upstream and downstream a candidate target SNP, whichever larger. To maximize the
s selected add-on tag SNPs’ tagging efficiencies, a single iteration of the algorithm was run
s concurrently across all regions. The tag SNP that scored the best across all regions was
e incorporated. The process was then repeated until the total number of budgeted add-on

w7 probes (N=>5000) has been exhausted.

ws  2.4.4. Step 3: FEvaluation of imputation accuracy

179 The TB-DAR WGS testing set was utilized to measure improvements in imputation
10 performance enabled by the add-on tag SNPs. For all target SNPs tagged by at least one
s add-on SNP, imputation quality (INFO score) derived from the base H3Africa array was
12 compared against imputation quality derived from the H3Africa array with the addition
183 of add-on tags. In addition, to measure the accuracy of the imputed genotypes, squared
s Pearson correlation coefficients (12?) was calculated between the imputed genotype dosages

s (0,1 or 2) and the ground truth dosages based on the WGS data.

186 2.5. Y Chromosome and Mitochondrial Haplogroups

187 The haplogroups of TB-DAR participants were called using HaploGrep2[37] and yhaplo[38]
s for the mitochondria and the Y chromosome respectively. The Phylotree mitochondrial[39]
o and Y chromosome[40] phylogeny databases were used to identify marker SNPs. Marker
w0 SNPs for each main haplogroup that any TB-DAR participant was part of were included
1 as add-on SNPs, if not already existing on the H3Africa array. In addition, we added
12 maker SNPs 2 branch points below the main haplogroup that any TB-DAR participant

13 was part of.
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1w 3. Results

s 3.1. Differentiation between the Tanzanian population and other African populations

196 Study participants of the TB-DAR WGS cohort originated from various ethnic groups
w7 within Tanzania (Table S1). A majority of participants belonged to the Bantu-speaking
s ethnic groups (N = 108, 93.1%), with a small minority that belonged to the Nilotic
w (N =1, 0.8%) and Cushitic (N = 3, 2.6%) speaking ethnic groups. Self-reported ethnic
200 information was not available for four participants.

201 To quantify the population differentiation between the TB-DAR WGS cohort and the
22 1000 Genomes African populations, for each pair of populations we calculated the genome-
203 wide fixation index (Fgr). Figure 3A illustrate the pairwise Fsp measures between the
24 TB-DAR WGS cohort and 1000 Genomes African population, along with their respective
2s  sampling locations. In general, genetic differentiation was greater between populations
26 that are further away geographically. For example, TB-DAR displayed the least differen-
207 tiation with the Bantu-speaking Luhya population (LWK) in neighbouring Kenya, but the
206 most differentiation with West African populations such as the Gambian in the Western
20 Division of Gambia (GWD) and the Mende in Sierra Leone (MSL). A similar pattern was
20 observed among 1000 Genomes African populations (Figure 3B), where population pairs
au  in the same geographic region (e.g., YRI and ESN) were among the least differentiated
22 population pairs. In addition, the genetic principal components (PCs) shown in Figure
a3 S2 also illustrate a similar pattern, where distances in PC space approximately scaled
ae - with geographic distances between the sampling locations of populations.

215 To further evaluate the significance of differentiation between populations, we com-
26 pared the inter-population Fsp against the within-population Fg7. The within-population
a7 Fgp was calculated between two halves of each population that are expected to be the
28 most differentiated, defined based on the median of the top genetic principal component.
20 The diagonal of Figure 3B represent within-population Fgp measures. For every popu-
20 lation, the within-population Fgp was lower than the inter-population Fgp against the

a1 population which it is the least differentiated from. For example, the within-population

10
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22 Fgr of the TB-DAR WGS cohort (0.001) is lower than the inter-population Fsr against
23 the LWK population (0.003).

24 These results quantify the genetic diversity of populations within Africa, and illustrate
25 the differentiation between the TB-DAR cohort and African populations of the 1000
26 Genomes project. Thus, the need to supplement external reference panels with Tanzanian
27 specific haplotypes and to design population-specific add-ons for the TB-DAR cohort is

28 warranted.

29 3.2. Selection of add-on SNPs and improvements in imputation accuracy

230 The selection of add-on SNPs was conducted under two different settings (Section
a1 2.4.3). Under a coverage-guaranteeing setting (Setting 1), we selected 1669 add-on SNPs
22 within 337 prioritized TB-associated regions. In addition, under an efficiency-driven
23 setting (Setting 2), we selected 2734 further add-on SNPs across the rest of the genome.
2 Figure S3 shows the distribution of all selected SNPs across chromosomes.

235 To confirm the validity of our approach, we used the TB-DAR WGS testing set to
26 compare the imputation accuracy based on the base H3Africa array against the improved
27 H3Africa array with our add-on content. Figure 4A shows the mean imputation quality
28 of target SNPs that our add-on SNPs were designed to tag across different minor allele
20 frequency (MAF) percentile bins. Under both settings, we observed strong overall im-
20 provement across MAF bins in imputation accuracy with the incorporation of add-on
21 tag SNPs, reflected by the increase in mean INFO score and r? (correlation with WGS
22 ground truth). While the magnitude of increase in mean imputation accuracy was similar
23 for both settings, in general, target SNPs in prioritized regions were better imputed. This
24 was as intended since, under Setting 1, even relatively well-imputed SNPs within each
25 region would be tagged by add-on SNPs in order to guarantee coverage.

26 An example region where our approach functioned as expected is shown in Figure
27 4B. Our designed add-on SNPs lead to improved imputation of target SNPs, reflected by
us  increases in both INFO score and r2. Noticeably, add-on SNPs were mainly located in

210 proximity to the previously poorly imputed target SNPs (left side of the region). This

11
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»0 indicates, as designed, that only add-on SNPs that are in relatively strong LD with target
1 SNPs were selected, as LD generally scales inversely with distance.

252 To quantify the efficiency of the selected add-on SNPs, Table 1 shows the number
3 of targeted SNPs with INFO score improvements. Under an INFO score threshold of
¢ 0.8 (commonly used in GWAS), our 4403 add-on SNPs would allow the incorporation
»s  of an additional 10,349 and 38,336 target SNPs in GWAS, in TB associated regions
6 (Setting 1) and all other regions (Setting 2) respectively. This translates to the addition
»s7  of approximately 6 and 14 target SNPs per add-on SNP, under Setting 1 and Setting
s 2 respectively. As expected, the number of successfully tagged target SNPs per add-on
0 SNP is lower under Setting 1. This is because to guarantee coverage, relatively short

x0 haplotypes are tagged, resulting in the reduced efficiency of each add-on tag SNP.

w1 3.8. Mitochondria and Y chromosome haplogroups

262 Since mitochondrial and Y chromosome haplogroups provide an efficient manner to
%3 track human evolutionary history, we targeted haplogroup markers to improve the accu-
s racy of haplogroup calling. The distribution of mitochondrial and Y chromosome hap-
%5 logroups within the TB-DAR WGS cohort are shown in Figure S4A and Figure S4B
x6  respectively. With regards to the mitochondrial DNA, most individuals belonged to the
27 L haplogroup. This was consistent with findings based on the 1000 Genomes project[41],
»%s  where the L. haplogroups were found to be the dominant haplogroups in African pop-
%o ulations. For the Y chromosome, a majority of male individuals belonged to the E
a0 haplogroups, with a small minority belonging to the B, R, and others. This was also
o1 consistent with the 1000 Genomes project[42], where the E haplogroups were found to be
a2 dominant in African populations. Also in the Luhya population in neighbouring Kenya a
s small minority belonged to the B haplogroup[42].

274 To ensure that our add-on content includes haplogroup markers that complement the
a5 existing content on the H3Africa array, we selected 103 and 31 haplogroup marker SNPs as
a6 add-ons for the mitochondria and Y chromosome respectively. For the mitochondria, we

27 saw an average improvement in haplogroup calling of 22% compared to the H3Africa array.

12
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s For the Y chromosome, due to the limited number of add-on SNPs and sufficient coverage

29 by the H3Africa array, we did not observe any significant differences in haplogroup calling.

20 4. Discussion

281 The strategy to supplement external reference panels with WGS samples from an
22 internal study cohort has been employed by previous studies[43, 44]. Specifically, it has
23 been shown that the addition of even a relatively small number of samples from the
24 internal cohort leads to improved imputation accuracy, especially if the study population
255 is genetically dissimilar from the populations captured by existing reference panels[45, 6].
26 Our work confirms the utility of including population-specific haplotypes in the reference
2s7 panel used for imputation, but it also shows that the use of add-on SNPs further improves
28 imputation accuracy of common variants in the study population.

280 Our add-on tag SNP selection procedure did not explicitly target population-specific
20 SNPs, such as ancestry informative markers[46, 47], but rather targeted any SNP observed
21 in our study population that are expected to be poorly imputed under the existing base
22 array content. Such a choice was driven by the aim of GWAS, which is to map any SNP
203 associated with the trait of interest, which may not necessarily be population-specific.
204 Nevertheless, we did apply an allele frequency based (MAF) cutoff to ensure that only
25 SNPs polymorphic in the study population were targeted. As a result, a substantial
26 fraction of the targeted SNPs were successfully imputed based on the TB-DAR reference
207 panel (Table 1). This suggested that our add-on SNPs were able to tag population-specific
26 haplotype structures, which contributed to improved imputation accuracy.

209 An add-on tag SNP that most efficiently tags a target SNP (in the strongest LD)
;0 may not necessarily be the optimal tag, as the genotyping error rate of the probe for the
sn  particular SNP may be high. To rectify such issue, we limited our selection to add-on
32 tags SNPs with probes that have high success rates (Illumina probe-ability score > 0.3),
s and weighted the trade-off between LD strength and probe quality equally when selecting

s+ the optimal add-ons. Nevertheless, a more complex weighting scheme may result in even

13


https://doi.org/10.1101/2021.02.03.429542
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429542; this version posted February 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s better performance.

306 We introduced two settings for the selection of add-on SNPs, namely either coverage-
a7 guaranteeing (Setting 1) or efficiency-driven (Setting 2). For users of our approach, the
ws number of regions assigned to each setting could be adjusted depending on the study.
s For example, if there exists strong prior knowledge with regards to genes implicated in
s or loci associated with the trait of interest, these regions could be assigned to Setting
asu 1. Conversely, for traits with a lack of prior knowledge, a greater proportion of regions
sz could be assigned to Setting 2, such that tag selection would be conducted in a more
sz hypothesis-free manner.

314 A limitation of our approach is that only common SNPs (MAF > 0.05) were targeted
ais by the selected add-on SNPs. Such a choice was made due to the limited sample size of
s our WGS cohort, where for rarer target SNPs there would be insufficient observations to
sz estimate LD. Nevertheless, the imputation accuracy of rarer SNPs (for example, 0.01 <
as MAF < 0.05) which are in strong LD with the targeted SNPs could still increase if tested
s10  in a larger testing set.

320 In conclusion, in order to improve imputation accuracy in populations underrepre-
a1 sented in existing reference panels and genotyping array designs, we propose a framework
22 where a subset of a cohort is sequenced and the rest genotyped using an array supple-
23 mented with the selected add-on SNPs. Using a Tanzanian-based cohort as a proof-of-
24 concept, we demonstrated that under our approach, the WGS data could be leveraged
»s  to supplement existing reference panels and to select add-on SNPs, such that imputa-
»s tion accuracy is improved. Our approach is generalizable to any other population to
;27 improve genotype imputation, and thus provides a cost-effective solution to increase the
28 power of GWAS in a diverse range of underrepresented populations and to further our

39 understanding of human genetic diversity.
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Figure 1: Scenarios under which add-on tags could improve genotype imputation. Array population
represents the population that the existing genotyping array is designed for. Study population represents
the population that the add-on tags are designed for. A) A target SNP that is rare in the array population,
and was thus not designed to be tagged by any existing tag SNPs. However, it is common the study
population, which justifies the use of an add-on tag. B) An existing tag SNP that is common in the
design population but rare in the study population, thus reducing its tagging efficiency in the study
population. C) The presence of population-specific haplotype structures in the study population, where
the target SNP is no longer on the same haplotype block and no longer in strong LD with the existing
tag SNP.
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Figure 2: Schematic of our add-on tag SNP selection procedures, with steps illustrating: Step 1)
Constructing a Tanzanian reference panel. Identifying candidate target SNPs, which are derived
from poorly imputed SNPs when the H3Africa array is imputed based on the Tanzanian and AFGR
reference panel. Step 2) Selecting add-on tag SNPs that optimally tag candidate target SNPs based
on population-specific LD structures, allele frequencies, and probe qualities. Step 3) Evaluating
improvements in imputation performance after adding add-on tag SNPs to the base H3Africa array.
Calculating imputation quality metrics, including INFO score and r2 (correlation between imputed and
sequencing-based genotypes).

WGS, Whole-Genome Sequencing; AFGR, African Genome Resource; MAF ,Minor Allele Frequency;
MI, Mutual Information; LD, Linkage Disequilibrium.
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Figure 3: Genetic differentiation of African populations A) Sampling locations of 1000 Genomes African
populations and the TB-DAR WGS cohort. Line colors illustrate the degree of differentiation (Fsr)
between TB-DAR and 1000 Genomes populations. B) Pairwise Fgp measures between 1000 Genomes
African population and TB-DAR. Diagonals of the matrix represent differentiation within a population,
calculated between two halves of the population defined based on the median of the top genetic principal
component.

1000 Genome Populations: GWD - Gambian in Western Divisions in the Gambia; MSL - Mende
in Sierra Leone; YRI - Yoruba in Ibadan, Nigeria; ESN - Esan in Nigeria; LWK - Luhya in Webuye,
Kenya.
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Figure 4: Improvement in imputation performance subsequent to the addition of add-on tag SNPs. A)
Mean INFO score and 72 (between imputed and sequenced ground truth) of target SNPs designed to be
tagged by add-on SNPs, prior and subsequent to the incorporation of add-on SNPs. Facet grids illustrate
results based on two tag SNP selection settings: coverage guaranteeing within prioritized regions (Setting
1) and efficiency driven in all other regions (Setting 2). B) Example region on chromosome 10 where the
incorporation of add-on tag SNPs lead to the increase in imputation performance. Facet grids illustrate
imputation performance prior and subsequent to the incorporation of add-on tags. Color of dots represent
type of SNP (existing H3Africa tags, add-on tags, or any other imputed SNPs).

Table 1: Efficiencies of add-on tag SNPs, categorized based on source reference panel and selection
settings. Imputation improvements categorized as any increase in INFO score, or any increase that
resulted in INFO score exceeding 0.8 when previously under 0.8.

Reference Tags INFO Score INFO Score
Panel Added Improvement > 0.8
Prioritized Regions (Setting 1) - Coverage Guranteeing
All 1669 52,798 10,349
Tanzanian 666 33,516 2881
African Genome Resource (AFGR) 1003 20,010 6753
Other Regions (Setting 2) - Efficiency Driven
All 2734 26,3192 38,336
Tanzanian 1417 16,7040 8749
African Genome Resource (AFGR) 1317 95,892 26,564
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