

1 **Three-dimensional interactions between integrated HPV genomes and cellular chromatin**
2 **dysregulate host gene expression in early cervical carcinogenesis.**

3
4 Ian J Groves^{1*}^{a†}, Emma LA Drane^{1*}, Marco Michalski^{2*}, Jack M Monahan³, Cinzia G
5 Scarpini¹, Stephen P Smith¹, Giovanni Bussotti^{3b}, Csilla Várnai^{2c}, Stefan Schoenfelder², Peter
6 Fraser^{2,4}, Anton J Enright^{1,3} & Nicholas Coleman^{1†}

7
8 ¹Department of Pathology, University of Cambridge, CB2 1QP, UK
9 ²Nuclear Dynamics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
10 ³EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
11 Cambridge, CB10 1SD, UK

12 ⁴Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA

13 ^aCurrent address: Cambridge Institute of Therapeutic Immunology and Infectious Disease and
14 Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge
15 Biomedical Campus, Cambridge, UK

16 ^bCurrent address: Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP
17 CNRS, Paris, France

18 ^cCurrent address: Centre for Computational Biology, University of Birmingham, B15 2TT, UK

19 *These authors contributed equally

20 [†]Correspondence: ijg25@cam.ac.uk, nc109@cam.ac.uk

21
22 **Keywords:** Human papillomavirus 16, HPV, E6/E7, integration, epigenetics, chromatin, Hi-
23 C, looping, TAD.

24
25 **Conflicts of Interest:** The authors declare no conflicts of interest.

26
27 **ORCID:**
28 IJG: 0000-0001-8882-6701; JMM: 0000-0002-0635-0015; CGS: 0000-0003-4730-5197;
29 SPS: 0000-0001-7744-3238; GB: 0000-0002-4078-7413; CV: 0000-0003-0048-9507; SS:
30 0000-0002-3200-8133; PF: 0000-0002-0041-1227; AJE: 0000-0002-6090-3100

31
32
33

34 **Abstract**

35 Development of cervical cancer is directly associated with integration of human papillomavirus
36 (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene
37 expression, which correlates with multi-layered epigenetic changes at the integrated HPV
38 genomes. However, the process of integration itself and dysregulation of host gene expression
39 at sites of integration in our model of HPV16 integrant clone natural selection has remained
40 enigmatic. We now show, using a state-of-the-art ‘HPV integrated site capture’ (HISC)
41 technique, that integration likely occurs through microhomology-mediated repair (MHMR)
42 mechanisms via either a direct process, resulting in host sequence deletion (in our case,
43 partially homozygously) or via a ‘looping’ mechanism by which flanking host regions become
44 amplified. Furthermore, using our ‘HPV16-specific Region Capture Hi-C’ technique, we have
45 determined that three-dimensional (3D) interactions between the integrated virus genome and
46 host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive host
47 gene dysregulation through the disruption of local host:host 3D interactions known as
48 topologically associating domains (TADs). This mechanism of HPV-induced host gene
49 expression modulation indicates that integration of virus genomes near to or within a ‘cancer-
50 causing gene’ is not essential to influence such genes within an entire TAD and that these
51 modifications to 3D interactions could have a major role in selection of HPV integrants at the
52 early stage of cervical neoplastic progression.

53

54

55

56

57

58

59

60

61

62 **Introduction**

63 Human papillomavirus (HPV) infection is associated with the development of around 5% of
64 all human cancers, with ~690,000 cases arising annually worldwide(1). Of these, ~570,000 are
65 cancers of the cervix, which usually present as squamous cell carcinomas (SCCs), developing
66 through clonal selection of cells with a competitive growth advantage from pre-cursor
67 squamous intraepithelial lesions (SILs) and ultimately leading to ~260,000 deaths globally(2-
68 5). The association of high-risk HPV (HRHPV) infections with cervical SCCs is over 99.9%
69 and, as such, makes HPV the etiological agent associated with cervical carcinomas(6, 7). The
70 treatment of HPV-associated carcinomas has changed little over the past 30 years and, despite
71 current vaccination programs against HPV, new therapies are necessary for an aging
72 unvaccinated population.

73

74 The genome of HPV usually exists as an extra-chromosomal episome of around 7.9 kilobases
75 (kb) at a copy number of around 100 per cell in squamous epithelial lesions as part of the
76 normal virus lifecycle(8, 9). Although development of cervical SCC with an episomal HPV
77 genome can occur(10), progression of disease toward cervical carcinoma is more often
78 associated with integration of the fractured double stranded DNA (dsDNA) HRHPV genome
79 into that of the host, occurring in around 85% of cases(11-13). The integration process usually
80 involves the disruption of the HPV *E2* gene and, with loss of this trans-repressive protein
81 product, leads to dysregulation of virus gene expression from the early promoter(5, 11, 14).
82 Despite this process usually resulting in an increase in HPV oncogene expression associated
83 with cervical SCCs, our previous work has shown that the genomes at initial integration events
84 prior to selection can have levels of expression similar to, or lower than, episomal parental cell
85 lines(15).

86

87 The control of HPV gene expression in the productive lifecycle of the virus occurs in a
88 differentiation-dependent manner associated with the position of the virus within the infected
89 stratified epithelium(5). The necessary expression of the HPV oncogenes *E6* and *E7* in the
90 basal layer cells occurs through transcriptional initiation at the virus early promoter (p97 in the
91 case of HPV16). This is controlled by the interaction of various host transcription factors with
92 regulatory elements within the long control region (LCR) and modification to the local
93 chromatin structure(5, 16, 17). The binding of these factors is known to become modified as
94 infected cells differentiate such that the late promoter (p670 for HPV16) is stimulated and late

95 virus gene expression ensues(18, 19). In concert, changes to chromatin structure are known to
96 occur as late HPV gene expression becomes activated, driven through the modification of
97 histone post-translational modifications (PTMs) at HPV genome-associated nucleosomes(18,
98 20). These histone PTMs have also been found associated with the enhancer and promoters of
99 HPV16 episomes during progression of *in vitro* neoplastic progression with acetylation of both
100 histone H3 and H4 (H3ac and H4ac, respectively) accumulating during the initial stages of
101 phenotypic progression to SCC(10). Work from our lab investigating the integrated HPV16
102 genome has previously shown differential association of histone modifications with the virus
103 LCR and early genes corresponding to levels of virus transcript per template(15). Subsequent
104 studies have shown that multi-layered epigenetic modifications to the integrated HPV genome
105 are associated with the recruitment and activation of RNA polymerase II (RNAPII), thereby
106 determining the level to which HPV oncoprotein expression occurs(21). These modifications
107 include levels of DNA methylation, further histone PTMs and associated enzymes as well as
108 nucleosome positioning and the presence of chromatin remodelling enzymes and
109 transcriptional activators, such as the P-TEFb complex, directly at the integrated virus
110 templates(5, 21).

111
112 However, as implied, cervical SCC is not always associated with high virus oncogene levels
113 and may be driven independent of this factor, for example through host gene changes(22). HPV
114 appears to integrate into certain sites across the human genome more often than others, so
115 called ‘integration hotspots’, associated at times with chromosome fragile sites (CFSs)(12, 23-
116 25). Integration can occur directly into a gene, both introns and exons, and can lead to varying
117 changes in gene expression level(26-28). In a study of HPV-positive head and neck SCC
118 (HNSCC), 17% of integrants were also found within 20 kbp of a gene, indicative of possible
119 selective pressure from integration at, or near to, coding regions through modifications to host
120 gene expression(29). Varying explanations for modified gene expression include HPV
121 integration as being commonly associated with amplification of the local region or indeed
122 rearrangement and translocation of that region elsewhere(27, 29-34). Other studies have
123 suggested that higher level transcriptional control may be at play: integration into flanking
124 regions of genes, sometimes as far away as 500kb, has been found associated with large
125 increases in gene transcription, including at the *MYC* and *HMGA2* genes(26, 27). Interestingly,
126 the association of the 8q24.21 region within which the *MYC* gene resides has been highlighted
127 in several studies previously(35-37) and was more recently investigated using genome-wide
128 studies. Using RNA-seq, haplotype resolved data showed that *MYC* is highly overexpressed

129 from the HPV18 integrated allele (95:1), which is also associated with higher levels of
130 transcriptionally active chromatin marks, transcription factors and RNAPII(38). The analysis
131 of ‘chromatin interaction analysis with paired-end tag’ ChIA-PET sequencing data pointed
132 toward a long-range *cis* interaction between the integrated HPV18 promoter/enhancer and the
133 *MYC* gene(38). Hence, is likely that three-dimensional (3D) interactions between distant
134 regions of chromatin have ultimately driven selection of this cell line from an excised lesion.

135

136 The cloned cell lines by which we have previously shown epigenetic control of virus early gene
137 expression from integrated HPV16 genomes were developed from the W12 cell model(24, 39,
138 40). This model was generated by primary culture of a cervical low-grade SIL (LSIL) from
139 which keratinocytes naturally infected with HPV16 were able to grow in monolayer
140 maintaining the virus episome copy number between 100-200 copies per cell(8). From this
141 polyclonal cell population, continuous *in vitro* passage of cells in long-term culture is
142 associated with the loss of episomes alongside the outgrowth of cells containing integrated
143 HPV16 genomes, mirroring phenotypic progression *in vivo* from LSIL to high-grade SIL
144 (HSIL) to SCC(10, 41). We have previously used this approach to develop many series from
145 the W12 cell system, including cloned cell lines that have a range of discrete integration sites,
146 similar in position to those seen *in vivo* in cervical SCC, occurring through integration events
147 prior to selection of a clone with the greatest growth advantage(5, 23, 24, 42, 43). This was
148 conducted with single cell cloning of an early passage (p12 and p13) of W12 culture series-2
149 (W12Ser2), from which an integrant at chromosome position 8q24.21 had outgrown in
150 previous studies, and under non-competitive conditions whereby a repressive environment for
151 integrants was maintained until after cloning(44). Although the number of virus genomes
152 associated with each cloned line varied, only a small number displayed concatemerisation of
153 virus genomes (type II integrants) and, as such, the majority were deemed type I integrants
154 displaying a premalignant LSIL-like phenotype when grown in organotypic ‘raft’ culture(4,
155 15). These clones therefore represent a typical population of polyclonal cells found in a
156 premalignant cervical lesion and can be used to determine the factors that drive selection of
157 certain integrants.

158

159 In work presented here, we have used the W12 clones to investigate further features of genome
160 integration and host gene expression modulation that could lead to the selection of individual
161 cells during carcinogenesis. Using cells that constitute type I integrants with four or less copies
162 of integrated genomes that have expression per template levels of oncogenes that encompass

163 the range seen within the total panel of W12 integrant clones(21), we have developed a novel
164 and state-of-the-art technique (HPV integrated site capture/HISC) to determine HPV16
165 integration sites genome-wide at nucleotide resolution while utilising HPV16-specific Region
166 Capture Hi-C to investigate potential 3D interactions between the integrated virus genome and
167 host chromatin. We have been able to pinpoint the precise locations of HPV16 integration sites
168 within our W12 integrant clones, coinciding with areas of open chromatin, as well as
169 determining that integration likely occurs through microhomology-mediated repair
170 mechanisms. Integration occurs through either a direct process, whereby regions of the host
171 genome are deleted – in our case partially homozygously – or via a ‘looping’ mechanism by
172 which flanking regions of the host genome become amplified. Furthermore, application of our
173 Region Capture Hi-C technology has determined that 3D loops do indeed exist between the
174 integrated virus genome and host chromatin both at short- (<500 kbp) and long-range (>500
175 kbp). Alongside RNA-seq data, we have also confirmed that these interactions do appear to
176 drive host gene dysregulation, possibly through the disruption of the normal nuclear
177 architecture within topologically associating domains (TADs), leading to individual gene and
178 cross-region changes in host gene expression during the early stages of cervical neoplastic
179 progression.

180

181 **Results**

182 **Integrated HPV16 genomes interact in three-dimensions (3D) with host chromosomes**

183 As it had previously been shown that interactions between an integrated HPV genome and host
184 chromatin on the same chromosome could lead to changes to host gene expression that could
185 be selected for during carcinogenesis(38), we wished to determine whether these 3D
186 interactions were occurring at an earlier stage of cervical neoplasia in our HPV16-positive W12
187 integrant clones prior to selection. To address this, we first developed a HPV16-specific Region
188 Capture Hi-C protocol (Supplementary Figure 1A) similar to that published previously(45, 46),
189 here using biotinylated RNA baits specific for the HPV16 genome that would select chimeric
190 DNA complexes from a Hi-C library based upon the virus sequence and hence allow
191 determination of any 3D interactions in our five integrant clones previously epigenetically
192 characterized(21). The regions of significant interaction between the HPV16 and host
193 chromatin were determined using GOTHiC software and visualised using the Circos tool
194 (Figure 1). In W12 clone G2, reads originate from all MboI fragments across the HPV16

195 genome, indicating interactions with the host and, although the distribution of the reads was
196 fairly uniform, the greatest percentage of reads came from HPV16 gene *E7* (Figure 1A).
197 Significant interactions occurred exclusively with chromosome 5, the chromosome of
198 integration, with the majority likely due to *cis* interactions with bordering host sequences at the
199 breakpoint. However, upon closer inspection of the single chromosome view (Figure 1A inset),
200 there was a divergence between the majority of reads from the virus — indicating the
201 integration site — and a subset of reads that mapped to a separate region of the host, indicating
202 a long-range 3D interaction between the integrated HPV16 genome in G2 and the host. In clone
203 D2 (Figure 1B), the HPV16 genome also interacted with the site of integration at chromosome
204 5; however, the virus-host reads, predominantly from the *L2* gene, at this scale appear to
205 converge on a single point at the host chromosome (Figure 1B inset). For three further W12
206 integrant clones (clones H, F and A5) interactions again occurred across the HPV16 genome
207 with the host chromosome of integration, with the majority of reads coming from the *E2* portion
208 of the virus genome for all (Figure 1C-E). In clone H, HPV16 integrated into chromosome 4
209 and resulted in a large deletion of the host (~170 kbp), which is illustrated by the separation of
210 the virus-host reads in the chromosome view (Figure 1C inset). Interestingly, and contrary to
211 our previous publications(15, 21, 24), we found that W12 clones F and A5 had the same
212 integration site, with virus-host reads converging to the same region of chromosome 4 (Figure
213 1D & E).

214

215 **HPV16 integration site virus-host breakpoint identification at nucleotide resolution**

216 Having developed the probability that 3D virus-host interactions did indeed occur soon after
217 HPV16 integration, we next sought to precisely identify the host sequence of the virus-host
218 junctions. To do this with sufficient depth from genomic DNA samples, we developed a novel
219 protocol by which DNA from each integrant clone was enriched for HPV16 sequences along
220 with its flanking regions before sequencing, henceforth known as HPV Integration Site Capture
221 (HISC) (Supplementary Figure 1B). The resulting sequencing data was analysed for reads
222 mapping to the HPV16 genome with the corresponding human tag being determined. These
223 data were then aligned to the HPV16 genome (Supplementary Figure 2) and the human genome
224 (Supplementary Figures 3-6). From all integrant cell lines, sequencing reads mapped to both
225 the HPV16 and host genomes with peaks at two distinct sites each (Supplementary Figures 2-
226 6, HISC track), regardless of HPV16 genome copy number, demonstrating that only a single

227 5' and 3' breakpoint existed in each W12 clone examined. The separation of the breakpoint
228 peaks from the HPV16 genome was consistent with termination of RNA-seq reads from
229 separate transcriptome analysis (Supplementary Figure 2, RNA-seq tracks) and the known
230 deletion of a proportion of the virus genome in each cell line(21), with the HPV16 transcription
231 profiles additionally being consistent with our previously published quantitative PCR data(15).
232 Alignment of the breakpoint peaks with host sequence gave a separation distance ranging from
233 ~25-170 kbp across the integrant clones; the separation of peaks here however is consistent
234 with two processes of HPV integration. The greatest distance of 170 kbp seen in clone H
235 occurred due to the deletion of a proportion of the host genome upon 'direct' integration of the
236 single HPV16 genome here determined by low coverage DNA-seq analysis (data not shown)
237 and quantitative PCR (qPCR) of sections of host genome spanning the integration site
238 (Supplementary Figure 5B). The breakpoint peak separation distance for the other four clones,
239 however, was due to a 'looping' mechanism of HPV integration(47) whereby a flanking length
240 of host sequence is amplified during integration of one or more copies of the virus. Again, this
241 was verified through qPCR of host DNA across the integration sites (Supplementary Figures
242 3B, 4B & 6B), with transcription clearly occurring through these amplified host regions driven
243 from the integrated HPV16 early promoter (Supplementary Figures 3-6A). The resultant
244 genomic effect on the structure of both host alleles is pictured in Supplementary Figures 3-5C
245 and 6D.

246

247 To confirm the virus-host breakpoints determined by HISC, PCR across each junction was
248 carried out and Sanger sequenced with the verified coordinates of breakage summarized in
249 Supplementary Figure 7. Interestingly, a 53 bp region of the *E2* gene was found to have been
250 inverted after an intermediate 20 bp deletion, which had not been highlighted by alignment of
251 RNA-seq reads to the HPV16 genome due to bioinformatics processing (Supplementary Figure
252 7D). Quantitative PCR (qPCR) was also carried to show that both the 5' and 3' breakpoints
253 were unique to each cloned line (other than F and A5) with either very low or non-existent
254 products produced with DNA from an early episomal population of W12 cells (W12par1 p12)
255 or a normal cervix line, NCx/6 (Supplementary Figure 8).

256

257 Identification of the precise virus-host breakpoints in each cloned line allowed the extent of

258 microhomology at integration sites to be assessed. At all integration sites, at least one end of
259 the insertion involved nucleotides from both genomes directly adjacent to the junction being
260 homologous, with a mode of 5 nt (range 3-5 nt) (Supplementary Figure 9A-D), with clone G2
261 having 5 nt homology at both ends (Supplementary Figure 9A). Additionally, when
262 microhomology of 10 nt either side of each breakpoint was compared to that generated from
263 10,000 random shuffles of each sequence extended to 1,000 nt, 4 of 5 integrant clones (G2, H,
264 F and A5) had statistically significant homology at one flank (Supplementary Figure 9A, C &
265 D).

266

267 **HPV16 integrates into regions of open and transcriptionally active host chromatin**

268 Mapping of the HPV16 integration sites from each cloned cell line allowed investigation of the
269 genomic location and epigenetic landscape into which the virus had inserted (Supplementary
270 Figure 10). In 4 of 5 cases, HPV16 had integrated into a gene (D2, TENM2; H, MAPK10; F &
271 A5; RASSF6) with all of these cases arising at introns (Supplementary Figure 10B-D). Despite
272 the integration site in clone G2 occurring intergenically, all insertions occurred at locations of
273 open chromatin, characterized by DNaseI hypersensitivity sites from publicly available normal
274 human epidermal keratinocyte (NHEK) ENCODE datasets (www.encodeproject.org).
275 Additionally, the integration sites showed higher than average levels of histone post-
276 translational modification marks associated with enhancers and transcriptional activity, namely
277 H3K27ac and H3K4me1/2/3, with the marked exclusion of transcriptionally repressed
278 facultative heterochromatin mark, H3K27me3. Noticeably, although integration in clone H did
279 not occur directly into one of these loci, the HPV16 genome is located within 300 kbp of a
280 similar site (Supplementary Figure 10C). Presence of binding sites of host architectural protein
281 CTCF was found across the sites of integration, although again with higher than average
282 occurrence, and usually within ~20 kbp of the inserted HPV16 genome.

283

284 **Short- and long-range 3D interactions occur between the HPV16 and host genomes**

285 To inspect 3D interactions between the HPV16 and host genomes, Region Capture Hi-C
286 sequencing data was re-visualised using SeqMonk software (Babraham Bioinformatics) and
287 again aligned to NHEK ENCODE datasets at the location of integration for each cloned cell

288 line. Local inspection of the points of 3D interaction with the host genome at the integration
289 site of clone G2 showed highest levels corresponding to the 5' and 3' virus-host junctions
290 (Figure 2A, red bars), with above background interactions occurring within this region of host
291 genome amplification. This was found consistently across the Region Capture Hi-C datasets
292 for all clones (Figure 3A & Supplementary Figure 11), with the exclusion of clone H where
293 the absence of any intermediate interactions is likely due to deletion of this host region during
294 integration (Supplementary Figure 11A).

295

296 Upon increasing the window range across the integration loci to ~700 kbp (with re-normalised
297 read depth), peaks of 3D interaction outside of the initial 100 kbp window could be seen in
298 clone G2 (Figure 2B) and clone D2 (Figure 3B). Multiple short-range (<500 kbp) 3D
299 interactions were present ranging up to ~240 kbp and ~360 kbp away from the site of
300 integration in clones G2 and D2, respectively (Figure 2B & 3B). Interestingly, sites of high
301 intensity of 3D interaction with the host genome in both cell lines (Figure 2B & 3B, red bars)
302 overlapped with histone marks of transcriptional activation or enhancers and DNaseI
303 hypersensitivity sites, whereas these sites only correlated with host CTCF binding sites in clone
304 G2 (Figure 2B, purple dashes). The presence of a long-range interaction (>500 kbp) was seen
305 at this scale in clone D2 ~530 kbp from the integration site with the 3' end of host gene *TENM2*
306 (Figure 3B). However, long-range interactions in clone G2 were only visible when expanding
307 the window range to 5Mb, whereupon two clear 3D interactions were determined downstream
308 of the integration site with the furthest ~900 kbp from the HPV16 integration site (Figure 2C).
309 This interaction was located at Chr5:53,520,000 within the first intron of host gene *ARL15*,
310 coinciding with a cluster of host CTCF binding sites (Figure 2C, purple dashes).

311

312 To validate that direct interaction occurred between the integrated HPV16 genome and *ARL15*
313 intron in clone G2, 3D DNA fluorescent in situ hybridisation (FISH) was carried out (Figure
314 4). Three fluorescent DNA probes were produced to hybridise to either the integrated HPV16
315 genome, the *ARL15* site of interaction, or a control region of the host genome with the same
316 linear distance in the opposite direction (Figure 4A). Only cells containing one HPV16 signal
317 and two copies of both the control and *ARL15* probes were analysed. A representative image
318 from the resulting dataset (30,000 cells) is shown in Figure 4B and analysis of the 3D distances

319 (x, y and z planes) indicated that, on the integrated chromosome, the HPV16 and *ARL15*-
320 specific probes were significantly closer together than the HPV16 and control-specific probes
321 (Figure 4C & D). Additionally, it was found that the distance between the control and *ARL15*-
322 specific probes on the integrated allele was significantly lower than that on the unintegrated
323 allele (Figure 4E & F), corroborating the finding that direct 3D interaction between the
324 integrated HPV16 genome and *ARL15* gene does occur in clone G2.

325

326 **HPV16 genome integration does not affect local host genome architecture**

327 Since 3D interactions between integrated HPV16 and host genomes had been confirmed, we
328 next asked whether these interactions could lead to structural changes in local nuclear
329 architecture. Hi-C libraries, containing global host:host interactions, from both clones G2 and
330 D2 were sequenced and, due to the different sites of integration on chromosome 5, these
331 datasets were compared against each other within 5Mb windows spanning the two integration
332 sites (Figure 5). Heatmaps of clone G2 Hi-C data (Figure 5A) showed an interaction profile
333 consistent with data from clone D2 (Figure 5B), with interactions occurring across the 5Mb
334 window including clearly defined regions of interacting host DNA up to ~1Mb, approximating
335 to the size of a topologically associating domain (TAD). Insulation score analysis also
336 determined no significant change across the 5Mb window between the two interaction profiles
337 despite the presence of HPV16 genomes at the site in clone G2 (Figure 5C). Indeed, this finding
338 was repeated when 2.5Mb either side of the clone D2 HPV16 integration site was compared to
339 that of clone G2 (Figure 5D-F). Hence, HPV16 genome integration and interactions with the
340 host chromosomes did not appear to be affecting the local nuclear architecture.

341

342 **HPV16 genome integration does modulate local host gene expression**

343 As HPV16 genome integration, and resulting 3D interactions with the host genome, did not
344 appear to affect local nuclear architecture, we sought to determine how far within the host:host
345 chromosome interactions ‘loops’ from the HPV16 genome occurred. To the existing Region
346 Capture Hi-C datasets, we aligned publically available TAD boundaries determined from two
347 human cell lines(48) and found that all HPV16:host interactions occurred within the TAD of
348 integration (Figure 6). Analysis of clone D2 found that the majority of HPV16:host genome

349 interactions occurred within the TAD of integration, with only the long-range loop occurring
350 outside of this range in an adjacent TAD (Figure 6C), although there is a possibility that all
351 loops may exist here within the TAD of integration given differential calling of TAD
352 boundaries across cell lines as all loops occur exclusively with the *TENM2* gene.

353

354 Next, we addressed whether HPV16 genome integration and interactions with the host
355 chromosome led to any changes in local host gene expression. Transcribed RNAs across a 5Mb
356 window spanning the HPV16 integration site were assessed through comparison of total
357 transcriptome RNA-seq data from an individual clone to an average of all other available
358 datasets from W12 integrant clones with a different integration site. Analysis of protein coding
359 RNAs from clone G2 found that host genes were both up- and down-regulated across the
360 integration locus and in some cases unchanged, with no restriction to TADs (Figure 6B); a
361 consistent finding across all cloned cell lines analysed. Despite all changes being less than ± 2 -
362 fold change here, some genes were found to be significantly down-regulated (*PARP8*, *ITGA2*,
363 *CCNO*, *DHX29*, *SKIV2L2*) while interestingly the only significantly up-regulated gene was
364 that with a confirmed HPV16:host interaction, *ARL15* (1.23-fold; $p < 0.05$) (Figure 6B, green
365 labelled genes). Compellingly, upon comparative analysis of Hi-C libraries between clones G2
366 and D2, a decrease in a host:host interaction was found within the TAD of integration
367 (Supplementary Figure 12A, blue triangle), aligned with the HPV16:host interaction with the
368 *ARL15* gene. Hence, changes of gene expression within TADs are possibly due to modulated
369 host:host interactions at this level.

370

371 Analysis of host gene expression at the HPV16 integration site of clone D2 found again that
372 transcription was both up- and down-regulated, while some genes appeared unaffected, with
373 all but one modulation statistically significant (Figure 6D). The host gene into which HPV16
374 had integrated and exclusively interacted with, *TENM2*, was up-regulated 4.79-fold in
375 comparison to the control average. No significant changes in host:host interaction were found
376 here within the TAD of HPV16 integration or the adjacent TADs (Supplementary Figure 13).
377 Interestingly, all other clones that exhibited HPV16 integration within a host gene showed up-
378 regulation of expression of that gene. Expression of *RASSF6* in clones F and A5 increased 1.64-
379 and 1.62-fold, respectively (Figure 7B & D, respectively), with $p < 0.0001$ in both cases. In

380 clone H, despite deletion of some of the host coding exons, expression of *MAPK10* was
381 increased 4.47-fold (Figure 6F), and chimeric HPV16:host RNA-seq reads showed that both
382 breakpoint fusion transcripts and spliced transcripts from the integrated HPV16 genome into
383 an adjacent host exon (ENSE00001811960; Chr4:86,952,584), including differential HPV16
384 exon expression, was the likely cause of the overall increase in expression levels of this gene
385 (Supplementary Figure 14). Indeed, splicing events from the integrated HPV16 genome into
386 the host was seen across three of the five integrant clones analysed (Supplementary Table 1),
387 including clone G2 where intergenic HPV16 integration led to spliced fusion transcripts,
388 verified through PCR and Sanger sequencing, with non-coding host DNA, presumably through
389 cryptic splice acceptor sites (Supplementary Figure 15). Interestingly, all splicing events
390 occurred with host DNA within the region of host DNA amplification flanking the HPV16
391 integration site in clone G2.

392

393 **HPV16 genome integration modulates host gene expression across the chromosome**

394 To further investigate the effect of HPV16 integration on host gene expression, the variance in
395 gene expression in the genomic regions adjacent to the HPV16 integration site was compared
396 with that of the whole chromosome. Again, comparing RNA-seq data from an individual clone
397 to an average of all other available datasets from W12 integrant clones with a different
398 integration site, host transcription variance (from both protein coding and non-coding regions)
399 was calculated by grouping five adjacent genes into ‘bins’ and then comparing the range and
400 variance within each bin to that of a mean level from across the whole chromosome (Figure 8
401 & Supplementary Figure 16). Expression of host genes across all regions appeared highly
402 variable, with clones G2 (Figure 8A), F and A5 (Supplementary Figure 16C & E) all having
403 bins with ± 2 -fold change. Multiple bins at and adjacent to the HPV16 integration site were also
404 found to have highly significant ($p < 0.05$ and $p < 0.001$) gene expression variance (Figure 8B &
405 D & Supplementary Figure 16B, D & F). Hence, integration of HPV16 genomes into host
406 chromosomes appears to have modulatory effects on the host gene expression far beyond the
407 immediate locus of integration.

408

409

410 **Discussion**

411 Progression of disease toward cervical carcinoma is markedly associated with integration of
412 HPV genomes into host chromosomes whereby dysregulation of the control of HPV oncogene
413 expression occurs. Our previous work has shown that, across five integrant cell lines cloned
414 from the W12 model system (F, A5, D2, H & G2), levels of virus transcript per template
415 correlate with multi-layered epigenetic changes that regulate transcription from the integrated
416 HPV16 genomes(15, 21). However, it has not been determined how integration at these sites
417 may produce a more or less selectable clone during outgrowth in our model, which mirrors the
418 natural process of cervical carcinogenesis. To answer this, we developed a state-of-the-art
419 technique ‘HPV integrated site capture’ (HISC) to determine the precise loci of HPV16
420 integration sites and utilised Region Capture Hi-C to determine if 3D interactions between
421 HPV16 and host genomes could be involved in modulating host gene expression, thereby
422 driving selection of certain clones. With this new technology, we first sought to confirm the
423 integration sites of HPV16 genomes in our five clones through next generation sequencing
424 (NGS) of samples.

425

426 In all the W12 integrant clones tested, the HPV16 genome was shown to interact with regions
427 of host chromosomes in *cis*; there were no examples of HPV16 interacting with the host in
428 *trans*, although this could be due to limited sequencing depth. These interactions occurred from
429 across the HPV16 genome, although there was an absence of any interactions from a large
430 proportion of the *E1* gene. This was due to technical reasons associated with the design of the
431 RNA baits, based upon *MboI* restriction sites within the HPV16 genome, rather than a true
432 biological finding. These interactions pinpointed the definitive loci of integration of the HPV16
433 genomes within each W12 integrant clone, with PCR and sequencing confirming that these
434 locations differed from their original published sites(15, 21, 24) in all but one clone (clone H).
435 More interestingly, we found that clones F and A5 had the same HPV16 integration site, with
436 the same HPV16 breakpoints and inversion, likely indicating that one cell line is a precursor
437 of the other since they exhibit very different phenotypical characteristics(15, 21, 24). Our data
438 also support the growing understanding that integration of HPV genomes takes place, at least
439 to some degree, through microhomology-mediated repair (MHMR) of DNA breaks(25, 26, 29,
440 32, 47, 49-51) as our precise determination of HPV16:host breakpoints through HISC, RNA-
441 seq and Sanger sequencing allowed interrogation of the flanking sequences at each junction

442 showing higher levels of homology between HPV16 and host sequences than expected. Indeed,
443 this support for MHMR lends further support to the theory that HPV integration occurs via two
444 main processes: ‘direct’ and ‘looping’ integration(32, 47). Here, deletion of a proportion of the
445 host genome adjacent to the HPV16 integration site in W12 clone H is consistent with direct
446 integration and, for the first time as far as these authors are aware, we have shown that deletion
447 can occur in a homozygous fashion. All other clones examined (F, A5, D2, G2) showed clear
448 signs of host genome amplification flanking the integration site that would be consistent with
449 looping integration from which integrants are now sometimes known as ‘type III’ (22, 34).
450 There remains the possibility that these regions could be amplified as extra-chromosomal
451 virus–host fusion episomes maintained by the HRHPV origin of replication, which has been
452 proposed following analysis of HNSCC TCGA datasets elsewhere(29, 52), although our
453 techniques here appear to consistently illustrate canonical chromosomal integration.

454

455 Despite others’ previous analysis of integration sites primarily focussing on cervical SCCs(12),
456 we have also shown in our W12 integrant cell lines, which reconstitute the early stages of
457 cervical carcinogenesis, that HPV16 integration, although occurring in both intronic and
458 intergenic regions in our population, appears more readily to occur within regions of increased
459 chromatin accessibility (DNaseI hypersensitive regions) and with high association of
460 transcriptional enhancers (H3K4me1/H3K27ac) or activity (H3K4me2/3), as found
461 previously(12, 53-55). Intriguingly, an accomplished recent analogous study of one W12-
462 derived subclone (20861), which has 26 tandemly integrated HPV16 genomes interspersed
463 with 25 kb of flanking cellular DNA at chromosome 2p23.2 (a so-called type III integrant), has
464 shown that establishment of super-enhancer like regions can occur through ‘looping’
465 integration resulting from amplification of both virus LCR and a basal cellular enhancer. This
466 leads to an enrichment of super-enhancer marks H3K27ac and BRD4, and likely drives high
467 expression of virus *E6/E7* fusion transcripts with subsequent selection and neoplasia(33, 34).

468

469 Highly specialised Region Capture Hi-C/HISC analysis of the W12 integrant clones here
470 confirmed that 3D interactions, both short-range (<500 kbp) and long-range (>500 kbp),
471 between integrated HPV16 genomes and host chromatin, inferred elsewhere previously(22,
472 38), do occur in cell lines that mirror the very early stages of cervical carcinogenesis. We were
473 able to verify that these ‘loops’ are present in 3D using DNA FISH analysis in one of our cell

474 lines, clone G2, by confirming the distances between the integrated HPV16 genome and the
475 site of interaction in the *ARL15* gene in comparison to that of a control region. Interestingly,
476 the sites of interaction on the host genome both in clone G2 and D2 more often than expected
477 aligned with sites of interaction of the host architectural protein CTCF. It is known that the
478 HPV genome is able to interact with CTCF through virus-specific sequences(56), contributing
479 to differentiation-dependent control of virus gene expression through loops with YY1(57), and
480 it is appealing to hypothesise that insertion of an ectopic CTCF-binding site into the host
481 genome through HPV genome integration, as has been found with the human T-cell
482 lymphotropic (HTLV-1)(58, 59), may lead to modulation of the local host genome architecture
483 and changes in host gene expression. Indeed, even with the loss through integration of the
484 HPV16 *E2* located CTCF-binding site in clone G2, interaction could still be driven by further
485 putative sites in the *L2/L1* genes(56) or could occur through promoter/enhancer-like
486 interactions from the HPV genome as is believed to be the situation in the HPV18 integrant
487 HeLa cell line(38). This is supported by our finding that loops between the integrated HPV16
488 genome in our clones also appear to localize to host sites of transcriptional activity and
489 chromatin marks of promoters/enhancers. Whether the orientation of the HPV genome after
490 integration has any effect on directionality of these interactions or loops and indeed whether
491 interaction with these host chromatin domains has any effect on transcript levels produced by
492 the integrated HPV16 genome remains unknown.

493

494 Here, HPV16 integration into a gene (*MAPK10* in clone H; *TENM2* in clone D2; *RASSF6* in
495 clones F and A5) clearly caused increases in expression of that host gene. Despite the loss of
496 some coding exons in *MAPK10* in clone H, direct co-linear insertion of a HPV16 genome led
497 to splicing from the HPV16 genome into the next host exon. Thus, although overall levels of
498 *MAPK10* transcript were raised, this was due to an increase in the production of RNA from 3'
499 end exons and possible fusion to HPV16 transcripts. It remains to be determined whether these
500 truncated and/or fusion transcripts could code for protein or indeed whether any expressed
501 protein would be functional. Regardless of integration mechanism, the presence of at least one
502 integrated copy of an HPV16 genome caused modulation of host gene expression across a wide
503 range of that chromosome. Statistical analysis of groups of host genes, including those at the
504 site of integration, in comparison to other W12 integrant cell lines showed wide ranging
505 influence on the host gene expression profiles with many sites having $>\pm 2$ -fold changes in
506 transcript level.

507

508 Our analysis of total host:host 3D interactions through interrogation of Hi-C libraries did not
509 appear to provide evidence that host topologically associating domains (TADs) were greatly
510 affected by HPV16 genome integration. Interestingly, almost all 3D interactions between
511 HPV16 genomes and the host chromosome occurred within a single TAD, leaving the
512 hypothesis that TAD boundaries may in some way be able to inhibit HPV:host interactions into
513 adjacent TADs. This barrier to more elongated interactions may also stretch to *trans*
514 interactions with chromosomes other than that of integration, although this remains unverified.
515 Regardless, looping from the integrated HPV16 genome in clone G2 to the *ARL15* gene was
516 associated with an increase in the level of its transcript. Further comparative analysis of our
517 Hi-C data sets showed that this interaction may in fact cause a decrease in the usual host:host
518 interaction between *ARL15* and a region upstream of the HPV16 integration site. Interestingly,
519 the host genes around this upstream interaction site were largely down-regulated. Therefore, it
520 is possible that the relatively stronger interaction between the HPV16 promoter/enhancer and
521 *ARL15* gene that might up-regulate *ARL15* transcript levels may supersede usual host
522 interactions, some of which may be promoter:enhancer interactions that maintain regular host
523 transcript levels. This modulation of host gene expression distal from the HPV genome
524 integration site is in line with the current theory of Viro-TADs and host gene expression
525 changes(22, 59, 60).

526

527 Although we are not the first to use Capture technology to precisely determine HPV integration
528 sites(22, 26, 34, 47, 50, 51, 61), our analysis of Region Capture Hi-C and full host:host Hi-C
529 libraries have allowed the first definitive determination of 3D interactions between integrated
530 HPV and host genomes with local (intra-TAD) changes to usual local host:host interactions.
531 The downstream effect of these modulations to local host architecture is modulation of the host
532 gene expression program, at least within the same TAD. Therefore, integration near to or within
533 a ‘cancer-causing gene’ does not appear essential to influence such genes due to these *cis*-
534 driven distal events. However, it remains to be fully determined how these HPV:host 3D
535 interactions are initiated and maintained, and whether this type of interaction or the
536 downstream effect on host gene expression is selected for, as would be hypothesised through
537 evidence provided by HeLa cells(22, 38), as indeed whether these interactions also drive the
538 level of HPV transcripts from the integrated virus genome.

539

540 **Materials and Methods**

541 **Cell culture**

542 Detailed descriptions of the W12 system have been published previously(10, 41, 62) including
543 W12 integrant clone generation(15, 24). The five W12 clones used here were episome-free,
544 did not express the HPV16 transcriptional regulator E2(15) and were grown in monolayer
545 culture in order to restrict cell differentiation and maintain the phenotype of the basal epithelial
546 cell layer(63). Additionally, W12 clones were analysed at the lowest possible passage after
547 cloning (typically p3 to p8) in order to minimise any effects of genomic instability caused by
548 deregulated HPV16 oncogene expression(21).

549

550 **HPV16-host breakpoint and splice junction confirmation**

551 To verify chimeric DNA sequences of HPV16-host breakpoints determined by Capture-seq,
552 and to confirm splice junction sequences from clone G2 RNA-seq analysis, primers were
553 designed using either Primer3 (Primer3Web) alone or Primer-BLAST (NCBI) specific to the
554 DNA sequence (or cDNA sequence from reverse transcribed clone G2 RNA samples
555 (QuantiTect Reverse Transcription Kit, Qiagen)) for PCR (PCR SuperMix High Fidelity,
556 Thermofisher). PCR products were gel extracted and then Sanger sequenced using both 5'- and
557 3'-end primers to confirm reads from each end of the product. Each analysis was carried out in
558 duplicate. Primer pairs used for PCR of HPV16-host breakpoints and clone G2 splice junctions
559 are given in Supplementary Table 2 and 3, respectively.

560

561 **qPCR of HPV16-host breakpoints and genomic DNA**

562 Primers were designed using either Primer3 alone or Primer-BLAST (NCBI) specific to the
563 chimeric DNA sequence of HPV16-host junctions determined by Capture-seq to verify
564 integration sites, as well as host DNA spanning integration sites to determine copy number
565 after HPV16 integration. Primers used for qPCR are given in Supplementary Tables 4 and 5.
566 Host DNA copy number was quantified by comparison to TLR2 and IFN β , as reported
567 previously(15). Conditions used for all primer pairs on an Eppendorf Mastercycler Realplex
568 were: 95°C for 2min; 40 cycles of 95°C for 15sec, 58°C for 20sec, 72°C for 15sec, 76°C for

569 5sec and read; followed by melting curve analysis from 65°C to 90°C to confirm product specific
570 amplification.

571

572 **Insulation score plots**

573 Measurement of the topological domain structure along the chromosomes was computed with
574 an average insulation score profile at the TAD boundaries. The insulation score is the
575 standardized -log enrichment of contacts between the downstream and upstream 300kb
576 regions (-log (a/(a+b1+b2)) where a is the number of contacts between, and b1 and b2 the
577 number of contacts within the upstream and downstream 300kb regions). Using this definition,
578 a more positive insulation score indicates a stronger TAD boundary.

579

580 **DNA Fluorescence In-Situ Hybridisation (FISH)**

581 BAC clones RP11-467N14 (control locus) and CTD-2015C9 (ARL15 locus) were purchased
582 (Thermofisher), whereas the HPV plasmid pSP64-HPV16 was prepared in house.
583 BAC/plasmid DNA was purified using the NucleoBond BAC100 kit (Macherey-Nagel), and
584 labelled with aminoallyl-dUTP by nick translation. After purification, 0.5–1 µg labelled BAC
585 DNA was coupled with Alexa Fluor 488, Alexa Fluor 555 or Alexa Fluor 647 reactive dyes
586 (Life Technologies) according to the manufacturer's instructions, and DNA FISH was
587 performed as described elsewhere(64).

588

589 **Chromatin crosslinking**

590 Formaldehyde crosslinking of 30 million cells was performed by supplementing standard EGF
591 positive culture medium with formaldehyde to a final concentration of 2% and was carried out
592 for 10 min at room temperature. Crosslinking was quenched by the addition of ice-cold glycine
593 to a final concentration of 125 mM. The adherent cells were scraped from the cell culture plates
594 after crosslinking, collected by centrifugation (400 g for 10 minutes at 4°C), and washed once
595 with PBS (50 ml). After centrifugation (400 g for 10 minutes at 4°C), the supernatant was
596 removed, and the cell pellets were snap-frozen in liquid nitrogen and stored at -80°C.

597

598 **Hi-C library generation**

599 Cells were thawed on ice, and then lysed on ice for 30 minutes in 50 ml freshly prepared ice-
600 cold lysis buffer (10 mM Tris-HCl pH 8, 10 mM NaCl, 0.2% Igepal CA-630, one protease
601 inhibitor cocktail tablet (Roche complete, EDTA-free)). Following the lysis, nuclei were
602 pelleted (650 g for 5 minutes at 4°C), washed once with 1.25 x NEBuffer 2, and then re-
603 suspended in 1.25 x NEBuffer 2 to make aliquots of 5-6 million cells for digestion. SDS was
604 added (0.3% final concentration) and the nuclei were incubated at 37°C for one hour (950 rpm).
605 Triton X-100 was added to a final concentration of 1.7 % and the nuclei were incubated at 37°C
606 for one hour (950 rpm). Restriction digest was performed overnight at 37°C (950 rpm) using
607 800 units MboI (NEB) per 5 million cells. Restriction fragment ends were filled in using
608 Klenow (NEB) with dCTP, dGTP, dTTP and biotin-14-dATP, and the blunt-ended DNA was
609 ligated following the in-nucleus ligation protocol described previously (Nagano et al., 2015),
610 with minor modifications. Prior to ligation, excess salts and enzymes were removed by
611 centrifugation (600 g for 5 minutes at 4°C) and the cell pellet was re-suspended in 995 µl of 1
612 x ligation buffer (NEB) supplemented with BSA (100 µg/mL final concentration). The ligation
613 was carried out using 2000 units of T4 DNA ligase (NEB) per 5 Mio starting material of cells,
614 at 16°C for 4 hours, followed by 30 min at room temperature. Chromatin was then de-
615 crosslinked overnight at 65°C in the presence of proteinase K (Roche), purified by phenol and
616 phenol-chloroform extractions, precipitated with ethanol and sodium acetate and re-suspended
617 in TLE (10 mM Tris-HCl pH 8.0; 0.1 mM EDTA). The DNA concentration was measured
618 using the Quant-iT PicoGreen assay (Life Technologies). 40 µg of Hi-C library DNA were
619 incubated with T4 DNA polymerase (NEB) for 4 hours at 20°C to remove of biotin from non-
620 ligated fragment ends, followed by phenol/chloroform purification and DNA precipitation
621 overnight at -20°C. DNA was sheared to an average size of 400 bp using the Covaris E220
622 (settings: duty factor: 10%; peak incident power: 140W; cycles per burst: 200; time: 55
623 seconds). End-repairing of the sheared DNA (using T4 DNA polymerase, T4 DNA
624 polynucleotide kinase, Klenow (all NEB)) was followed by dATP addition (Klenow exo-,
625 NEB) and a double-sided size selection using AMPure XP beads (Beckman Coulter) to isolate
626 DNA ranging from 250 to 550 bp. Biotin-marked ligation junctions were immobilised using
627 MyOne Streptavidin C1 Dynabeads (Invitrogen) in binding buffer (5 mM Tris-HCl pH 8.0, 0.5
628 mM EDTA, 1M NaCl) and after stringent washing in the same buffer at 55°C for 10 min ligated
629 to the custom SCRiBL adapter using 1600 units of T4 DNA ligase (NEB) for 2 hours at room
630 temperature. These adapters were generated by annealing SCRiBL_adapter_1 and

631 SCRiBL_adapter_2 (table X). The immobilised Hi-C libraries were amplified using the custom
632 primers PE PCR 1.0.33 and PE PCR 2.0.33 with 7-9 cycles. After PCR amplification, the Hi-
633 C libraries were purified with AMPure XP beads (Beckman Coulter). Quantity and integrity of
634 the Hi-C libraries was determined by Bioanalyzer profiles (Agilent Technologies).

635

636 **Genomic DNA library generation**

637 Cells were thawed, lysed and nuclei were isolated as described above. Nuclei from 5-6 Mio
638 cells were treated with SDS and Triton X-100 as described for the generation of Hi-C libraries.
639 All Hi-C specific steps, such as MboI digestion, restriction fragment end fill-in, blunt end
640 ligation and the removal of biotin from un-ligated restriction fragment ends were mock
641 performed by replacing the respective enzymes with an equal amount of water. All other steps
642 were performed as described for the generation of the Hi-C libraries. The biotin-streptavidin
643 pull down was omitted and, therefore, the ligation of the custom sequence adapters was done
644 in solution by adding 4 µl adaptors (30 µM) and 1600 units T4 DNA ligase (NEB). The ligation
645 was carried at for 2 hours at room temperature on a rotating wheel in 1x ligation buffer (NEB).
646 Pre-capture PCR amplification was carried out using the custom primers PE PCR 1.0.33 and
647 PE PCR 2.0.33 with 7-8 cycles. The amplified libraries were purified with AMPure XP beads
648 (Beckman Coulter) and the quantity and the quality was assessed by Bioanalyzer profiles
649 (Agilent Technologies).

650

651 **Capture RNA bait library design**

652 120-mer capture RNA baits were bioinformatically designed to both ends of MboI restriction
653 fragments overlapping the HPV16 genome. Requirements for target sequences were as follows:
654 GC content between 25% and 65%, no more than two consecutive Ns within the target
655 sequences, and maximum distance to a MboI restriction site 330 bp. For short MboI fragments,
656 where 120-mer RNA baits originating from both ends would have overlapped (potentially
657 interfering with optimal hybridization to Hi-C libraries), only the Watson (coding or sense)
658 strand was used for capture RNA bait design, and if necessary the baits were trimmed to
659 minimum length no shorter than 97 nt. This resulted in the design of 16 RNA bait sequences
660 (Supplementary Table 6) covering the MboI restriction fragment ends of the entire HPV16

661 genome, with the exception of two fragments too short (18 and 63 bp, respectively) for capture
662 RNA bait design.

663

664 **Biotinylated RNA bait library for Region Capture Hi-C generation**

665 The process of HPV16-specific Region Capture Hi-C was carried out essentially as previously
666 published(65). DNA sequences encoding for the 16 RNA bait sequences, with different
667 restriction enzymes sites on each side (BglII on one site and either HindII or SpeI on the other),
668 which were separated by a 3 bp random spacing sequence, were ordered as two gBlocks®
669 (Integrated DNA Technologies, supplementary table X) and cloned into plasmid vectors using
670 the Zero Blunt® TOPO® cloning kit with One Shot® TOP10 Chemically competent cells
671 according to manufacturer's instructions. Both gBlocks were extracted from plasmid DNA by
672 EcoRI (30 units) restriction enzyme digestion at 37°C for 2 hours. Having a BglII and another
673 restriction enzyme sites on the other end, enabled BglII side specific ligation of a T7 promoter
674 sequence adapter with a BamHI overhang essentially as per manufacturer's instructions,
675 preventing the generation of overlapping complementary transcripts. These adapters were
676 generated by annealing T7_promoter_adapter_1 and T7_promoter_adapter_2 as per
677 manufacturer's instructions. Digestion with both restriction enzymes and adaptor ligation
678 were done in one reaction simultaneously, in the presence of BamHI. Two reactions containing
679 700 ng of gBlock1 DNA or 850 ng of gBlock2 DNA, 30 units BglII each, 100 units BamHI
680 each, 5-fold molar excess of pre-annealed T7 promoter adapters and either 80 units HindIII
681 (NEB) or 40 units SpeI (NEB) were incubated at 37 °C for 2 hours in 1x T4 DNA ligase buffer
682 (NEB). Following this incubation 1200 units T4 DNA ligase (NEB) were added to each
683 reaction and incubated at 25 °C for 3 hours. The samples were then run on a 1% agarose gel
684 and specific bands at 180 bp were cut out and gel purified. Equimolar amounts of sequences
685 were *in vitro* transcribed according to manufacturer's instructions using the T7 MegaScript kit
686 (Ambion) with biotin-labelled UTP (Roche). The RNA was then purified using the MEGAclear
687 kit (Ambion) following the manufacturer's instructions.

688

689 **Biotinylated RNA bait library generation for HISC**

690 Four consecutive and non-overlapping fragments from the pSP64 HPV16 bacterial artificial
691 chromosome were PCR amplified using the Expand High Fidelity PCR system (Roche). This

692 resulted in complete coverage of the HPV16 genome. T7 promoter sequences (Roche) were
693 added to one side of the PCR product during this PCR amplification, enabling subsequent
694 directional *in vitro* transcription. Sequences were *in vitro* transcribed in the presence of biotin-
695 UTP and purified as described above, followed by fragmentation to 120 nt with 4 nM
696 magnesium chloride at 95°C for 7 min. Fragmented biotinylated RNA was purified by
697 Isopropanol precipitation followed by two subsequent washes with 75% ethanol.

698

699 **Solution hybridization Region Capture of Hi-C libraries**

700 500 ng to 2000 ng of Hi-C library DNA or genomic DNA library were concentrated using a
701 vacuum concentrator (Savant SPD 2010, Thermo Scientific) and then re-suspended in 5 µl
702 dH₂O. 2.5 µg mouse cot-1 DNA (Invitrogen) and 2.5 µg sheared salmon sperm DNA (Ambion)
703 were added as blocking agents. To prevent concatemer formation during hybridization, 1.5 µl
704 blocking mix (300 µM) was added (equimolar mix of P5_b1_for_33, P5_b1_rev_33,
705 P7_b2_for and P7B2_rev (see list X for sequences)). Biotinylated RNA baits were used in a
706 ratio 1:12 to Hi-C libraries (25 ng biotinylated RNA baits per 300 ng of Hi-C library) and
707 supplemented with 30 units SUPERase-In (Ambion). Biotinylated RNA baits for capture
708 DNA-Seq were used in a ratio of 1:3.33 (300 ng RNA baits per 1,000 ng genomic DNA library)
709 and supplemented with 30 units SUPERase-In. The DNA was denatured at 95°C for 5 min in
710 a PCR machine (PTC-200, MJ Research; PCR strip tubes (Agilent 410022)) and then incubated
711 with the biotin capture RNA at 65°C, in hybridization buffer (5 x SSPE (Gibco), 5 x Denhardt's
712 solution (Invitrogen), 5 mM EDTA (Gibco), 0.1 % SDS (Promega)) for 24 hours, in a total
713 reaction volume of 30 µl. Captured DNA/RNA hybrids were enriched using Dynabeads
714 MyOne Streptavidin T1 beads (Life Technologies) in binding buffer (1 M NaCl, 10 mM Tris-
715 HCl pH 7.5, 1 mM EDTA) for 30 minutes at room temperature. After washing (once in wash
716 buffer 1 (1 x SSC, 0.1 % SDS) for 15 minutes at room temperature, followed by three washes
717 in wash buffer 2 (0.1 x SSC, 0.1 % SDS) for 10 minutes each at 65°C), the streptavidin beads
718 (with bound captured DNA/RNA) were re-suspended in 30 µl 1 x NEBuffer 2. Post-capture
719 PCR amplification was carried out using between six to nine cycles using primer pairs that
720 consisted of one TruSeq adapter reverse compliment and the TruSeq universal adapter (see
721 table X for sequences) from streptavidin beads in multiple parallel reactions, which were then
722 pooled to purify the PCR products using AMPure XP beads (Beckman Coulter).

723

724 **Paired-end next generation sequencing**

725 Two biological replicate Hi-C and capture Hi-C libraries were prepared for each of the cell
726 lines. Sequencing was performed on Illumina HiSeq 2500 generating 50 bp paired-end reads
727 (Sequencing Facility, Babraham Institute). CASAVA software (v1.8.2, Illumina) was used to
728 make base calls and reads failing Illumina filters were removed before further analysis. Output
729 FASTQ sequences were mapped to the human reference genome (GRCh37/hg19) containing
730 the HPV16 genome as an extra Chromosome and were filtered to remove experimental
731 artefacts using the Hi-C User Pipeline(66).

732

733 **Sequence analysis**

734 **HiCUP & SeqMonk.** Sequence data was obtained from Illumina HiSeq paired-end
735 sequencing. Using the HiCUP Pipeline(66) paired-end Capture Hi-C (cHi-C) fastq files were
736 mapped with Bowtie 2(67) to a human GRCh37 reference containing a HPV16 pseudo-
737 chromosome. HiCUP removes invalid and artefactual di-tags by overlaying the di-tags on an
738 *in silico* restriction digest of the reference. The resulting BAM files contained putative di-tags
739 for use in subsequent analyses. SeqMonk
740 (<https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/>) was used to quantitate and
741 visualise the density of di-tags contained in the BAM files. The HPV16 sequence and
742 annotation files were downloaded from the European Nucleotide Archive
743 (www.ebi.ac.uk/ena/data). ENCODE Annotation for NHEK(68) was obtained from Ensembl
744 release 75(69).

745

746 **Circos.** The raw cHi-C fastq files were converted to fasta format and BLAST(70) was used to
747 search the HPV16 genome for reads mapping to it. The partner human reads were determined
748 and the 2 sets of reads were mapped to the GRCh37 reference containing the HPV16 pseudo-
749 chromosome using Bowtie 2. The BAM outputs were converted to BED format and modified
750 to be compatible with the circular visualisation tool Circos(71). The HPV16 genome was split
751 into bins of 500 bp and the count per bin determined from the chimaeric human-HPV16 di-

752 tags. The counts, the HPV16 MboI restriction map and gene coordinates were annotated on the
753 Circos plots.

754

755 **GOTHiC.** The HiCUP output was converted to format compatible with the Bioconductor
756 package GOTHiC(72). To find significant interactions between distal locations GOTHiC
757 implements a cumulative binomial test based on read depth. This was used to identify regions
758 of the human genome in contact with the HPV16 pseudo-chromosome at a resolution of 1kb.
759 Di-tag mappings were visualised with Circos after filtering the previous Circos input by the
760 GOTHiC determined interactions.

761

762 **Breakpoint Mapping with USearch.** The precise sites of HPV16 integration in the W12 cell
763 lines were identified by sequencing HISC libraries. The raw fastq files were converted to fasta
764 format and BLAST was used to search for reads mapping to the HPV16 genome. From these,
765 the corresponding human tags were determined. Fast clustering of the reads with USearch(73),
766 based on an sequence identity score of 0.65, identified clusters of sequences in the human and
767 HPV16 derived reads. Consensus sequences from non-singleton clusters were obtained by
768 aligning the clustered reads to each other using Clustal Omega(74). The breakpoints were
769 inferred from these consensus sequences and validated by Sanger Sequencing(75). From the
770 validated integration sites, custom chimaeric references were generated for each W12 line. Due
771 to the existence of tandem amplifications in some of the regions of integration, two versions of
772 the chimaeric human-HPV16 chromosomes were generated. In the first case, the HPV16
773 provirus was 5' of a single amplified human sequence. For the second, the provirus was placed
774 3' of the amplified human sequence. For another W12 line, 'H', there is a deletion in the region
775 of integration and this was reflected in the chimaeric chromosome.

776

777 **Juicer and Juicebox.** Using the specific chimaeric references, Hi-C contact maps at different
778 resolutions were generated from raw Hi-C fastq files using the Juicer Pipeline(76). Juicer
779 constructs a compressed contact matrix from pairs of genomic positions located in close
780 proximity in 3D space. The Hi-C contact maps were imported into Juicebox(77) for
781 visualisation.

782 **RNA-seq analysis and alignment**

783 Complementary DNA (cDNA) libraries were prepared for the five W12 clones (two biological
784 replicates each) by total RNA extraction from confluent cells with Ribo-Zero rRNA depletion
785 and DNase treatment before cDNA was prepared with the TruSeq RNA and DNA Sample
786 PrepKit (Illumina). 50bp paired-end cDNA libraries sequenced on an Illumina HiSeq 2000
787 (Genomics Core Facility, EMBL Heidelberg). Sequence adapters were trimmed from the reads
788 with Kraken(78). Trimmed FASTQs were mapped against a GRCh37.p13 reference
789 transcriptome (Ensembl version75) that included HPV16 transcript annotation using
790 STAR(79) with default parameters. Strand specific gene counts were obtained from alignments
791 with HTSeq(80) and differential gene expression analysis performed using the R/Bioconductor
792 package DESeq2(81). Modulation of host transcript levels due to virus integration was then
793 evaluated per clone in comparison to the mean expression of all other clones.

794

795 **Data availability**

796 All data supporting the findings of this study are present within the article and its
797 Supplementary Information files, with all sequencing data deposited in the ArrayExpress
798 database at EMBL-EBI (www.ebi.ac.uk/arrayexpress)(82) under accession numbers: E-
799 MTAB-10152; E-MTAB-10154; E-MTAB-10155.

800

801 **Acknowledgements**

802 Research was funded by a Cancer Research UK Programme Award (A13080). ELAD was
803 supported by a PhD studentship from The Pathological Society of GB & NI awarded to IJG
804 and NC.

805

806 **Author contributions**

807 IJG and NC conceived the study. IJG, ELAD, MM, SS, CGS and NC devised the experimental
808 approach. ELAD, MM and IJG performed the experiments. ELAD, IJG, MM, JMM, GB, SPS,
809 CGS, SS, CV, PF, AE and NC analysed the data. IJG, ELAD and NC wrote the manuscript.

810 **References**

- 811 1. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable
812 to infections in 2018: a worldwide incidence analysis. *Lancet Glob Health*. 2020;8(2):e180-e90.
- 813 2. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global
814 burden of human papillomavirus and related diseases. *Vaccine*. 2012;30 Suppl 5:F12-23.
- 815 3. Arbyn M, Weiderpass E, Bruni L, de Sanjose S, Saraiya M, Ferlay J, et al. Estimates of
816 incidence and mortality of cervical cancer in 2018: a worldwide analysis. *Lancet Glob Health*.
817 2020;8(2):e191-e203.
- 818 4. Jeon S, Allen-Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the
819 human genome correlates with a selective growth advantage of cells. *J Virol*. 1995;69(5):2989-97.
- 820 5. Groves IJ, Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. *J*
821 *Pathol*. 2015;235(4):527-38.
- 822 6. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human
823 papillomavirus is a necessary cause of invasive cervical cancer worldwide. *J Pathol*. 1999;189(1):12-9.
- 824 7. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic
825 classification of human papillomavirus types associated with cervical cancer. *N Engl J Med*.
826 2003;348(6):518-27.
- 827 8. Stanley MA, Browne HM, Appleby M, Minson AC. Properties of a non-tumorigenic human
828 cervical keratinocyte cell line. *Int J Cancer*. 1989;43(4):672-6.
- 829 9. Bedell MA, Hudson JB, Golub TR, Turyk ME, Hosken M, Wilbanks GD, et al. Amplification
830 of human papillomavirus genomes in vitro is dependent on epithelial differentiation. *J Virol*.
831 1991;65(5):2254-60.
- 832 10. Gray E, Pett MR, Ward D, Winder DM, Stanley MA, Roberts I, et al. In vitro progression of
833 human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to
834 integrant-associated carcinogenesis. *Cancer Res*. 2010;70(10):4081-91.
- 835 11. Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical
836 carcinogenesis? *J Pathol*. 2007;212(4):356-67.
- 837 12. Bodelon C, Untereiner ME, Machiela MJ, Vinokurova S, Wentzensen N. Genomic
838 characterization of viral integration sites in HPV-related cancers. *Int J Cancer*. 2016;139(9):2001-11.
- 839 13. McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-
840 associated cancers. *PLoS Pathog*. 2017;13(4):e1006211.
- 841 14. Romanczuk H, Howley PM. Disruption of either the E1 or the E2 regulatory gene of human
842 papillomavirus type 16 increases viral immortalization capacity. *Proc Natl Acad Sci U S A*.
843 1992;89(7):3159-63.
- 844 15. Scarpini CG, Groves IJ, Pett MR, Ward D, Coleman N. Virus transcript levels and cell growth
845 rates after naturally occurring HPV16 integration events in basal cervical keratinocytes. *J Pathol*.
846 2014;233(3):281-93.
- 847 16. Stunkel W, Bernard HU. The chromatin structure of the long control region of human
848 papillomavirus type 16 represses viral oncoprotein expression. *J Virol*. 1999;73(3):1918-30.
- 849 17. Bernard HU. Regulatory elements in the viral genome. *Virology*. 2013;445(1-2):197-204.
- 850 18. Wooldridge TR, Laimins LA. Regulation of human papillomavirus type 31 gene expression
851 during the differentiation-dependent life cycle through histone modifications and transcription factor
852 binding. *Virology*. 2008;374(2):371-80.
- 853 19. Carson A, Khan SA. Characterization of transcription factor binding to human papillomavirus
854 type 16 DNA during cellular differentiation. *J Virol*. 2006;80(9):4356-62.
- 855 20. del Mar Pena LM, Laimins LA. Differentiation-dependent chromatin rearrangement coincides
856 with activation of human papillomavirus type 31 late gene expression. *J Virol*. 2001;75(20):10005-13.
- 857 21. Groves IJ, Knight EL, Ang QY, Scarpini CG, Coleman N. HPV16 oncogene expression levels
858 during early cervical carcinogenesis are determined by the balance of epigenetic chromatin
859 modifications at the integrated virus genome. *Oncogene*. 2016;35(36):4773-86.
- 860 22. Groves IJ, Coleman N. Human papillomavirus genome integration in squamous carcinogenesis:
861 what have next-generation sequencing studies taught us? *J Pathol*. 2018;245(1):9-18.

862 23. Thorland EC, Myers SL, Persing DH, Sarkar G, McGovern RM, Gostout BS, et al. Human
863 papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. *Cancer*
864 Res. 2000;60(21):5916-21.

865 24. Dall KL, Scarpini CG, Roberts I, Winder DM, Stanley MA, Muralidhar B, et al. Characterization of naturally occurring HPV16 integration sites isolated from cervical keratinocytes
866 under noncompetitive conditions. *Cancer Res.* 2008;68(20):8249-59.

867 25. Schmitz M, Driesch C, Beer-Grondke K, Jansen L, Runnebaum IB, Durst M. Loss of gene
868 function as a consequence of human papillomavirus DNA integration. *Int J Cancer.* 2012;131(5):E593-
869 602.

870 26. Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration
871 in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated
872 integration mechanism. *Nat Genet.* 2015;47(2):158-63.

873 27. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. Landscape of genomic alterations in cervical carcinomas. *Nature.* 2014;506(7488):371-5.

874 28. Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H, et al. Integrated
875 genomic and molecular characterization of cervical cancer. *Nature.* 2017;543(7645):378-84.

876 29. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, et al. Characterization of HPV and host genome interactions in primary head and neck cancers. *Proc Natl
877 Acad Sci U S A.* 2014;111(43):15544-9.

878 30. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous
879 cell carcinomas. *Nature.* 2015;517(7536):576-82.

880 31. Tang KW, Alaei-Mahabadi B, Samuelsson T, Lindh M, Larsson E. The landscape of viral
881 expression and host gene fusion and adaptation in human cancer. *Nat Commun.* 2013;4:2513.

882 32. Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, Jiang B, et al. Genome-wide analysis of
883 HPV integration in human cancers reveals recurrent, focal genomic instability. *Genome Res.*
884 2014;24(2):185-99.

885 33. Dooley KE, Warburton A, McBride AA. Tandemly Integrated HPV16 Can Form a Brd4-
886 Dependent Super-Enhancer-Like Element That Drives Transcription of Viral Oncogenes. *mBio.*
887 2016;7(5).

888 34. Warburton A, Redmond CJ, Dooley KE, Fu H, Gillison ML, Akagi K, et al. HPV integration
889 hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high
890 viral oncogene expression. *PLoS Genet.* 2018;14(1):e1007179.

891 35. Ferber MJ, Thorland EC, Brink AA, Rapp AK, Phillips LA, McGovern R, et al. Preferential
892 integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma. *Oncogene.*
893 2003;22(46):7233-42.

894 36. Peter M, Rosty C, Couturier J, Radvanyi F, Teshima H, Sastre-Garau X. MYC activation
895 associated with the integration of HPV DNA at the MYC locus in genital tumors. *Oncogene.*
896 2006;25(44):5985-93.

897 37. Couturier J, Sastre-Garau X, Schneider-Maunoury S, Labib A, Orth G. Integration of
898 papillomavirus DNA near myc genes in genital carcinomas and its consequences for proto-oncogene
899 expression. *J Virol.* 1991;65(8):4534-8.

900 38. Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, et al. The haplotype-resolved
901 genome and epigenome of the aneuploid HeLa cancer cell line. *Nature.* 2013;500(7461):207-11.

902 39. Herdman MT, Pett MR, Roberts I, Alazawi WO, Teschendorff AE, Zhang XY, et al. Interferon-
903 beta treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes
904 promotes rapid reduction in episome numbers and emergence of latent integrants. *Carcinogenesis.*
905 2006;27(11):2341-53.

906 40. Alazawi W, Pett M, Arch B, Scott L, Freeman T, Stanley MA, et al. Changes in cervical
907 keratinocyte gene expression associated with integration of human papillomavirus 16. *Cancer Res.*
908 2002;62(23):6959-65.

909 41. Pett MR, Alazawi WO, Roberts I, Dowen S, Smith DI, Stanley MA, et al. Acquisition of high-
910 level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical
911 keratinocytes. *Cancer Res.* 2004;64(4):1359-68.

916 42. Wentzensen N, Vinokurova S, von Knebel Doeberitz M. Systematic review of genomic
917 integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the
918 female lower genital tract. *Cancer Res.* 2004;64(11):3878-84.

919 43. Yu T, Ferber MJ, Cheung TH, Chung TK, Wong YF, Smith DI. The role of viral integration in
920 the development of cervical cancer. *Cancer Genet Cytogenet.* 2005;158(1):27-34.

921 44. Pett MR, Herdman MT, Palmer RD, Yeo GS, Shivji MK, Stanley MA, et al. Selection of
922 cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous
923 antiviral response. *Proc Natl Acad Sci U S A.* 2006;103(10):3822-7.

924 45. Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S, et al. Unbiased
925 analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. *Genome Res.*
926 2014;24(11):1854-68.

927 46. Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R, Javierre BM, et al.
928 The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.
929 *Genome Res.* 2015;25(4):582-97.

930 47. Holmes A, Lameiras S, Jeannot E, Marie Y, Castera L, Sastre-Garau X, et al. Mechanistic
931 signatures of HPV insertions in cervical carcinomas. *NPJ Genom Med.* 2016;1:16004.

932 48. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian
933 genomes identified by analysis of chromatin interactions. *Nature.* 2012;485(7398):376-80.

934 49. Hatano T, Sano D, Takahashi H, Hyakusoku H, Isono Y, Shimada S, et al. Identification of
935 human papillomavirus (HPV) 16 DNA integration and the ensuing patterns of methylation in HPV-
936 associated head and neck squamous cell carcinoma cell lines. *Int J Cancer.* 2017;140(7):1571-80.

937 50. Liu Y, Lu Z, Xu R, Ke Y. Comprehensive mapping of the human papillomavirus (HPV) DNA
938 integration sites in cervical carcinomas by HPV capture technology. *Oncotarget.* 2016;7(5):5852-64.

939 51. Liu Y, Zhang C, Gao W, Wang L, Pan Y, Gao Y, et al. Genome-wide profiling of the human
940 papillomavirus DNA integration in cervical intraepithelial neoplasia and normal cervical epithelium by
941 HPV capture technology. *Sci Rep.* 2016;6:35427.

942 52. Nulton TJ, Olex AL, Dozmorov M, Morgan IM, Windle B. Analysis of The Cancer Genome
943 Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and
944 neck squamous cell carcinoma. *Oncotarget.* 2017;8(11):17684-99.

945 53. Christiansen IK, Sandve GK, Schmitz M, Durst M, Hovig E. Transcriptionally active regions
946 are the preferred targets for chromosomal HPV integration in cervical carcinogenesis. *PLoS One.*
947 2015;10(3):e0119566.

948 54. Doolittle-Hall JM, Cunningham Glasspoole DL, Seaman WT, Webster-Cyriaque J. Meta-
949 Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression
950 and Epigenetics. *Cancers (Basel).* 2015;7(4):2217-35.

951 55. Kelley DZ, Flam EL, Izumchenko E, Danilova LV, Wulf HA, Guo T, et al. Integrated Analysis
952 of Whole-Genome ChIP-Seq and RNA-Seq Data of Primary Head and Neck Tumor Samples Associates
953 HPV Integration Sites with Open Chromatin Marks. *Cancer Res.* 2017;77(23):6538-50.

954 56. Paris C, Pentland I, Groves I, Roberts DC, Powis SJ, Coleman N, et al. CCCTC-binding factor
955 recruitment to the early region of the human papillomavirus 18 genome regulates viral oncogene
956 expression. *J Virol.* 2015;89(9):4770-85.

957 57. Pentland I, Campos-Leon K, Cotic M, Davies KJ, Wood CD, Groves IJ, et al. Disruption of
958 CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced
959 viral oncogene transcription. *PLoS Biol.* 2018;16(10):e2005752.

960 58. Satou Y, Miyazato P, Ishihara K, Yaguchi H, Melamed A, Miura M, et al. The retrovirus
961 HTLV-1 inserts an ectopic CTCF-binding site into the human genome. *Proc Natl Acad Sci U S A.*
962 2016;113(11):3054-9.

963 59. Melamed A, Yaguchi H, Miura M, Witkover A, Fitzgerald TW, Birney E, et al. The human
964 leukemia virus HTLV-1 alters the structure and transcription of host chromatin in cis. *Elife.* 2018;7.

965 60. Cook L, Melamed A, Yaguchi H, Bangham CR. The impact of HTLV-1 on the cellular genome.
966 *Curr Opin Virol.* 2017;26:125-31.

967 61. Wang L, Dai SZ, Chu HJ, Cui HF, Xu XY. Integration sites and genotype distributions of
968 human papillomavirus in cervical intraepithelial neoplasia. *Asian Pac J Cancer Prev.* 2013;14(6):3837-
969 41.

970 62. Hanning JE, Saini HK, Murray MJ, Caffarel MM, van Dongen S, Ward D, et al. Depletion of
971 HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless
972 of viral physical state. *J Pathol.* 2013;231(3):354-66.

973 63. Coleman N, Greenfield IM, Hare J, Kruger-Gray H, Chain BM, Stanley MA. Characterization
974 and functional analysis of the expression of intercellular adhesion molecule-1 in human papillomavirus-
975 related disease of cervical keratinocytes. *Am J Pathol.* 1993;143(2):355-67.

976 64. Bolland DJ, King MR, Reik W, Corcoran AE, Krueger C. Robust 3D DNA FISH using directly
977 labeled probes. *J Vis Exp.* 2013(78).

978 65. Jager R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, et al. Capture Hi-C
979 identifies the chromatin interactome of colorectal cancer risk loci. *Nat Commun.* 2015;6:6178.

980 66. Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P, et al. HiCUP:
981 pipeline for mapping and processing Hi-C data. *F1000Res.* 2015;4:1310.

982 67. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.*
983 2012;9(4):357-9.

984 68. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. *Nature.*
985 2012;489(7414):57-74.

986 69. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The Ensembl gene
987 annotation system. *Database (Oxford).* 2016;2016.

988 70. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J*
989 *Mol Biol.* 1990;215(3):403-10.

990 71. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an
991 information aesthetic for comparative genomics. *Genome Res.* 2009;19(9):1639-45.

992 72. Mifsud B, Martincorena I, Darbo E, Sugar R, Schoenfelder S, Fraser P, et al. GOTHiC, a
993 probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. *PLoS One.*
994 2017;12(4):e0174744.

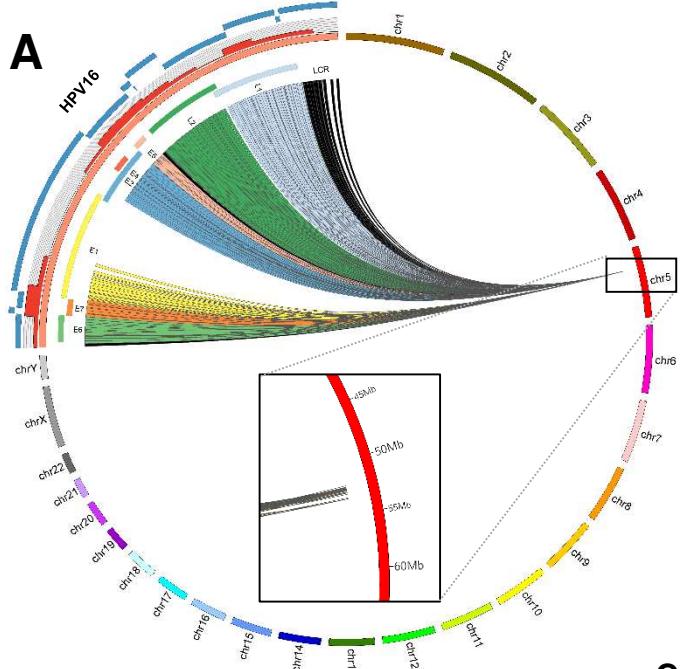
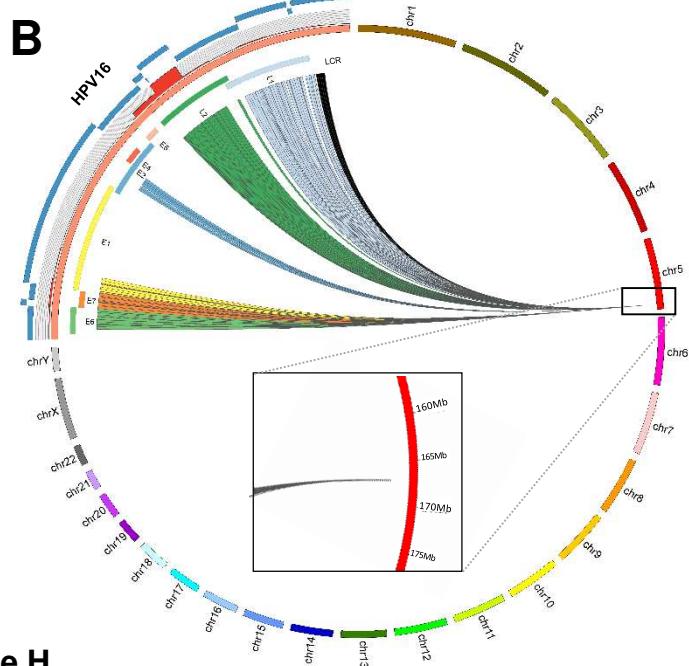
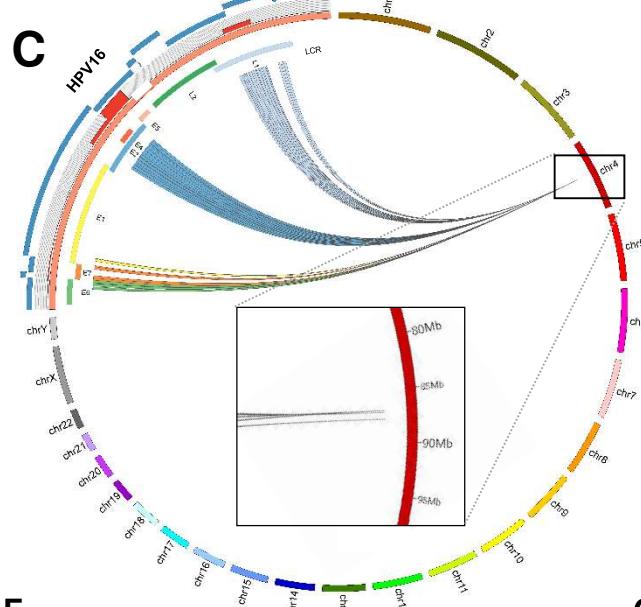
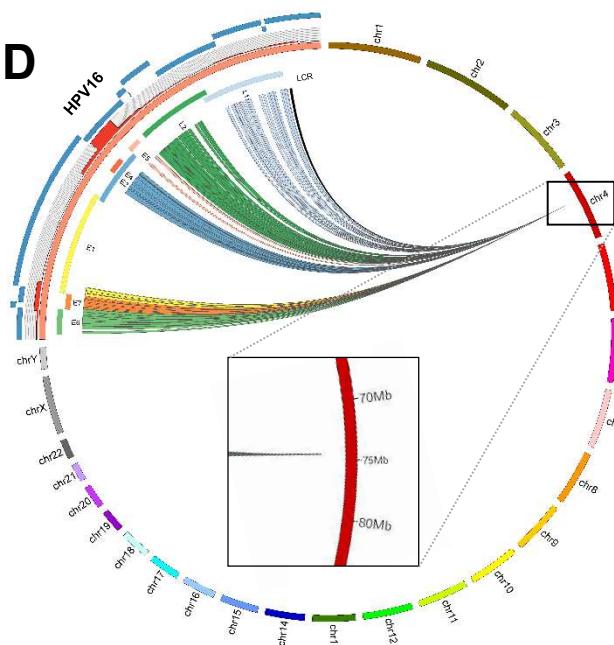
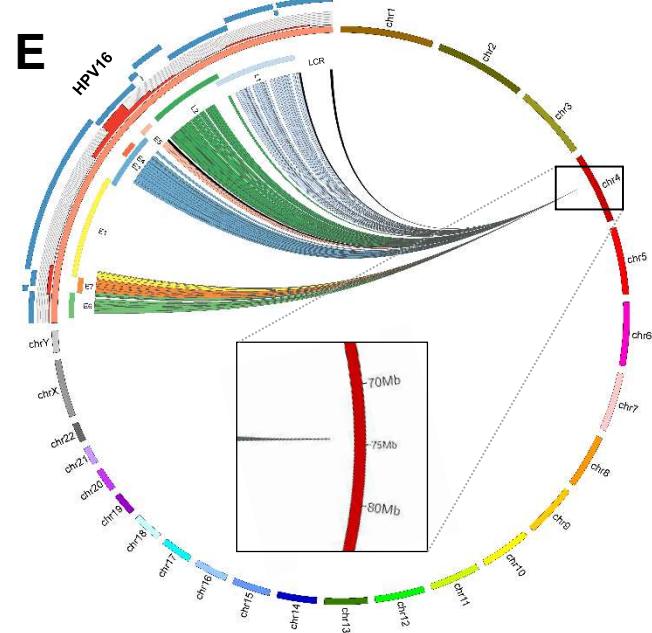
995 73. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics.*
996 2010;26(19):2460-1.

997 74. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of
998 high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol.* 2011;7:539.

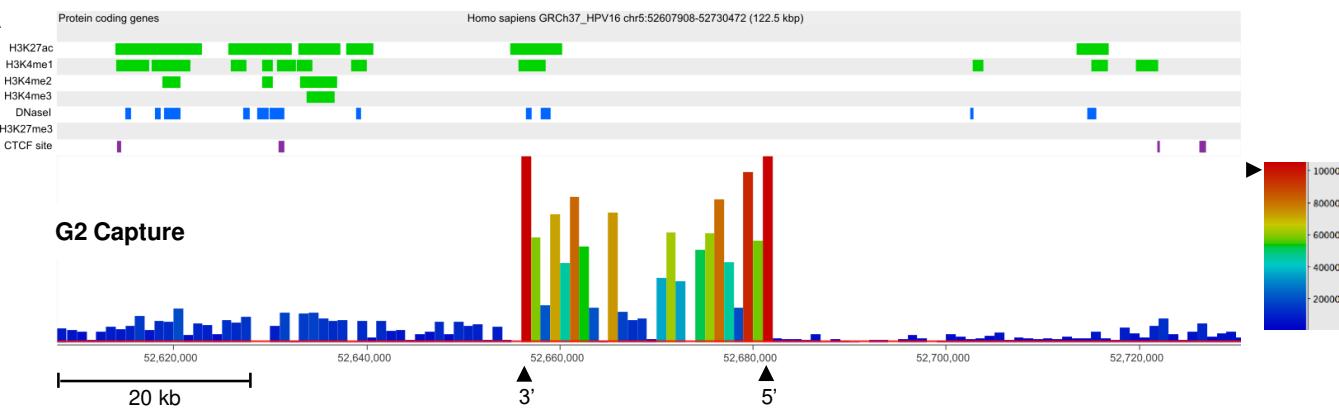
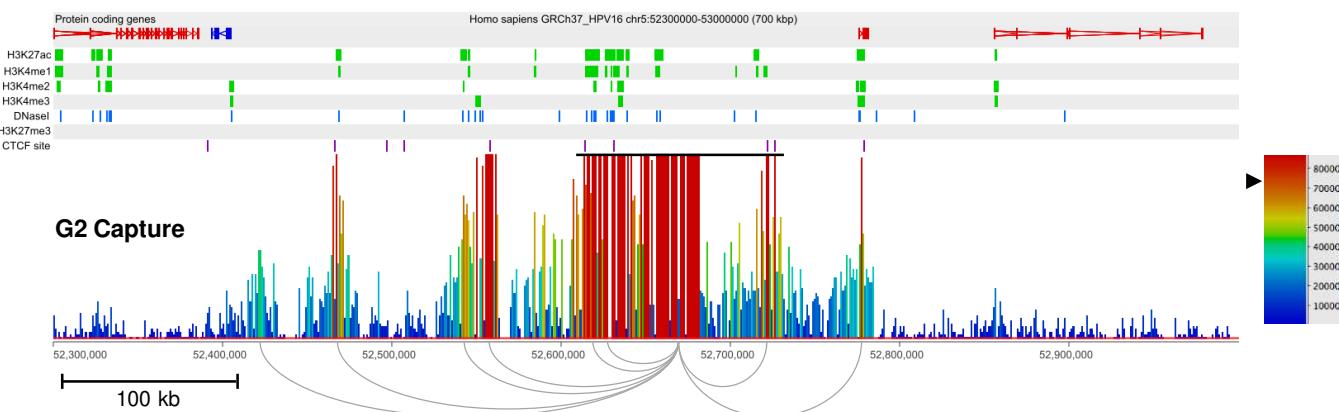
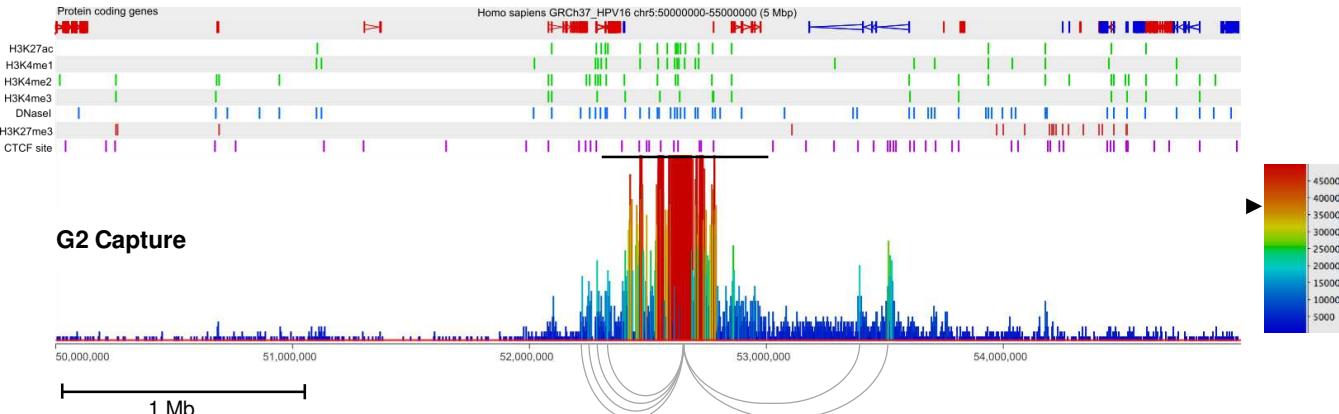
999 75. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. *Proc*
1000 *Natl Acad Sci U S A.* 1977;74(12):5463-7.

1001 76. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer Provides a
1002 One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell Syst.* 2016;3(1):95-8.

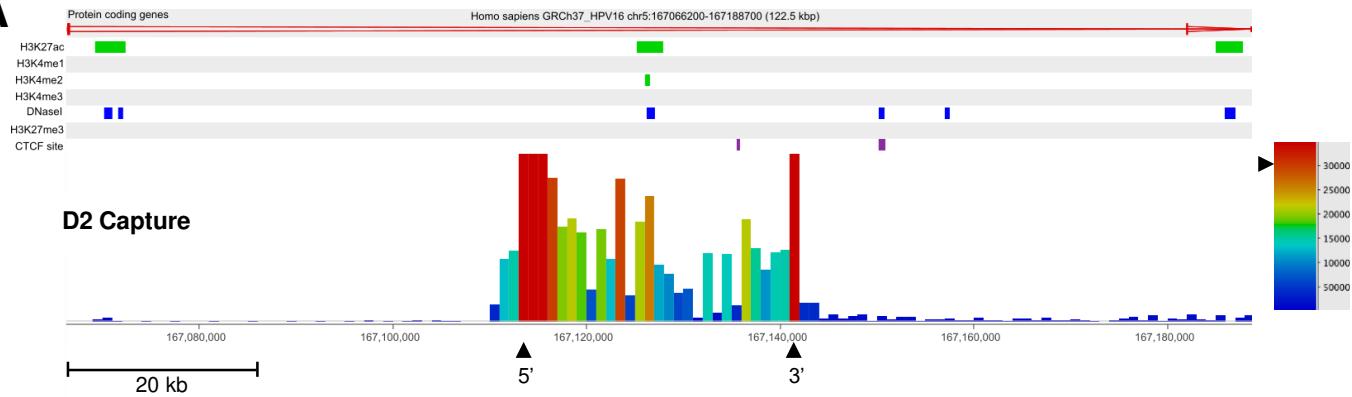
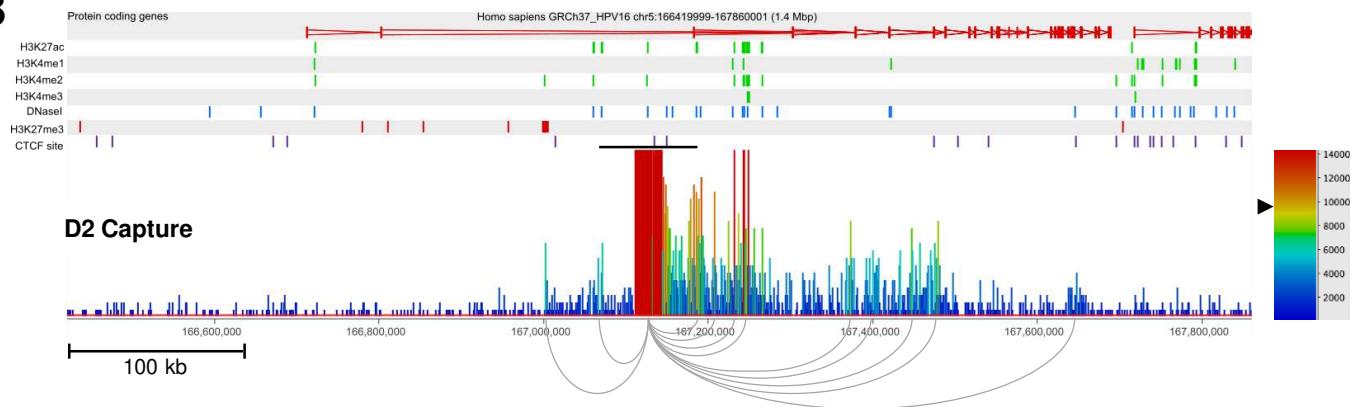
1003 77. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox
1004 Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. *Cell Syst.* 2016;3(1):99-
1005 101.






1006 78. Davis MP, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools
1007 for quality control and analysis of high-throughput sequence data. *Methods.* 2013;63(1):41-9.

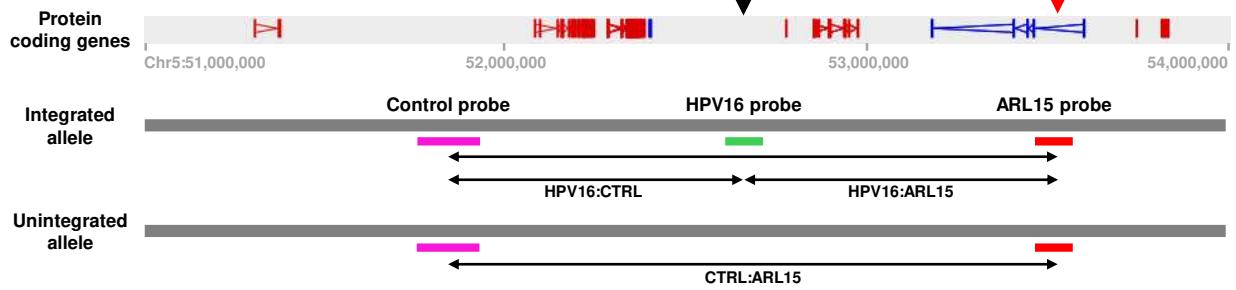
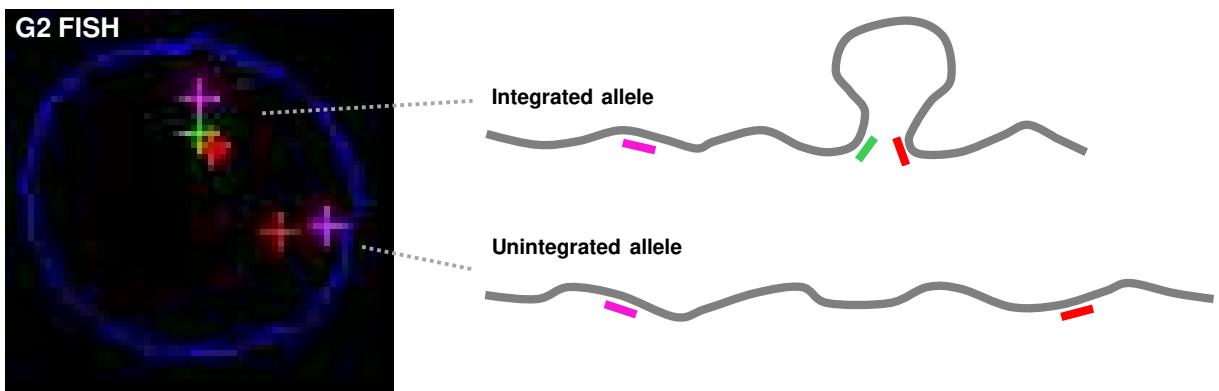
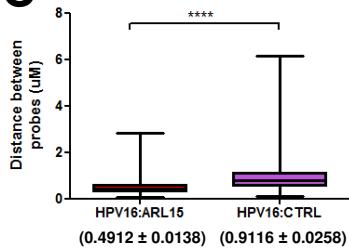
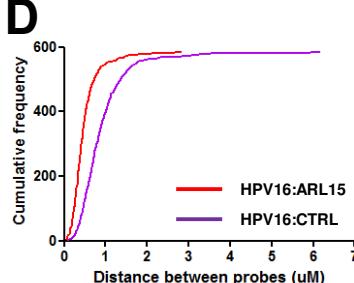
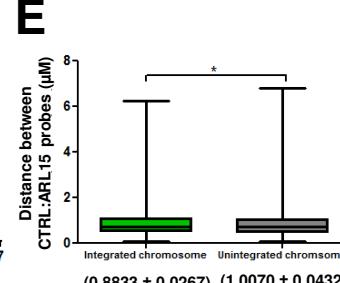
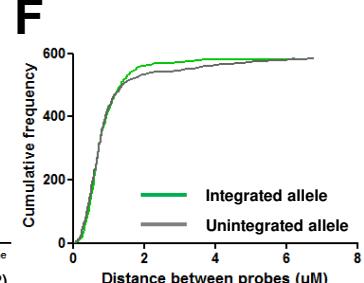
1008 79. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
1009 RNA-seq aligner. *Bioinformatics.* 2013;29(1):15-21.




1010 80. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput
1011 sequencing data. *Bioinformatics.* 2015;31(2):166-9.

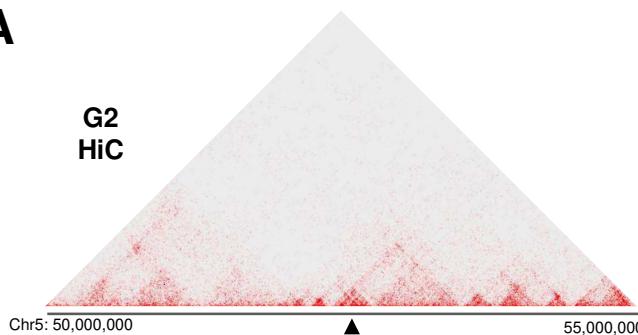
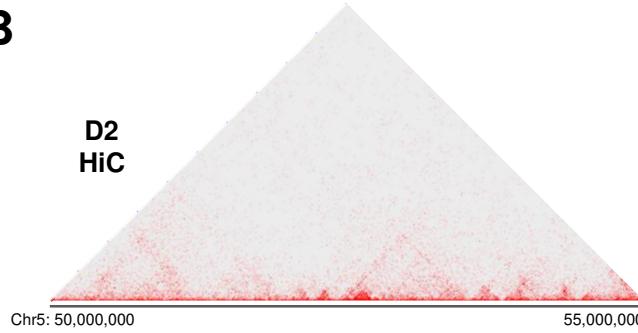
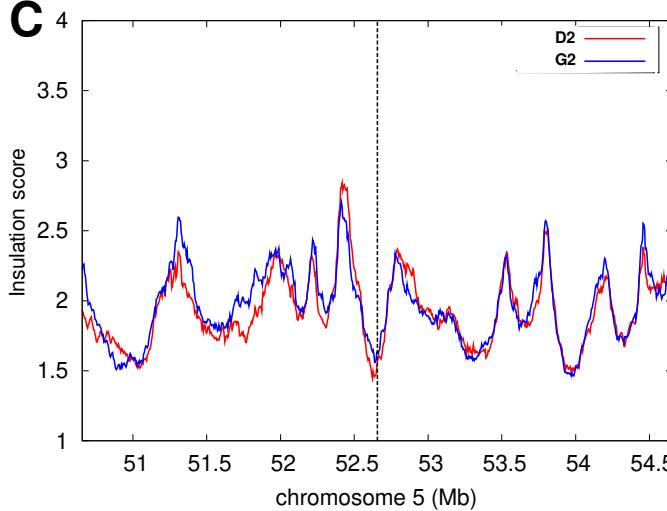
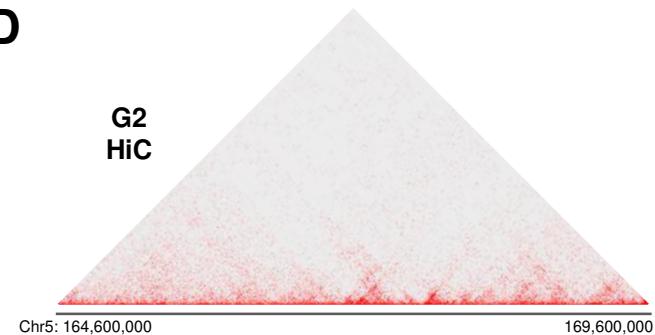
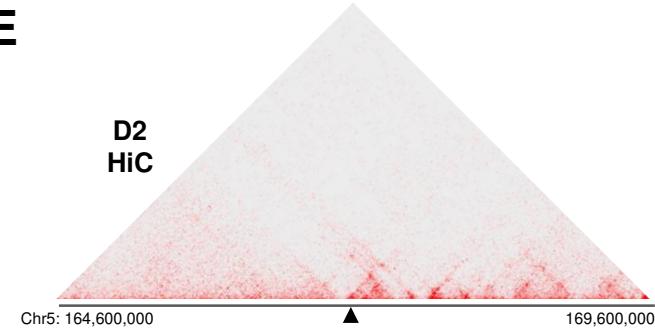
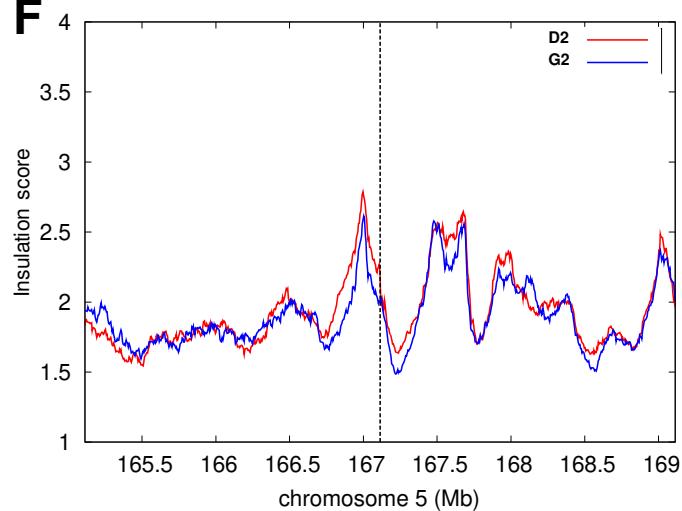
1012 81. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
1013 seq data with DESeq2. *Genome Biol.* 2014;15(12):550.



1014 82. Athar A, Fullgrabe A, George N, Iqbal H, Huerta L, Ali A, et al. ArrayExpress update - from
1015 bulk to single-cell expression data. *Nucleic Acids Res.* 2019;47(D1):D711-D5.

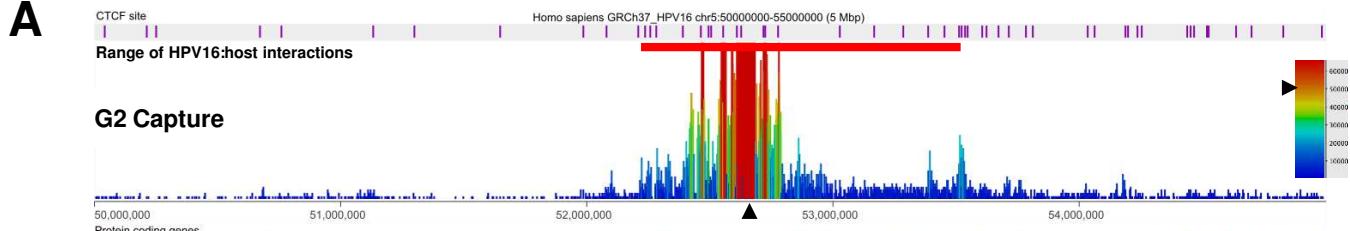
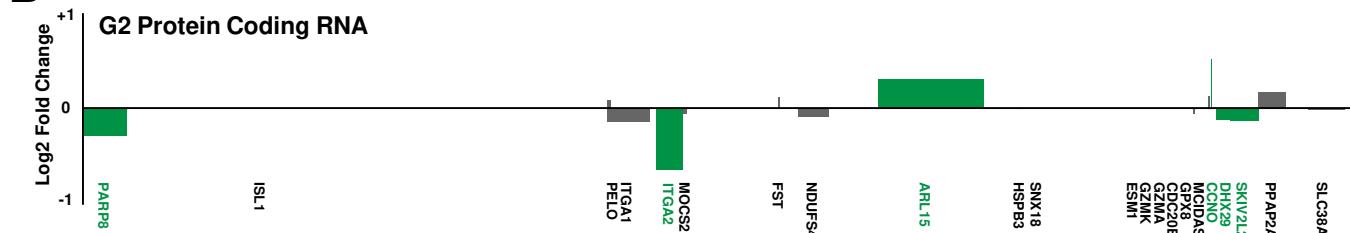
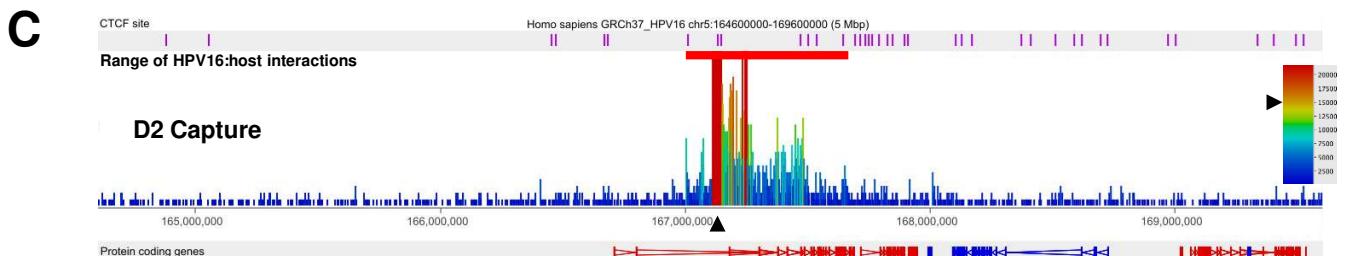
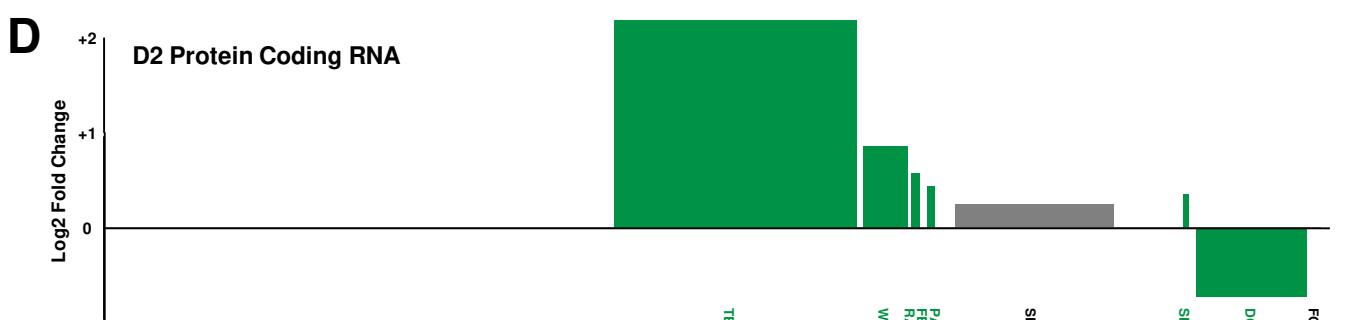
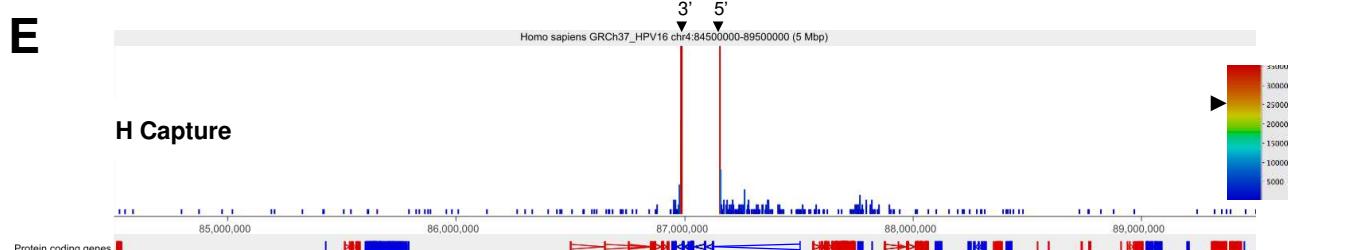
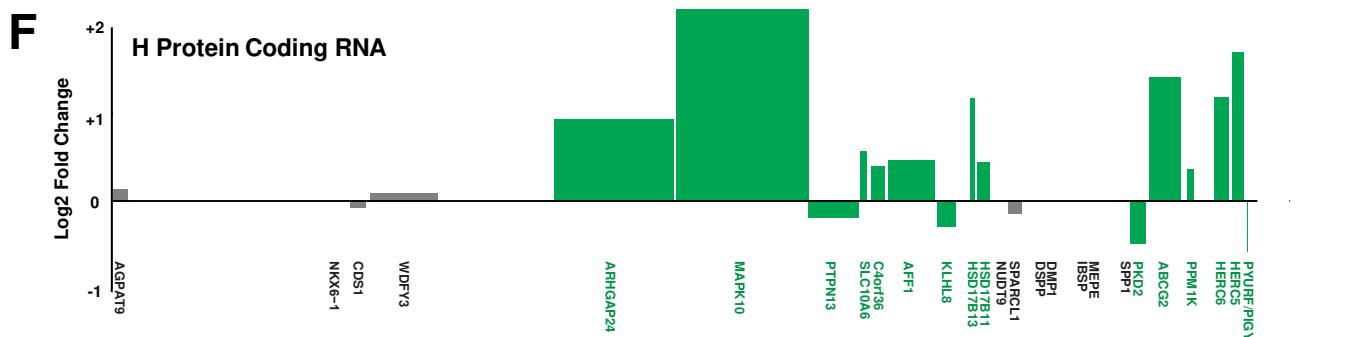
Clone G2**Clone D2****Clone H****Clone F****Clone A5**







Figure 1. HPV16-specific Region Capture Hi-C determines definitive HPV16 integration sites. CIRCOS plots show sequence interactions between HPV16 (orange) and host chromosomes (various) for clones (A) G2, (B) D2, (C) H, (D) F and (E) A5. Each line within the circle represents a significant virus-host read indicating an above background interaction between a region of the HPV16 genome and the host. Reads are coloured to match individual HPV16 genes: E6 = green, E7 = orange, E1 = yellow, E2 = blue, E4 = red, E5 = pink, L1 = dark green, L2 = light blue and non-coding regions = black. Percentage of reads coming from different regions of the virus is indicated by the histogram on the outside of the HPV16 genome, which is split into 500 bp windows (red bars). HPV16 RNA bait fragments used in the Capture Hi-C experiment are indicated on the outside of the CIRCOS plot (blue curved lines). Presented data were generated using the Gothic program and plots are not to scale. Insets show zoomed sites of integration, with interaction divergence in clones G2 and H.

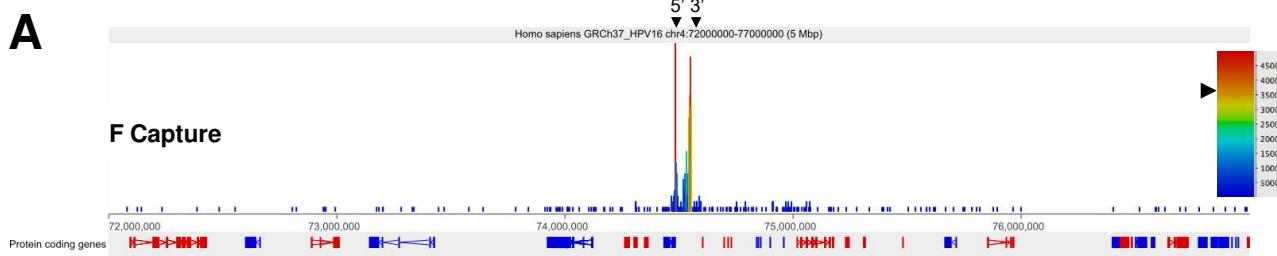
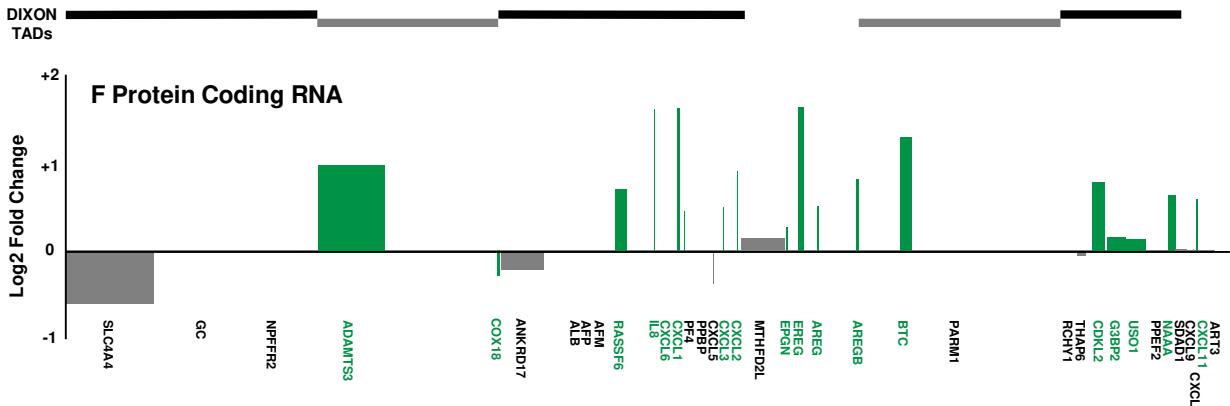
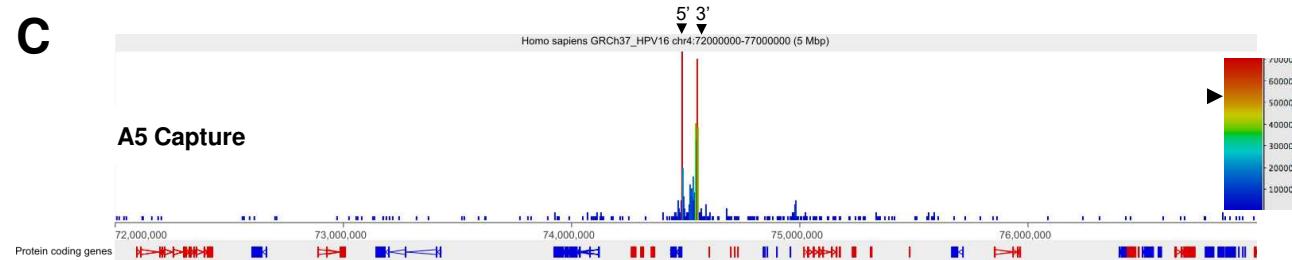
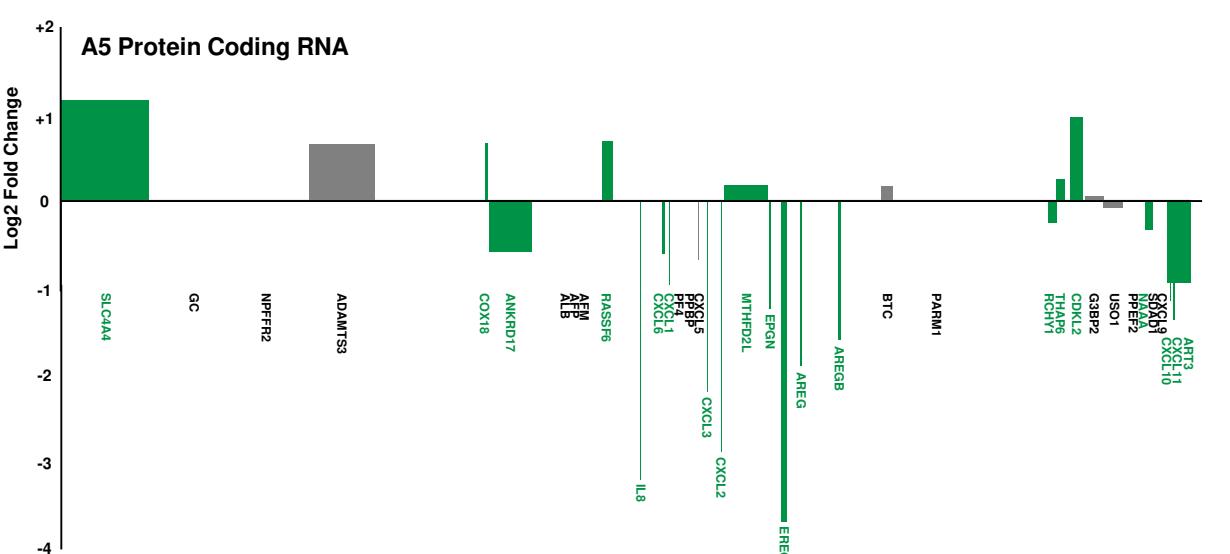
A**B****C**







Figure 2. Identification of short- and long-range interactions between integrated HPV16 genomes and the host chromosome in W12 clone G2. (A) Capture Hi-C data is presented 122.5 kbp across the HPV16 integration locus. The 5' and 3' breakpoints of the virus are indicated by the tallest red bars and are labelled with black arrowheads, being inverted in comparison to the direction of host sequence due to the 'looping' integration mechanism. (B) Capture Hi-C data is presented 700 kbp across the HPV16 integration locus. The black line above the read peaks indicates the genomic window seen in panel A. Peaks of reads indicate regions of the host interacting with the integrated virus in three-dimensions. Short-range interactions between the HPV16 genome and host regions were resolved by consensus and are shown beneath the panel. (C) Capture Hi-C data is presented 5 Mbp across the HPV16 integration locus. The black line above the read peaks indicates the genomic window seen in panel B. Peaks of reads indicate regions of the host interacting with the integrated virus in three-dimensions. Long-range interactions between the HPV16 genome and host regions were resolved by consensus and are shown beneath the panel. In each panel, the scale bar represents the normalised read count. Additionally, protein-coding genes are shown in the first track with the direction of each gene indicated by colour (red, forward; blue, reverse), followed by the alignment of ChIP-seq data from the NHEK cell line (ENCODE). Post-translational histone modifications of active chromatin (H3K27ac, H3K4me1, H3K4me2, H3K4me3; green), repressive H3K27me3 (red), DNasel hypersensitivity sites (blue) and CTCF sites (purple) are shown. Coordinates presented for each window are indicated at the top of each figure.

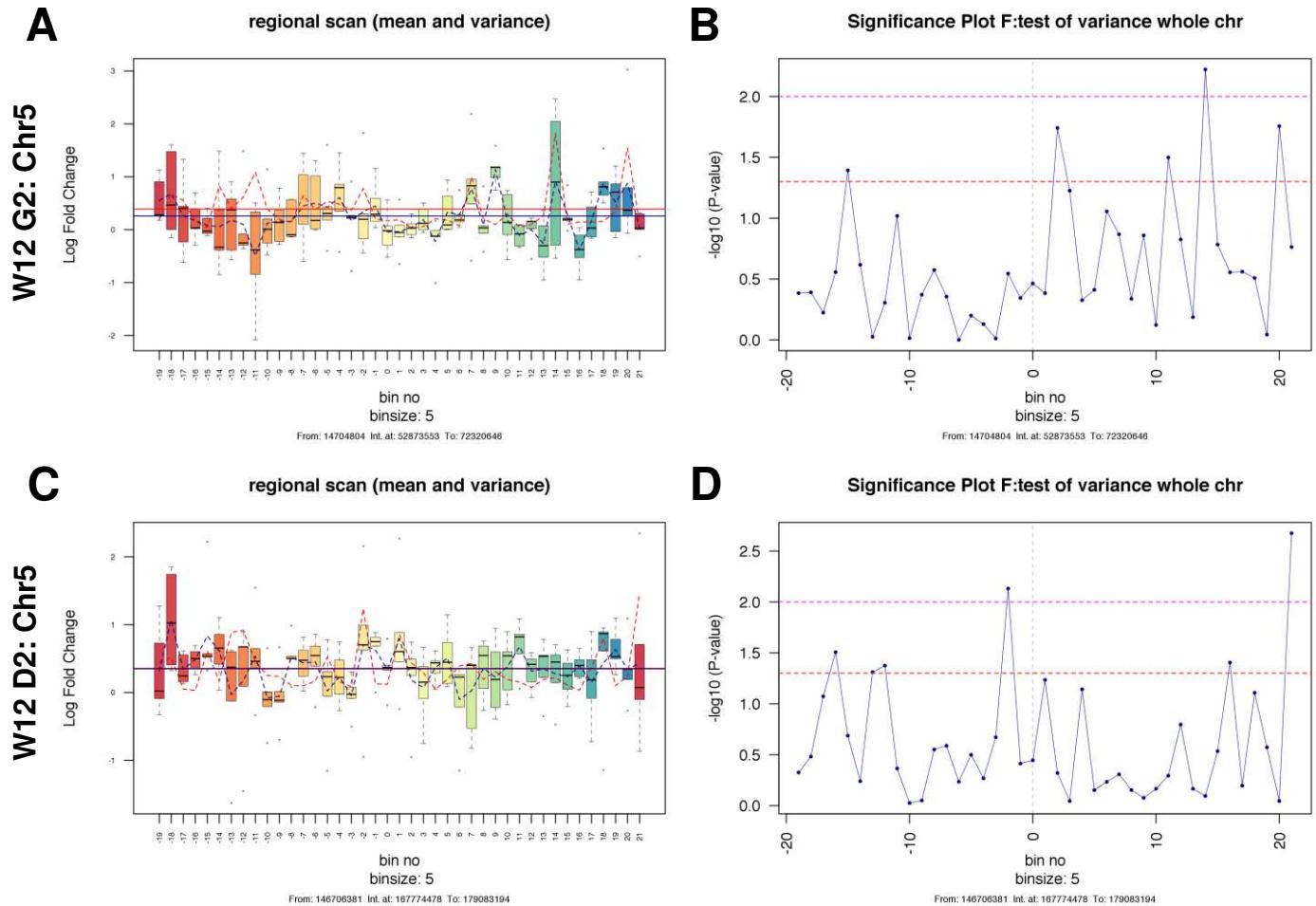
A**B**







Figure 3. Identification of short- and long-range interactions between integrated HPV16 genomes and the host chromosome in W12 clone D2. (A) Capture Hi-C data is presented 122.5 kbp across the HPV16 integration locus. The 5' and 3' breakpoints of the virus are indicated by the tallest red bars and are labelled with black arrowheads. (B) Capture Hi-C data is presented 1.4 Mbp across the HPV16 integration locus. The black line above the read peaks indicates the genomic window seen in panel A. Peaks of reads indicate regions of the host interacting with the integrated virus in three-dimensions. Short-range interactions between the HPV16 genome and host regions were resolved by consensus and are shown beneath the panel. In each panel, the scale bar represents the normalised read count. Additionally, protein-coding genes are shown in the first track with the direction of each gene indicated by colour (red, forward; blue, reverse), followed by the alignment of ChIP-seq data from the NHEK cell line (ENCODE). Post-translational histone modifications of active chromatin (H3K27ac, H3K4me1, H3K4me2, H3K4me3; green), repressive H3K27me3 (red), DNasel hypersensitivity sites (blue) and CTCF sites (purple) are shown. Coordinates presented for each window are indicated at the top of each figure.

A**B****C****D****E****F**





Figure 4. Validation of HPV16-host three-dimensional chromatin interactions in W12 clone G2 by FISH.
 (A) Schematic detailing the complementarity of the DNA probes used on the integrated and unintegrated alleles of a portion of chromosome 5 (51-54 Mbp) in W12 clone G2 to confirm interaction between the HPV16 genome (black arrow) and *ARL15* gene (red arrow): Control probe (51,676,020-51,873,551; purple), HPV16 probe (green), and ARL15 probe (53,473,886-53,584,235; red). Possible interactions between probe regions are also highlighted. (B) Representative image of the probes hybridised to W12 clone G2 genome of one cell in a 3D FISH experiment (nucleus boundary, blue) and interpretation of the associated chromosome spatial conformations. (C) Box-whiskers plot and (D) frequency distribution chart of the distance between both sets of FISH probes in the integrated allele of chromosome 5: HPV16:ARL15 (red box) and HPV16:control (purple box) (Mean \pm SEM). (E) Box-whiskers plot and (F) frequency distribution chart of the distance between the Control and ARL15 probes in both the integrated (green) and unintegrated (grey) alleles (Mean \pm SEM). n=585; * p<0.05, **** p<0.0001.

A**B****C****D****E****F**


Figure 5. HPV16 genome integration does not disrupt host nuclear architecture at the integration site in W12 clones. (A, D) Hi-C data for W12 clone G2 is compared to (B, E) HiC data for W12 clone D2 using (C, F) an insulation score interpreting the association of topologically associating domains (TADs) for HPV16 integration sites within W12 clone G2 (Chr5: 50-55 Mbp; left column) and W12 clone D2 (Chr5: 164.6-169.6 Mbp, right column) showing no significant change to either window. Black arrow = integration site.

A**B****C****D****E****F**

Figure 6. HPV16 genome integration leads to significant modulation of host gene expression in W12 clones G2, D2 and H. Capture Hi-C data is presented across (A-B) Chr5:50-55 Mbp for clone G2, (C-D) Chr5:164.4-169.6 Mbp for clone D2 and (E-F) Chr4:84.5-89.5 Mbp for clone H. HPV16 integration site is indicated with a black arrow and CTCF sites (purple) aligned across the top of the panel. Aligned protein coding genes are shown in the top track (rightward, red; leftward, blue) with the extent of topologically associating domains (TADs) determined by Dixon et al. shown below. (B, D, F) Charts indicating the transcript level of host protein coding genes within the 5 Mb region of integrant clones relative to a mean control level across all other clones. All data is shown as a Log2 fold change with significant changes indicated by green bars. Gene length is indicated by width of the corresponding bar.

A**B****C****D**

Figure 7. HPV16 genome integration leads to significant, but differential, modulation of host gene expression in W12 clones F and A5. Capture Hi-C data is presented across W12 clones (A-B) F and (C-D) A5 integration loci (Chr4: 72-77 Mbp). 5' and 3' ends of HPV16 integration site are indicated with black arrows. Aligned protein coding genes (rightward, red; leftward, blue) and the extent of topologically associating domains (TADs) determined by Dixon et al. are shown below. Charts indicating the transcript level of host protein coding genes within the 5 Mb region of W12 clones relative to a mean control level across all other clones. All data is shown as a Log2 fold change with significant changes indicated by green bars. Gene length is indicated by width of the corresponding bar.

Figure 8. Variance in host gene expression across the host genomic region containing the HPV16 integration site in W12 clones G2 and D2. Each left panel indicates the range and variance of host gene expression in W12 integrant clones [A) W12 G2, and C) W12 D2], focussing on 100 genes either side of the HPV16 integration site. For each clone, gene expression levels were compared with a 6-clone integrant average control level. In each panel, the HPV16 integration site is centred on 'bin 0'. Each bin contains five genes, with no overlap between bins. The box and whisker plots illustrate the range of gene expression levels within each bin, with the bar indicating median values, the box the IQR and the whiskers the range. The mean gene expression across the whole chromosome is indicated by the solid blue line, while the mean level of gene expression across individual bins is shown by the dotted blue line. The mean variance of gene expression across the whole chromosome is indicated by the solid red line, while the mean level of gene expression across individual bins is shown by a dotted red line. Each right hand panel shows the significance of the variance in gene expression within each bin [B) W12 G2, and D) W12 D2]. Each point represents a five-gene bin, corresponding to those in the left-hand panels. The horizontal lines indicate the significance of the variance in each bin, compared with the variance in gene expression across the whole chromosome (above the dashed red line, $p < 0.05$; above the dashed pink line, $p < 0.01$).