

Hakeemi et al. 2021

1 **Title**

2 **Large portion of essential genes is missed by screening either fly or beetle**  
3 **indicating unexpected diversity of insect gene function**

4 Authors

5 (\* equally contributing):

6  
7 Muhammad Salim Hakeemi\*<sup>1</sup>, Salim Ansari\*<sup>1,2</sup>, Matthias Teuscher\*<sup>3</sup>, Matthias Weißkopf\*<sup>3</sup>, Daniela  
8 Großmann<sup>1,4</sup>, Tobias Kessel<sup>3,5</sup>, Jürgen Dönitz<sup>1</sup>, Janna Siemanowski<sup>1,6</sup>, Xuebin Wan<sup>1</sup>, Dorothea  
9 Schultheis<sup>3,7</sup>, Manfred Frasch<sup>3</sup>, Siegfried Roth<sup>8</sup>, Michael Schoppmeier<sup>3</sup>, Martin Klingler<sup>3</sup>, Gregor  
10 Bucher<sup>1</sup>

11  
12 Author for correspondence:

13 [Gbucher1@uni-goettingen.de](mailto:Gbucher1@uni-goettingen.de)

14  
15 Affiliations

16  
17 <sup>1</sup> Johann-Friedrich-Blumenbach-Institut, GZMB, Georg-August-Universität Göttingen, Justus-von-  
18 Liebig-Weg 11, 37077 Göttingen, Germany

19  
20 <sup>2</sup> Current address: Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-  
August-Universität Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany

21  
22 <sup>3</sup> Department Biologie, Entwicklungsbiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg,  
Staudtstr. 5, 91058 Erlangen, Germany

23  
24 <sup>4</sup> Current address: Institut für Medizinische Bioinformatik Universitätsmedizin Göttingen, Georg-  
August-Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany

25  
26 <sup>5</sup> Current address: Justus-Liebig-Universität Gießen Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany

27  
28 <sup>6</sup> Current address: Molekularpathologische Diagnostik Institut für Pathologie Universitätsklinikum  
Köln Kerpener Str. 62, 50924 Köln, Germany

29  
30 <sup>7</sup> Current address: Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-  
Universität Erlangen-Nürnberg, Erlangen, Germany

31  
32 <sup>8</sup> Universität zu Köln, Institut für Zoologie, Biozentrum, Zülpicher Straße 47b, D-50674 Köln, Germany

Hakeemi et al. 2021

34 **Abstract**

35 Most gene functions were detected by screens in very few model organisms but it has remained  
36 unclear how comprehensive these data are. Here, we expanded our RNAi screen in the red flour  
37 beetle *Tribolium castaneum* to cover more than half of the protein-coding genes and we compared  
38 the gene sets involved in several processes between beetle and fly.

39 We find that around 50 % of the gene functions are detected in both species while the rest was  
40 found only in fly (~10% ) or beetle (~40%) reflecting both technical and biological differences. We  
41 conclude that work in complementary model systems is required to gain a comprehensive picture on  
42 gene functions documented by the annotation of novel GO terms for 96 genes studied here. The  
43 RNAi screening resources developed in this project, the expanding transgenic tool-kit and our large-  
44 scale functional data make *T. castaneum* an excellent model system in that endeavor.

Hakeemi et al. 2021

## 45 **Introduction**

46 Only in a very small number of genetic model species like the mouse *Mus musculus*, the zebrafish  
47 *Danio rerio*, the nematode *Caenorhabditis elegans* and the vinegar fly *Drosophila melanogaster* have  
48 the functions of most genes been assayed in systematic screens. This restriction to few model  
49 systems is a consequence of the necessity for an elaborate genetic and molecular tool kit, which is  
50 extremely laborious to establish (Jorgensen and Mango, 2002; Kile and Hilton, 2005; Patton and Zon,  
51 2001; St Johnston, 2002). Unfortunately, it has remained unclear how representative findings in  
52 these model species actually are for their clade or in other words, how quickly and profoundly gene  
53 function diverges in evolution. Knowing the degrees of gene function divergence is relevant not only  
54 for understanding the evolution of biodiversity but also for applied research, e.g. for transferring  
55 knowledge from model systems to species relevant for medical applications or pest control.

56 Recently, the study of gene function has been extended to non-traditional model organisms.  
57 Predominantly, candidate genes known for their function in the classical model systems have been  
58 tested in other organisms. Subsequent comparisons revealed both, conservation and divergence of  
59 gene functions. For example, axis formation in *D. melanogaster* has turned out to be a rather  
60 diverged process partially based on different genes compared to other insects. The key anterior  
61 morphogen of *D. melanogaster*, *bicoid*, is not present in most insects (Brown et al., 2001). Instead,  
62 repression of Wnt signaling plays a central role in the red flour beetle *Tribolium castaneum* (Fu et al.,  
63 2012) as it does in many animals including other insects, flatworms and vertebrates (Glinka et al.,  
64 1998; Gurley et al., 2008; Klomp et al., 2015; Yoon et al., 2019) - but not in *D. melanogaster*. The  
65 functions of genes of the Hox cluster, in contrast, appear conserved over very large phylogenetic  
66 distances - although some functional divergence has been linked to the evolution of arthropod  
67 morphology (Averof, 2002). Likewise, the gene regulatory network of dorso-ventral patterning and  
68 head specification show the involvement of similar gene sets, although a few components appear to  
69 be involved in only some clades (Kittelmann et al., 2013; Kitzmann et al., 2017; Lynch and Roth, 2011;  
70 Stappert et al., 2016).

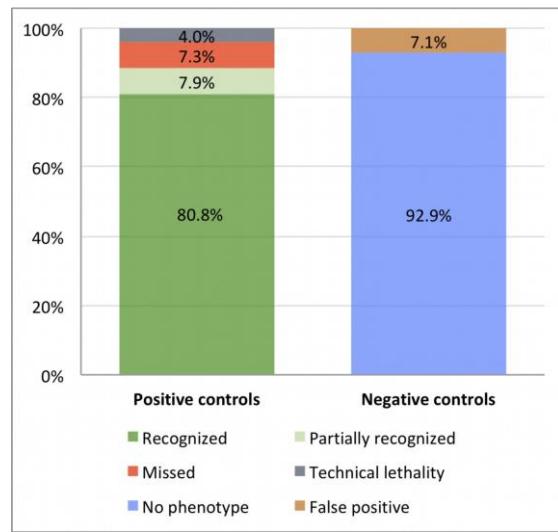
71 Notably, the differences in gene functions documented so far may be an underestimation of the real  
72 divergence, because the prevailing candidate gene approach leads to a systematic bias towards  
73 conservation. The genes to be tested are usually chosen based on the knowledge of their ortholog's  
74 involvement in other species. As a consequence, unrelated genes are rarely tested and the  
75 involvement of unexpected genes in a given process is underestimated. Hence, approaches are  
76 needed to overcome this bias and to gain a realistic view on the degree of gene function divergence.  
77 To that end, genes required for certain biological processes need to be identified in an unbiased and  
78 genome-wide manner also in non-traditional organisms, even though this has remained technically  
79 challenging.

80 The red flour beetle *T. castaneum* has recently been established as the only arthropod model  
81 organism apart from *D. melanogaster* where genome-wide unbiased RNAi screens are feasible. Based  
82 on the robust and systemic RNAi response of this species, the *iBeetle* large scale screen was  
83 performed where random genes were knocked down and the resulting animals were scored for a  
84 number of developmental phenotypes (Bucher et al., 2002; Schmitt-Engel et al., 2015; Tomoyasu and  
85 Denell, 2004). Apart from its particularly strong and robust RNAi response, *T. castaneum* offers a  
86 comparably large tool kit for analyzing gene function including transgenic and genome editing  
87 approaches (Berghammer et al., 1999; Gilles et al., 2015; Schinko et al., 2010).

Hakeemi et al. 2021

88 In this paper, we used an expanded dataset to assess the degree of divergence of the gene sets  
89 involved in selected developmental processes between fly and beetle such as head, muscle and ovary  
90 development, and dorso-ventral patterning. First, we determined genes that were essential in the  
91 beetle for these processes but which had so far not been connected to them in *D. melanogaster*.  
92 These a priori unexpected genes sum up to about 37% of the total genes identified to be involved in  
93 either one or both species. For 30% of these genes, no functional annotation had been available at  
94 FlyBase at all such that we provide the first functional Gene Ontology (GO) assignment for the  
95 respective ortholog group in insects. Only two genes essential in *T. castaneum* did not have an  
96 ortholog in *D. melanogaster*, i.e. these processes seem not much affected by gene gain or loss. We  
97 conclude that restricting genetic screens to one model system only, falls short of identifying a  
98 comprehensive set of essential genes. Further, our data reveals an unexpected degree of divergence  
99 of gene function between two holometabolous insect species. We also present here an update of the  
100 dataset gained in the genome wide iBeetle screen in *T. castaneum*. Our analysis is based on both, a  
101 dataset previously published comprising 5,300 genes (Schmitt-Engel et al., 2015) and an additional  
102 3,200 genes screened as part of this project. In addition to those, we also make accessible (at iBeetle-  
103 Base) the phenotypes for an additional 4,520 genes which were screened while the analysis  
104 presented here was ongoing. Hence, with this paper, the coverage of genes tested and annotated at  
105 iBeetle-Base sums up to 13,020 *Tribolium* genes (78 % of the predicted gene set).

106


Hakeemi et al. 2021

## 107 Results

### 108 Continuation of the large scale iBeetle screen

109 We added 3,200 genes to the previously published 5,300 genes of our large scale *iBeetle* screen  
110 (Schmitt-Engel et al., 2015), reaching a coverage of 51% of the *T. castaneum* gene set of total 16,593  
111 currently annotated genes (Herndon et al., 2020). We followed the previously described procedure  
112 for the pupal injection screen (Schmitt-Engel et al., 2015) with minor modifications (see methods). In  
113 short, we injected 10 female pupae per gene with dsRNAs (concentration 1ug/ul). We annotated the  
114 phenotypes of the injected animals and the first instar cuticle of their offspring using the EQM  
115 system (Mungall et al., 2010), the *T. castaneum* morphological ontology *Tron* (Dönitz et al., 2013)  
116 and a controlled vocabulary (see Schmitt-Engel et al. 2015). The data is available at the online  
117 database *iBeetle-Base* (<http://ibeetle-base.uni-goettingen.de/>) (Dönitz et al., 2015; Dönitz et al.,  
118 2018). Our controls revealed a similar portion of false negative and false positive annotations as in  
119 the first part of the screen (Fig. 1 and Table S1). The detailed analysis presented below was based on  
120 this set of genes covering approximately 50% of the genome. In parallel, we continued the screen  
121 and have in the meanwhile reached a coverage of 78 % (13,020 genes). We publish these additional  
122 phenotypic data (accessible online at *iBeetle-Base*) with this article, but they were not included in the  
123 detailed analysis presented here because both analyses ran in parallel.

124

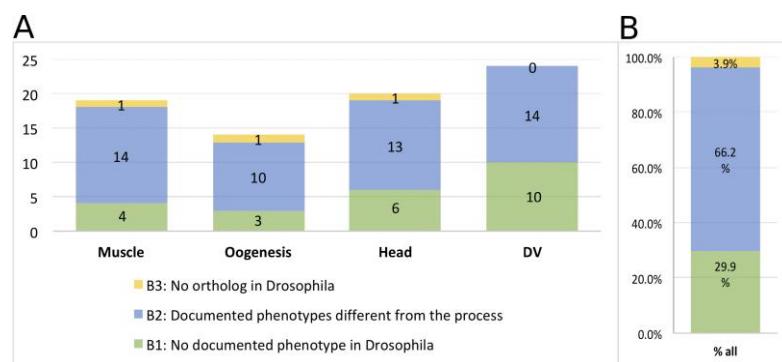


125 **Figure 1 Quality controls of the primary screen**

126 178 positive controls using 35 different genes  
127 were included. More than 88% of the positive  
128 controls were fully or partially recognized (left  
129 bar) while 7.3% were missed. 4% could not be  
130 analyzed due to technical lethality before the  
131 production of offspring. 7.1% of the negative  
132 controls were false positively annotated (right  
133 bar). These figures are similar to the first  
134 screening phase (Schmitt-Engel et al., 2015).  
135

136

### 137 Unexpected gene functions in developmental processes


138 We wanted to use our large-scale phenotypic dataset to systematically compare the gene sets  
139 involved in the same biological processes in *T. castaneum* and *D. melanogaster*. To that end, we first  
140 identified in an unbiased way all genes involved in a number of biological processes by searching  
141 *iBeetle-Base*. Specifically, we scored for phenotypes indicative of functions in dorso-ventral  
142 patterning, head and muscle development, in oogenesis, and epithelial adhesion in wings (wing  
143 blister phenotypes). For all these processes, we found a number of gene functions that were  
144 expected based on *D. melanogaster* knowledge (see below). This confirmed that the screen design  
145 allowed detection of respective phenotypes. Importantly, we also found functions for genes so far  
146 not connected to those processes (based on FlyBase information, PubMed searches and scientist  
147 expertise). The *iBeetle* screen is a first pass screen with a focus on minimizing false negative results

Hakeemi et al. 2021

138 with the trade-off of allowing for false positive annotations (Schmitt-Engel et al., 2015). The  
139 likelihood for this type of error is further increased by off-target effects and/or by strain specific  
140 differences in the phenotype (Kitzmann et al., 2013). Hence, we aimed at excluding false positive  
141 annotations for the unexpected gene functions. First, we based our analyses only on genes for which  
142 phenotypes had been annotated with a penetrance of >50% in the primary screen. Further, we only  
143 used phenotypes that were reproduced by RNAi experiments with non-overlapping dsRNA fragments  
144 targeting the same gene. In order to exclude genetic background effects, we used another lab strain  
145 (our standard lab strain *San Bernardino, SB*) except for the muscle project where we needed to use  
146 the *pBA19* strain, which has EGFP marked muscles (Lorenzen et al., 2007). This re-screening  
147 procedure resulted in a set of genes for which we can claim with high confidence that they are  
148 indeed involved in these processes in *T. castaneum* - but which previously were not assigned to these  
149 in *D. melanogaster* (Supplementary Table S2).

## 150 **Assigning the first function to a gene versus extending previous annotations**

151 One reason for a lack of respective functional data in FlyBase could be that the knocked-down beetle  
152 gene does not have an ortholog in the fly. In order to test this hypothesis, we searched for the fly  
153 orthologs in orthoDB and by manually generating phylogenetic trees based on searching *T.*  
154 *castaneum*, *D. melanogaster* and *M. musculus* genomes for orthologs and paralogs. This analysis  
155 revealed that only three genes with a novel function (appr. 3%) did not have a *D. melanogaster*  
156 ortholog (yellow in Fig. 2). Evidently, lineage-specific gene loss or gain explains only a minor part of  
157 the functional divergence of homologous developmental processes.

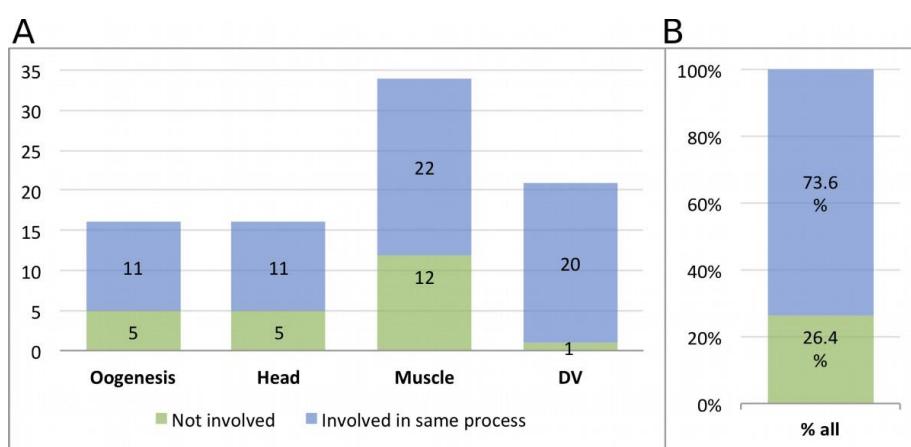


158 **Figure 2 Analysis of genes with unexpected gene functions**

159 A) Numbers of genes with unexpected function in the respective process. B) Combined  
160 numbers for all four processes. Only a small portion of genes with novel gene functions did  
161 not have orthologs in *Drosophila* (yellow). About two-thirds of the genes had previous  
162 phenotypic annotations relating to other biological processes (blue). For one third of those  
163 genes, we had detected the first phenotype for this gene within insects (green).

164 Next, we asked whether the respective *D. melanogaster* orthologs were known to be involved in  
165 other biological processes or lacked any phenotype information. To that end, we looked up  
166 phenotype information of the respective *D. melanogaster* orthologs on FlyBase (analysis done with  
167 OrthoDB v9). Among the fly orthologs whose functional annotations did not match with those from  
168 the iBeetle screen or published record, around two thirds (64.6 %) had annotations that were related  
169 to other processes than the ones studied in *T. castaneum* (Fig. 2). Importantly, one third of the genes  
170 (32.3 %) did not have any functional annotation in FlyBase. Hence, for those genes, the *iBeetle*-screen  
171 had detected the first documented function of that ortholog group in insects. Importantly, due to the

Hakeemi et al. 2021


166 lack of previous phenotypic information, these genes likely would not have been included in a  
167 classical candidate gene approach.

168

169 **A quarter of *Drosophila* gene function annotations were not confirmed for *T. castaneum***

170  
171 In a complementary approach, we asked how many genes known to be involved in a given process in  
172 *D. melanogaster* had been assigned related functions in the *iBeetle* screen. To that end, we first  
173 collected lists of genes involved in those processes based on *D. melanogaster* knowledge (expert  
174 knowledge, literature and FlyBase) (Table S3). Then we mined *iBeetle-Base* to see how many of the  
175 beetle orthologs had an annotation related to that process (Fig. 3A). About two-thirds of those genes  
176 had actually been screened in *T. castaneum* (Fig. S1) and all following numbers are based on the  
177 analysis of this subset.

178 A surprisingly large portion of genes (26.4%) known to be involved in these processes in *D.*  
179 *melanogaster* did not show the expected phenotype in *T. castaneum* (Figure 3B).



**Figure 3 Beetle genes showing phenotypes expected from *Drosophila***

A) Gene sets known to be involved in given processes in *Drosophila* were compared to *iBeetle* data. Many showed related phenotypes (blue) while others had no or different types of phenotypes (green). B) Approximately one quarter of the genes known to be involved in certain *Drosophila* processes were not required in that process in *Tribolium*. This analysis is based on the subset of genes which already had been screened in *Tribolium* (66%).

180

181 **Enriching the GO information with data from *Tribolium***

182 Gene ontology (GO) assignment is a powerful tool to establish hypotheses on the function of given  
183 gene sets (Carbon et al., 2009). So far, there were no GO terms associated based on *T. castaneum*  
184 data. The work presented here revealed that a surprisingly high portion of orthologous genes has  
185 diverging functions in different organisms. To enrich the GO database, we submitted GO terms with  
186 respect to the biological process for all 96 re-screened genes with functions in dorso-ventral

Hakeemi et al. 2021

187 patterning (GO:0010084), oogenesis (GO:0048477), the development of embryonic muscles  
188 (GO:0060538) and head (GO:0048568).

189 [[the new GO terms are submitted but not yet accepted. This part will only be included in the final  
190 version of the paper if the terms have been accepted by the GO consortium]]

## 191 Materials and Methods

### 192 Screen

193 We followed the tested and published procedures apart from some minor changes (please find an  
194 extensive description of the procedure in Schmitt-Engel et al. 2015). In particular, we used the same  
195 strains, injection procedures, and incubation temperatures and incubation times. dsRNAs were  
196 produced by Eupheria Biotech Dresden, Germany. Different from the published procedure, the stink  
197 gland analysis was performed 21 days after pupal injection (in the first screening phase, this analysis  
198 had been performed after larval injection).

### 199 Controls of the screen

200 To assess the sensitivity and reliability of the screen, and also to test the accuracy of each screener,  
201 we included approximately 5% positive controls from a set of 35 different genes. By and large, we  
202 used the same positive controls as in the first screening phase (see Table Table\_S1\_controls). *Tc-zen-*  
203 1 was excluded since the phenotypes were much weaker than in the previous screen, probably due  
204 to degradation of the dsRNA. We added new positive controls to score for muscle and stink-gland  
205 phenotypes, which we took from novel genes detected in the first screening phase. Muscle  
206 phenotypes iB\_06061, iB\_05796, iB\_03227, iB\_01705; stink gland and ovary phenotypes: iB\_02517.  
207 Head defects: iB\_05442 (that gene was not scored for its stink gland phenotype because it turned out  
208 to be too mild to be identified reliably in high throughput). In 143 cases (80.8%, n=177), the  
209 phenotypes of positive controls were fully recognized (for comparison: in the first screening phase  
210 the respective numbers were: 90%, n=201). In 14 cases (7.9%; phase 1: 4%) the phenotype was  
211 partially recognized. This category includes complex phenotypes where half (one of two aspects:  
212 *knirps*, *piwi*, *SCR*, *cta*, *cnc*, iB\_01705, iB\_05442) or two of three aspects (*aristaless*) of all phenotypic  
213 aspects were correctly identified. 13 phenotypes were missed completely (7.3%, phase 1: 4%). *Tc-*  
214 *metoprene tolerant* (*Tc-met*) was missed most frequently, probably due to the fact that the  
215 embryonic leg phenotype was very subtle and in addition, the penetrance of the phenotype  
216 appeared to be lower than in the first screen (penetrance: less than 30%). Seven positive controls  
217 (4%, phase 1: 1%) could not be analyzed due to prior technical lethality, i.e. the premature death of  
218 the injected pupae prevented the detection of the phenotype. In three cases wrong aspects were  
219 annotated (false positive: 1.7%). Depending on the other annotations these positive controls were  
220 valued as partially recognized (SCR) or missed (met, CTA). Find more details in Table  
221 Table\_S1\_controls.

222 Negative controls (buffer injections) were mainly annotated correctly (no phenotype in 92.9%; phase  
223 1: 96%) and just in 7 cases led to false positive annotations (7.1%; phase 1: 2%) (Table  
224 Table\_S1\_controls; sheet 2).

### 225 Re-Screen

226 Re-screening of selected iBeetle candidates involved in a number of biological processes was  
227 performed in order to probe for off-target and strain-specific effects. For that purpose, two

Hakeemi et al. 2021

228 independent dsRNA fragments (original iB-fragments and one non-overlapping fragment, both at  
229 concentration 1 µg/µl) of the same gene were injected separately into a different genetic background  
230 (*San Bernardino, SB* strain), except for the muscle project where it is required to use the pBA19 strain  
231 with EGFP marked muscles. The rest of the injection procedures and analyses were as in the first  
232 pupal injection experiment (see details in Materials and Methods).

### 233 Phylogenetic analysis

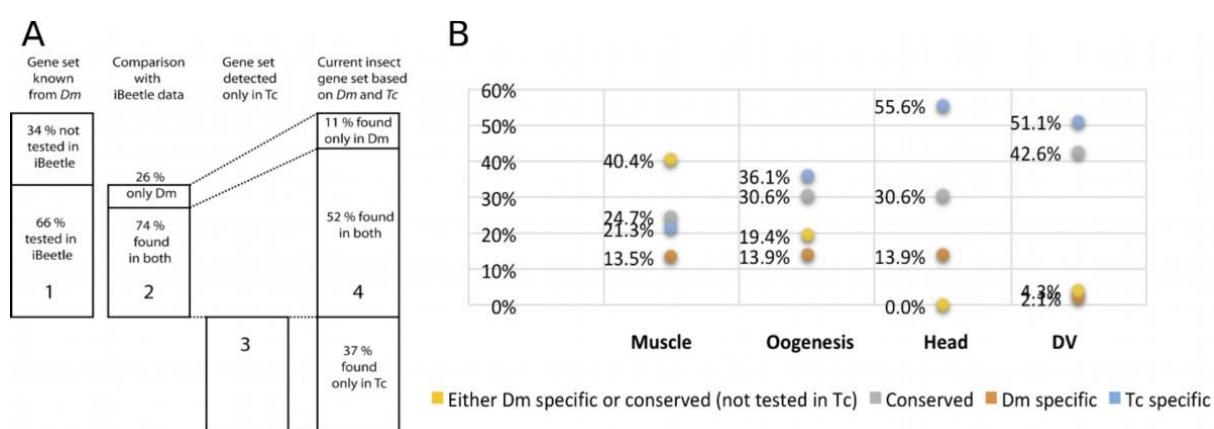
234 The *Tribolium* protein sequences from gene set ([http://ibeetle-base.uni-  
235 goettingen.de/downloads/OGS3\\_proteins.fasta.gz](http://ibeetle-base.uni-goettingen.de/downloads/OGS3_proteins.fasta.gz) - including changes from 2016/02/15) were used  
236 to retrieve the most similar proteins of *T. castaneum*, *D. melanogaster* and *M. musculus* excluding  
237 isoforms. Multiple alignments were done with the ClustalOmega plugin as implemented in the  
238 Geneious 10.1.3 software (Biomatters, Auckland, New Zealand) using standard settings. Alignments  
239 were trimmed to remove poorly aligned sequence stretches. Phylogenetic trees were calculated  
240 using the FastTree 2.1.5 plugin implemented in Geneious.

### 241 Generation of *Unc-76* mutations via CRISPR/Cas9

242 The procedure used to generate *Unc-76* mutations was described by Basset et al., 2013(Bassett et al.,  
243 2013). For making the template for the guide RNAs, the *Unc-76* target sequence between the T7  
244 promoter and the gRNA core sequence in the forward primer, gRNA\_F, was chosen as  
245 GGTTCAACGATCTGACCAGTG, and after annealing gRNA\_F with SGRNAR the template was PCR  
246 amplified with Q5 polymerase (NEB). Guide RNAs were transcribed with Ampliscribe T7 Flash  
247 (epicentre), isolated with the MEGAclear kit (Ambion), and injected together with Cas9 mRNA into  
248 w[1118] sn[3] P{ry+t7.2=neoFRT}19A embryos. Single lines established from the offspring were  
249 tested as heterozygotes over *FM7c* with the T7 endonuclease assay for sequence alterations near the  
250 target site (Kondo and Ueda, 2013). The lethal *Unc-76*[CR007] allele carries a 16 nucleotide deletion  
251 near the target site in the sequence ..TAT CCA CAC ACC aac ggt ttg gga tcc GGA TCC GGA TCC.. of the  
252 second exon (X: 2091152... 2091167, r6.32; see lower case letters) that creates a frameshift in the  
253 ORF in all known isoforms (after T246 in *Unc-76* RA to -C and after T61 in *Unc-76* RD).

## 254 Discussion

### 255 Investigating one species falls short of a comprehensive view on gene function


256 Large scale screens in the leading insect model organism *D. melanogaster* have revealed gene sets  
257 involved in certain biological processes. As consequence, insect-related GO term annotations are  
258 almost exclusively based on work in flies. However, there are several reasons to believe that the  
259 picture has remained incomplete. On one hand, species-specific or technical limitations may have  
260 prohibited identification of an involved gene in *D. melanogaster*. On the other hand, evolution may  
261 have led to functional changes such as the loss of ancestral gene functions or the integration of genes  
262 into a novel process. Unfortunately, it has remained unclear to what extent the gene sets determined  
263 exclusively in flies would be representative of insects as a whole.

264 Our systematic screening in a complementary model organism has revealed that the identified gene  
265 sets show an astonishing degree of divergence. Based on our calculations (see details below) we  
266 estimate that only half of the gene functions are similarly detected in both species (52%, column 4 of  
267 Fig. 4A) while the remaining gene functions were revealed either only in *D. melanogaster* (11%,  
268 column 4 of Fig. 4A) or only in *T. castaneum* (37%, column 4 of Fig. 4A). Hence, our current  
269 knowledge based on screening in one species appears to be much less comprehensive than

Hakeemi et al. 2021

270 previously thought. We believe that the different proportions of genes detected in only one species  
271 (11% vs. 37%) may reflect both, biological and technical differences (see below).

272 In summary, despite some uncertainties with respect to the exact numbers (see discussion below),  
273 our findings provide a compelling argument that focusing on single model species falls short of  
274 comprehensively revealing the genetic basis of biological processes in any given clade. Further, it  
275 shows that *T. castaneum* is an extremely useful screening system for insect biology, able to reveal  
276 novel gene functions even in processes that have been studied intensely in *D. melanogaster*.



**Figure 4 Many genes are detected only in one of the species in the same processes**

Combining genes found in fly (column 1) and/or beetle (column 3) leads to the currently known insect gene set for the processes analysed here. Portions shown in column 1 and 2 are based on Fig. S1, Fig.2 and Fig. 3. We calculate the portions of genes of the combined insect gene set (column 4), which were detected only in *Drosophila* (11 %), only in *Tribolium* (37%) or in both (52%). See text for details and discussion of potential systematic biases. B) Respective values for the single processes show that the minimum contribution of the *Tribolium* screening platform amounted to 20% genes not detected in *Drosophila*. See table S4 for calculations. Neither model species is able by itself to detect “the insect gene set”.

277

## 278 Estimating the portions of gene functions revealed in fly versus beetle

279 Our beetle data are based on both, our systematic screening of 51% of the *T. castaneum* gene set  
280 and on previous candidate gene work. With respect to fly data, we rely on information available on  
281 FlyBase and our expert knowledge of the processes under scrutiny. Given these different kinds of  
282 sources and approaches, the data are prone to various types of uncertainties. Therefore, we discuss  
283 the way we combined the numbers to calculate our estimation. Subsequently, we will discuss some  
284 uncertainties and in how far they influence the estimation.

285 Of the genes known from *D. melanogaster* to be involved in the processes investigated here (n = 132;  
286 see Table S4), we could compare 66% to iBeetle data (column 1 in Fig. 4A; based on Fig. S1; n = 87).  
287 Of those genes, 26% (n = 23) were not involved in that process in *T. castaneum* (column 2 in Fig. 4A;  
288 based on Fig. 3). For our overall estimation, we extrapolated this share to the total number of genes  
289 involved in the fly (hatched lines from column 2 to column 4). A number of gene functions detected  
290 in the iBeetle screen had not been assigned such functions in *D. melanogaster* before (column 3 in

Hakeemi et al. 2021

291 Fig. 4A; based on Fig. 2). When combining these numbers, we aimed at providing a minimum  
292 estimation for divergence of detected gene functions (Column 4 in Fig. 4A). To be conservative, we  
293 assumed that all gene functions known from *D. melanogaster* but not yet tested in the iBeetle screen  
294 would fall into the class of genes being involved in both species (see numbers in green square in  
295 Table S4). Further, we scored each signaling pathways as one case (finding mostly conservation) even  
296 if single components of these pathways had not divergent phenotypes. This conservative assumption  
297 leads to the abovementioned minimum estimation of divergence in these gene sets (Column 4 in Fig.  
298 4A; calculation in Table S4). Of all genes currently known to be involved in one of the processes we  
299 studied, the portion of genes detected exclusively in the fly (11%; n = 23) is much smaller than the  
300 one detected only in the beetle (37%; n = 76) while the analogous function of half of the genes (52%;  
301 n = 109) is detected in both species.

302 With this work, we present the first and a quite extensive dataset to estimate this kind of numbers.  
303 Still, some confounding issues need to be considered. The first uncertainty stems from the fact that  
304 the beetle data is based on testing about 50 % of the genes. In the second part of the screen, we had  
305 prioritized genes that were e.g. highly expressed, showed sequence conservation and had GO  
306 annotations. The prioritization apparently was successful as 66% of the gene functions known from  
307 *D. melanogaster* had been covered in the iBeetle screen (Fig. 4A), which is much more than the 40%  
308 expected for an unbiased selection (Schmitt-Engel et al., 2015). Hence, our figures might be biased  
309 towards conserved gene function. As a consequence, the overall portion of beetle specific genes  
310 without conserved functions likely is even higher than reflected in Fig. 4A.

311 Second, we found quite different numbers for the four processes under scrutiny (Fig. 4B). However,  
312 even in the process with the lowest portion of genes detected exclusively in *T. castaneum* (muscle  
313 development), this portion was 21%, which still indicates a significant degree of unexplored biology.

314 Third, the *D. melanogaster* numbers could be influenced by false negative data. The data on FlyBase  
315 has not been gathered in one or few standardized screens where all data were published – it is  
316 mainly based on published results of single gene analyses. However, not all genetic screens have  
317 reached saturation and not all genes detected in large-scale screens may have been further analyzed  
318 and published. Hence, the number of genes in principle detectable in *D. melanogaster* might actually  
319 be larger than the numbers extracted from FlyBase. In the iBeetle screen, in contrast, negative data  
320 was systematically documented, such that this type of uncertainty is restricted to technical false  
321 negative data, which we found to be around 15% in this first pass screen (Fig. 1). This uncertainty  
322 could potentially increase the portion of *D. melanogaster* specific or conserved genes. Fourth,  
323 theoretically there may be false positive data albeit restricted to the set of genes detected in both  
324 species. The reason is that iBeetle was a first pass screen, where we aimed at reducing false negative  
325 data with the tradeoff that false positive data are enriched (Schmitt-Engel et al., 2015). Although  
326 finding similar phenotypes in two different species will not in many cases be false positive, we tried  
327 to minimize this error by manually checking the annotations of the respective genes, excluding those  
328 that showed a phenotype with low penetrance or in combination with many other defects indicating  
329 a non-specific effect. Of note, the issue of false positives is restricted to the genes detected in both  
330 species (column 2; based on Fig. 3). It does not apply to those genes detected only in the beetle but  
331 not the fly (column 3; based on Fig. 2) because in this case, all phenotypes were confirmed by  
332 independent experiments with non-overlapping dsRNA fragments in different genetic backgrounds  
333 such that false positive results are excluded. In summary, while there are a number of uncertainties

Hakeemi et al. 2021

334 that we could not clarify with available data or methods, most of these uncertainties hint at  
335 underestimation rather than overestimation of functional divergence between fly and beetle.

336

### 337 **Technical characteristics contribute to the detection of unequal gene sets**

338 Our numbers reveal that functionally comparable gene sets in two quite closely related model  
339 systems are far from identical. A question of obvious biological relevance but not easily resolved is:  
340 to which degree do these differences reflect biologically meaningful divergence of gene functions, or  
341 alternatively, simply result from technical problems, i.e. reflect different strengths and weaknesses of  
342 the respective screening methods and model systems?

343 As discussed above, some degree of false negative data may be expected in both model systems. In  
344 case of the iBeetle screen, this will be restricted to technical false negative data. In the *D.*  
345 *melanogaster* field, there may be additional false negative data due to the lack of saturation of  
346 screens and/or lack of reporting of genes that were not studied in detail. However, given the extent  
347 and comprehensiveness of work in the *D. melanogaster* field we feel that this might not be of high  
348 relevance. As to different strengths of screening procedures, it is certainly true that the way screens  
349 are performed influences what sets of genes can be detected. For instance, our parental RNAi  
350 approach knocked down both, maternal and zygotic contributions while some classic *D.*  
351 *melanogaster* screens affected only the zygotic contribution. Hence, genes where maternal  
352 contribution rescues the embryonic phenotype are easily missed in the fly but not the beetle. For  
353 instance, parental RNAi knocking down components of the aPKC complex leads to severe early  
354 disruption of embryogenesis in *T. castaneum* while in respective *D. melanogaster* mutants almost no  
355 defects are seen on the cuticle level (A. Wodarz, unpublished observation). Conversely, our RNAi  
356 screen depended on the accuracy of gene annotations and our approach of screening for several  
357 processes in parallel may have reduced detection sensitivity. One striking example for the different  
358 strengths of screening designs is provided by wing blister phenotypes. In the first part of the *iBeetle*  
359 screen we detected 34 genes showing wing blister phenotypes where 14 did not have related GO  
360 term annotation at FlyBase and 5 did not have any GO annotation at all. Seven of these genes were  
361 subsequently tested by RNAi lines in *D. melanogaster* where four of them indeed showed a related  
362 phenotype. Likewise, some wing blister genes from *D. melanogaster* were not annotated in the  
363 iBeetle screen. When we checked more specifically, this was often due to lethality of the animal  
364 before the formation of wings (Schmitt-Engel et al., 2015). When we varied the timing of injection,  
365 two of those knock-downs elicited wing blister phenotypes also in *T. castaneum* (Schmitt-Engel et al.,  
366 2015). These data show that details of the screening procedure influence the subset of genes that is  
367 detected.

### 368 **Evolutionary divergence of gene function and derivedness of *Drosophila* 369 biology may be larger than appreciated**

370 Most relevant for the field of functional genetics is our conclusion that the degree of divergence of  
371 gene functions is larger than previously assumed. Therefore, some genes are detected only in one  
372 species because the gene's function is not required for that process in the other. Indeed, there is  
373 evidence supporting this view. In a recent study, a number of muscle genes identified in the *iBeetle*  
374 screen were more closely investigated in *D. melanogaster* (Schultheis et al., 2019a; Schultheis et al.,  
375 2019b). Despite some efforts, the negative data for fly orthologs appeared to be real negative. For  
376 example, null mutations of one of the genes found in our beetle, *nostrin*, did not elicit a phenotype in

Hakeemi et al. 2021

377 *D. melanogaster* unless combined with a mutation of a related F-bar protein *Cip4*. Likewise, *Rbm24*  
378 displays strong RNAi and mutant phenotypes in *T. castaneum* and vertebrates, respectively, but *D.*  
379 *melanogaster* is lacking an *Rbm24* ortholog, and functional compensation by paralogs was suggested  
380 to occur during *D melanogaster* muscle development. Other genes including *kahuli* and *unc-76* are  
381 expressed in the *D. melanogaster* mesoderm but only showed very subtle somatic muscle  
382 phenotypes, if any, in Mef2-GAL4 driven RNAi experiments or with CRISPR/Cas9 induced mutations,  
383 respectively (see Materials & Methods). By contrast, their beetle counterparts had strong and  
384 penetrant phenotypes in single knock-downs (Schultheis, 2016; Schultheis et al., 2019a; Schultheis et  
385 al., 2019b). These data suggest that the function of genes or their relative contribution to this  
386 biological process have changed significantly. They also indicate that the single gene view may be  
387 limited. Phenotypes depend on networks of interacting genes and this may allow for changes and  
388 replacements of individual components while the overall network structure is maintained. There are  
389 more striking examples of gene function changes. The gene *germ cell-less* was detected in the iBeetle  
390 screen to govern anterior-posterior axis formation in the beetle while in *D. melanogaster* it is  
391 required for the formation of the posterior germ-cells (Ansari et al., 2018). Also, the *D. melanogaster*  
392 textbook example of a developmental morphogen *bicoid* does not even exist in *T. castaneum* (Brown  
393 et al., 2001) and yet other genes were found to act as anterior determinants in other flies (Klomp et  
394 al., 2015; Yoon et al., 2019). Along the same lines, the genes *forkhead* and *buttonhead* do not appear  
395 to be required for anterior patterning in *T. castaneum* but are essential in flies (Kittelmann et al.,  
396 2013; Schinko et al., 2008; Weigel et al., 1989; Wimmer et al., 1997).

397 These findings with respect to specific genes add to a number of observations arguing for a  
398 comparatively high degree of derivedness of fly biology. The number of genes is much smaller in *D.*  
399 *melanogaster* (appr. 14,000) compared to *T. castaneum* (appr. 16,500). Further, a number of  
400 developmental processes are represented in a more insect-typical way in *T. castaneum* like for  
401 instance segmentation (Tautz et al., 1994), head (Posnien et al., 2010) and leg development, brain  
402 development (Farnworth et al., 2019), extraembryonic tissue movements (Panfilio, 2008) and mode  
403 of metamorphosis (Snodgrass, 1954). In most cases, the situation in the fly is simplified and  
404 streamlined for faster development.

405 We think that these biological difference lead to divergence in gene function, which we just started  
406 to uncover. Given the large divergence of gene sets found in different screening systems, and the  
407 documented cases of biological divergence of gene function, we propose that a more systematic  
408 investigation on the divergence of gene function is needed and that hypothesis independent  
409 screening now possible in *T. castaneum* may be helpful in that endeavor.

410 **Author contributions**

411 Data presentation and writing of manuscript:

412 *Muhammad Salim Hakeemi, G.B.*

413 Screen and Re-Screen; analysis of entire set of candidates:

414 *Muhammad Salim Hakeemi, Salim Ansari, Matthias Teuscher, Matthias Weißkopf*

415 Data handling and processing

416 *Jürgen Dönitz*

417 Data collection and analysis for Drosophila comparison:

418 *Janna Siemanowski, Daniela Großmann, Muhammad Salim Hakeemi*

419 *Annotation as part of Bayer screen*

420 *Xuebin Wan*

421 *Generation of Drosophila mutant*

422 *Dorothea Schultheis*

423 Supervision and interpretation of Re-Screen:  
424 *Martin Klingler, Michael Schoppmeier, Gregor Bucher*  
425 *Siegfried Roth, Manfred Frasch*  
426 Supervision primary Screen:  
427 *Daniela Großmann, Tobias Kessel (geb. Richter), Michael Schoppmeier, Martin Klingler,*  
428 *Gregor Bucher*  
429 Coordination of screen funding and realization  
430 *Martin Klingler, Michael Schoppmeier, Gregor Bucher*

431 References

432 **Ansari, S., Troelenberg, N., Dao, V. A., Richter, T., Bucher, G. and Klingler, M.** (2018). Double  
433 abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle  
434 *Tribolium castaneum*. *PNAS* 201716512.

435 **Averof, M.** (2002). Arthropod Hox genes: insights on the evolutionary forces that shape gene  
436 functions. *Curr. Opin. Genet. Dev.* **12**, 386–392.

437 **Bassett, A. R., Tibbit, C., Ponting, C. P. and Liu, J.-L.** (2013). Highly efficient targeted mutagenesis of  
438 *Drosophila* with the CRISPR/Cas9 system. *Cell Rep* **4**, 220–228.

439 **Berghammer, A. J., Klingler, M. and Wimmer, E. A.** (1999). A universal marker for transgenic insects.  
440 *Nature* **402**, 370–1.

441 **Brown, S., Fellers, J., Shippy, T., Denell, R., Stauber, M. and Schmidt-Ott, U.** (2001). A strategy for  
442 mapping bicoid on the phylogenetic tree. *Curr Biol* **11**, R43-4.

443 **Bucher, G., Scholten, J. and Klingler, M.** (2002). Parental RNAi in *Tribolium* (Coleoptera). *Current  
444 Biology* **12**, R85–R86.

445 **Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., Lewis, S., the AmiGO Hub and the Web  
446 Presence Working Group** (2009). AmiGO: online access to ontology and annotation data.  
447 *Bioinformatics* **25**, 288–289.

448 **Dönitz, J., Grossmann, D., Schild, I., Schmitt-Engel, C., Bradler, S., Prpic, N.-M. and Bucher, G.**  
449 (2013). TrOn: An Anatomical Ontology for the Beetle *Tribolium castaneum*. *PLOS ONE* **8**,  
450 e70695.

451 **Dönitz, J., Schmitt-Engel, C., Grossmann, D., Gerischer, L., Tech, M., Schoppmeier, M., Klingler, M.  
452 and Bucher, G.** (2015). iBeetle-Base: a database for RNAi phenotypes in the red flour beetle  
453 *Tribolium castaneum*. *Nucl. Acids Res.* **43**, D720–D725.

454 **Dönitz, J., Gerischer, L., Hahnke, S., Pfeiffer, S. and Bucher, G.** (2018). Expanded and updated data  
455 and a query pipeline for iBeetle-Base. *Nucleic Acids Res.* **46**, D831–D835.

456 **Farnworth, M. S., Eckermann, K. N. and Bucher, G.** (2019). Sequence heterochrony led to a gain of  
457 functionality in an immature stage of the central complex: a fly-beetle insight. *bioRxiv*  
458 2019.12.20.883900.

459 **Fu, J., Posnien, N., Bolognesi, R., Fischer, T. D., Rayl, P., Oberhofer, G., Kitzmann, P., Brown, S. J.  
460 and Bucher, G.** (2012). Asymmetrically expressed axin required for anterior development in  
461 *Tribolium*. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 7782–7786.

Hakeemi et al. 2021

462    **Gilles, A. F., Schinko, J. B. and Averof, M.** (2015). Efficient CRISPR-mediated gene targeting and  
463    transgene replacement in the beetle *Tribolium castaneum*. *Development* **142**, 2832–2839.

464    **Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C. and Niehrs, C.** (1998). Dickkopf-1 is  
465    a member of a new family of secreted proteins and functions in head induction. *Nature* **391**,  
466    357–62.

467    **Gurley, K. A., Rink, J. C. and Sánchez Alvarado, A.** (2008). Beta-catenin defines head versus tail  
468    identity during planarian regeneration and homeostasis. *Science* **319**, 323–327.

469    **Herndon, N., Shelton, J., Gerischer, L., Ioannidis, P., Ninova, M., Dönitz, J., Waterhouse, R. M.,**  
470    **Liang, C., Damm, C., Siemanowski, J., et al.** (2020). Enhanced genome assembly and a new  
471    official gene set for *Tribolium castaneum*. *BMC Genomics* **21**, 47.

472    **Jorgensen, E. M. and Mango, S. E.** (2002). The art and design of genetic screens: *caenorhabditis*  
473    *elegans*. *Nat Rev Genet* **3**, 356–69.

474    **Kile, B. T. and Hilton, D. J.** (2005). The art and design of genetic screens: mouse. *Nat. Rev. Genet.* **6**,  
475    557–567.

476    **Kittelmann, S., Ulrich, J., Posnien, N. and Bucher, G.** (2013). Changes in anterior head patterning  
477    underlie the evolution of long germ embryogenesis. *Dev. Biol.* **374**, 174–184.

478    **Kitzmann, P., Schwirz, J., Schmitt-Engel, C. and Bucher, G.** (2013). RNAi phenotypes are influenced  
479    by the genetic background of the injected strain. *BMC Genomics* **14**, 5.

480    **Kitzmann, P., Weißkopf, M., Schacht, M. I. and Bucher, G.** (2017). A key role for *foxQ2* in anterior  
481    head and central brain patterning in insects. *Development* **144**, 2969–2981.

482    **Klomp, J., Athy, D., Kwan, C. W., Bloch, N. I., Sandmann, T., Lemke, S. and Schmidt-Ott, U.** (2015).  
483    Embryo development. A cysteine-clamp gene drives embryo polarity in the midge  
484    *Chironomus*. *Science (New York, N.Y.)* **348**, 1040–1042.

485    **Kondo, S. and Ueda, R.** (2013). Highly improved gene targeting by germline-specific Cas9 expression  
486    in *Drosophila*. *Genetics* **195**, 715–721.

487    **Lorenzen, M. D., Kimzey, T., Shippy, T. D., Brown, S. J., Denell, R. E. and Beeman, R. W.** (2007).  
488    piggyBac-based insertional mutagenesis in *Tribolium castaneum* using donor/helper hybrids.  
489    *Insect Mol Biol* **16**, 265–275.

490    **Lynch, J. A. and Roth, S.** (2011). The evolution of dorsal–ventral patterning mechanisms in insects.  
491    *Genes Dev.* **25**, 107–118.

492    **Mungall, C. J., Gkoutos, G. V., Smith, C. L., Haendel, M. A., Lewis, S. E. and Ashburner, M.** (2010).  
493    Integrating phenotype ontologies across multiple species. *Genome Biol* **11**, R2.

494    **Panfilio, K. A.** (2008). Extraembryonic development in insects and the acrobatics of blastokinesis.  
495    *Developmental Biology* **313**, 471–491.

496    **Patton, E. E. and Zon, L. I.** (2001). The art and design of genetic screens: zebrafish. *Nat Rev Genet* **2**,  
497    956–66.

498    **Posnien, N., Schinko, J. B., Kittelmann, S. and Bucher, G.** (2010). Genetics, development and  
499    composition of the insect head - A beetle's view. *Arthropod Struct Dev* **39**, 399–410.

Hakeemi et al. 2021

500 **Schinko, J. B., Kreuzer, N., Offen, N., Posnien, N., Wimmer, E. A. and Bucher, G.** (2008). Divergent  
501 functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the  
502 beetle *Tribolium castaneum* (Coleoptera). *Dev Biol* **317**, 600–13.

503 **Schinko, J. B., Weber, M., Viktorinova, I., Kiupakis, A., Averof, M., Klingler, M., Wimmer, E. A. and**

504 **Bucher, G.** (2010). Functionality of the GAL4/UAS system in *Tribolium* requires the use of  
505 endogenous core promoters. *BMC Dev Biol* **10**, 53.

506 **Schmitt-Engel, C., Schultheis, D., Schwirz, J., Strohlein, N., Troelenberg, N., Majumdar, U., Dao, V.**  
507 **A., Grossmann, D., Richter, T., Tech, M., et al.** (2015). The iBeetle large-scale RNAi screen  
508 reveals gene functions for insect development and physiology. *Nat Commun* **6**.

509 **Schultheis, D.** (2016). *Identifizierung und Charakterisierung neuer regulatorischer Gene in der*  
510 *Muskelentwicklung durch einen genomweiten RNAi-Screen in Tribolium castaneum*.

511 **Schultheis, D., Weißkopf, M., Schaub, C., Ansari, S., Dao, V. A., Grossmann, D., Majumdar, U.,**

512 **Hakeemi, M. S., Troelenberg, N., Richter, T., et al.** (2019a). A Large Scale Systemic RNAi  
513 Screen in the Red Flour Beetle *Tribolium castaneum* Identifies Novel Genes Involved in Insect  
514 Muscle Development. *G3 (Bethesda)* **9**, 1009–1026.

515 **Schultheis, D., Schwirz, J. and Frasch, M.** (2019b). RNAi Screen in *Tribolium* Reveals Involvement of  
516 F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. *G3*  
517 (*Bethesda*) **9**, 1141–1151.

518 **Snodgrass, R.** (1954). *Insect Metamorphosis: Smithsonian Miscellaneous Collections, V122, No. 9*.  
519 Washington: Literary Licensing.

520 **St Johnston, D.** (2002). The art and design of genetic screens: *Drosophila melanogaster*. *Nat Rev*  
521 *Genet* **3**, 176–88.

522 **Stappert, D., Frey, N., von Levetzow, C. and Roth, S.** (2016). Genome-wide identification of  
523 *Tribolium* dorsoventral patterning genes. *Development* **143**, 2443–2454.

524 **Tautz, D., Friedrich, M. and Schröder, R.** (1994). Insect embryogenesis – what is ancestral and what  
525 is derived? *Development* **1994**, 193–199.

526 **Tomoyasu, Y. and Denell, R. E.** (2004). Larval RNAi in *Tribolium* (Coleoptera) for analyzing adult  
527 development. *Dev Genes Evol* **214**, 575–8.

528 **Weigel, D., Jürgens, G., Kuttner, F., Seifert, E. and Jackle, H.** (1989). The homeotic gene fork head  
529 encodes a nuclear protein and is expressed in the terminal regions of the *Drosophila* embryo.  
530 *Cell* **57**, 645–58.

531 **Wimmer, E. A., Cohen, S. M., Jackle, H. and Desplan, C.** (1997). buttonhead does not contribute to a  
532 combinatorial code proposed for *Drosophila* head development. *Development* **124**, 1509–17.

533 **Yoon, Y., Klomp, J., Martin-Martin, I., Criscione, F., Calvo, E., Ribeiro, J. and Schmidt-Ott, U.** (2019).  
534 Embryo polarity in moth flies and mosquitoes relies on distinct old genes with localized  
535 transcript isoforms. *Elife* **8**.

536

537

Hakeemi et al. 2021

538 **Author contributions**

539 Data presentation and writing of manuscript:  
540 *Muhammad Salim Hakeemi, Gregor Bucher*  
541 Screen and Re-Screen; analysis of entire set of candidates:  
542 *Muhammad Salim Hakeemi, Salim Ansari, Matthias Teuscher, Matthias Weißkopf*  
543 Data handling and processing:  
544 *Jürgen Dönitz*  
545 Data collection and analysis for Drosophila comparison:  
546 *Janna Siemanowski, Daniela Großmann, Muhammad Salim Hakeemi*  
547 Annotation as part of last screening part:  
548 *Xuebin Wan*  
549 Generation and analysis of *Drosophila* mutant:  
550 *Dorothea Schultheis*  
551 Supervision and interpretation of Re-Screen:  
552 *Martin Klingler, Michael Schoppmeier, Gregor Bucher*  
553 *Siegfried Roth, Manfred Frasch*  
554 Supervision primary Screen:  
555 *Daniela Großmann, Tobias Kessel (geb. Richter), Michael Schoppmeier, Martin Klingler, Gregor*  
556 *Bucher*  
557 Coordination of screen funding and realization:  
558 *Martin Klingler, Michael Schoppmeier, Gregor Bucher*  
559  
560

561 **Acknowledgements**

562 We thank Mohamad Al Heshan, Elke Küster and Claudia Hinnens for help with injection and  
563 processing. This project was funded by Deutsche Forschungsgemeinschaft (DFG research unit;  
564 FOR1234 iBeetle) and Bayer CropScience. The China Scholarship Council funded Xuebin Wan  
565 (201706760058).

566  
567