

1 Severe deficiency of voltage-gated sodium channel Nav1.2 2 elevates neuronal excitability in adult mice

3 Short title: Nav1.2 deficiency and neuronal hyperexcitability

4
5 Jingliang Zhang^{1,2*}, Xiaoling Chen^{1,2,3*}, Muriel Eaton^{1,2}, Shirong Lai^{1,2}, Anthony Park^{1,2},
6 Talha S. Ahmad^{1,2}, Jiaxiang Wu^{1,2}, Zhixiong Ma^{1,2}, Zhefu Que^{1,2}, Ji Hea Lee^{1,2}, Tiange
7 Xiao^{1,2}, Yuansong Li^{1,2}, Yujia Wang^{1,2}, Maria I. Olivero-Acosta^{1,2}, James A. Schaber⁴,
8 Krishna Jayant^{2,3}, Zhuo Huang⁵, Nadia A. Lanman^{6,7}, William C. Skarnes⁸, Yang Yang^{1,2†}

9
10 ¹Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy,
11 Purdue University.

12 ²Purdue Institute for Integrative Neuroscience, Purdue University.

13 ³Weldon School of Biomedical Engineering, Purdue University.

14 ⁴Bioscience Imaging Facility, Bindley Bioscience Center, Purdue University.

15 ⁵Department of Molecular and Cellular Pharmacology, School of Pharmaceutical
16 Sciences, Peking University Health Science Center.

17 ⁶Department of Comparative Pathobiology, Purdue University.

18 ⁷Purdue University Center for Cancer Research, Purdue University.

19 ⁸The Jackson Laboratory for Genomic Medicine.

20 *These authors contributed equally to this work.

21 †Corresponding author. Email: yangyang@purdue.edu

23 Abstract

24 *Scn2a* encodes voltage-gated sodium channel Nav1.2, which mediates neuronal firing.
25 The current paradigm suggests that Nav1.2 gain-of-function variants enhance neuronal
26 excitability resulting in epilepsy, whereas Nav1.2 deficiency impairs neuronal excitability
27 contributing to autism. In this paradigm, however, why about a third of patients with
28 Nav1.2 deficiency still develop seizures remains a mystery. Here we challenge the
29 conventional wisdom, reporting that neuronal excitability is increased with severe Nav1.2
30 deficiency. Using a unique gene-trap knockout mouse model of *Scn2a*, we found
31 enhanced intrinsic excitabilities of principal neurons in the cortico-striatal circuit, known
32 to be involved in *Scn2a*-related seizures. This increased excitability is autonomous, and
33 is reversible by genetic restoration of *Scn2a* expression in adult mice. Mechanistic
34 investigation reveals a compensatory downregulation of potassium channels including
35 Kv1.1, which could be targeted to alleviate neuronal hyperexcitability. Our unexpected
36 findings may explain Nav1.2 deficiency-related epileptic seizures in humans and provide
37 molecular targets for potential interventions.

38
39 **KEYWORDS:** Voltage-gated sodium channel, Nav1.2, *SCN2A/Scn2a* gene, gene-trap
40 knockout, channelopathy, neuronal excitability, epilepsy, seizures, potassium channel,
41 Kv1.1

42 **TEASER:**

43 Severe Nav1.2 deficiency results in neuronal hyperexcitability via the compensatory
44 downregulation of potassium channels.

45

46 **HIGHLIGHTS:**

47 1. Severe Nav1.2 deficiency results in enhanced excitability of medium spiny neurons
48 (MSNs) and pyramidal neurons in adult mice;

49 2. Increased neuronal excitability in MSNs is accompanied by elevated voltage threshold;

50 3. Nav1.2 deficiency-related hyperexcitability is reversible with the restoration of *Scn2a*
51 expression, and is autonomous;

52 4. The expression of the Kv1.1 channel has a compensatory reduction in neurons with
53 Nav1.2 deficiency, and Kv channels openers normalize the neuronal excitability;

54 5. The enhanced excitability in brain slices translates to elevated *in vivo* firing commonly
55 associated with seizures.

56

57 **INTRODUCTION**

58 Nav1.2 channel, encoded by *SCN2A*, is a major voltage-gated sodium channel expressed
59 in the central nervous system (CNS) supporting the action potentials (AP) firing (1) (2).
60 Nav1.2 is strongly expressed in the principal neurons of the cortico-striatal circuit,
61 including pyramidal neurons of the medial prefrontal cortex (mPFC) and medium spiny
62 neurons (MSNs) of the caudate-putamen (CPu) in the striatum (3-5). Gain-of-function
63 (GoF) variants of *SCN2A* are closely associated with epileptic seizures, whereas loss-of-
64 function (LoF) or protein-truncating variants of *SCN2A* (collectively referred to as Nav1.2
65 deficiency) are leading genetic causes of autism spectrum disorder (ASD) and intellectual
66 disability (ID) (6-10). The conventional paradigm suggests that GoF variants of *SCN2A*
67 increase the excitability of principal neurons resulting in epilepsy, whereas Nav1.2
68 deficiency impairs the excitability of principal neurons leading to ASD (2). However,
69 clinical studies found that a significant portion of patients with Nav1.2 deficiency develop
70 “late-onset” intractable seizures (11, 12). As hyperexcitability and hypersynchronization
71 of neuronal firings are suggested as the basis of seizures (13), it is thus intriguing how
72 Nav1.2 deficiency, predicted to reduce neuronal excitability, contributes to epileptic
73 seizures.

74 To understand Nav1.2 deficiency-related pathophysiology, mouse models were
75 generated. Homozygous *Scn2a*^{-/-} knockout mice die perinatally (14, 15); Heterozygous
76 *Scn2a*^{+/−} mice (with ~50% Nav1.2 expression level) survive to adulthood, but the earlier
77 study did not find notable abnormalities in *Scn2a*^{+/−} mice (14). More recently, absence-
78 like seizures were reported in adult male *Scn2a*^{+/−} mice (16). It is suggested that the CPu
79 of the striatum and the mPFC of the cortex are key brain regions in which absence
80 seizure-like spike-wave discharges (SWDs) were identified (16, 17). Indeed, the cortico-
81 striatal circuit is highly involved in ASD as well as seizures, and the excitability of principal
82 neurons in this circuit could strongly influence seizure susceptibility (18, 19). Despite
83 these *in vivo* findings, recordings in brain slices, however, revealed unchanged AP firings
84 and reduced excitatory postsynaptic current in pyramidal neurons of adult *Scn2a*^{+/−} mice
85 (16, 20), leaving cellular mechanisms ambiguous.

86 It is not uncommon that phenotypes observed in hemizygous patients do not
87 manifest in heterozygous mouse models. In fact, it is known that mice are more tolerant
88 than humans to certain gene expression reduction (21). Therefore, the heterozygous
89 knockout with a close to 50% reduction in *Scn2a* protein level may not be sufficient to
90 render major phenotypes in mice (21). A more substantial reduction of gene expression
91 could be essential to produce robust phenotypes in the mouse model of Nav1.2
92 deficiency. Because *Scn2a* null (100% knockout) is lethal, we thus generated a novel
93 Nav1.2-deficient mouse model via a gene-trap knockout (gtKO) strategy (22). These mice
94 display many behavioral abnormalities, modeling aspects of phenotypes in humans with
95 *SCN2A* deficiency (22). Using this unique mouse model, we investigated how severe
96 Nav1.2 deficiency affects neuronal excitabilities of principal neurons in the cortico-striatal
97 circuit. Our results demonstrate a surprising hyperexcitability phenotype in neurons, in
98 which the compensatory downregulation of the potassium channels is likely to be an
99 underlying mechanism.

100

101 **RESULTS**

102 **Neurons expressing substantially low Nav1.2 exhibit elevated excitability**

103 To understand how a severe Nav1.2 deficiency affects the function of neurons, we utilized
104 a gene-trap knockout mouse model of *Scn2a*. Homozygous *Scn2a*^{gtKO/gtKO} mice (referred
105 to as HOM herein) can survive to adulthood, and have a substantial reduction of Nav1.2
106 expression (~25% of the WT level) (22). Because the gene-trap cassette contains a *LacZ*
107 element, which is driven by the native Nav1.2 promoter (**Figure S1A**) (23, 24), we used
108 *LacZ*-staining as a surrogate to determine the expression and distribution of Nav1.2 in the
109 brain. Our data showed that *Scn2a* is widely expressed in the mouse brain including the
110 cortex and striatum (**Figure S1B**), which is consistent with previous studies of *Scn2a*
111 distribution (3-5).

112 The CPu is a common node for ASD and seizures, and is one of the major brain
113 regions involved in the *Scn2a*-related absence-like seizures (16-18). Previous study and
114 our *LacZ*-staining suggested that Nav1.2 is highly expressed in the CPu. To further
115 confirm these results, we performed Western blot analysis. We found that the
116 heterozygous (HET) *Scn2a*^{WT/gtKO} mice have ~60% of WT Nav1.2 protein level in the CPu
117 tissues, whereas the homozygous (HOM) *Scn2a*^{gtKO/gtKO} mice have a much lower level at
118 34% (**Figure S1C**). This result is largely consistent with our initial characterization of this
119 mouse model using whole-brain samples (22). To understand how a severe deficiency of
120 Nav1.2 affects neuronal excitability, we performed *ex vivo* patch-clamp recordings in brain
121 slices from adult *Scn2a*^{gtKO/gtKO} mice. Unexpectedly, we found that the striatal principal
122 medium spiny neurons (MSNs) from *Scn2a*^{gtKO/gtKO} mice were markedly more excitable
123 (**Figure 1A-C**). The current-injection triggered action potential (AP) number was
124 significantly elevated in MSNs from *Scn2a*^{gtKO/gtKO} mice compared to WT littermates. We
125 also observed depolarized resting membrane potential (RMP) and increased input
126 resistance of these MSNs (**Figure 1D, E**), which were in line with the increased neuronal
127 excitability. Phase-plane plot analysis showed that the AP waveform in *Scn2a*^{gtKO/gtKO}
128 mice was altered (**Figure 1F, G**). While rheobase was reduced, interestingly we detected
129 a higher voltage threshold, reduced AP amplitude, elevated fast after-hyperpolarization
130 (fAHP), and increased half-width values in MSNs from *Scn2a*^{gtKO/gtKO} mice (**Figure 1H-L**).
131 Voltage-dependent conductance can affect neuronal RMP (25), and RMP is known to
132 influence neuronal excitability (26). We thus performed recordings at a fixed membrane
133 potential (MP) to understand whether the altered RMP is a major factor for this observed
134 hyperexcitability of MSNs. However, even at the fixed MP, we were still able to detect the
135 enhanced excitability along with the altered AP waveforms in *Scn2a*^{gtKO/gtKO} mice (**Figure**
136 **S1D-M**), suggesting that besides the RMP, other factors are playing essential roles
137 contributing to the neuronal hyperexcitability. Taken together, our data suggest a
138 counterintuitive finding that severe deficiency of Nav1.2 renders an increased (rather than
139 conventionally suggested as decreased) neuronal excitability.

140

141 **Enhanced excitability is reversible in adult Nav1.2-deficient mice with the
142 restoration of *Scn2a* expression, and is autonomous**

143 *Scn2a*^{gtKO/gtKO} mice, generated via a gene-trap strategy, has a built-in genetic “rescue”
144 element for manipulations (24, 27). The inserted “tm1a” trapping cassette is flanked with

145 *Fr*t sites, which can be removed via a flippase recombinase (Flp) to achieve a “tm1c”
146 allele in a temporally and spatially controlled manner (24) (**Figure S1A**). This “tm1c” allele
147 is practically a “rescue” allele to restore the expression of the target gene. We performed
148 experiments to restore the *Scn2a* expression by adeno-associated virus (AAV) delivery
149 of codon-optimized Flp (FlpO), with a goal to determine the reversibility of these enhanced
150 neuronal firings in adult mice. Using a PHP.eB.AAV vector, which can be administered
151 via systemic delivery (**Figure 2A**) to transduce neurons across the brain (28), we studied
152 the *LacZ* signals (**Figure 2B**) and the protein expression level of *Scn2a*. We found that
153 the FlpO treatment resulted in a partial but significant elevation of Nav1.2 protein
154 expression in adult *Scn2a^{gtKO/gtKO}* mice compared to control PHP.eB.AAV transduction
155 (**Figure 2C**). Remarkably, this partial restoration of *Scn2a* expression in adult mice
156 translated into changes in neuronal excitability. We found that the adult *Scn2a^{gtKO/gtKO}*
157 mice transduced with the AAV-FlpO displayed decreased neuronal excitability of striatal
158 MSNs (**Figure 2D-E**). In the FlpO-treated group, the triggered AP firing of MSNs in
159 *Scn2a^{gtKO/gtKO}* mice was reduced to the WT range, together with the correction of other
160 parameters including the RMP, AP waveform among others (**Figure 2D-J**). Collectively,
161 our data show that even with a partial restoration of *Scn2a* expression to ~50-60% of WT
162 expression level, we are still able to achieve an almost full rescue of neuronal excitability
163 in adult mice.

164 In the cortico-striatal circuit, principal pyramidal neurons of the mPFC project to
165 the striatum, and are suggested to be involved in seizure initiation. As the mPFC is also
166 implicated in the absence-like seizures of *Scn2a^{+/−}* mice (16, 17), we studied the
167 excitability of layer V pyramidal neurons of the mPFC. We found that the excitability of
168 these neurons was increased significantly compared to the WT mice, and can be reversed
169 by FlpO mediated partial restoration of *Scn2a* expression as well (**Figure S2**). Together,
170 our data suggest that the Nav1.2 deficiency-related hyperexcitability exists along the
171 cortico-striatal circuit, manifested in the principal neurons of both cortex and striatum brain
172 regions.

173 The hyperexcitability seen in neurons with Nav1.2 deficiency could come from the
174 altered intrinsic properties independent of other neurons (autonomous), or a result of a
175 disrupted circuit. To distinguish these possibilities, we performed AAV injections of FlpO-
176 mCherry to transduce only a few MSNs in the CPU sparsely. We then performed patch-
177 clamp recordings on adjacent neurons with or without fluorescence (AAV-negative/non-
178 transduced neurons versus AAV-positive/transduced neurons) (**Figure 3A**). Strikingly,
179 our data showed that the transduced neurons (showing fluorescence) display greatly
180 decreased neuronal excitability, compared to non-transduced neurons (showing non-
181 fluorescence) in the same brain slices. In particular, we found that the RMP, input
182 resistance, and the altered AP waveform were reversed in FlpO-transduced neurons of
183 *Scn2a^{gtKO/gtKO}* mice (**Figure 3B-L**). Moreover, when we performed the recordings at a
184 fixed membrane potential of -80 mV, similar findings could still be obtained (**Figure S3A-
185 J**). On the other hand, non-transduced neurons displayed hyperexcitability similarly to
186 neurons from *Scn2a^{gtKO/gtKO}* mice without virus transduction. Our data indicate that the
187 hyperexcitability of each MSN can be modulated by the expression level of *Scn2a*
188 autonomously, and the Nav1.2 deficiency-related hyperexcitability is the intrinsic property
189 of a particular neuron independent of its surrounding neurons or circuit.

190 **Downregulation of potassium channels contributes to the elevated action potential**
191 **firings**

192 To reveal the possible molecular basis underlying the enhanced neuronal excitability of
193 *Scn2a*^{gtKO/gtKO} mice, we studied the gene expression profile using RNA sequencing (RNA-
194 seq). We identified around nine hundred genes that were significantly up- or down-
195 regulated in *Scn2a*^{gtKO/gtKO} mice compared to WT littermates (**Figure 4A**). *Scn2a*
196 expression was at 29.6% of the WT value (**Figure 4B**), consistent with our qPCR (**Figure**
197 **S4A**) and Western blot study (**Figure 2C and Figure S1C**). Nav1.6 and Nav1.2 are two
198 major sodium channels often working in a coordinated fashion in principal neurons in the
199 CNS, and the dysfunction of Nav1.6 is involved in seizures (29-32). In Nav1.6-deficient
200 mouse models, Nav1.2 was upregulated, suggesting a compensatory relationship (33,
201 34). Interestingly, we detected a slightly reduced expression of Nav1.6 in *Scn2a*^{gtKO/gtKO}
202 mice in our RNA-seq analysis. This reduction of Nav1.6 did not reach statistical
203 significance (91.4±2.3% of WT, n = 4, p = 0.39) by qPCR validation (**Figure S4A**),
204 indicating that our observed neuronal hyperexcitability is not likely to result from the
205 compensation of the Nav1.6 channel expression.

206 Besides the Nav channels, potassium channels are also known to be major
207 mediators setting the neuronal excitability (35, 36), and are often co-localized with Nav in
208 the axon with high expression to regulate excitability (37, 38). Indeed, as the AP waveform
209 was altered markedly in neurons with severe Nav1.2 deficiency, it is likely that the
210 functions or expressions of potassium channels, which are responsible for many aspects
211 of AP waveform, were disrupted in these neurons. Thus, we expanded our survey to
212 include potassium channels. Notably, we found multiple potassium channel genes to be
213 significantly downregulated (*Kcne2*, *Kcng4*, *Kcnv1*, *Kcna1*, *Kcna2*, *Kcnj10*, and *Kcnk1*) in
214 our RNA-seq analysis (**Figure 4B**). As the top three genes are regulatory subunits or
215 modifiers, we mainly focused on Kv1.1 and Kv1.2 (encoded by *Kcna1* and *Kcna2*,
216 respectively), which are known to be involved in seizures (39). Our qPCR experiment
217 validated that Kv1.1 and Kv1.2 were significantly downregulated (**Figure S4B**).

218 To understand the contribution of potassium channels towards neuronal
219 excitability, we tested pimamic acid (PiMA, 10 μM) on MSNs in the brain slices of
220 *Scn2a*^{gtKO/gtKO} mice. PiMA is a relatively general K channel opener but with demonstrated
221 properties as a Kv1.1-Kv2.1 opener (40). While it might not be surprising that PiMA can
222 affect neurons from WT mice, it was quite remarkable that PiMA almost completely
223 rescued the excitability of MSNs from *Scn2a*^{gtKO/gtKO} mice to the WT range (**Figure 4C-
224 M**). By pre-incubation of 10 μM PiMA for 10 min or more, we found that PiMA could
225 significantly rescue the AP firings of MSNs from *Scn2a*^{gtKO/gtKO} mice towards the WT
226 range (**Figure 4C-D**). Strikingly, most of the parameters, including input resistance, RMP,
227 AP rheobase, voltage threshold, amplitude, fAHP, and half-width values were reversed
228 towards the WT values in the presence of PiMA as well (**Figure 4E-M**).

229 As a selective Kv1.1 opener (4-Trifluoromethyl-L-phenylglycine, 4TFMPG, 100
230 μM) was recently reported (41), we further investigated the role of the specific Kv1.1 in
231 MSNs of *Scn2a*^{gtKO/gtKO} mice. Notably, we found that the pre-incubation of 100 μM
232 4TFMPG for 10 min or more could significantly reverse the hyperexcitability of MSNs as
233 well as the RMP and rheobase values of *Scn2a*^{gtKO/gtKO} mice (**Figure S4C-E, I, N-O, and**
234 **T**). Interestingly, different from the relatively broad potassium channels opener (PiMA),

235 4TFMPG was not able to rescue the AP voltage threshold, amplitude, fAHP, half-width,
236 or input-resistance (**Figure S4F-M** and **Figure S4Q-X**).

237 To further understand whether the change of expressions in these Kv channels is
238 due to Nav1.2 deficiency, we performed the qPCR experiment with striatal tissues from
239 mice injected with AAV-FlpO, in which the expression of *Scn2a* was restored. Our data
240 revealed that after the restoration of *Scn2a* expression by FlpO, the expressions of Kv1.1
241 and Kv1.2 were increased (**Figure S4B**), suggesting that neurons have a dynamic
242 adaptation mechanism to regulate gene expression in responses to the change of *Scn2a*
243 expression level. Taken together, our data indicate that Kv channels (especially Kv1.1)
244 are important mediators of the hyperexcitability phenotypes observed in MSNs with
245 severe Nav1.2 deficiency.

246

247 ***In vivo* neuronal firing in the CPu region is enhanced in adult Nav1.2-deficient mice**

248 To test whether the enhanced neuronal excitability in brain slices translates into increased
249 neuronal firing *in vivo*, we performed high-density *Neuropixels* recording on *Scn2a^{gtKO/gtKO}*
250 and WT mice. The whole experiment pipeline consists of five steps, including surgery to
251 implant headplate, recovery, recording, and postmortem imaging (**Figure S5A**). Mice
252 were allowed to recover for 14 days before *in vivo* recording. The *Neuropixels* probe,
253 consisting of ~300 recording electrodes across 3-mm length, was inserted into the CPu
254 region to record the neuronal firing of mice in their resting-state (**Figure S5B-C**). After
255 spike-sorting, units were manually verified and clear action potential waveform could be
256 identified from both *Scn2a^{gtKO/gtKO}* and WT mice (**Figure S5D**). A published set of criteria
257 were used to isolate putative MSNs (42, 43). Notably, our data demonstrated that putative
258 MSNs from the CPu region of *Scn2a^{gtKO/gtKO}* mice display a higher mean firing frequency
259 compared to WT mice (**Figure S5E**). Together, our data suggest that the neuronal
260 hyperexcitability observed in brain slice recording can manifest as enhanced *in vivo* firings
261 of head-fixed mice in their resting-state.

262

263 **DISCUSSION**

264 Here in this paper, we report a counterintuitive finding that severe Nav1.2 deficiency
265 renders hyperexcitability of principal MSNs in the striatum and pyramidal neurons in the
266 mPFC, challenging the conventional paradigm. We further demonstrated that this
267 hyperexcitability is reversible even in adult mice, showing a dynamic adaptive ability of
268 neurons. Moreover, we provided evidence to suggest that the compensatory reduction in
269 expressions of Kv channels is a possible mechanism underlying this hyperexcitability,
270 revealing a remarkable interplay between neuronal excitability and gene regulation. *In*
271 *vivo* study further demonstrated that this elevated neuronal excitability identified in brain
272 slices can be translated into enhanced neuronal firing in live mice. Our data thus provided
273 a plausible explanation for the mysterious epileptic seizure phenotypes in humans with
274 *SCN2A* deficiency, and identified molecular targets for potential therapeutic interventions.

275 Nav1.2 channel plays a variety of roles in the initiation, propagation, and
276 backpropagation of APs during development and adulthood (20, 44-47). In the early stage
277 of development, Nav1.2 is suggested to be the main sodium channel expressed in the

278 axon initial segment (AIS) (1, 48, 49). Later in the development, Nav1.6 becomes the
279 dominating channel in the axon and distal AIS, while the expression of Nav1.2 is re-
280 distributed to other parts of the neurons including proximal AIS and dendrites (20, 25, 47,
281 50). A recent study found that pyramidal neurons of the mPFC from adult *Scn2a^{+/−}* mice
282 have impaired excitatory postsynaptic current but intact AP firing (20). Here we revealed
283 that severe Nav1.2 deficiency beyond a 50% reduction level in neurons surprisingly leads
284 to hyperexcitability, which is an intrinsic property of the neurons that can be modulated in
285 adulthood. However, how severe Nav1.2 deficiency changes neuronal excitability during
286 early development remains to be determined. It is also worth noting that the expression
287 of Nav1.2 in parvalbumin (PV) or somatostatin (SST) interneurons is limited (5, 20), and
288 Nav1.2 does not seem to play a functional role in these interneurons (20). Nevertheless,
289 it is still possible that while the expression of Nav1.2 in PV and SST interneurons is low,
290 the severe reduction of *Scn2a* in principal neurons may result in compensatory
291 adaptation, which indirectly affects the excitability of interneurons. It would be interesting
292 to further explore these possibilities in a future study.

293 Because of the strong expression of *SCN2A* in principal neurons and its key roles
294 to support AP firing, it is well accepted that increased Nav1.2 channel activity leads to
295 enhanced excitability of principal neurons and aggravates seizures (2, 12, 51).
296 Intriguingly, Nav1.2 deficiency, which is mainly found in ASD/ID cases, and conventionally
297 expected to impair neuronal excitability, is also associated with epilepsies (6, 10, 52). It
298 is estimated that 20~30% of ASD/ID patients with Nav1.2 deficiency develop “late-onset”
299 seizures (2, 11). Treating epileptic seizures in these patients with Nav1.2 deficiency is
300 extremely difficult, and the use of sodium channel blockers has been shown to
301 exacerbate, rather than alleviate, the seizures (11). Our current data, together with
302 published studies on *Scn2a^{+/−}* mice (20), may suggest a new paradigm. A moderate
303 deficiency of Nav1.2 (i.e., loss-of-function variants) may impair neuronal excitability
304 contributing to ASD and ID, whereas a severe deficiency of Nav1.2 (i.e., protein-truncating
305 variants) tips the balance, resulting in neuronal hyperexcitability and increased seizure
306 susceptibility. Notably, an independent study by the Bender lab (Spratt et al, co-
307 submission) found that 100% knockout of *Scn2a* in a subset of pyramidal neurons in the
308 mPFC results in hyperexcitability as well.

309 Potassium channels are known to play major roles in neuronal excitability and
310 epileptic seizures (53-57). The AP waveform, which is highly influenced by the
311 orchestration of a variety of potassium channels, is strongly disrupted in neurons with
312 Nav1.2 deficiency, further suggesting the involvement of potassium channels. Our RNA-
313 seq results identified multiple potassium channels to be significantly downregulated in
314 *Scn2a^{gtKO/gtKO}* mice, including voltage-gated potassium channels (i.e., Kv1.1 and Kv1.2),
315 as well as two-pore potassium channels (*Kcnk1*) and inward rectifier potassium channels
316 (*Kcnj10*) (**Figure 4A-B**). Kv1.1, for example, is abundantly expressed in principal neurons
317 of the CNS, and contributes to the threshold as well as the interspike intervals during
318 repetitive firing (35). Additionally, it is known that Kv1.1 can form heteromultimeric
319 channels with Kv1.2 (35), which was identified to be downregulated in
320 *Scn2a^{gtKO/gtKO}* mice by our RNA-seq analysis as well.

321 In this current study, we have obtained evidence to show that PiMA markedly
322 reverses the elevated action potential firings associated with severe Nav1.2 deficiency

323 (Figure 4C-D). PiMA is a relatively general potassium channels opener, with
324 demonstrated properties as a Kv1.1-Kv2.1 and large-conductance Ca^{2+} -activated K
325 channel (BK) opener (40). It is worth noting that besides increased action potential firings,
326 neurons from *Scn2a*^{gtKO/gtKO} mice display reduced action potential amplitude, higher
327 voltage-threshold, increased input resistance, and elevated fAHP (Figure 1 and Figure
328 S1), which could be modulated by different potassium channels (58, 59). The reduced
329 driving force on Kv channels due to the change of AP waveform, including fAHP, might
330 contribute to the hyperexcitability phenotypes as well. Nevertheless, PiMA turns out to
331 rescue most of these altered parameters (Figure 4), which is unexpected but may
332 indicate that PiMA has additional targets beyond Kv1.1-Kv2.1 and BK channels.
333 Importantly, a relatively selective Kv1.1 opener (4TFMPG) is also able to reduce neuronal
334 hyperexcitability, suggesting that the enhanced action potential firing in *Scn2a*^{gtKO/gtKO}
335 mice could be largely attributed to the Kv1.1 channel (Figure S4C-E, N-O). Notably,
336 4TFMPG was not able to restore the input resistance, AP voltage threshold, amplitude,
337 fAHP, or half-width values (Figure S4F-M and Figure S4Q-X), largely fitting the notion
338 that 4TFMPG is selective for Kv1.1 (41). Viral delivery of a specific gene is a different
339 approach to elucidate the precise role of each distinct potassium channel towards
340 neuronal excitability. Indeed, AAV-Kv1.1 has been suggested as novel gene therapy to
341 reduce seizures (60, 61). It would be appealing to test the effect of AAV-Kv1.1 in
342 *Scn2a*^{gtKO/gtKO} mice in a follow-up study. However, as several other potassium channels
343 were also found to be downregulated, a multiple-gene delivery approach might be needed
344 to deeply assess the contributions of this collection of ion channels toward neuronal
345 hyperexcitability.

346 In summary, our results reveal an unexpected hyperexcitability phenotype in
347 neurons with severe Nav1.2 deficiency, which is reversible and likely due to the
348 compensatory reduction in expressions of potassium channels. The maladaptation or
349 “over-compensatory” from potassium channels is likely a cause leading to the
350 hyperexcitability of neurons to promote seizures. While it is a demonstrated clinical
351 observation that patients with *SCN2A* deficiency often develop intractable seizures, there
352 are no disease models that exist thus far for mechanistic investigation of this observation.
353 Neuronal hyperexcitability identified in this unique Nav1.2-deficient mouse model is the
354 first step towards the understanding of disease mechanisms underlying severe *SCN2A*
355 deficiency. Our findings may explain the puzzling clinical observation that a portion of
356 patients with Nav1.2 deficiency still develop seizures, and guide further development of
357 interventions targeting Kv channels to treat Nav1.2 deficiency-related disorders (62).
358

359 MATERIALS AND METHODS

360 Mouse strains

361 C57BL/6N-*Scn2a*^{1tm1aNarl}/Narl (referred to as *Scn2a*^{WT/gtKO}) mice were generated from the
362 National Laboratory Animal Center Rodent Model Resource Center based on a modified
363 gene-trap design (23, 24). The generation and basic characterization of this mouse model
364 are available in our recent article (22). The targeting construct (tm1a trapping cassette)
365 was electroporated into C57BL/6N embryonic stem cells, and founders in a pure
366 C57BL/BN background were obtained to produce mice for experiments. All animal

367 experiments were approved by the Institutional Animal Care and Use Committee
368 (IACUC). Mice were same-sex housed in mixed-genotype groups (3-5 mice per cage) on
369 vented cage racks with 1/8" Bed-o-cobb bedding (Anderson, Maumee, OH, USA) and >
370 8 g of nesting material as enrichment (shredded paper, crinkle-cut paper, and/or cotton
371 nestles) on a 12hr light cycle. Food (2018S Teklad from Envigo) and reverse osmosis
372 water were given *ad-lib*. Heterozygous (HET, *Scn2a*^{WT/gtKO}) mice were used as breeding
373 pairs to obtain homozygous (HOM, *Scn2a*^{gtKO/gtKO}) mice and WT littermates for study.
374 Whenever possible, investigators were blind to the genotype of the mice.

375

376 **Reagents**

377 Reagents used were as follows: N-(2-aminoethyl) biotin amide hydrochloride
378 (NEUROBIOTIN™ Tracer, SP-1120, from Vector Laboratories), Alexa 488-conjugated
379 streptavidin (Molecular Probes, Eugene, OR, USA), Tetrodotoxin citrate (sodium channel
380 blocker) was solubilized in pure water at a stock concentration of 500 μ M; Pimamic acid
381 (PiMA, Kv channels opener) was solubilized in DMSO at a 1000 \times stock concentration of
382 10 mM; 4-(Trifluoromethyl)-L-phenylglycine (4TFMPG, Kv1.1 specific opener) was
383 solubilized in 1 M hydrochloric acid at a 1000 \times stock concentration of 100 mM; (2-
384 Fluorophenyl) glycine (2FPG, Kv1.1 specific opener) was solubilized in 0.25 M
385 hydrochloric acid at a 1000 \times stock concentration of 100 mM.

386

387 **Antibodies**

388 Primary antibodies used were: Rabbit anti-SCN2A (Nav1.2) (1: 1000, Alomone Labs,
389 ASC-002), mouse anti- β -Actin (1:2000, Cell Signaling Technology, 3700S), and GAPDH
390 (D16H11) XP® Rabbit mAb (1:2000, Cell Signaling Technology, 5174S). Secondary
391 antibodies were: IRDye® 680RD Goat anti-Rabbit IgG Secondary Antibody (1:5000, LI-
392 COR Biosciences, AB_10956166) and IRDye® 680RD Goat anti-Mouse IgG Secondary
393 Antibody (1:5000, LI-COR Biosciences, AB_10956588).

394

395 **Genotyping**

396 Mice were labeled and genotyped via ear punch at weaning (21-28 days old). Genotyping
397 for the tm1a cassette was performed using gene-specific polymerase chain reaction
398 (PCR) on DNA extracted from ear tissues with a tissue DNA extraction kit (Macherey-
399 Nagel, Bethlehem, PA, USA) with primers (forward 5' to 3':
400 GAGGCAAAGAACCTGTACTGTGGGG, reverse:
401 GACGCCCTGTGAATAAACCAAGGAA). The wild type allele's PCR product is 240 base
402 pairs (bp) and the tm1a (gtKO) allele's PCR product is 340 bp.

403

404 **Adeno-associated virus (AAV) production**

405 pAAV-EF1a-mCherry-IRES-Flpo was a gift from Karl Deisseroth (63) (Addgene plasmid
406 # 55634 and viral prep # 55634-AAVrg; <http://n2t.net/addgene:55634>; RRID:
407 Addgene_55634), AAV9-PHP.eB-EF1a-mCherry-IRES-Flpo with the titer of 2.56 \times 10¹³

408 GC/mL was packed by Penn Vector Core (<http://pennvectorcore.med.upenn.edu/>);
409 Control virus, PHP.eB-Ef1a-DO-mCherry-WPRE-pA with the titer of 1.2×10^{13} GC/mL was
410 packed by Bio-Detail Corporation.

411

412 **Surgical procedures**

413 For all surgeries (except as noted), mice were systemically anesthetized with ketamine
414 and xylazine, and received analgesic buprenorphine to help postoperative recovery.

415

416 **AAV injections**

417 For systemic delivery of virus, each adult mouse received 2×10^{11} infections of FlpO- or
418 control AAV virus via tail vein injection. For viral injection into the brain to label neurons
419 sparsely, mice were anesthetized with ketamine/xylazine (100/10 mg/kg, i.p.) and
420 secured in a stereotaxic apparatus with ear-bars (RWD Ltd, China). After exposing the
421 skull via a small incision, small holes for each hemisphere were drilled for injection based
422 on coordinates to bregma. Mice were bilaterally injected with AAV virus (diluted into
423 $\sim 5 \times 10^{10}$ infections units per mL with PBS) into the caudate nucleus and the putamen
424 (CPu, dorsal striatum) (coordinates of the injection sites relative to bregma: AP +1.30 mm,
425 ML ± 1.25 mm, DV -3.30 mm; AP +0.50 mm, ML ± 2.00 mm, DV -3.25 mm, 0.5-1 μ L per
426 point) and the nucleus accumbens (NAc, ventral striatum) (coordinates of the injection
427 sites relative to bregma: AP +1.30 mm, ML ± 1.25 mm, DV -4.50 mm, 0.5-1 μ L per point)
428 with sharpened glass pipettes (Sutter Instrument), self-made to have a bevel of 35° and
429 an opening of 20- μ m diameter at the tip (64), attached to syringe needles (200- μ m
430 diameter). The pipette was filled from the back end with mineral oil and attached to a
431 syringe needle mounted in a microinjection syringe pump (World Precision Instruments,
432 UMP3T-2). Before injection, the viral suspension was suctioned through the tip of the
433 pipette. The skull over the target coordinates was thinned with a drill and punctured with
434 the tip of the pipette. The pipette was inserted slowly (120 μ m/min) to the desired depth.
435 The virus was slowly (~ 100 -150 nL/min) injected to the desired location. Before being
436 retracted out of the brain, the pipette was left at the same place for 10 min when the
437 injection was finished. The virus was allowed to express for at least three weeks before
438 electrophysiological recordings. Animals were allowed to recover from surgery for one
439 week and their body weight and health conditions were closely monitored during recovery.
440 The accurate location of injection sites and viral infectivity were confirmed in all mice *post-*
441 *hoc* by imaging of sections (50 μ m in thickness) containing the relevant brain regions.

442

443 **Perfusions and tissue processing**

444 For immunostaining, mice were administered an overdose of anesthesia and
445 transcardiacally perfused with ice-cold PBS followed by 4% paraformaldehyde (PFA) (For
446 *LacZ* staining, 4% PFA was replaced by 2% formaldehyde + 0.2% glutaraldehyde in PBS,
447 hereinafter inclusive). After perfusion, brain slices were dissected out and post-fixed in
448 4% PFA overnight at 4°C. Tissues were cryoprotected by sinking in gradient sucrose
449 (10%, 20%, and 30%) with 0.01 M PBS at 4°C and subsequently frozen in 20% sucrose
450 and 30% sucrose in 1 \times phosphate-buffered saline (PBS) for 24-48 hrs. Samples were

451 frozen in Optimal Cutting Temperature compound using dry ice and stored at -80°C.
452 Tissue sections of 20 μ m in thickness were taken on a cryostat (Leica CM1950) and
453 allowed to air dry on slides, followed by analysis on a confocal microscope (Zeiss LSM
454 900 or Nikon A1R-MP).

455

456 ***LacZ* (β -galactosidase) staining**

457 Both *Scn2a*^{gtKO/gtKO} and WT mice with or without AAV injection were processed at the
458 same time under the same condition to minimize variation. Cryosections were fixed with
459 2% formaldehyde + 0.2% glutaraldehyde in PBS for 5 min. Then sections were washed
460 at least 5 min in PBS (with 0.02% Triton X-100 for optimal reduction of unspecific binding
461 of antibodies). Tissues were covered with a volume of freshly prepared staining solution
462 [X-Gal solution added into Iron Buffer (1/19, v/v) and mixed thoroughly for 10 min],
463 sufficient to fully cover the specimen (e.g., 50 μ L) and incubate for 15-30 min at 37°C in
464 a humid chamber until cells were stained blue. Color development was checked under a
465 microscope and incubation time was continued if necessary. Specimen were washed
466 three times with PBS and mounted in glycerol before storage after removing PBS. Images
467 were analyzed under an upright light microscope.

468

469 **Immunostaining and imaging analysis**

470 Cryosections (20 μ m in thickness) were permeabilized, incubated in blocking buffer (0.5%
471 Triton X-100 and 5% normal goat serum in PBS) for one hour at room temperature, and
472 overlaid with primary antibodies overnight at 4°C. Then, the corresponding Alexa Fluor
473 488-, 594- or 647-conjugated secondary antibodies were applied. All stained sections
474 were mounted with DAPI-containing mounting solution and sealed with glass coverslips.
475 All immunofluorescence-labeled images were acquired using a confocal microscope (65).

476

477 **RNA sequencing**

478 **RNA extraction:** Four *Scn2a*^{gtKO/gtKO} (HOM) and four WT littermate mice were
479 used to extract RNA. Mice were given an overdose of anesthesia and transcardiacally
480 perfused with ice-cold PBS. Acute coronal brain slices containing cortex and striatum
481 (300- μ m in thickness) were cut using a vibratome (Leica VT1200S, Germany). Cortex
482 and striatum were rapidly microdissected, immersed into liquid nitrogen, and stored at -
483 80°C until use (same procedures for Western Blotting and qPCR). Based on the
484 manufacturer's instructions, total RNAs were extracted with TRIzol reagent (Thermo
485 Fisher Scientific, 15596018) from mouse cerebral tissues.

486 **Library preparation and sequencing:** Novogene prepared libraries using the
487 TruSeq Stranded kit (Illumina, San Diego, CA) and RNA quality was assessed using an
488 Agilent Nano RNA ChIP. Paired-end 150 bp reads were sequenced using the NovaSeq
489 6000.

490 **Analysis:** Reads were quality trimmed and Illumina TruSeq adapter sequences
491 were removed using Trimmomatic v.0.36 (66). A sliding window approach to trimming
492 was performed, using a window size of 5 and a required average Phred (quality) score of

493 16. Bases falling below a Phred score of 10 at the start and end of reads were trimmed
494 and reads shorter than 20 bases in length after trimming were removed. FastQC v. 0.11.7
495 (67) was run to observe data quality before and after trimming/adapter removal. STAR v.
496 2.5.4b (68) was used to align reads to the Ensembl *Mus musculus* genome database
497 version GRCm38.p6. The htseq-count script in HTSeq v.0.7.0 (69) was run to count the
498 number of reads mapping to each gene. HTSeq used Biopython v.2.7.3 in the analysis.
499 HTSeq was run utilizing the GTF file on “intersection-nonempty” mode. The HTSeq
500 feature was set to “exon” and the attribute parameter was set to “gene_id” and the --
501 stranded=reverse option was set. The Bioconductor packages DESeq2 v.1.22.2 and
502 edgeR 3.24.3 were used for differential expression analysis. Genes that were identified
503 as differentially expressed in both packages were used as high confidence differentially
504 expressed genes and were used in subsequent pathway analysis. The Benjamini-
505 Hochberg false discovery rate correction was used to correct p-values for multiple testing.
506 To improve power, low expression transcripts were filtered out of the data before
507 performing differential expression analysis. The threshold chosen was to filter out all
508 genes expressed at lower than 0.5 counts per million (CPM) in all samples combined.
509 After filtering, 18,134 genes were remaining. The expression of genes between WT and
510 HOM were deemed significant if the adjusted p-value < 0.05. The Bioconductor package
511 biomaRt v. 2.38.0 was used to perform annotation of genes. ClusterProfiler v. 3.10.1 was
512 used to perform pathway and gene ontology enrichment analysis.

513

514 **Western blotting**

515 Brain tissues were homogenized in ice-cold RIPA lysis and extraction buffer (Thermo
516 Fisher Scientific, 89901) supplemented with protease and phosphatase inhibitors
517 (Thermo Fisher Scientific, A32953), sonicated, and cleared by centrifugation (10,000× g,
518 10 min, at 4°C). Protein concentration in the supernatant was determined by (determined
519 by Nanodrop, Thermo Scientific). Proteins in 1× sample buffer [62.5 mM Tris-HCl (pH
520 6.8), 2% (w/v) SDS, 5% glycerol, 0.05% (w/v) bromophenol blue] were denatured by
521 boiling at 95°C for 5 min. For each sample, 40 µg total proteins were loaded to the 8%
522 sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gels and transferred onto PVDF
523 membrane (Millipore, IPFL00010) by electrophoresis. Blots were blocked in 5% nonfat
524 milk in Tris-buffered saline and Tween 20 (TBST) for 1 h at room temperature and probed
525 with the primary antibody in 5% milk-TSBT overnight at 4°C. After overnight incubation,
526 the blots were washed three times in TBST for 15 min, followed by incubation with
527 corresponding IRDye® 680RD secondary antibodies in TBST for 2h at room temperature.
528 Following three cycles of 15 min washes with TBST, the immunoreactive bands were
529 scanned and captured by the Odyssey® CLx Imaging System (LI-COR Biosciences) and
530 quantitatively analyzed by densitometry with Image Studio Lite 5.2 (LI-COR Biosciences)
531 or ImageJ software (NIH). Each sample was normalized to its β-actin or GAPDH, then
532 normalized with the corresponding WT littermates.

533

534 **RNA isolation, reverse transcription, and qPCR analysis**

535 Total RNAs were extracted with TRIzol reagent (Thermo Fisher Scientific, 15596018)
536 from mouse cerebral tissues according to the manufacturer’s instructions. 4 µg RNA was

537 subjected to reverse transcription (RT) with a Maxima First Strand cDNA Synthesis Kit
538 (Thermo Fisher Scientific, K1672). The resulting cDNAs were subjected to quantitative
539 PCR analysis using the PowerUp™ SYBR™ Green Master Mix (Thermo Fisher Scientific,
540 A25777) and specific primers in a C1000 Touch PCR thermal cycler (Bio-Rad). *Gapdh*
541 and *β-actin* mRNA levels were used as an endogenous control for normalization using
542 the ΔCt method (70). In brief, test (T): $\Delta Ct^T = [Ct^T \text{ (target gene)} - Ct^T \text{ (internal control)}]$;
543 Amount of the target = $2^{-\Delta Ct}$.

544

545 **Patch-clamp recordings**

546 **Acute slice preparations:** Electrophysiology was performed in slices prepared
547 from 2-5 months-old *Scn2a^{gtKO/gtKO}* and corresponding control mice. Mice were deeply
548 anesthetized with ketamine/xylazine (100/10 mg/kg, i.p., 0.1 mL per 10 grams of body
549 weight), and then transcardially perfused, and decapitated to dissect brains into ice-cold
550 slicing solution containing the following (in mM): 110 choline chloride, 2.5 KCl, 1.25
551 Na₂PO₄, 25 NaHCO₃, 0.5 CaCl₂, 7 MgCl₂, 25 glucose, 0.6 sodium ascorbate, 3.1 sodium
552 pyruvate (bubbled with 95% O₂ and 5% CO₂, pH 7.4, 305-315 mOsm). Acute coronal
553 slices containing PFC and/or striatum (300-μm in thickness) were cut by using a
554 vibratome (Leica VT1200S, Germany) and transferred to normal artificial cerebrospinal
555 fluid (aCSF) (in mM): 125 NaCl, 2.5 KCl, 2.0 CaCl₂, 2.0 MgCl₂, 25 NaHCO₃, 1.25
556 Na₂PO₄, 10 glucose (bubbled with 95% O₂ and 5% CO₂, pH 7.4, 305-315 mOsm). Then,
557 slices were incubated at 37°C for 20-30 minutes and stored at room temperature before
558 use. Slices were visualized under IR-DIC (infrared-differential interference contrast) using
559 a BX-51WI microscope (Olympus) with an IR-2000 camera (Dage-MTI).

560 **Ex vivo electrophysiological whole-cell recordings:** All somatic whole-cell
561 patch-clamp recordings were performed from identified striatal MSNs or mPFC layer V
562 pyramidal neurons. The selection criteria for MSNs were based on morphological
563 characteristics with medium-sized cell body presenting polygon or diamond viewed with
564 a microscope equipped with IR-DIC optics (BX-51WI, Olympus), and numerous dendritic
565 spines and their hyperpolarized RMP (lower than -80 mV) based on published method
566 (71). Layer V pyramidal cells with a prominent apical dendrite were visually identified
567 mainly by location, shape, and pClampex online membrane test parameters. Putative
568 pyramidal cells in layer 5b were identified based on regular spiking characteristics (20,
569 72, 73). To minimize variability, recordings were made on cells with low or high HCN
570 expression levels, corresponding to intratelencephalic (IT) or pyramidal tract (PT) neurons,
571 respectively. The selection criterion for PT pyramidal cells was based on their firing
572 properties and shape of the AP (i.e., all cells' intrinsic ability to generate, upon
573 subthreshold depolarization possessed a prominent after-hyperpolarization and
574 significant membrane-potential sags induced by both hyperpolarizing and depolarizing
575 current injection at the soma). Recordings of PT neurons were used for further analysis.

576 For whole-cell current-clamp recordings, the internal solution contained (in mM):
577 122 KMeSO₄, 4 KCl, 2 MgCl₂, 0.2 EGTA, 10 HEPES, 4 Na₂ATP, 0.3 Tris-GTP, 14 Tris-
578 phosphocreatine, adjusted to pH 7.25 with KOH, 295-305 mOsm. The sag ratio, input
579 resistance, and firing number were obtained in response to a series of 400 ms current
580 steps from -200 pA to +400 pA in increments of 50 pA, each sweep duration of 5 s with

581 cells held at the normal RMP or a fixed potential of -80 mV. The sag ratio was calculated
582 with the equation:

583
$$\text{Sag ratio} = (V_{\text{baseline}} - V_{\text{steady-state}}) / (V_{\text{baseline}} - V_{\text{min}})$$

584 Where V_{baseline} is the resting membrane potential or -80 mV, V_{min} is the minimum
585 voltage reached soon after the hyperpolarizing current pulse, and $V_{\text{steady-state}}$ (V_{ss}) is the
586 voltage recorded at 0-10 ms before the end of the -200 pA stimulus.

587 The input resistance was calculated with the equation:

588
$$\text{Input resistance} = (V_{\text{baseline}} - V_{\text{steady-state}}) * 10 (\text{M}\Omega)$$

589 Where V_{baseline} is the resting membrane potential or -80 mV, and $V_{\text{steady-state}}$ (V_{ss}) is
590 the voltage recorded at 0-10 ms before the end of the -100 pA stimulus.

591 The RMP, AP threshold, amplitude, fast afterhyperpolarization (fAHP), and half-
592 width values were obtained in response to a 20 ms current step of the smallest current to
593 obtain an intact AP, each sweep duration of 1.5 s and start-to-start intervals of 10 s with
594 cells held at the normal RMP or a fixed potential of -80 mV. The RMP, AP threshold,
595 amplitude, fAHP, and half-width values were analyzed using the Clampfit 11.1 inbuilt
596 statistics measurements program (Criteria as the baseline, peak amplitude, antipeak
597 amplitude, and half-width). The threshold was defined as the V_m when dV/dt
598 measurements first exceeded 15 V/s.

599 We used thin-wall borosilicate pipettes (BF150-110-10) with open-tip resistances
600 of 3-5 M Ω . All recordings were started at least 1 min after breakin to stabilize the contact
601 between the glass electrode and the cell membrane, and finished within 10 min to avoid
602 large voltage changes due to the internal solution exchange equilibrium. Recordings were
603 performed with an Axon MultiClamp 700B amplifier (Molecular Devices) and data were
604 acquired using pClamp 11.1 software at the normal RMP or a fixed potential of -80 mV,
605 filtered at 2 kHz and sampling rate at 20 kHz with an Axon Digidata 1550B plus
606 HumSilencer digitizer (Molecular Devices). Slices were maintained under continuous
607 perfusion of aCSF at 32-33°C with a 2-3 mL/min flow. In the whole-cell configuration
608 series resistance (Rs) 15-30 M Ω , and recordings with unstable Rs or a change of Rs >
609 20% were aborted.

610 To study the effect of Kv channels openers, the 1000 \times stocks were freshly diluted
611 with aCSF, respectively. After 10 min perfusion of each opener or the corresponding
612 vehicle control (0.1% DMSO in aCSF for PiMA, and aCSF for 4TFMPG), the target
613 neurons were studied with the continuous perfusion of the chemicals. One or two neurons
614 were patched for each brain slice, and recordings were discarded if a slice was perfused
615 with Kv channels openers for more than 30 min.

616 For cell labeling, the internal solution contains 0.1-0.2% (w/v) neurobiotin tracer.
617 At the end of the electrophysiological recording (about 30 min), slices were treated as
618 previously described (74). Briefly, sections were fixed in 4% paraformaldehyde in 0.1 M
619 phosphate buffer (pH 7.4) for 20-30 min at room temperature, and subsequently washed
620 3-4 times for 30 min in 0.1 M phosphate-buffered saline (PBS, pH 7.4) at 4°C. Sections
621 were then incubated in Alexa 488-conjugated streptavidin (overnight at 4°C, 1: 250 in
622 blocking solution) to visualize neurobiotin.

623

624 **Neuropixels recordings and data analysis**

625 **Surgeries:** Animal preparation was performed as described previously (64, 75).
626 Mice were anesthetized and head-fixed and underwent stereotaxic surgery to implant a
627 metal headframe with a 10-mm circular opening (Narishige, MAG-1, and CP2) for head-
628 fixation. An incision was made over the skin. The skin and periosteum were removed,
629 and a thin layer of cyanoacrylate (Krazy glue) was applied to attach the headplate and
630 cover the exposed skull. A layer of clear Stoelting™ Dental Cement (Fisher Scientific, 10-
631 000-786) was then applied on top of cyanoacrylate and forms a chamber around the skull
632 to contain the ground wire and aCSF during electrophysiological recordings. The animals
633 received two weeks recovery period after surgery before commencing experiments.
634 Before electrophysiological recordings, a 600 μ m diameter craniotomy was prepared to
635 access the intended brain regions with *Neuropixels* probes.

636 **In vivo recordings:** Electrophysiological recordings were made with *Neuropixels*
637 probes in head-fixed mice. On the day of the experiment, the mouse was placed under
638 light isoflurane anesthesia. A ground wire was secured to the skull, and the exposed brain
639 was covered with a layer of 4% agar in aCSF. Following recovery from anesthesia, the
640 mouse was head-fixed on the experimental rig. Before insertion, the probe tip was painted
641 with CM-Dil. Briefly, the *Neuropixels* probe was secured to an arm of stereotaxic, and the
642 backside of the probe was dipped into a 1 μ L droplet of CM-Dil (Thermo Fisher Scientific,
643 C7000) dissolved in ethanol (1 μ g/ μ L). The ethanol was allowed to evaporate, and the
644 CM-Dil was dried onto the backside of the tip. The probe was then inserted slowly (120-
645 480 μ m/min) into the striatum (coordinates of the injection sites relative to bregma: AP
646 +1.30 mm, ML \pm 1.25 mm, 4.50 mm in depth) through the craniotomy on the skull. After
647 reaching the desired depth for a probe, the probe was allowed to settle for 10 minutes
648 before the commencement of recording. The first 384 electrodes were turned on in the
649 *Neuropixel* probe, which corresponds to about 3.8 mm length probe. At the end of each
650 recording session, the probe was retracted out of the brain and cleaned using Tergazyme
651 (Alconox) followed by washing with distilled water. The probe insertion was verified by
652 identifying the Dil fluorescence in sectioned brain tissue.

653 **Data acquisition and Analysis:** All data were acquired with a 30-kHz sampling
654 rate under the Open Ephys GUI (<https://open-ephys.atlassian.net/wiki/spaces/OEW/pages/963280903/Neuropix-PXI>). A 300-Hz high-
655 pass filter was present in the Neuropixels probe, and another 300-Hz high-pass filter (3rd-
656 order Butterworth) was applied offline before spike sorting.

658 Spike waveforms were automatically extracted from the raw data using Kilosort 2.0
659 (<https://github.com/MouseLand/Kilosort/releases/tag/v2.0>). The outputs were loaded into
660 PHY (76) for manual refinement, which consisted of merging and splitting clusters, as well
661 as marking non-neural clusters as “noise”. Noise units were identified by their abnormal
662 waveform shape, as well as distinct cyclical patterns in the autocorrelogram. A set of
663 heuristic rules based on the features of waveforms to remove abnormal waveforms [the
664 parameters were used for this purpose were peak-to-trough (PT) ratio < 0.99 and
665 recovery slope < 0]. Waveforms for each unit were extracted from the raw data, and then
666 averaged. All the averaged waveforms were used to calculate the mean waveform.

667 Striatal single units were classified according to the methods described previously
668 (42), using mean firing rate, mean waveform peak width at half-maximum, mean
669 waveform trough width at half-minimum, and ISI distribution. These values were averaged
670 across epochs when a cell was present in multiple epochs. The standard classification
671 for the clusters was defined as follows: fast-spiking interneurons (FSIs): firing rate > 3 Hz,
672 peak width < 0.2 ms, and a ratio of trough width to peak width (TPR) < 2.7 (TPR was
673 estimated by k-means clustering and was more reliable than exact trough width for FSIs);
674 tonically-active neurons (TANs): < 5% of ISIs less than 10 ms, a median ISI > 100 ms,
675 and peak width (0.2-0.35 ms) and trough width (0.1-0.2 ms) above the 95th percentile for
676 the remainder of the units; unclassified units had low TPR and/or narrow trough widths (<
677 0.3 ms) but firing rates < 2 Hz; all other units were considered putative medium spiny
678 neurons (MSNs).

679

680 Quantification and statistical analysis

681 Normality and variance similarity was measured by GraphPad Prism before we applied
682 any parametric tests. Two-tailed Student's *t*-test (parametric) or unpaired two-tailed
683 Mann-Whitney U-test (non-parametric) was used for single comparisons between two
684 groups. Other data were analyzed using one-way or two-way ANOVA with Tukey
685 correction (parametric) or Kruskal-Wallis with Dunn's multi comparison correction (non-
686 parametric) depending on the appropriate design. *Post hoc* comparisons were carried out
687 only when the primary measure showed statistical significance. Error bars in all figures
688 represent mean ± SEM. *p* values less than 0.05 were considered statistically significant.
689 Statistical significance of differences at *p* < 0.05 is indicated as one asterisk (*), *p* < 0.01
690 is indicated as two asterisks (**), and *p* < 0.001 is indicated as three asterisks (***) in all
691 figures. Mice with different litters, body weights, and sexes were randomized and
692 assigned to different treatment groups, and no other specific randomization was used for
693 the animal studies.

694

695 SUPPLEMENTARY MATERIALS

696 Supplementary material for this article is available online at TBD.

697

698 REFERENCES AND NOTES

- 699 1. E. V. Gazina, B. T. Leaw, K. L. Richards, V. C. Wimmer, T. H. Kim, T. D. Aumann, T. J.
700 Featherby, L. Churilov, V. E. Hammond, C. A. Reid, S. Petrou, 'Neonatal' Nav1.2
701 reduces neuronal excitability and affects seizure susceptibility and behaviour. *Hum Mol
702 Genet* **24**, 1457-1468 (2015).
- 703 2. S. J. Sanders, A. J. Campbell, J. R. Cottrell, R. S. Moller, F. F. Wagner, A. L. Auldrige,
704 R. A. Bernier, W. A. Catterall, W. K. Chung, J. R. Empfield, A. L. George, Jr., J. F. Hipp,
705 O. Khwaja, E. Kiskinis, D. Lal, D. Malhotra, J. J. Millichap, T. S. Otis, S. Petrou, G. Pitt,
706 L. F. Schust, C. M. Taylor, J. Tjernagel, J. E. Spiro, K. J. Bender, Progress in
707 Understanding and Treating SCN2A-Mediated Disorders. *Trends in neurosciences* **41**,
708 442-456 (2018).
- 709 3. C. Tian, K. Wang, W. Ke, H. Guo, Y. Shu, Molecular identity of axonal sodium channels
710 in human cortical pyramidal cells. *Front Cell Neurosci* **8**, 297 (2014).

711 4. H. Miyazaki, F. Oyama, R. Inoue, T. Aosaki, T. Abe, H. Kiyonari, Y. Kino, M. Kurosawa,
712 J. Shimizu, I. Ogiwara, K. Yamakawa, Y. Koshimizu, F. Fujiyama, T. Kaneko, H.
713 Shimizu, K. Nagatomo, K. Yamada, T. Shimogori, N. Hattori, M. Miura, N. Nukina,
714 Singular localization of sodium channel beta4 subunit in unmyelinated fibres and its role
715 in the striatum. *Nature communications* **5**, 5525 (2014).

716 5. T. Yamagata, I. Ogiwara, E. Mazaki, Y. Yanagawa, K. Yamakawa, Nav1.2 is expressed
717 in caudal ganglionic eminence-derived disinhibitory interneurons: Mutually exclusive
718 distributions of Nav1.1 and Nav1.2. *Biochemical and biophysical research
719 communications* **491**, 1070-1076 (2017).

720 6. S. J. Sanders, M. T. Murtha, A. R. Gupta, J. D. Murdoch, M. J. Raubeson, A. J. Willsey,
721 A. G. Ercan-Sencicek, N. M. DiLullo, N. N. Parikshak, J. L. Stein, M. F. Walker, G. T.
722 Ober, N. A. Teran, Y. Song, P. El-Fishawy, R. C. Murtha, M. Choi, J. D. Overton, R. D.
723 Bjornson, N. J. Carriero, K. A. Meyer, K. Bilguvar, S. M. Mane, N. Sestan, R. P. Lifton,
724 M. Gunel, K. Roeder, D. H. Geschwind, B. Devlin, M. W. State, De novo mutations
725 revealed by whole-exome sequencing are strongly associated with autism. *Nature* **485**,
726 237-241 (2012).

727 7. A. Hoischen, N. Krumm, E. E. Eichler, Prioritization of neurodevelopmental disease
728 genes by discovery of new mutations. *Nat Neurosci* **17**, 764-772 (2014).

729 8. M. R. Johnson, K. Shkura, S. R. Langley, A. Delahaye-Duriez, P. Srivastava, W. D. Hill,
730 O. J. Rackham, G. Davies, S. E. Harris, A. Moreno-Moral, M. Rotival, D. Speed, S.
731 Petrovski, A. Katz, C. Hayward, D. J. Porteous, B. H. Smith, S. Padmanabhan, L. J.
732 Hocking, J. M. Starr, D. C. Liewald, A. Visconti, M. Falchi, L. Bottolo, T. Rossetti, B.
733 Danis, M. Mazzuferi, P. Foerch, A. Grote, C. Helmstaedter, A. J. Becker, R. M.
734 Kaminski, I. J. Deary, E. Petretto, Systems genetics identifies a convergent gene
735 network for cognition and neurodevelopmental disease. *Nat Neurosci* **19**, 223-232
736 (2016).

737 9. T. Wang, H. Guo, B. Xiong, H. A. Stessman, H. Wu, B. P. Coe, T. N. Turner, Y. Liu, W.
738 Zhao, K. Hoekzema, L. Vives, L. Xia, M. Tang, J. Ou, B. Chen, Y. Shen, G. Xun, M.
739 Long, J. Lin, Z. N. Kronenberg, Y. Peng, T. Bai, H. Li, X. Ke, Z. Hu, J. Zhao, X. Zou, K.
740 Xia, E. E. Eichler, De novo genic mutations among a Chinese autism spectrum disorder
741 cohort. *Nature communications* **7**, 13316 (2016).

742 10. F. K. Satterstrom, J. A. Kosmicki, J. Wang, M. S. Breen, S. De Rubeis, J. Y. An, M.
743 Peng, R. Collins, J. Grove, L. Klei, C. Stevens, J. Reichert, M. S. Mulhern, M. Artomov,
744 S. Gerges, B. Sheppard, X. Xu, A. Bhaduri, U. Norman, H. Brand, G. Schwartz, R.
745 Nguyen, E. E. Guerrero, C. Dias, C. Autism Sequencing, P.-B. C. i, C. Betancur, E. H.
746 Cook, L. Gallagher, M. Gill, J. S. Sutcliffe, A. Thurm, M. E. Zwick, A. D. Borglum, M. W.
747 State, A. E. Cicek, M. E. Talkowski, D. J. Cutler, B. Devlin, S. J. Sanders, K. Roeder, M.
748 J. Daly, J. D. Buxbaum, Large-Scale Exome Sequencing Study Implicates Both
749 Developmental and Functional Changes in the Neurobiology of Autism. *Cell* **180**, 568-
750 584 e523 (2020).

751 11. M. Wolff, K. M. Johannessen, U. B. S. Hedrich, S. Masnada, G. Rubboli, E. Gardella, G.
752 Lesca, D. Ville, M. Milh, L. Villard, A. Afenjar, S. Chantot-Bastaraud, C. Mignot, C.
753 Lardennois, C. Nava, N. Schwarz, M. Gerard, L. Perrin, D. Doummar, S. Auvin, M. J.
754 Miranda, M. Hempel, E. Brilstra, N. Knoers, N. Verbeek, M. van Kempen, K. P. Braun,
755 G. Mancini, S. Biskup, K. Hortschagel, M. Docker, T. Bast, T. Loddenkemper, L. Wong-
756 Kisiel, F. M. Baumeister, W. Fazeli, P. Striano, R. Dilena, E. Fontana, F. Zara, G.
757 Kurlemann, J. Klepper, J. G. Thoene, D. H. Arndt, N. Deconinck, T. Schmitt-Mechelke,
758 O. Maier, H. Muhle, B. Wical, C. Finetti, R. Bruckner, J. Pietz, G. Golla, D. Jillella, K. M.
759 Linnet, P. Charles, U. Moog, E. Oiglane-Shlik, J. F. Mantovani, K. Park, M. Deprez, D.
760 Lederer, S. Mary, E. Scalais, L. Selim, R. Van Coster, L. Lagae, M. Nikanorova, H.
761 Hjalgrim, G. C. Korenke, M. Trivisano, N. Specchio, B. Ceulemans, T. Dorn, K. L. Helbig,

762 K. Hardies, H. Stamberger, P. de Jonghe, S. Weckhuysen, J. R. Lemke, I. Krageloh-
763 Mann, I. Helbig, G. Kluger, H. Lerche, R. S. Moller, Genetic and phenotypic
764 heterogeneity suggest therapeutic implications in SCN2A-related disorders. *Brain : a
765 journal of neurology* **140**, 1316-1336 (2017).

766 12. M. Wolff, A. Brunklaus, S. M. Zuberi, Phenotypic spectrum and genetics of SCN2A-
767 related disorders, treatment options, and outcomes in epilepsy and beyond. *Epilepsia* **60**
768 **Suppl 3**, S59-S67 (2019).

769 13. K. Tóth, K. T. Hofer, Á. Kandrács, L. Entz, A. Bagó, L. Erőss, Z. Jordán, G. Nagy, A.
770 Sólyom, D. Fabó, I. Ulbert, L. Wittner, Hyperexcitability of the network contributes to
771 synchronization processes in the human epileptic neocortex. *The Journal of physiology*
772 **596**, 317-342 (2018).

773 14. R. Planells-Cases, M. Caprini, J. Zhang, E. M. Rockenstein, R. R. Rivera, C. Murre, E.
774 Masliah, M. Montal, Neuronal death and perinatal lethality in voltage-gated sodium
775 channel alpha(II)-deficient mice. *Biophys J* **78**, 2878-2891 (2000).

776 15. W. Shin, H. Kweon, R. Kang, D. Kim, K. Kim, M. Kang, S. Y. Kim, S. N. Hwang, J. Y.
777 Kim, E. Yang, H. Kim, E. Kim, Scn2a Haploinsufficiency in Mice Suppresses
778 Hippocampal Neuronal Excitability, Excitatory Synaptic Drive, and Long-Term
779 Potentiation, and Spatial Learning and Memory. *Frontiers in Molecular Neuroscience* **12**,
780 (2019).

781 16. I. Ogiwara, H. Miyamoto, T. Tatsukawa, T. Yamagata, T. Nakayama, N. Atapour, E.
782 Miura, E. Mazaki, S. J. Ernst, D. Cao, H. Ohtani, S. Itohara, Y. Yanagawa, M. Montal, M.
783 Yuzaki, Y. Inoue, T. K. Hensch, J. L. Noebels, K. Yamakawa, Nav1.2 haplodeficiency in
784 excitatory neurons causes absence-like seizures in mice. *Commun Biol* **1**, 96 (2018).

785 17. H. Miyamoto, T. Tatsukawa, A. Shimohata, T. Yamagata, T. Suzuki, K. Amano, E.
786 Mazaki, M. Raveau, I. Ogiwara, A. Oba-Asaka, T. K. Hensch, S. Itohara, K. Sakimura, K.
787 Kobayashi, K. Kobayashi, K. Yamakawa, Impaired cortico-striatal excitatory transmission
788 triggers epilepsy. *Nature communications* **10**, 1917 (2019).

789 18. M. V. Fuccillo, Striatal Circuits as a Common Node for Autism Pathophysiology. *Front
790 Neurosci* **10**, 27 (2016).

791 19. J. Aupy, F. Wendling, K. Taylor, J. Bulacio, J. Gonzalez-Martinez, P. Chauvel, Cortico-
792 striatal synchronization in human focal seizures. *Brain : a journal of neurology* **142**,
793 1282-1295 (2019).

794 20. P. W. E. Spratt, R. Ben-Shalom, C. M. Keeshen, K. J. Burke, Jr., R. L. Clarkson, S. J.
795 Sanders, K. J. Bender, The Autism-Associated Gene Scn2a Contributes to Dendritic
796 Excitability and Synaptic Function in the Prefrontal Cortex. *Neuron* **103**, 673-685 e675
797 (2019).

798 21. M. S. Fallah, J. H. Eubanks, Seizures in Mouse Models of Rare Neurodevelopmental
799 Disorders. *Neuroscience* **445**, 50-68 (2020).

800 22. M. Eaton, J. Zhang, Z. Ma, A. C. Park, E. Lietzke, C. M. Romero, Y. Liu, E. R. Coleman,
801 X. Chen, T. Xiao, Z. Que, S. Lai, J. Wu, J. H. Lee, S. Palant, H. P. Nguyen, Z. Huang,
802 W. C. Skarnes, W. A. Koss, Y. Yang, Generation and basic characterization of a gene-
803 trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated
804 sodium channel Nav 1.2 expression. *Genes Brain Behav*, e12725 (2020).

805 23. W. C. Skarnes, H. von Melchner, W. Wurst, G. Hicks, A. S. Nord, T. Cox, S. G. Young,
806 P. Ruiz, P. Soriano, M. Tessier-Lavigne, B. R. Conklin, W. L. Stanford, J. Rossant, C.
807 International Gene Trap, A public gene trap resource for mouse functional genomics.
808 *Nat Genet* **36**, 543-544 (2004).

809 24. W. C. Skarnes, B. Rosen, A. P. West, M. Koutsourakis, W. Bushell, V. Iyer, A. O. Mujica,
810 M. Thomas, J. Harrow, T. Cox, D. Jackson, J. Severin, P. Biggs, J. Fu, M. Nefedov, P. J.
811 de Jong, A. F. Stewart, A. Bradley, A conditional knockout resource for the genome-wide
812 study of mouse gene function. *Nature* **474**, 337-342 (2011).

813 25. W. Hu, B. P. Bean, Differential Control of Axonal and Somatic Resting Potential by
814 Voltage-Dependent Conductances in Cortical Layer 5 Pyramidal Neurons. *Neuron* **99**,
815 1355 (2018).

816 26. Z. Huang, M. C. Walker, M. M. Shah, Loss of dendritic HCN1 subunits enhances cortical
817 excitability and epileptogenesis. *The Journal of neuroscience : the official journal of the*
818 *Society for Neuroscience* **29**, 10979-10988 (2009).

819 27. G. Testa, J. Schaft, F. van der Hoeven, S. Glaser, K. Anastassiadis, Y. Zhang, T.
820 Hermann, W. Stremmel, A. F. Stewart, A reliable lacZ expression reporter cassette for
821 multipurpose, knockout-first alleles. *Genesis* **38**, 151-158 (2004).

822 28. K. Y. Chan, M. J. Jang, B. B. Yoo, A. Greenbaum, N. Ravi, W. L. Wu, L. Sanchez-
823 Guardado, C. Lois, S. K. Mazmanian, B. E. Deverman, V. Grdinaru, Engineered AAVs
824 for efficient noninvasive gene delivery to the central and peripheral nervous systems.
825 *Nature neuroscience* **20**, 1172-1179 (2017).

826 29. M. H. Meisler, SCN8A encephalopathy: Mechanisms and models. *Epilepsia* **60 Suppl 3**,
827 S86-S91 (2019).

828 30. R. K. A. Bunton-Stasyshyn, J. L. Wagnon, E. R. Wengert, B. S. Barker, A. Faulkner, P.
829 K. Wagley, K. Bhatia, J. M. Jones, M. R. Maniaci, J. M. Parent, H. P. Goodkin, M. K.
830 Patel, M. H. Meisler, Prominent role of forebrain excitatory neurons in SCN8A
831 encephalopathy. *Brain : a journal of neurology* **142**, 362-375 (2019).

832 31. L. F. Lopez-Santiago, Y. Yuan, J. L. Wagnon, J. M. Hull, C. R. Frasier, H. A. O'Malley,
833 M. H. Meisler, L. L. Isom, Neuronal hyperexcitability in a mouse model of SCN8A
834 epileptic encephalopathy. *Proc Natl Acad Sci U S A* **114**, 2383-2388 (2017).

835 32. C. D. Makinson, B. S. Tanaka, J. M. Sorokin, J. C. Wong, C. A. Christian, A. L. Goldin,
836 A. Escayg, J. R. Huguenard, Regulation of Thalamic and Cortical Network Synchrony by
837 Scn8a. *Neuron* **93**, 1165-1179 e1166 (2017).

838 33. A. V. Vega, D. L. Henry, G. Matthews, Reduced expression of Na(v)1.6 sodium channels
839 and compensation by Na(v)1.2 channels in mice heterozygous for a null mutation in
840 Scn8a. *Neurosci Lett* **442**, 69-73 (2008).

841 34. E. Katz, O. Stoler, A. Scheller, Y. Khrapunsky, S. Goebels, F. Kirchhoff, M. J. Gutnick,
842 F. Wolf, I. A. Fleidervish, Role of sodium channel subtype in action potential generation
843 by neocortical pyramidal neurons. *Proceedings of the National Academy of Sciences of*
844 *the United States of America* **115**, E7184-E7192 (2018).

845 35. D. Guan, J. C. Lee, T. Tkatch, D. J. Surmeier, W. E. Armstrong, R. C. Foehring,
846 Expression and biophysical properties of Kv1 channels in supragranular neocortical
847 pyramidal neurones. *The Journal of physiology* **571**, 371-389 (2006).

848 36. Z. Niday, A. V. Tzingounis, Potassium Channel Gain of Function in Epilepsy: An
849 Unresolved Paradox. *The Neuroscientist : a review journal bringing neurobiology,*
850 *neurology and psychiatry* **24**, 368-380 (2018).

851 37. A. Lorincz, Z. Nusser, Cell-type-dependent molecular composition of the axon initial
852 segment. *The Journal of neuroscience : the official journal of the Society for*
853 *Neuroscience* **28**, 14329-14340 (2008).

854 38. M. Dumenieu, M. Oule, M. R. Kreutz, J. Lopez-Rojas, The Segregated Expression of
855 Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional
856 Implications and Regulatory Mechanisms. *Front Cell Neurosci* **11**, 115 (2017).

857 39. K. Trosclair, H. A. Dhaibar, N. M. Gautier, V. Mishra, E. Glasscock, Neuron-specific
858 Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory
859 dysregulation. *Neurobiology of disease* **137**, 104759 (2020).

860 40. K. Sakamoto, Y. Suzuki, H. Yamamura, S. Ohya, K. Muraki, Y. Imaizumi, Molecular
861 mechanisms underlying pimaric acid-induced modulation of voltage-gated K(+)
862 channels. *J Pharmacol Sci* **133**, 223-231 (2017).

863 41. R. W. Manville, G. W. Abbott, Isoform-Selective KCNA1 Potassium Channel Openers
864 Built from Glycine. *J Pharmacol Exp Ther* **373**, 391-401 (2020).

865 42. M. Sosa, H. R. Joo, L. M. Frank, Dorsal and Ventral Hippocampal Sharp-Wave Ripples
866 Activate Distinct Nucleus Accumbens Networks. *Neuron* **105**, 725-741.e728 (2020).

867 43. M. W. Antoine, T. Langberg, P. Schnepel, D. E. Feldman, Increased Excitation-Inhibition
868 Ratio Stabilizes Synapse and Circuit Excitability in Four Autism Mouse Models. *Neuron*
869 **101**, 648-661.e644 (2019).

870 44. R. E. Westenbroek, J. L. Noebels, W. A. Catterall, Elevated expression of type II Na⁺
871 channels in hypomyelinated axons of shiverer mouse brain. *J Neurosci* **12**, 2259-2267
872 (1992).

873 45. J. Wang, S. W. Ou, Y. J. Wang, Distribution and function of voltage-gated sodium
874 channels in the nervous system. *Channels (Austin)* **11**, 534-554 (2017).

875 46. A. M. Rush, S. D. Dib-Hajj, S. G. Waxman, Electrophysiological properties of two axonal
876 sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones.
877 *The Journal of physiology* **564**, 803-815 (2005).

878 47. W. Hu, C. Tian, T. Li, M. Yang, H. Hou, Y. Shu, Distinct contributions of Na(v)1.6 and
879 Na(v)1.2 in action potential initiation and backpropagation. *Nat Neurosci* **12**, 996-1002
880 (2009).

881 48. A. D. Workman, C. J. Charvet, B. Clancy, R. B. Darlington, B. L. Finlay, Modeling
882 transformations of neurodevelopmental sequences across mammalian species. *The
883 Journal of neuroscience : the official journal of the Society for Neuroscience* **33**, 7368-
884 7383 (2013).

885 49. E. V. Gazina, K. L. Richards, M. B. Mokhtar, E. A. Thomas, C. A. Reid, S. Petrou,
886 Differential expression of exon 5 splice variants of sodium channel alpha subunit mRNAs
887 in the developing mouse brain. *Neuroscience* **166**, 195-200 (2010).

888 50. K. J. Bender, L. O. Trussell, The physiology of the axon initial segment. *Annual review of
889 neuroscience* **35**, 249-265 (2012).

889 51. U. B. S. Hedrich, S. Lauxmann, H. Lerche, SCN2A channelopathies: Mechanisms and
890 models. *Epilepsia* **60 Suppl 3**, S68-S76 (2019).

891 52. R. Ben-Shalom, C. M. Keeshen, K. N. Berrios, J. Y. An, S. J. Sanders, K. J. Bender,
892 Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants
893 Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures. *Biol
894 Psychiatry* **82**, 224-232 (2017).

895 53. I. H. Quraishi, S. Stern, K. P. Mangan, Y. Zhang, S. R. Ali, M. R. Mercier, M. C.
896 Marchetto, M. J. McLachlan, E. M. Jones, F. H. Gage, L. K. Kaczmarek, An Epilepsy-
897 Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by
898 Increasing Slack KNa Currents. *The Journal of neuroscience : the official journal of the
899 Society for Neuroscience* **39**, 7438-7449 (2019).

900 54. H. Soh, S. Park, K. Ryan, K. Springer, A. Maheshwari, A. V. Tzingounis, Deletion of
901 KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation
902 of excitatory transmission. *eLife* **7**, (2018).

903 55. Z. Niday, V. E. Hawkins, H. Soh, D. K. Mulkey, A. V. Tzingounis, Epilepsy-Associated
904 KCNQ2 Channels Regulate Multiple Intrinsic Properties of Layer 2/3 Pyramidal Neurons.
905 *The Journal of neuroscience : the official journal of the Society for Neuroscience* **37**,
906 576-586 (2017).

907 56. J. J. Millichap, K. L. Park, T. Tsuchida, B. Ben-Zeev, L. Carmant, R. Flaminini, N. Joshi, P.
908 M. Levisohn, E. Marsh, S. Nangia, V. Narayanan, X. R. Ortiz-Gonzalez, M. C. Patterson,
909 P. L. Pearl, B. Porter, K. Ramsey, E. L. McGinnis, M. Taglialatela, M. Tracy, B. Tran, C.
910 Venkatesan, S. Weckhuysen, E. C. Cooper, KCNQ2 encephalopathy: Features,
911 mutational hot spots, and ezogabine treatment of 11 patients. *Neurology. Genetics* **2**,
912 e96 (2016).

913

914 57. I. H. Quraishi, M. R. Mercier, H. McClure, R. L. Couture, M. L. Schwartz, R. Lukowski, P.
915 Ruth, L. K. Kaczmarek, Impaired motor skill learning and altered seizure susceptibility in
916 mice with loss or gain of function of the *Kcnt1* gene encoding Slack (KNa1.1) Na(+) -
917 activated K(+) channels. *Sci Rep* **10**, 3213 (2020).

918 58. J. Johnston, I. D. Forsythe, C. Kopp-Scheinpflug, SYMPOSIUM REVIEW: Going native:
919 voltage-gated potassium channels controlling neuronal excitability. *The Journal of
920 physiology* **588**, 3187-3200 (2010).

921 59. H. Wulff, N. A. Castle, L. A. Pardo, Voltage-gated potassium channels as therapeutic
922 targets. *Nature Reviews Drug Discovery* **8**, 982-1001 (2009).

923 60. R. C. Wykes, J. H. Heeroma, L. Mantoan, K. Zheng, D. C. MacDonald, K. Deisseroth, K.
924 S. Hashemi, M. C. Walker, S. Schorge, D. M. Kullmann, Optogenetic and potassium
925 channel gene therapy in a rodent model of focal neocortical epilepsy. *Sci Transl Med* **4**,
926 161ra152 (2012).

927 61. A. Snowball, E. Chabrol, R. C. Wykes, T. Shekh-Ahmad, J. H. Cornford, A. Lieb, M. P.
928 Hughes, G. Massaro, A. A. Rahim, K. S. Hashemi, D. M. Kullmann, M. C. Walker, S.
929 Schorge, Epilepsy Gene Therapy Using an Engineered Potassium Channel. *The Journal
930 of neuroscience : the official journal of the Society for Neuroscience* **39**, 3159-3169
931 (2019).

932 62. A. T. Berg, H. Palac, G. Wilkening, F. Zelko, L. Schust Meyer, SCN2A-Developmental
933 and Epileptic Encephalopathies: Challenges to trial-readiness for non-seizure outcomes.
934 *Epilepsia*, (2020).

935 63. L. E. Fenno, J. Mattis, C. Ramakrishnan, M. Hyun, S. Y. Lee, M. He, J. Tucciarone, A.
936 Selimbeyoglu, A. Berndt, L. Grosenick, K. A. Zalocusky, H. Bernstein, H. Swanson, C.
937 Perry, I. Diester, F. M. Boyce, C. E. Bass, R. Neve, Z. J. Huang, K. Deisseroth,
938 Targeting cells with single vectors using multiple-feature Boolean logic. *Nat Methods* **11**,
939 763-772 (2014).

940 64. L. D. Liu, S. Chen, M. N. Economo, N. Li, K. Svoboda, Accurate localization of linear
941 probe electrodes across multiple brains. *bioRxiv*, 2020.2002.2025.965210 (2020).

942 65. J. Wang, X. He, H. Meng, Y. Li, P. Dmitriev, F. Tian, J. C. Page, Q. R. Lu, Z. He, Robust
943 Myelination of Regenerated Axons Induced by Combined Manipulations of GPR17 and
944 Microglia. *Neuron* **108**, 876-886.e874 (2020).

945 66. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina
946 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).

947 67. S. Andrews, FastQC. (2010).

948 68. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
949 Chaisson, T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
950 15-21 (2013).

951 69. S. Anders, P. T. Pyl, W. Huber, HTSeq--a Python framework to work with high-
952 throughput sequencing data. *Bioinformatics* **31**, 166-169 (2015).

953 70. K. J. Livak, T. D. Schmittgen, Analysis of relative gene expression data using real-time
954 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402-408 (2001).

955 71. M. E. Torres-Garcia, O. Solis, A. Patricio, A. Rodriguez-Moreno, I. Camacho-Abrego, I.
956 D. Limon, G. Flores, Dendritic morphology changes in neurons from the prefrontal
957 cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular
958 nucleus. *Neuroscience* **223**, 429-438 (2012).

959 72. R. L. Clarkson, A. T. Liptak, S. M. Gee, V. S. Sohal, K. J. Bender, D3 Receptors
960 Regulate Excitability in a Unique Class of Prefrontal Pyramidal Cells. *The Journal of
961 Neuroscience* **37**, 5846-5860 (2017).

962 73. N. C. Dembrow, R. A. Chitwood, D. Johnston, Projection-Specific Neuromodulation of
963 Medial Prefrontal Cortex Neurons. *The Journal of Neuroscience* **30**, 16922-16937
964 (2010).

965 74. M. J. Fogarty, L. A. Hammond, R. Kanjhan, M. C. Bellingham, P. G. Noakes, A method
966 for the three-dimensional reconstruction of Neurobiotin-filled neurons and the location of
967 their synaptic inputs. *Frontiers in neural circuits* **7**, 153 (2013).

968 75. X. Jia, J. H. Siegle, C. Bennett, S. D. Gale, D. J. Denman, C. Koch, S. R. Olsen, High-
969 density extracellular probes reveal dendritic backpropagation and facilitate neuron
970 classification. *Journal of neurophysiology* **121**, 1831-1847 (2019).

971 76. J. H. Siegle, X. Jia, S. Durand, S. Gale, C. Bennett, N. Graddis, G. Heller, T. K. Ramirez,
972 H. Choi, J. A. Luviano, P. A. Groblewski, R. Ahmed, A. Arkhipov, A. Bernard, Y. N.
973 Billeh, D. Brown, M. A. Buice, N. Cain, S. Caldejon, L. Casal, A. Cho, M. Chvilicek, T. C.
974 Cox, K. Dai, D. J. Denman, S. E. J. de Vries, R. Dietzman, L. Esposito, C. Farrell, D.
975 Feng, J. Galbraith, M. Garrett, E. C. Gelfand, N. Hancock, J. A. Harris, R. Howard, B.
976 Hu, R. Hytnen, R. Iyer, E. Jessett, K. Johnson, I. Kato, J. Kiggins, S. Lambert, J. Lecoq,
977 P. Ledochowitsch, J. H. Lee, A. Leon, Y. Li, E. Liang, F. Long, K. Mace, J. Melchior, D.
978 Millman, T. Mollenkopf, C. Nayan, L. Ng, K. Ngo, T. Nguyen, P. R. Nicovich, K. North, G.
979 K. Ocker, D. Ollerenshaw, M. Oliver, M. Pachitariu, J. Perkins, M. Reding, D. Reid, M.
980 Robertson, K. Ronellenfitch, S. Seid, C. Slaughterbeck, M. Stoecklin, D. Sullivan, B.
981 Sutton, J. Swapp, C. Thompson, K. Turner, W. Wakeman, J. D. Whitesell, D. Williams,
982 A. Williford, R. Young, H. Zeng, S. Naylor, J. W. Phillips, R. C. Reid, S. Mihalas, S. R.
983 Olsen, C. Koch, A survey of spiking activity reveals a functional hierarchy of mouse
984 corticothalamic visual areas. *bioRxiv*, 805010 (2019).

985

986 ACKNOWLEDGMENTS

987 **General:** We thank Dr. Amy Brewster and Dr. Chongli Yuan for the critical reading of this
988 paper.

989

990 **Funding:** This work is supported by Purdue startup funding, Ralph W. and Grace M.
991 Showalter Research Trust, and Purdue Big Idea Challenge 2.0 on Autism to Y.Y. The
992 authors gratefully acknowledge support from the Purdue University Institute for Drug
993 Discovery and Institute for Integrative Neuroscience. M.E. is supported by the National
994 Science Foundation (NSF) Graduate Research Fellowship Program (GRFP) (DGE-
995 1842166). Yang lab is grateful to the *FamilieSCN2A* foundation for the Action Potential
996 Grant support. This project was funded, in part, with support from the Indiana Clinical and
997 Translational Sciences Institute funded, in part by Award Number UL1TR002529 from the
998 National Institutes of Health, National Center for Advancing Translational Sciences,
999 Clinical and Translational Sciences Award. The Yang lab appreciates the bioinformatics
1000 support of the Collaborative Core for Cancer Bioinformatics (C³B) with support from the
1001 Indiana University Simon Comprehensive Cancer Center (Grant P30CA082709), Purdue
1002 University Center for Cancer Research (Grant P30CA023168), and Walther Cancer
1003 Foundation. The content is solely the responsibility of the authors and does not
1004 necessarily represent the official views of the National Institutes of Health.

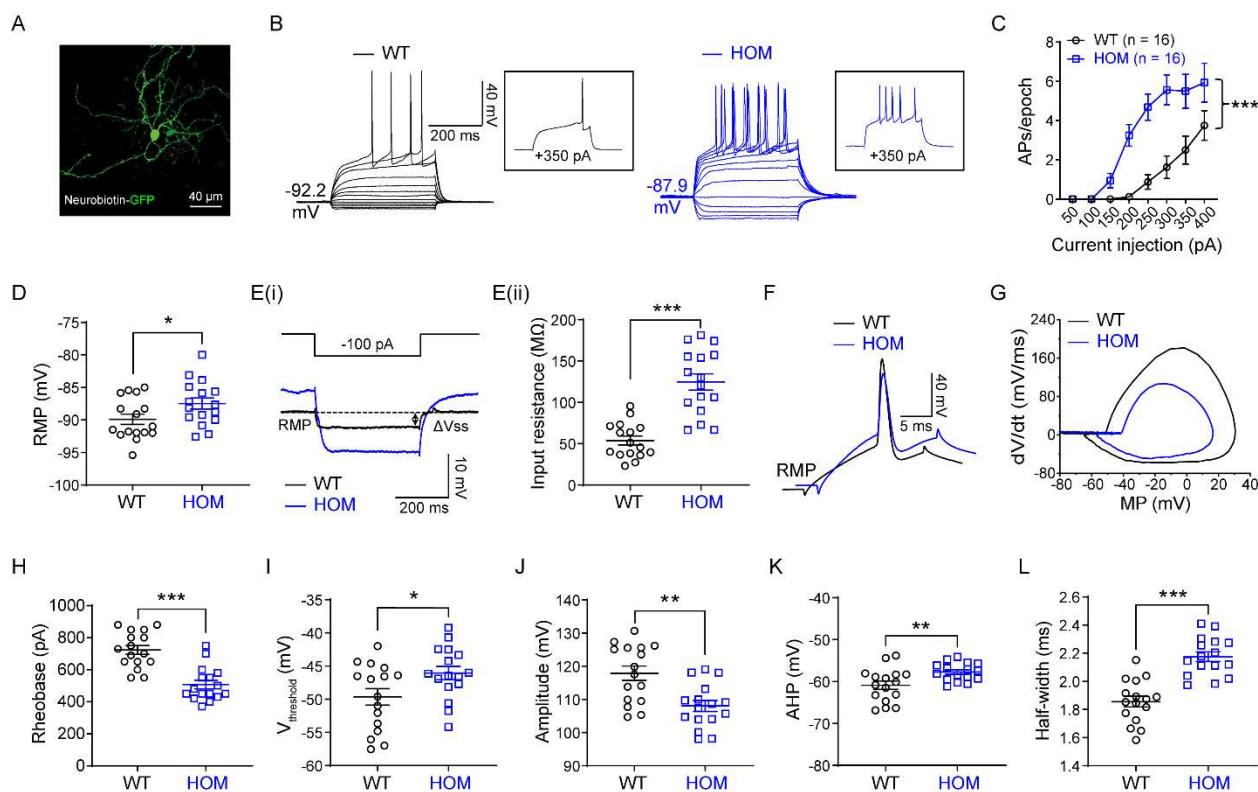
1005

1006 **Author contributions:** J.Z., X.C., Y.Y. designed the experiments. J.Z., X.C., M.E., S.L.,
1007 A.P., T.S.A., J.W., Z.M., Z.Q., J.L., T.X., Y.L., Y.W., M.I.O.A., N.A.L. performed the
1008 experiments and analyzed the data. J.A.S, K.J., Z.H., N.A.L., W.C.S. participate in data

1009 analysis and experimental design. Y.Y. supervised the project. J.Z. and Y.Y. wrote the
1010 paper with inputs from all authors.

1011

1012 **Competing interests:** The authors declare no competing interests.

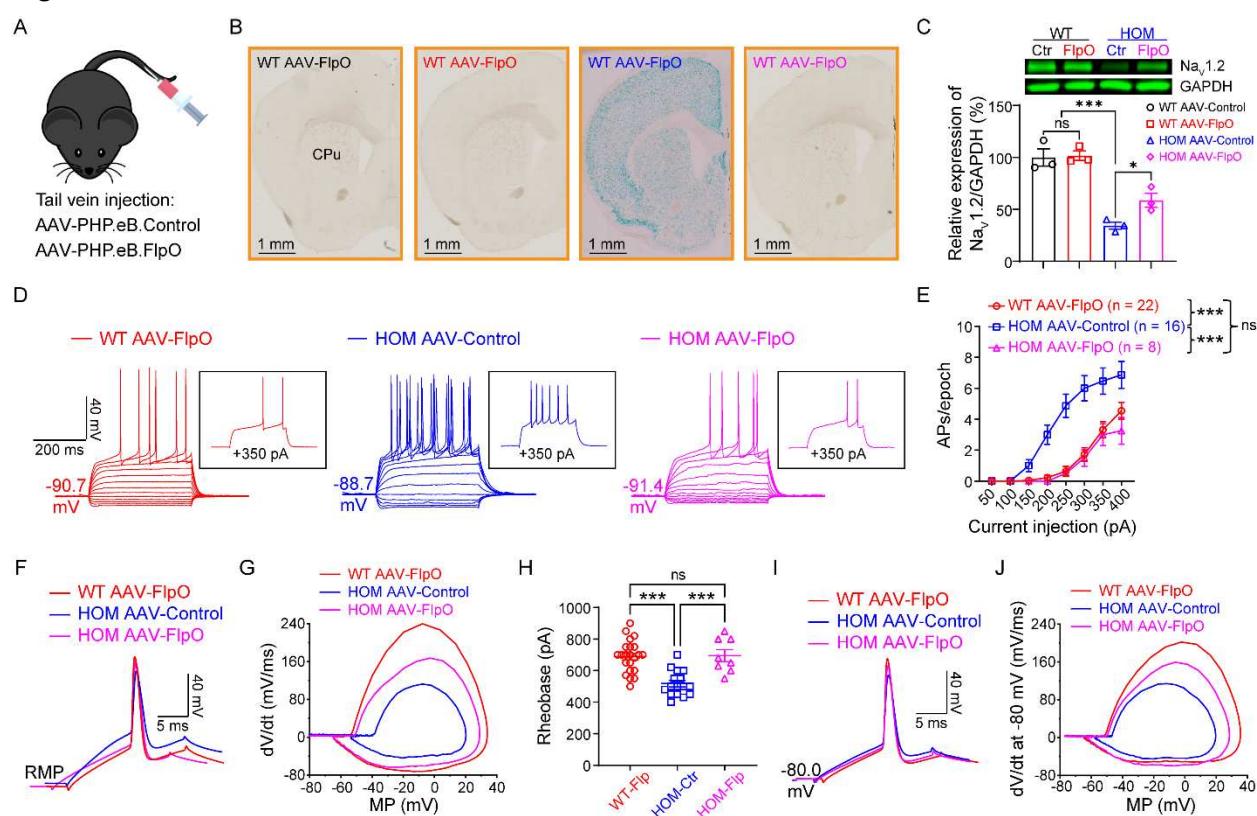

1013

1014 **Data and materials availability:** Additional results can be found in the supplemental
1015 material. The data that supports the findings of this study are available from the
1016 corresponding author upon reasonable request.

1017

1018 **FIGURE LEGEND**

1019 **Figure 1**

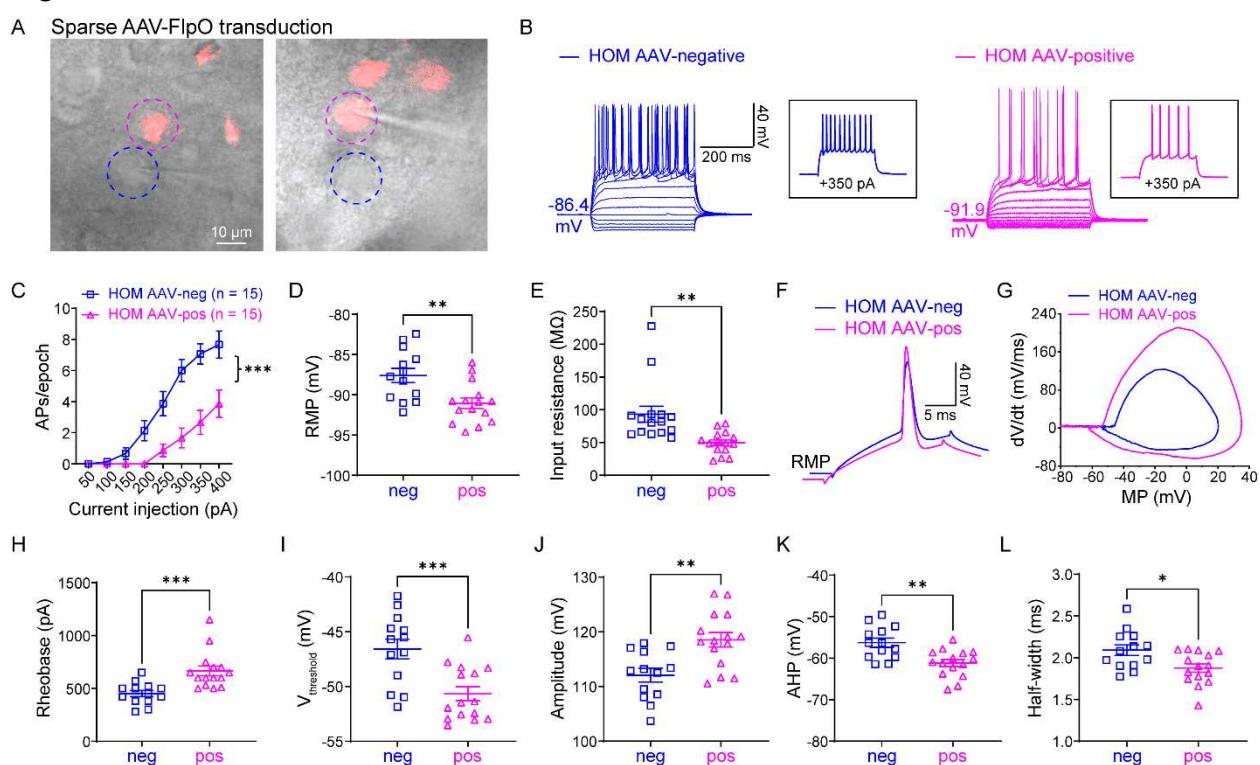

1020

1021 **Fig. 1. Elevated neuronal firings of striatal medium spiny neurons (MSNs) in adult *Nav1.2*-
1022 deficient mice.**

1023 **(A)** A typical MSN labeled by neurobiotin. Scale bar, 40 μ m. **(B)** Representative current-clamp
1024 recordings of MSNs from WT (black) and homozygous (HOM), *Scn2a*^{gtKO/gtKO} (blue) mice were
1025 obtained at the resting membrane potential (RMP). A series of 400-ms hyperpolarizing and
1026 depolarizing steps in 50-pA increments were applied to produce the traces. Inset: representative
1027 trace in response to 350 pA positive current injection. **(C)** The average number of action potentials
1028 (APs) generated in response to depolarizing current pulses. Unpaired two-tailed non-parametric
1029 Mann-Whitney *U*-test for each current pulse: ***p < 0.001. **(D)** Individuals and mean RMP values.
1030 Unpaired two-tailed Student's *t*-test: *p < 0.05. **(Ei)** Representative traces in response to 100 pA
1031 negative current injection. V_{ss} is the voltage recorded at 0-10 ms before the end of the
1032 stimulus. **(Eii)** Individuals and mean input resistance values at the RMP. Unpaired two-tailed
1033 Student's *t*-test: ***p < 0.001. **(F)** Typical spikes of MSNs from WT (black) and HOM (blue) mice
1034 were obtained at the normal RMP. **(G)** Associated phase-plane plots. **(H-L)** Individuals and mean
1035 spike rheobase, voltage threshold, amplitude, fAHP (fast after-hyperpolarization), and half-width
1036 values. Unpaired two-tailed Student's *t*-test: *p < 0.05; **p < 0.01; ***p < 0.001. Data were shown
1037 as mean \pm SEM.

1038

1039 **Figure 2**

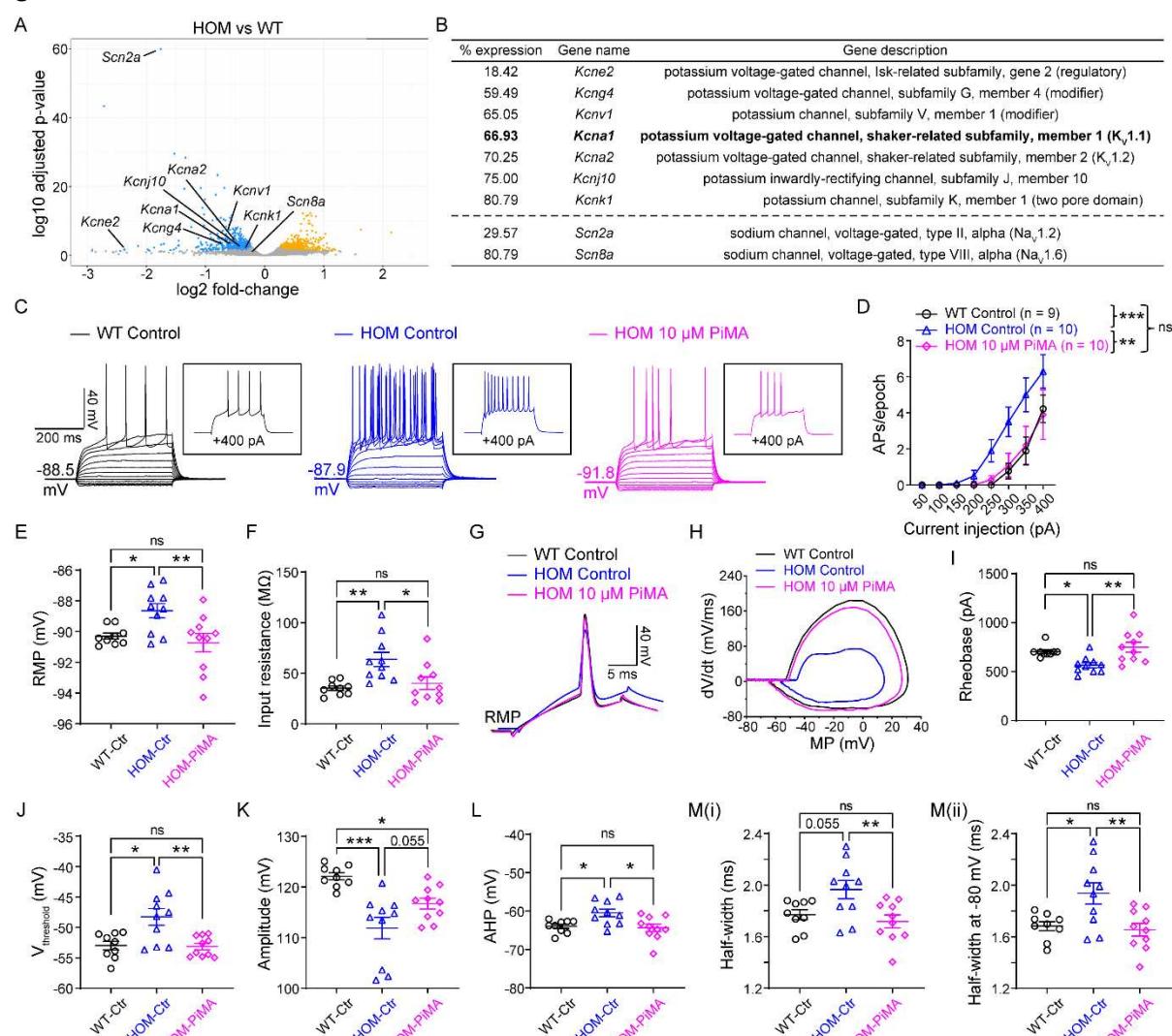

1040

1041 **Fig. 2. Elevated neuronal firing is reversible by FlpO-mediated restoration of Nav1.2**
1042 **expression in adult Nav1.2-deficient mice.**

1043 (A) Cartoon illustration of mice systemically administrated with PHP.eB.AAV-control or AAV-FlpO
1044 via tail vein injection. (B) Coronal views of LacZ staining of striatum from WT and *Scn2a*^{gtKO/gtKO} (HOM)
1045 mice injected with AAV-control or AAV-FlpO. Blue staining of HOM mice largely
1046 disappeared in the AAV-FlpO group. CPU, caudate nucleus and the putamen (dorsal striatum).
1047 (C) The Western blot analysis showed Nav1.2 protein levels in whole-brain tissues from
1048 *Scn2a*^{gtKO/gtKO} (HOM) mice in AAV-Control or AAV-FlpO group. One-way ANOVA with Bonferroni's
1049 multiple-comparison test: ns, no significance, $p > 0.05$; * $p < 0.05$; *** $p < 0.001$. (D) Representative
1050 current-clamp recordings of MSNs from WT mice transduced with AAV-FlpO (red), HOM mice
1051 transduced with AAV-Control (blue), and HOM mice transduced with AAV-Control (magenta)
1052 obtained at the RMP. A series of 400-ms hyperpolarizing and depolarizing steps in 50-pA
1053 increments were applied to produce the traces. Inset: representative trace in response to 350 pA
1054 positive current injection. (E) The average number of APs generated in response to depolarizing
1055 current pulses at the RMP. Unpaired two-tailed non-parametric Mann-Whitney *U*-test for each
1056 current pulse: ns, no significance, * $p > 0.05$; *** $p < 0.001$. (F) Typical spikes of MSNs from WT
1057 transduced with AAV-FlpO (red), HOM transduced with AAV-Control (blue) and HOM transduced
1058 with AAV-Control (magenta) were obtained at the normal RMP. (G) Associated phase-plane plots.
1059 (H) Individuals and average spike rheobase. Unpaired two-tailed Student's *t*-test: ns, no
1060 significance, $p > 0.05$; *** $p < 0.001$. (I) Typical spikes of MSNs from WT mice transduced with
1061 AAV-FlpO (red), HOM mice transduced with AAV-Control (blue), and HOM mice transduced
1062 with AAV-Control (magenta) at a fixed membrane potential of -80 mV. (J) Associated phase-plane
1063 plots at -80 mV. Data were shown as mean \pm SEM.

1064

1065 **Figure 3**


1066

1067 **Fig. 3. Elevated neuronal excitability is autonomous.**

1068 (A) *Scn2a^{gtKO/gtKO}* (HOM) mice were injected with a dilute FlpO virus, transducing a subset of
 1069 neurons in the striatum sparsely. Dashed circles highlight two neighboring AAV-negative (blue circle)
 1070 and AAV-FlpO-positive (magenta circle) neurons. The images were taken in the cell-
 1071 attached configuration, and after that, the target neurons were used for whole-cell recordings. (B)
 1072 Representative current-clamp recordings of AAV-negative (blue) and AAV-FlpO-positive
 1073 (magenta) MSNs in CPu of *Scn2a^{gtKO/gtKO}* mice were obtained at the RMP. A series of 400-ms
 1074 hyperpolarizing and depolarizing steps in 50-pA increments were applied to produce the traces.
 1075 Inset: representative trace in response to 350 pA positive current injection. (C) The average
 1076 number of APs generated in response to depolarizing current pulses. Unpaired two-tailed non-
 1077 parametric Mann-Whitney *U*-test for each current pulse: ***p < 0.001. (D) Individuals and average
 1078 RMP values. Unpaired two-tailed Student's *t*-test: **p < 0.01. (E) Individuals and average input
 1079 resistance values at the RMP. Unpaired two-tailed Student's *t*-test: **p < 0.01. (F) Typical spikes
 1080 of MSNs with AAV-negative (blue) and with AAV-FlpO-positive (magenta) in HOM mice were
 1081 obtained at the RMP. (G) Associated phase-plane plots. (H-L) Individuals and average spike
 1082 rheobase, voltage threshold, amplitude, fAHP, and half-width values. Unpaired two-tailed
 1083 Student's *t*-test: *p < 0.05; **p < 0.01; ***p < 0.001. Data were shown as mean \pm SEM.

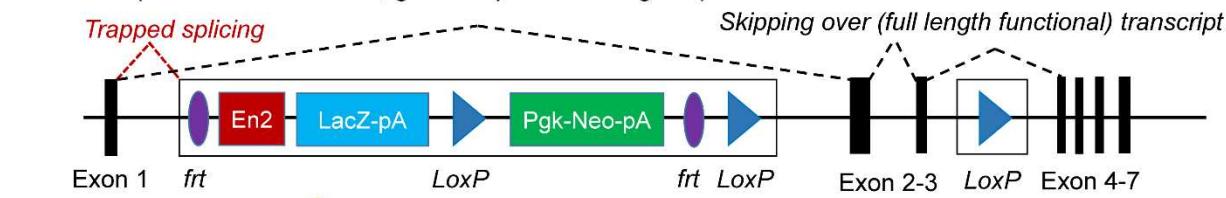
1084

1085 **Figure 4**

1086

1087 **Fig. 4. Activation of K_v channels reverses elevated neuronal firings in adult Nav1.2-
1088 deficient mice.**

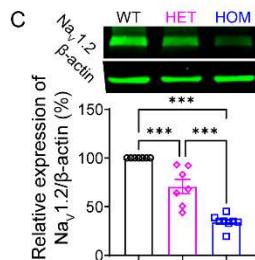
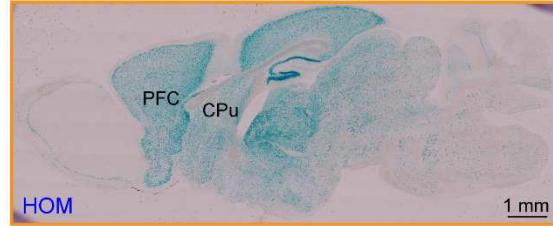
1089 **(A)** Volcano plot displays *Scn2a* and *Scn8a*, as well all potassium channels that are statistically
1090 down-regulated in *Scn2a^{gtK0/gtK0}* (HOM) mice compared to WT mice identified by RNA-seq.
1091 Statistically significantly upregulated genes are shown in yellow and downregulated genes are
1092 shown in blue. **(B)** List of potassium channels that are significantly down-regulated in HOM mice
1093 compared to WT. (Hits that are identified from both DESeq2 and edgeR differential expression
1094 analysis with False Discovery Rate < 0.05 were listed). "% expression": percentage expression of
1095 the gene in HOM mice considering the value of WT mice as 100%. (n = 4 mice for each group).
1096 **(C)** Representative current-clamp recordings of MSNs from WT slices perfused with 0.1% DMSO
1097 in aCSF (WT Control, black), HOM slices perfused with 0.1% DMSO in aCSF (HOM Control,
1098 blue), and HOM slices perfused with 0.1% DMSO in aCSF containing PiMA (HOM 10 μM PiMA,
1099 magenta) at the RMP. A series of 400-ms hyperpolarizing and depolarizing steps in 50-pA
1100 increments were applied to produce the traces. Inset: representative trace in response to 400 pA
1101 positive current injection. **(D)** The average number of APs generated in response to depolarizing
1102 current pulses at the RMP. Unpaired two-tailed non-parametric Mann-Whitney *U*-test for each
1103 current pulse: ns, no significance, *p > 0.05; **p < 0.01; ***p < 0.001. **(E)** Individuals and average

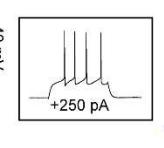
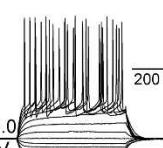

1104 RMP values. Unpaired two-tailed Student's *t*-test: ns, no significance, *p > 0.05; *p < 0.05; **p <
1105 0.01. (F) Individuals and average input resistance values at the RMP. Unpaired two-tailed
1106 Student's *t*-test: ns, no significance, *p > 0.05; *p < 0.05; **p < 0.01. (G) Typical spikes of MSNs
1107 from WT slices perfused with 0.1% DMSO in aCSF (WT Control, black), HOM slices perfused with
1108 0.1% DMSO in aCSF (HOM Control, blue), and HOM slices perfused with 0.1% DMSO in aCSF
1109 containing PiMA (HOM 10 μ M PiMA, magenta) were obtained at the RMP. (H) Associated phase-
1110 plane plots. (I-M) Individuals and average spike rheobase, voltage threshold, amplitude, fAHP,
1111 and half-width values. Unpaired two-tailed Student's *t*-test: ns, no significance, *p > 0.05; *p <
1112 0.05; **p < 0.01; ***p < 0.001. Data were shown as mean \pm SEM.

1113

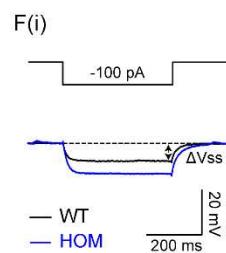
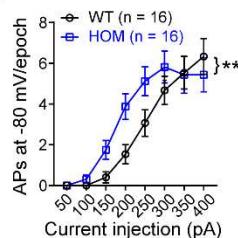
1114 **SUPPLEMENTARY MATERIALS**

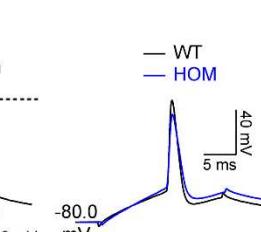
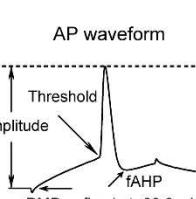
1115 **Supplementary Figure 1**

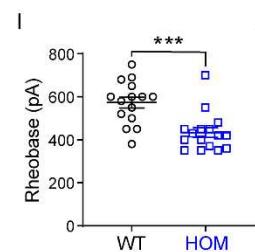
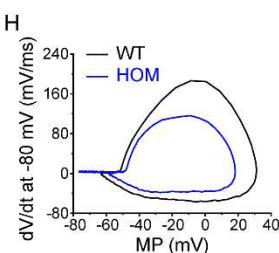


A *Tm1a* (knockout first allele, gene trap knockout/gtKO)

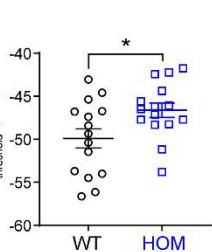


Tm1c (conditional/rescue allele)

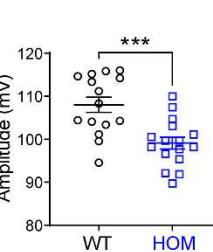
Exon 1 frt LoxP Exon 2-3 LoxP Exon 4-7

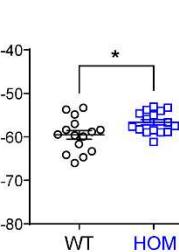


B

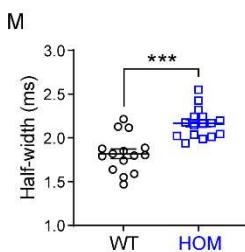


D



E


G


H

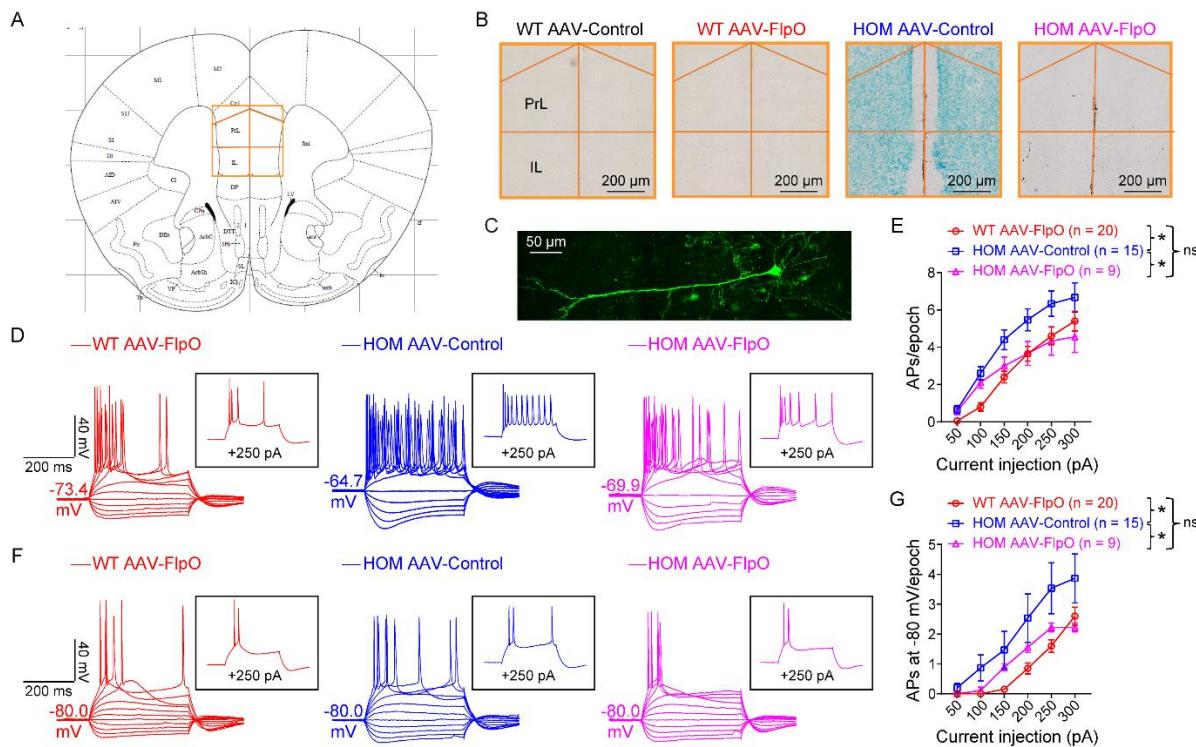

J


K

L

M

1116

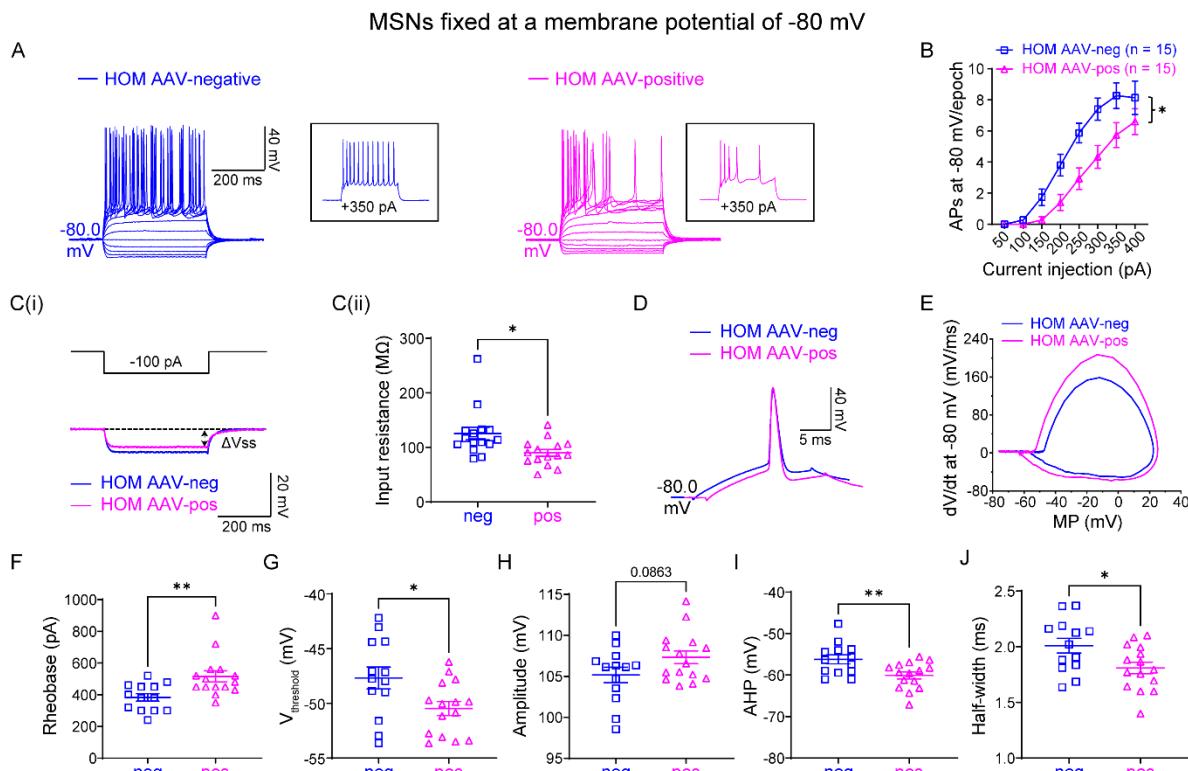

1117 **Figure S1. Elevated neuronal firings of striatal MSNs at a fixed membrane potential of -80**
1118 **mV in adult *NaV1.2*-deficient mice. Related to Figure 1.**

1119 (A) gtKO allele has an inserted tm1a trapping cassette between the Exon 1 and Exon 2 of *Scn2a*
1120 gene in the genome, which traps the transcription from Exon 1 to tm1a cassette, resulting in
1121 "gene-trap" knockout of *Scn2a*. In the presence of Flp recombinase, frt sites flanked trapping
1122 cassette will be removed, producing conditional ("rescue") allele that allows the expression of
1123 *Scn2a* at the WT level. *frt*, *Flp* recognition target (purple); *En2*, engrailed-2 splice acceptor (red);
1124 *LacZ*, *lacZ* β-galactosidase (light blue); *LoxP*, locus of X-over P1 (dark blue); and *Neo*, neomycin

1125 (green). (B) *gtKO* cassette contains a *LacZ* element and is driven by the native *Scn2a* promoter.
1126 Thus, the *LacZ* expression can be used as a surrogate of *Scn2a* expression. Representative *LacZ*
1127 staining of a sagittal slice from a *Scn2a*^{gtKO/gtKO} (HOM) mouse showing a strong blue signal across
1128 the brain including the prefrontal cortex (PFC) and dorsal striatum (CPu, caudate nucleus and the
1129 putamen). (C) Upper: Representative Western blots of striatal tissues from WT (black circle), HET
1130 (magenta diamond), and HOM (blue square) mice. Lower: associated quantification of Nav1.2
1131 protein. One-way ANOVA followed by Tukey's multiple-comparison test: ***p < 0.001. (D)
1132 Representative current-clamp recordings of MSNs from WT (black) and HOM (blue) mice were
1133 obtained at a fixed membrane potential of -80 mV. A series of 400-ms hyperpolarizing and
1134 depolarizing steps in 50-pA increments were applied to produce the traces. Inset: representative
1135 trace in response to 250 pA positive current injection. (E) The average number of APs generated
1136 in response to depolarizing current pulses at -80 mV. Unpaired two-tailed non-parametric Mann-
1137 Whitney *U*-test for each current pulse: **p < 0.01. (F) Representative traces in response to 100
1138 pA negative current injection. $V_{\text{steady-state}} (V_{ss})$ is the voltage recorded at 0-10 ms before the end of
1139 the stimulus. (Fii) Individuals and average input resistance values at -80 mV. Unpaired two-tailed
1140 Student's *t*-test: ***p < 0.001. (G) Left: plot of a typical AP showed its various phases. Right:
1141 typical spikes of MSNs from WT (black) and HOM (blue) mice were obtained at a fixed membrane
1142 potential of -80 mV. (H) Associated phase-plane plots. (I-M) Individuals and average spike
1143 rheobase, voltage threshold, amplitude, fAHP (fast after-hyperpolarization), and half-width values.
1144 unpaired two-tailed Student's *t*-test: *p < 0.05; ***p < 0.001. Data were shown as mean \pm SEM.

1145

1146 **Supplementary Figure 2**

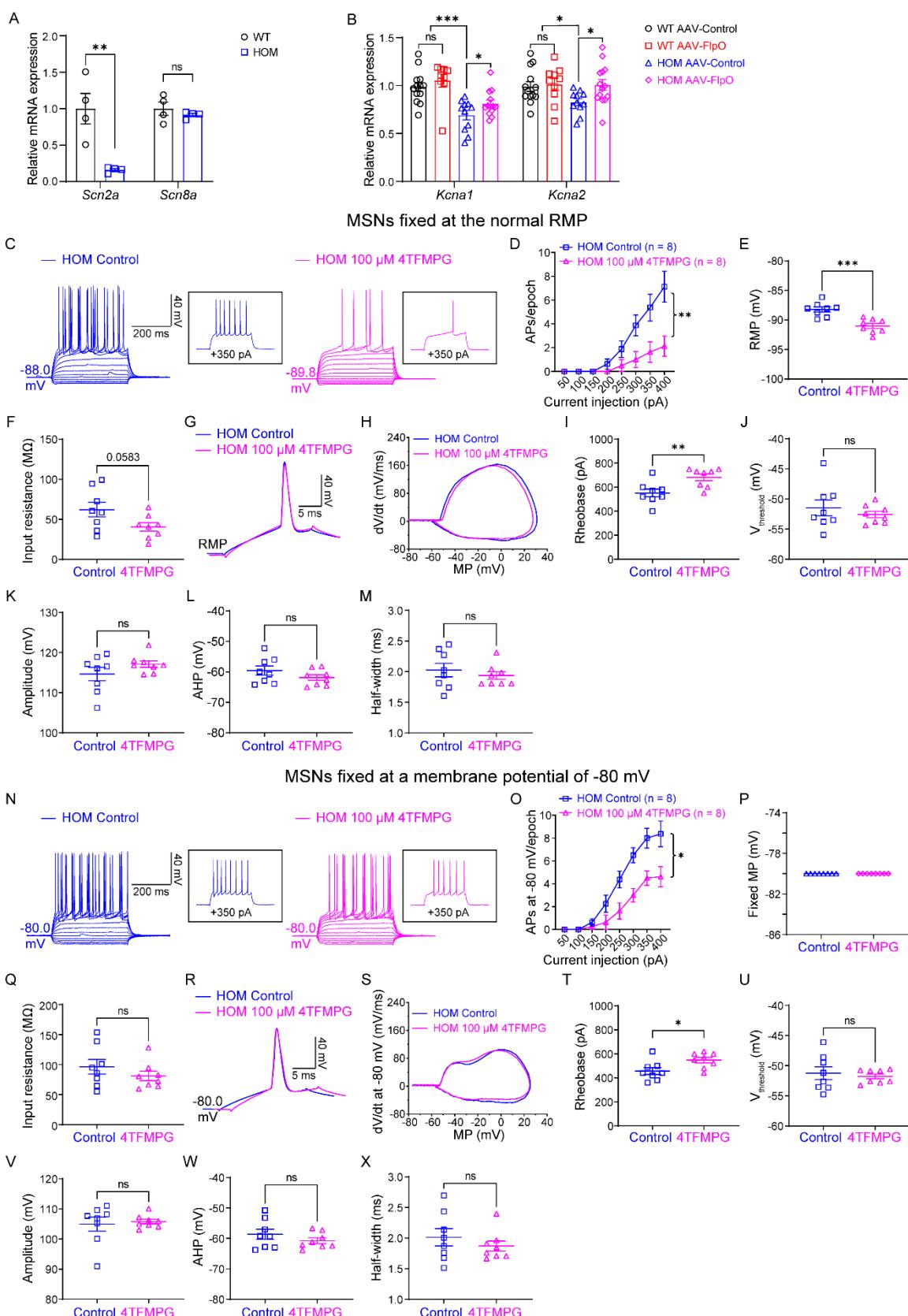

1147

1148 **Figure S2. Elevated neuronal firings of layer V pyramidal cells in the mPFC are reversible**
 1149 **by FlpO-mediated rescue in adult *Nav1.2*-deficient mice. Related to Figure 2.**

1150 **(A-B)** *LacZ* staining of coronal brain slices containing mPFC from WT and *Scn2a^{gtKO/gtKO}* (HOM)
 1151 mice, which were systemically administered with AAV-Control or AAV-FlpO. PrL, prelimbic
 1152 cortex; IL, infralimbic cortex. **(C)** A typical layer V pyramidal neuron in the mPFC was labeled by
 1153 neurobiotin. Scale bar, 50 μm. **(D)** Representative current-clamp recordings of pyramidal cells
 1154 from WT mice transduced with AAV-FlpO (red), HOM mice transduced with AAV-Control (blue),
 1155 and HOM mice transduced with AAV-FlpO (magenta) at the RMP. A series of 400-ms
 1156 hyperpolarizing and depolarizing steps in 50-pA increments were applied to produce the traces.
 1157 Inset: representative trace in response to 250 pA positive current injection. **(E)** The average
 1158 number of APs generated in response to depolarizing current pulses at the RMP. Unpaired two-
 1159 tailed non-parametric Mann-Whitney *U*-test for each current pulse: ns, no significance, $p > 0.05$;
 1160 $*p < 0.05$. **(F)** Representative current-clamp recordings of layer V pyramidal cells in the mPFC
 1161 from WT transduced with AAV-FlpO (red), HOM transduced with AAV-FlpO (blue), and HOM
 1162 transduced with AAV-FlpO (magenta) at a fixed membrane potential of -80 mV. A series of
 1163 400-ms hyperpolarizing and depolarizing steps in 50-pA increments were applied to produce the
 1164 traces. Inset: representative trace in response to 250 pA positive current injection. **(G)** The
 1165 average number of APs generated in response to depolarizing current pulses at -80 mV.
 1166 Unpaired two-tailed non-parametric Mann-Whitney *U*-test for each current pulse: ns, no
 1167 significance, $p > 0.05$; $*p < 0.05$. Data were shown as mean \pm SEM.

1168

1169 **Supplementary Figure 3**

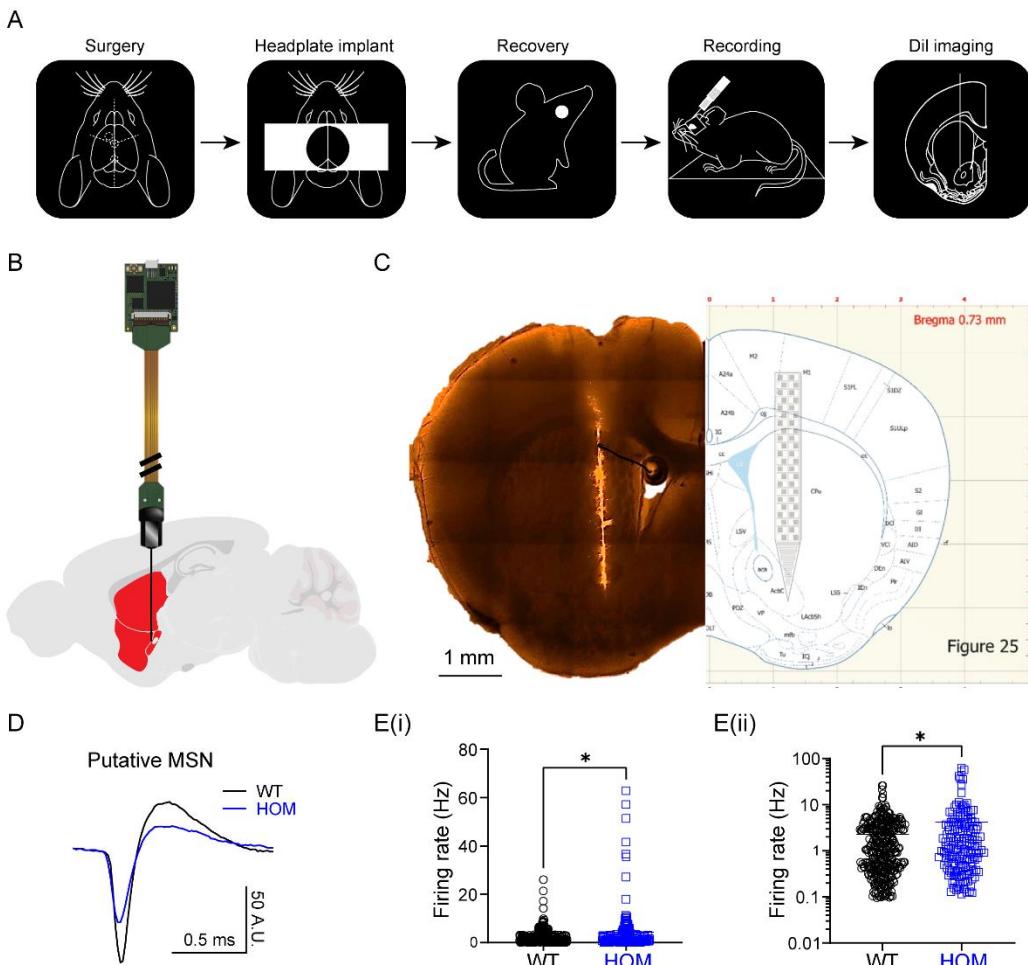

1170

1171 **Figure S3. *Ex vivo* recordings of MSNs at a fixed membrane potential of -80 mV in adult**
1172 ***Na_{1.2}*-deficient mice with a dilute AAV-FlpO-mCherry injection. Related to Figure 3.**

1173 **(A)** Representative current-clamp recordings of MSNs with AAV-negative (blue) and with AAV-
1174 FlpO-positive (magenta) in *Scn2a^{gtKOs/gtKO}* (HOM) mice were obtained at a fixed membrane
1175 potential of -80 mV. A series of 400-ms hyperpolarizing and depolarizing steps in 50-pA
1176 increments were applied to produce the traces. Inset: representative trace in response to 350 pA
1177 positive current injection. **(B)** The average number of APs generated in response to depolarizing
1178 current pulses. Unpaired two-tailed non-parametric Mann-Whitney *U*-test for each current pulse:
1179 **p* < 0.05. **(Ci)** Representative traces in response to 100 pA negative current injection. $V_{\text{steady-state}}$
1180 (V_{ss}) is the voltage recorded at 0-10 ms before the end of the stimulus. **(Cii)** Individuals and
1181 average input resistance values at -80 mV. Unpaired two-tailed Student's *t*-test: **p* < 0.05. **(D)**
1182 Typical spikes of MSNs with AAV-negative (blue) or AAV-FlpO-positive (magenta) in HOM mice
1183 were obtained at a fixed membrane potential of -80 mV. **(E)** Associated phase-plane plots at -80
1184 mV. **(F-J)** Individuals and average spike rheobase, voltage threshold, amplitude, fAHP, and half-
1185 width values. Unpaired two-tailed Student's *t*-test: ns, no significance, *p* > 0.05; **p* < 0.05; ***p* <
1186 0.01. Data were shown as mean \pm SEM.

1187

1188 **Supplementary Figure 4**


1190 **Figure S4. Specific activation of Kv1.1 channel by 4TFMPG reverses the elevated neuronal**
1191 **firings in adult $NaV1.2$ -deficient mice. Related to Figure 4.**

1192 **(A)** Quantitative (q)PCR analysis of *Scn2a* and *Scn8a* mRNA in the striatum samples from WT
1193 and *Scn2a^{gtKO/gtKO}* mice. Unpaired two-tailed Student's *t*-test for each group: ns, no significance,
1194 **p* > 0.05; ***p* < 0.01. **(B)** qPCR analysis of *Kcna1* and *Kcna2* mRNA in the striatum samples from
1195 WT and HOM mice transduced with AAV-Control or AAV-FlpO, showing that the downregulated
1196 mRNA levels of Kv1.1 and Kv1.2 were reversible by FlpO-mediated restoration of $NaV1.2$
1197 expression in adult $NaV1.2$ -deficient mice. Unpaired two-tailed Student's *t*-test: ns, no
1198 significance, **p* > 0.05; **p* < 0.05; ****p* < 0.001. **(C)** Representative current-clamp recordings of
1199 MSNs from HOM slices perfused with aCSF (HOM Control, blue) and HOM slices perfused with
1200 aCSF containing 4TFMPG (HOM 100 μ M 4TFMPG, magenta) at the RMP. A series of 400-ms
1201 hyperpolarizing and depolarizing steps in 50-pA increments were applied to produce the traces.
1202 Inset: representative trace in response to 350 pA positive current injection. **(D)** The average
1203 number of APs generated in response to depolarizing current pulses at the RMP. Unpaired two-
1204 tailed non-parametric Mann-Whitney *U*-test for each current pulse: ***p* < 0.01. **(E)** Individuals and
1205 average spike RMP values. Unpaired two-tailed Student's *t*-test: ****p* < 0.001. **(F)** Individuals and
1206 average input resistance values at the RMP. Unpaired two-tailed Student's *t*-test: *p* = 0.0583. **(G)**
1207 Typical spikes of MSNs from HOM slices perfused with aCSF (HOM Control, blue) and HOM
1208 slices perfused with aCSF containing 4TFMPG (HOM 100 μ M 4TFMPG, magenta) were obtained
1209 at the RMP. **(H)** Associated phase-plane plots. **(I-M)** Individuals and average spike rheobase,
1210 voltage threshold, amplitude, fAHP, and half-width values. **(N)** Representative current-clamp
1211 recordings of MSNs from HOM slices perfused with aCSF (HOM Control, blue) and HOM slices
1212 perfused with aCSF containing 4TFMPG (HOM 100 μ M 4TFMPG, magenta) at a fixed membrane
1213 potential of -80 mV. A series of 400-ms hyperpolarizing and depolarizing steps in 50-pA
1214 increments were applied to produce the traces. Inset: representative trace in response to 350 pA
1215 positive current injection. **(O)** The average number of APs generated in response to depolarizing
1216 current pulses at -80 mV. Unpaired two-tailed non-parametric Mann-Whitney *U*-test for each
1217 current pulse: **p* < 0.05. **(P)** fixed MP values for recording. **(Q)** Individuals and average input
1218 resistance values at -80 mV. Unpaired two-tailed Student's *t*-test: ns, no significance, **p* > 0.05.
1219 **(R)** Typical spikes of MSNs from *Scn2a^{gtKO/gtKO}* slices perfused with aCSF (HOM Control, blue)
1220 and *Scn2a^{gtKO/gtKO}* slices perfused with aCSF containing 4TFMPG (HOM 100 μ M 4TFMPG,
1221 magenta) were obtained at a fixed membrane potential of -80 mV. **(S)** Associated phase-plane
1222 plots. **(T-X)** Individuals and average spike rheobase, voltage threshold, amplitude, fAHP, and half-
1223 width values. Unpaired two-tailed Student's *t*-test: ns, no significance, **p* > 0.05; **p* < 0.05. Data
1224 were shown as mean \pm SEM.

1225

1226

1227 **Supplementary Figure 5**

1228

1229 **Figure S5. Elevated *in vivo* neuronal firings of putative striatal MSNs in adult Nav1.2-
1230 deficient mice.**

1231 (A) Cartoon icons showing 5 steps in the *Neuropixels* recording experiment pipeline. (B) A cartoon
1232 illustration of a *Neuropixels* probe inserted into the striatum. (C) Dil staining of *Neuropixels* probe
1233 after recording in the mouse brain matched with brain map (the right panel was adapted from
1234 Figure 25 in the Paxinos and Franklin's *The Mouse Brain in Stereotaxic Coordinates*). (D)
1235 Representative spike waveforms of *Neuropixels* recordings from putative MSNs of WT (black)
1236 and HOM (blue) mice. (Ei): Firing rate of putative MSNs of WT and HOM mice. (Eii): y-axis in log
1237 scale to show the firing rate of putative MSNs. n = 3 mice for each genotype; unpaired two-tailed
1238 Welch's t-test: *p < 0.05. Data were shown as mean \pm SEM.

1239